Eurasian Mathematical Journal

2016, Volume 7, Number 4

Founded in 2010 by
the L.N. Gumilyov Eurasian National University
in cooperation with
the M.V. Lomonosov Moscow State University
the Peoples' Friendship University of Russia
the University of Padua

Supported by the ISAAC (International Society for Analysis, its Applications and Computation) and by the Kazakhstan Mathematical Society

Published by the L.N. Gumilyov Eurasian National University Astana, Kazakhstan

EURASIAN MATHEMATICAL JOURNAL

Editorial Board

Editors-in-Chief

V.I. Burenkov, M. Otelbaev, V.A. Sadovnichy

Editors

Sh.A. Alimov (Uzbekistan), H. Begehr (Germany), T. Bekjan (China), O.V. Besov (Russia), N.A. Bokayev (Kazakhstan), A.A. Borubaev (Kyrgyzstan), G. Bourdaud (France), A. Caetano (Portugal), M. Carro (Spain), A.D.R. Choudary (Pakistan), V.N. Chubarikov (Russia), A.S. Dzumadildaev (Kazakhstan), V.M. Filippov (Russia), H. Ghazaryan (Armenia), M.L. Goldman (Russia), V. Goldshtein (Israel), V. Guliyev (Azerbaijan), D.D. Haroske (Germany), A. Hasanoglu (Turkey), M. Huxley (Great Britain), M. Imanaliev (Kyrgyzstan), P. Jain (India), T.Sh. Kalmenov (Kazakhstan), B.E. Kangyzhin (Kazakhstan), K.K. Kenzhibaev (Kazakhstan), S.N. Kharin (Kazakhstan), E. Kissin (Great Britain), V. Kokilashvili (Georgia), V.I. Korzyuk (Belarus), A. Kufner (Czech Republic), L.K. Kussainova (Kazakhstan), P.D. Lamberti (Italy), M. Lanza de Cristoforis (Italy), V.G. Maz'ya (Sweden), E.D. Nursultanov (Kazakhstan), R. Oinarov (Kazakhstan), K.N. Ospanov (Kazakhstan), I.N. Parasidis (Greece), J. Pečarić (Croatia), S.A. Plaksa (Ukraine), L.-E. Persson (Sweden), E.L. Presman (Russia), M.A. Ragusa (Italy), M.D. Ramazanov (Russia), M. Reissig (Germany), M. Ruzhansky (Great Britain), S. Sagitov (Sweden), T.O. Shaposhnikova (Sweden), A.A. Shkalikov (Russia), V.A. Skvortsov (Poland), G. Sinnamon (Canada), E.S. Smailov (Kazakhstan), V.D. Stepanov (Russia), Ya.T. Sultanaev (Russia), I.A. Taimanov (Russia), T.V. Tararykova (Great Britain), J.A. Tussupov (Kazakhstan), U.U. Umirbaev (Kazakhstan), Z.D. Usmanov (Tajikistan), N. Vasilevski (Mexico), Dachun Yang (China), B.T. Zhumagulov (Kazakhstan)

Managing Editor

A.M. Temirkhanova

Aims and Scope

The Eurasian Mathematical Journal (EMJ) publishes carefully selected original research papers in all areas of mathematics written by mathematicians, principally from Europe and Asia. However papers by mathematicians from other continents are also welcome.

From time to time the EMJ publishes survey papers.

The EMJ publishes 4 issues in a year.

The language of the paper must be English only.

The contents of EMJ are indexed in Scopus, Web of Science (ESCI), Mathematical Reviews, MathSciNet, Zentralblatt Math (ZMATH), Referativnyi Zhurnal – Matematika, Math-Net.Ru.

The EMJ is included in the list of journals recommended by the Committee for Control of Education and Science (Ministry of Education and Science of the Republic of Kazakhstan) and in the list of journals recommended by the Higher Attestation Commission (Ministry of Education and Science of the Russian Federation).

Information for the Authors

<u>Submission.</u> Manuscripts should be written in LaTeX and should be submitted electronically in DVI, PostScript or PDF format to the EMJ Editorial Office via e-mail (eurasianmj@yandex.kz).

When the paper is accepted, the authors will be asked to send the tex-file of the paper to the Editorial Office.

The author who submitted an article for publication will be considered as a corresponding author. Authors may nominate a member of the Editorial Board whom they consider appropriate for the article. However, assignment to that particular editor is not guaranteed.

Copyright. When the paper is accepted, the copyright is automatically transferred to the EMJ. Manuscripts are accepted for review on the understanding that the same work has not been already published (except in the form of an abstract), that it is not under consideration for publication elsewhere, and that it has been approved by all authors.

<u>Title page</u>. The title page should start with the title of the paper and authors' names (no degrees). It should contain the <u>Keywords</u> (no more than 10), the <u>Subject Classification</u> (AMS Mathematics Subject Classification (2010) with primary (and secondary) subject classification codes), and the <u>Abstract</u> (no more than 150 words with minimal use of mathematical symbols).

<u>Figures</u>. Figures should be prepared in a digital form which is suitable for direct reproduction.

<u>References</u>. Bibliographical references should be listed alphabetically at the end of the article. The authors should consult the Mathematical Reviews for the standard abbreviations of journals' names.

<u>Authors' data.</u> The authors' affiliations, addresses and e-mail addresses should be placed after the References.

<u>Proofs.</u> The authors will receive proofs only once. The late return of proofs may result in the paper being published in a later issue.

Offprints. The authors will receive offprints in electronic form.

Publication Ethics and Publication Malpractice

For information on Ethics in publishing and Ethical guidelines for journal publication see $http://www.elsevier.com/publishingethics \ and \ http://www.elsevier.com/journal-authors/ethics.$

Submission of an article to the EMJ implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see http://www.elsevier.com/postingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. In particular, translations into English of papers already published in another language are not accepted.

No other forms of scientific misconduct are allowed, such as plagiarism, falsification, fraudulent data, incorrect interpretation of other works, incorrect citations, etc. The EMJ follows the Code of Conduct of the Committee on Publication Ethics (COPE), and follows the COPE Flowcharts for Resolving Cases of Suspected Misconduct (http://publicationethics.org/files/u2/New_Code.pdf). To verify originality, your article may be checked by the originality detection service CrossCheck http://www.elsevier.com/editors/plagdetect.

The authors are obliged to participate in peer review process and be ready to provide corrections, clarifications, retractions and apologies when needed. All authors of a paper should have significantly contributed to the research.

The reviewers should provide objective judgments and should point out relevant published works which are not yet cited. Reviewed articles should be treated confidentially. The reviewers will be chosen in such a way that there is no conflict of interests with respect to the research, the authors and/or the research funders.

The editors have complete responsibility and authority to reject or accept a paper, and they will only accept a paper when reasonably certain. They will preserve anonymity of reviewers and promote publication of corrections, clarifications, retractions and apologies when needed. The acceptance of a paper automatically implies the copyright transfer to the EMJ.

The Editorial Board of the EMJ will monitor and safeguard publishing ethics.

The procedure of reviewing a manuscript, established by the Editorial Board of the Eurasian Mathematical Journal

1. Reviewing procedure

- 1.1. All research papers received by the Eurasian Mathematical Journal (EMJ) are subject to mandatory reviewing.
- 1.2. The Managing Editor of the journal determines whether a paper fits to the scope of the EMJ and satisfies the rules of writing papers for the EMJ, and directs it for a preliminary review to one of the Editors-in-chief who checks the scientific content of the manuscript and assigns a specialist for reviewing the manuscript.
- 1.3. Reviewers of manuscripts are selected from highly qualified scientists and specialists of the L.N. Gumilyov Eurasian National University (doctors of sciences, professors), other universities of the Republic of Kazakhstan and foreign countries. An author of a paper cannot be its reviewer.
- 1.4. Duration of reviewing in each case is determined by the Managing Editor aiming at creating conditions for the most rapid publication of the paper.
- 1.5. Reviewing is confidential. Information about a reviewer is anonymous to the authors and is available only for the Editorial Board and the Control Committee in the Field of Education and Science of the Ministry of Education and Science of the Republic of Kazakhstan (CCFES). The author has the right to read the text of the review.
 - 1.6. If required, the review is sent to the author by e-mail.
 - 1.7. A positive review is not a sufficient basis for publication of the paper.
- 1.8. If a reviewer overall approves the paper, but has observations, the review is confidentially sent to the author. A revised version of the paper in which the comments of the reviewer are taken into account is sent to the same reviewer for additional reviewing.
- 1.9. In the case of a negative review the text of the review is confidentially sent to the author.
- 1.10. If the author sends a well reasoned response to the comments of the reviewer, the paper should be considered by a commission, consisting of three members of the Editorial Board.
- 1.11. The final decision on publication of the paper is made by the Editorial Board and is recorded in the minutes of the meeting of the Editorial Board.
- 1.12. After the paper is accepted for publication by the Editorial Board the Managing Editor informs the author about this and about the date of publication.
- 1.13. Originals reviews are stored in the Editorial Office for three years from the date of publication and are provided on request of the CCFES.
 - 1.14. No fee for reviewing papers will be charged.

2. Requirements for the content of a review

- 2.1. In the title of a review there should be indicated the author(s) and the title of a paper.
- 2.2. A review should include a qualified analysis of the material of a paper, objective assessment and reasoned recommendations.
 - 2.3. A review should cover the following topics:
 - compliance of the paper with the scope of the EMJ;
 - compliance of the title of the paper to its content;

- compliance of the paper to the rules of writing papers for the EMJ (abstract, key words and phrases, bibliography etc.);
- a general description and assessment of the content of the paper (subject, focus, actuality of the topic, importance and actuality of the obtained results, possible applications);
- content of the paper (the originality of the material, survey of previously published studies on the topic of the paper, erroneous statements (if any), controversial issues (if any), and so on);
- exposition of the paper (clarity, conciseness, completeness of proofs, completeness of bibliographic references, typographical quality of the text);
- possibility of reducing the volume of the paper, without harming the content and understanding of the presented scientific results;
- description of positive aspects of the paper, as well as of drawbacks, recommendations for corrections and complements to the text.
- 2.4. The final part of the review should contain an overall opinion of a reviewer on the paper and a clear recommendation on whether the paper can be published in the Eurasian Mathematical Journal, should be sent back to the author for revision or cannot be published.

Web-page

The web-page of EMJ is www.emj.enu.kz. One can enter the web-page by typing Eurasian Mathematical Journal in any search engine (Google, Yandex, etc.). The archive of the web-page contains all papers published in EMJ (free access).

Subscription

For Institutions

- US\$ 200 (or equivalent) for one volume (4 issues)
- US\$ 60 (or equivalent) for one issue

For Individuals

- US\$ 160 (or equivalent) for one volume (4 issues)
- US\$ 50 (or equivalent) for one issue.

The price includes handling and postage.

The Subscription Form for subscribers can be obtained by e-mail:

eurasianmj@yandex.kz

The Eurasian Mathematical Journal (EMJ)
The Editorial Office
The L.N. Gumilyov Eurasian National University
Building no. 3
Room 306a
Tel.: +7-7172-709500 extension 33312
13 Kazhymukan St

010008 Astana Kazakhstan

YESMUKHANBET SAIDAKHMETOVICH SMAILOV

(to the 70th birthday)

On October 18, 2016 was the 70th birthday of Yesmukhabet Saidakhmetovich Smailov, member of the Editorial Board of the Eurasian Mathematical Journal, director of the Institute of Applied Mathematics (Karaganda), doctor of physical and mathematical sciences (1997), professor (1993), honoured worker of the E.A. Buketov Karaganda State University, honorary professor of the Sh. Valikanov Kokshetau State University, honorary citizen of the Tarbagatai district of the East-Kazakhstan region. In 2011 he was awarded the Order "Kurmet" (= "Honour").

Y.S. Smailov was born in the Kyzyl-Kesek village (the Aksuat district of the Semipalatinsk region of the Kazakh SSR). He graduated

from the S.M. Kirov Kazakh State University (Almaty) in 1968 and in 1971 he completed his postgraduate studies at the Institute of Mathematics and Mechanics of the Academy of Sciences of the Kazakh SSR (Almaty). Starting with 1972 he worked at the E.A. Buketov Karaganda State University (senior lecturer, associate professor, professor, head of the Department of Mathematical Analysis, dean of the Mathematical Faculty; from 2004 director of the Institute of Applied Mathematics).

In 1999 the American Biographical Institute declared professor Smailov "Man of the Year" and published his biography in the "Biographical encyclopedia of professional leaders of the Millennium".

Professor Smailov is one of the leading experts in the theory of functions and functional analysis and a major organizer of science in the Republic of Kazakhstan. He had a great influence on the formation of the Mathematical Faculty of the E.A. Buketov Karaganda State University and he made a significant contribution to the development of mathematics in Central Kazakhstan. Due to the efforts of Y.S. Smailov, in Karaganda an actively operating Mathematical School on the function theory was established, which is well known in Kazakhstan and abroad.

He has published more than 140 scientific papers, two textbooks for students and one monograph. 10 candidate of sciences and 4 doctor of sciences dissertations have been defended under his supervision.

Research interests of Professor Smailov are quite broad: the embedding theory of function spaces; approximation of functions of real variables; interpolation of function spaces and linear operators; Fourier series for general orthogonal systems; Fourier multipliers; difference embedding theorems.

The Editorial Board of the Eurasian Mathematical Journal congratulates Yesmukhanbet Saidakhmetovich Smailov on the occasion of his 70th birthday and wishes him good health and new achievements in mathematics and mathematical education.

EURASIAN MATHEMATICAL JOURNAL

ISSN 2077-9879

Volume 7, Number 4 (2016), 85 – 91

ON THE SOLVABILITY OF PARABOLIC FUNCTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES

A.M. Selitskii

Communicated by V.I. Burenkov

Key words: functional differential equations, Lipschitz domain, Banach spaces.

AMS Mathematics Subject Classification: 39A14.

Abstract. In this paper, a parabolic functional differential equation is considered in the spaces $C(0,T;H_p^1(Q))$ for p close to 2. The transformations of the space argument are supposed to be multiplicators of the Sobolev spaces with a small smoothness exponent. The machinery of the investigation is based on the semigroup theory. In particular, it is proved that the elliptic part of the operator is a generator of a strongly continuous semigroup.

1 Introduction

We consider the second boundary-value problem for the following parabolic functional differential equation

$$u_t - \sum_{i,j=1}^n \left(A_{ij} u_{x_j} \right)_{x_i} + \sum_{i=1}^n B_i u_{x_i} + Cu = f(x,t) \qquad ((x,t) \in Q_T)$$
 (1.1)

in a bounded domain $Q \subset \mathbb{R}^n$ with a Lipschitz boundary ∂Q , where the operators A_{ij} , B_i , and C are bounded in $L_2(Q)$, with the boundary condition

$$\sum_{i,j=1}^{n} A_{ij} u_{x_j} \cos(\nu, x_i) = 0 \qquad ((x,t) \in \Gamma_T),$$
(1.2)

and the initial condition

$$u|_{t=0} = \varphi(x) \qquad (x \in Q), \qquad (1.3)$$

where $Q_T = Q \times (0, T)$, $0 < T < \infty$, $\Gamma_T = \partial Q \times (0, T)$, ν is the external unit normal to Γ_T (it exists at almost every point of Γ_T), $f \in L_2(Q_T)$, and $\varphi \in L_2(Q)$.

For differential-difference operators this problem was solved in $L_p(0, T; H_2^1(Q))$ $(1 (see [8]). In this article we suppose only that operators <math>A_{ij}$ are bounded in $H^s(Q)$ for small |s| and all the coefficients belong to $L_p(Q)$ for p close to 2.

Note that the modeling of the optical system with 2D feedback leads to a functional differential parabolic equation with transformation of argument in the unknown function, see, e.g., [11] and literature therein.

86 A.M. Selitskii

2 Weak and strong solvability

Let $H^1(Q)$ be the Sobolev space of complex-valued functions belonging to $L_2(Q)$ having all generalized derivatives of the first order belonging to $L_2(Q)$.

Introduce the sesquilinear form $\Phi(v, w)$ in $L_2(Q)$ with the domain $H^1(Q)$ by the formula

$$\Phi(v, w) = \sum_{i,j=1}^{n} (A_{ij}v_{x_j}, w_{x_i})_{L_2(Q)} + \sum_{i=1}^{n} (B_iv_{x_i}, w)_{L_2(Q)} + (Cv, w)_{L_2(Q)}.$$
 (2.1)

By assumption, the operators A_{ij} , B_i , $C: L_2(Q) \to L_2(Q)$ are bounded. Therefore, it follows that there exists a constant $c_0 > 0$ such that

$$|\Phi(v, w)| \le c_0 ||v||_{H^1(Q)} ||w||_{H^1(Q)} \qquad (v, w \in H^1(Q)).$$
 (2.2)

Since the sesquilinear form $\Phi(v, w)$ is continuous with respect to w in $H^1(Q)$, there exists a linear bounded operator $A \colon H^1(Q) \to [H^1(Q)]' = \widetilde{H}^{-1}(Q)$, such that

$$\langle Av, \overline{w} \rangle = \Phi(v, w) \qquad (v, w \in H^1(Q)),$$
 (2.3)

where $\langle \cdot, \cdot \rangle$ denotes the dual pairing with respect to the scalar product in $L_2(Q)$.

We suppose that the form $\Phi(v, w)$ is coercive, i.e., there exist numbers $c_1 > 0$ and $c_2 \ge 0$ such that

Re
$$\Phi(v, v) \ge c_1 \|v\|_{H^1(Q)}^2 - c_2 \|v\|_{L_2(Q)}^2 \qquad (v \in H^1(Q)).$$
 (2.4)

We can assume that $c_2 = 0$ in inequality (2.4). Otherwise, we set $u = z e^{c_2 t}$ that transforms operator A to $A + c_2 I$.

Denote by \mathcal{A} the operator A with the domain $D(\mathcal{A}) = \{u \in H^1(Q) : Au \in L_2(Q)\}$ with the graph norm.

To formulate the definition of a weak solution of problem (1.1)–(1.3) we introduce the following space

$$W(A) = \left\{ u \in L_p(0, T; H^1(Q)) : u' \in L_p(0, T; \widetilde{H}^{-1}(Q)) \right\}.$$
 (2.5)

Definition 1. A function $u \in W(A)$ is said to be a weak solution of problem (1.1)–(1.3) if it satisfies the equation

$$\frac{du}{dt} + Au = f \qquad \text{for almost all } t \in (0, T)$$
 (2.6)

and the initial condition

$$u|_{t=0} = \varphi. (2.7)$$

Note that from [4, Ch. XVIII, §1, Sec. 4, Proposition 9] it follows that for a function $u \in W(A)$ the value $u(0) \in \widetilde{H}^{-1}(Q)$ is defined.

We need the notation of Besov spaces. Consider the modulus of smoothness of the second order for a function $f \in L_p(Q)$:

$$\omega_p^2(f,t) = \sup_{|h| \le t} ||f(x+2h) - 2f(x+h) + f(x)||_{L_p(Q)}.$$

Let $1 \le p, \theta < \infty$ and s > 0 and $s = \tilde{s} + \alpha$, where \tilde{s} is an integer and $0 < \alpha \le 1$.

It is said that a function $f \in L_p(\mathbb{R}^n)$ belongs to the function space $B_{p,\theta}^s(\mathbb{R}^n)$ if it has all partial derivatives up to the \tilde{s} th order and

$$||f||_{B_{p,\theta}^s(\mathbb{R}^n)} = ||f||_{W_p^{\tilde{s}}(\mathbb{R}^n)} + \left(\int_0^\infty \left| \frac{\omega_p^2(f^{(\tilde{s})}, t)}{t^\alpha} \right|^\theta \frac{dt}{t} \right)^{1/\theta} < \infty.$$
 (2.8)

Here $W_p^{\tilde{s}}(\mathbb{R}^n)$ is the Sobolev space. The space $B_{p,\theta}^s(Q)$ is defined as restriction of the space $B_{p,\theta}^s(\mathbb{R}^n)$ on Q with inf-norm (see [12, Sec. 4.2.1]). Set $B_{p,p}^0(Q) = L_p(Q)$ and let $\widetilde{B}_{p',\theta'}^{-s}(Q)$ denote the dual of $B_{p,\theta}^s(Q)$ (here $1/p + 1/p' = 1/\theta + 1/\theta' = 1$).

Remark 1. We can use interpolation theorems for functions defined on \mathbb{R}^n because Theorem 1 from Sec. 4.3.1 in [12] is true for Lipschitz domain as well by virtue of existence of an extension operator independent of p, θ , and s (see [7]). See the definitions of real and complex interpolations in [12].

Theorem 2.1. Let the form $\Phi(v,w)$ be coercive with $c_2 = 0$, and $f \in L_p(0,T; \widetilde{H}^{-1}(Q))$ (1 . Then problem <math>(1.1)–(1.3) has a unique weak solution $u \in W(A)$ if and only if $\varphi \in B_{2,p}^{1-\frac{2}{p}}(Q)$ for $p \geq 2$ and $\varphi \in \widetilde{B}_{2,p}^{1-\frac{2}{p}}(Q)$ for p < 2. Moreover, this solution is given by the formula

$$u(x, t) = T_t \varphi(x) + \int_0^t T_{t-s} f(x, s) \, ds, \tag{2.9}$$

where $\{T_t\}$ $(t \ge 0)$ is the analytic semigroup generated by the operator -A.

Proof. By virtue of [5, Theorem 1.55], the operator -A is a generator of the strongly continuous analytic semigroup T_t . Then the statement of the theorem follows by Theorems 3.6 and 3.7 in [3] for $\varphi \in (\widetilde{H}^{-1}(Q), H^1(Q))_{1-\frac{1}{2},p}$ (see. [3, Ch. 1, Sec. 3]).

By [9, Corollary 3.3] it follows that $D(\mathcal{A}^{1/2}) = H^1(Q)$ that is equal to the identity $D(A^{\alpha}) = [\widetilde{H}^{-1}(Q), H^1(Q)]_{\alpha}$ for $0 \le \alpha \le 1$ (see [1, Theorem 3.5]).

For $p \geq 2$, using formula (2) of Sec. 1.15.4 in [12], we obtain

$$(\widetilde{H}^{-1}(Q), H^{1}(Q))_{1-\frac{1}{p},p} = (D(A^{0}), D(A))_{1-\frac{1}{p},p} =$$

$$= (D(A^{1/2}), D(A))_{1-\frac{2}{p},p} = (L_{2}(Q), H^{1}(Q))_{1-\frac{2}{p},p} = B_{2,p}^{1-\frac{2}{p}}(Q). \quad (2.10)$$

For p < 2, using Theorem 2 of Sec. 1.10.3 and the Theorem on duality of Sec. 1.11.2 in [12], we obtain

$$(\widetilde{H}^{-1}(Q), H^{1}(Q))_{1-\frac{1}{p},p} = (H^{1}(Q), \widetilde{H}^{-1}(Q))_{\frac{1}{p},p} = (\widetilde{H}^{-1}(Q), H^{1}(Q))'_{\frac{1}{p},p'} =$$

$$= \left([\widetilde{H}^{-1}(Q), H^{1}(Q)]_{1/2}, [\widetilde{H}^{-1}(Q), H^{1}(Q)]_{1} \right)'_{\frac{2}{p}-1,p'} =$$

$$= (L_{2}(Q), H^{1}(Q))'_{\frac{2}{p}-1,p'} = \left(B_{2,p'}^{\frac{2}{p}-1}(Q) \right)' = \widetilde{B}_{2,p}^{1-\frac{2}{p}}(Q). \quad (2.11)$$

88 A.M. Selitskii

Remark 2. By virtue of [10, Theorem 3.2], if p = 2 and $f \in L_2(Q_T)$, then Definition 1 is equivalent to the definition of a weak solution via integral equality.

Remark 3. We have to define boundary condition (1.2) for a function $u(\cdot,t) \in H^1(Q)$. Rewrite it in the form

$$T^+ u = 0 \qquad \text{on } \Gamma_T. \tag{2.12}$$

The value of operator $T^+: H^1(Q) \to \widetilde{H}^{-1/2}(\partial Q)$ (where $\widetilde{H}^{-1/2}(\partial Q)$ denotes the dual to $H^{1/2}(\partial Q) = [L_2(\partial Q), H^1(\partial Q)]_{1/2}$) on a function $u \in W_p(A)$ is defined by the Green formula

$$\langle f(\cdot, t), \overline{w} \rangle = \langle u_t, \overline{w} \rangle - \langle T^+ u, \overline{w}|_{\partial Q} \rangle_{\Gamma} + \langle Au(\cdot, t), \overline{w} \rangle, \qquad w \in H^1(Q).$$
 (2.13)

If the function u is sufficiently smooth (that in case of differential-difference operators, as shown in [10], takes place near a smooth part of the boundary), then

$$T^{+}u = \sum_{ij=1}^{n} A_{ij}u_{x_{j}}\cos(\nu, x_{i}). \tag{2.14}$$

Introduce the Hilbert space

$$W_p(\mathcal{A}) = \{ w \in L_p(0, T; D(\mathcal{A})) : w_t \in L_p(0, T; L_2(Q)) \}.$$

Definition 2. A function $u \in W_p(A)$ is called a strong solution of problem (1.1)–(1.3) if it satisfies the equation

$$\frac{du}{dt} + \mathcal{A}u(\cdot, t) = f \qquad \text{for almost all } t \in (0, T)$$
 (2.15)

and the initial condition

$$u|_{t=0} = \varphi. \tag{2.16}$$

Theorem 2.2. Let the form $\Phi[v,w]$ be coercive with $c_2=0$ and $1 . Then for any <math>f \in L_p(0,T;L_2(Q))$ and $\varphi \in B_{2,p}^{2-\frac{2}{p}}(Q)$ problem (1.1)–(1.3) has a unique strong solution defined by formula (2.9).

Proof. By virtue of [10, Theorem 4.1], the operator $-\mathcal{A}$ is a generator of the strongly continuous analytic semigroup \mathcal{T}_t , and $\mathcal{T}_t u = T_t u$ for $u \in L_2(Q)$ (see [5, Theorem 1.55]). Then the statement of the theorem follows by Theorems 3.6 and 3.7 in [3] for $\varphi \in (L_2(Q), D(\mathcal{A}))_{1-\frac{1}{p},p}$ (see. [3, Ch. 1, Sec. 3]).

By virtue of Theorem 2 of Sec. 1.10.3 in [12],

$$(L_{2}(Q), D(\mathcal{A}))_{1-\frac{1}{p},p} = \left(L_{2}(Q), [L_{2}(Q), D(\mathcal{A})]_{1/2}\right)_{2-\frac{2}{p},p} =$$

$$= \left(L_{2}(Q), H^{1}(Q)\right)_{2-\frac{2}{p},p} = B_{2,p}^{2-\frac{2}{p}}(Q). \tag{2.17}$$

Remark 4. As it follows from the proof, the restriction $p \leq 2$ can be omitted, but we should consider then the space $(L_2(Q), D(\mathcal{A}))_{1-\frac{1}{p},p}$ instead of $(L_2(Q), H^1(Q))_{2-\frac{2}{p},p}$. Moreover, in general (without an assumption on smoothness of a solution), the description of the domain $D(\mathcal{A})$ is unknown. So we use the fact that $D(\mathcal{A}^{1/2}) = H^1(Q)$.

Generalization to Banach spaces 3

We need to consider the space $H_p^1(\mathbb{R}^n)$. It can be defined for 1 as the space of alldistributions in S' with finite norm

$$||u||_{H_n^1(\mathbb{R}^n)} = ||\Lambda u||_{L_p(\mathbb{R}^n)},\tag{3.1}$$

where $\Lambda = F^{-1}(1+|\xi|^2)^{1/2}F$, here F is the Fourier transform in the sense of distributions. The space $H^1_p(Q)$ is defined as a restriction of the space $H^1_p(\mathbb{R}^n)$ on Q with the inf-norm. For details see book [1].

Suppose that $u \in H_p^1(Q)$ and $v \in H_q^1(Q)$ for $1 , <math>\frac{1}{n} + \frac{1}{n} = 1$. If operators A_{ij} , B_i , and C are bounded in $L_p(Q)$, then there exists $c_3 > 0$ such that

$$|\Phi(u,v)| \le c_3 ||u||_{H^1_p(Q)} ||v||_{H^1_q(Q)} \quad (u \in H^1_p(Q), \ v \in H^1_q(Q)).$$

Denote the corresponding operator by $A_p \colon H^1_p(Q) \to \widetilde{H}^{-1}_p(Q) = [H^1_q(Q)]'$. It can be described in the following way. For each $u \in H^1_p(Q)$ the form $\Phi(u, v)$ defines an antilinear bounded functional on $H_q^1(Q)$, i.e., there exists $f_u \in \widetilde{H}_p^{-1}(Q)$ such that $\Phi(u, v) = \langle f_u, \overline{v} \rangle = (\mathcal{E}_0 f_u, \mathcal{E} v)_{\mathbb{R}^n}$, where \mathcal{E}_0 is an extension operator by zero and \mathcal{E} is an extension operator [7], the form $(\cdot,\cdot)_{\mathbb{R}^n}$ is the extension of the form $(\cdot,\cdot)_{L_2(\mathbb{R}^n)}$ on $H_p^{-1}(\mathbb{R}^n)\times H_q^1(\mathbb{R}^n)$. We used the fact that elements from $\widetilde{H}_p^{-1}(Q)$ are supported in \overline{Q} . Then we set $A_p u = f_u$. The operator A_p is bounded:

$$||A_p u||_{H_p^{-1}(Q)} \le \sup_{v \ne 0} \frac{|\Phi(u, v)|}{||v||_{H_p^1(Q)}} \le c_3 ||u||_{H_p^1(Q)}.$$

Obviously, $A_p u = Au$ if $u \in H_p^1(Q)$ $(p \le 2)$. We consider the following problem

$$u_t + A_p = f(x, t), (3.2)$$

$$u|_{t=0} = \varphi(x). \tag{3.3}$$

Definition 3. A function $u \in C([0,T); H_p^{-1}(Q)) \cap C^1((0,T); H_p^{-1}(Q))$ is called a classical solution of (3.2)-(3.3) if $u(t,\cdot) \in H_p^1(Q)$ for 0 < t < T and equalities (3.2) and (3.3) are satisfied on [0, T).

Theorem 3.1. Let $f \in L_1(0, T; H_p^{-1}(Q))$ be Lipschitz continuous on [0, T] and $\varphi \in H_p^1(Q)$. Then there exists $\delta > 0$ such that for $\left| \frac{1}{2} - \frac{1}{p} \right| < \delta$ problem (3.2)-(3.3) has a unique classical solution.

Proof. Note that the spaces $H_p^1(Q)$ form an interpolation scale: $\left[H_{p_1}^1(Q),\,H_{p_2}^1(Q)\right]_{\theta}=H_p^1(Q),$ where $\frac{1}{p} = \frac{1-\theta}{p_1} + \frac{\theta}{p_2}$. Operator A_p is bounded, for example, for $\frac{1}{2} \le \frac{1}{p} \le \frac{3}{2}$, and $A_2 = A$ is invertible (see Sec. 2). Applying the Shneiberg theorem on extrapolation of invertibility (see, e.g., Theorem 13.7.3 in [1]), we obtain the existence of such $0 < \delta < \frac{1}{2}$, that operator

 A_p remains invertible for $\left|\frac{1}{p} - \frac{1}{2}\right| < \delta$.

90 A.M. Selitskii

The same theorem was used in [2] to prove the following estimate

$$||u||_{H_p^1(Q)} + |\lambda| ||u||_{H_p^{-1}(Q)} \le c_4 ||f||_{H_p^{-1}(Q)}$$
(3.4)

for $(A_p - \lambda I)u = f$, where $c_4 > 0$ does not depend of f and $\lambda \in \left\{ \mu \in \mathbb{C} : |\arg \mu| > \frac{\pi}{2} - \delta_1 \right\} \cup B_{\varepsilon_1}(0)$ for some $\varepsilon_1 > 0$ and $\delta_1 > 0$. Another proof was given in [1, Sec. 17.4].

From estimate (3.4) it follows that operator $-A_p$ is a generator of an analytic semigroup (see, e.g., Theorem 5.2 in [6]). Therefore, we can apply Corollary 2.11 in [6].

Acknowledgments

The author is grateful to M.S. Agranovich for familiarization with his works [1] and [2] and some suggestions after reading this manuscript. Special thanks to V.I. Burenkov for his valuable advice that enabled me to improve this work.

This paper is partially supported by the Russian Foundation for Basic Research grant No 14-01-00265 and the Ministry of Education and Science of the Russian Federation contract No 02.a03.21.0008.

References

- [1] M.S. Agranovich, Sobolev spaces, their generalizations, and elliptic problems in smooth and Lipschitz domains. Springer, Heidelberg—New York, 2015.
- [2] M.S. Agranovich, Spectral problems in Sobolev-type spaces for strongly elliptic systems in Lipschitz domains. Math. Nachr. 289 (2016), no. 16, 1968–1988.
- [3] A. Ashyralyev, P.E. Sobolevskii, Well-posedness of parabolic difference equations. Birkhäuser, Basel, 1994.
- [4] R. Dautray, J.-L. Lions, Analyse mathématique et calcul numérique, t. 3. MASSON, Paris, 1985.
- [5] E.M. Ouhabaz, Analysis of heat equations on domains. Princeton Univ. Press, Princeton and Oxford, 2005.
- [6] A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer, Berlin–Heidelberg, 1983.
- [7] V.S. Rychkov, On restrictions and extensions of the Besov and Tribel-Lizorkin spaces with respect to Lipschitz domains. J. London Math. Soc. 60 (1997), no. 2, 237–257.
- [8] A.M. Selitskii, Space of initial data for the second boundary-value problem for a parabolic differential-difference equation in Lipschitz domains. Math. Notes 94 (2013), no. 3, 135–138.
- [9] A.M. Selitskii, The space of initial data of the Robin boundary-value problem for parabolic differential-difference equations. Contemporary Analysis and Applied Mathematics. 1 (2013), no. 2, 91–97.
- [10] A.M. Selitskii, A.L. Skubachevskii, The second boundary-value problem for parabolic differentialdifference equations. J. Math. Sci. 143 (2007), no. 4, 3386–3400.
- [11] A.L. Skubachevskii, Bifurcation of periodic solutions for nonlinear parabolic functional differential equations arising in optoelectronics. Nonlinear Anal. 32 (1998), no. 2, 261–278.
- [12] H. Triebel, Interpolation theory, function spaces, differential operators. VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.

Anton Mikhailovich Selitskii Dorodnicyn Computing Center of the Russian Academy of Sciences 40 Vavilova St, 119333, Moscow, Russia, Peoples Friendship Uniersity of Russia (RUDN University) 6 Miklukho-Maklay St, 117198, Moscow, Russia. E-mail: selitsky@mail.ru

Received: 10.06.2016