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YESMUKHANBET SAIDAKHMETOVICH SMAILOV
(to the 70th birthday)

On October 18, 2016 was the 70th birthday of Yesmukhabet
Saidakhmetovich Smailov, member of the Editorial Board of the
Eurasian Mathematical Journal, director of the Institute of Applied
Mathematics (Karaganda), doctor of physical and mathematical sci-
ences (1997), professor (1993), honoured worker of the E.A. Buketov
Karaganda State University, honorary professor of the Sh. Valikanov
Kokshetau State University, honorary citizen of the Tarbagatai district
of the East-Kazakhstan region. In 2011 he was awarded the Order
“Kurmet” (= “Honour”).

Y.S. Smailov was born in the Kyzyl-Kesek village (the Aksuat dis-
trict of the Semipalatinsk region of the Kazakh SSR). He graduated
from the S.M. Kirov Kazakh State University (Almaty) in 1968 and in 1971 he completed
his postgraduate studies at the Institute of Mathematics and Mechanics of the Academy of
Sciences of the Kazakh SSR (Almaty). Starting with 1972 he worked at the E.A. Buketov
Karaganda State University (senior lecturer, associate professor, professor, head of the De-
partment of Mathematical Analysis, dean of the Mathematical Faculty; from 2004 director
of the Institute of Applied Mathematics).

In 1999 the American Biographical Institute declared professor Smailov “Man of the Year”
and published his biography in the “Biographical encyclopedia of professional leaders of the
Millennium”.

Professor Smailov is one of the leading experts in the theory of functions and functional
analysis and a major organizer of science in the Republic of Kazakhstan. He had a great
influence on the formation of the Mathematical Faculty of the E.A. Buketov Karaganda
State University and he made a significant contribution to the development of mathematics
in Central Kazakhstan. Due to the efforts of Y.S. Smailov, in Karaganda an actively oper-
ating Mathematical School on the function theory was established, which is well known in
Kazakhstan and abroad.

He has published more than 140 scientific papers, two textbooks for students and one
monograph. 10 candidate of sciences and 4 doctor of sciences dissertations have been de-
fended under his supervision.

Research interests of Professor Smailov are quite broad: the embedding theory of function
spaces; approximation of functions of real variables; interpolation of function spaces and
linear operators; Fourier series for general orthogonal systems; Fourier multipliers; difference
embedding theorems.

The Editorial Board of the Eurasian Mathematical Journal congratulates Yesmukhanbet
Saidakhmetovich Smailov on the occasion of his 70th birthday and wishes him good health
and new achievements in mathematics and mathematical education.
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Abstract. In this paper, a parabolic functional differential equation is considered in the
spaces C(0,T; HI}(Q)) for p close to 2. The transformations of the space argument are
supposed to be multiplicators of the Sobolev spaces with a small smoothness exponent. The
machinery of the investigation is based on the semigroup theory. In particular, it is proved
that the elliptic part of the operator is a generator of a strongly continuous semigroup.

1 Introduction

We consider the second boundary-value problem for the following parabolic functional dif-
ferential equation

n

up — Z (Aijuzj)xi + ZB,ugcZ + Cu = f(x,t) ((z,t) € Qr) (1.1)

ij=1

in a bounded domain () C R"™ with a Lipschitz boundary @), where the operators A;;, B;,
and C' are bounded in Ly(Q), with the boundary condition

Z Ajjug; cos(v, ;) =0 ((x,t) € T'p), (1.2)

1,j=1

and the initial condition
uli—o = () (req@), (1.3)

where Qr = Q x (0, T),0 < T < 00, I'r = 0Q x (0, T'), v is the external unit normal to I'r
(it exists at almost every point of I'r), f € La(Qr), and ¢ € Lo(Q).

For differential-difference operators this problem was solved in L,(0,T; H3(Q)) (1 <p <
00) (see [8]). In this article we suppose only that operators A;; are bounded in H*(()) for
small |s| and all the coefficients belong to L,(Q) for p close to 2.

Note that the modeling of the optical system with 2D feedback leads to a functional
differential parabolic equation with transformation of argument in the unknown function,
see, e.g., [11] and literature therein.
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2 Weak and strong solvability

Let H'(Q) be the Sobolev space of complex-valued functions belonging to Ly(Q) having all
generalized derivatives of the first order belonging to Ly(Q).
Introduce the sesquilinear form ® (v, w) in Ly(Q) with the domain H*(Q) by the formula

n

(v, w) = Z (Aijva,, wxi)L2(Q) + Z (Bita,, w)p, ) + (Cv, w) 1, q) - (2.1)
i=1

3,j=1

By assumption, the operators A;;, B;, C': Lo(Q)) — L2(Q) are bounded. Therefore, it
follows that there exists a constant ¢y > 0 such that

(0, )] < collolmollwlme  ©.we HAQ). (2.2)

Since the sesquilinear form ® (v, w) is continuous with respect to w in H'(Q), there exists

a linear bounded operator A: HY(Q) — [HY(Q)] = H1(Q), such that
(Av, W) = ®(v, w) (v,w € H(Q)), (2.3)

where (-, ) denotes the dual pairing with respect to the scalar product in Ls(Q).

We suppose that the form ®(v, w) is coercive, i.e., there exist numbers ¢; > 0 and ¢; > 0
such that

Re @(v, v) > all|vlling) — cllvlli, g (v € HY(Q)). (2.4)

We can assume that ¢ = 0 in inequality (2.4). Otherwise, we set u = ze®' that
transforms operator A to A + 1.

Denote by A the operator A with the domain D(A) = {u € H*(Q) : Au € Ly(Q)} with
the graph norm.

To formulate the definition of a weak solution of problem (1.1)—(1.3) we introduce the
following space

W(A) = {u € L,(0, T; H\(Q)) : v € L, (0, T ﬁ—l(Q))} . (2.5)

Definition 1. A function u € W(A) is said to be a weak solution of problem (1.1)—(1.3) if
it satisfies the equation

d
d—:: +Au=f for almost all ¢t € (0, T) (2.6)

and the initial condition

ul=o = . (2.7)

Note that from [4, Ch. XVIII, §1, Sec. 4, Proposition 9| it follows that for a function
u € W(A) the value u(0) € H1(Q) is defined.

We need the notation of Besov spaces. Consider the modulus of smoothness of the second
order for a function f € L,(Q):

wi(f,t) = ;Tgllf(w +2h) = 2f(z +h) + f(@)]| o)
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Let 1 < p,0 <ooand s >0 and s = 5+ «, where § is an integer and 0 < a < 1.
It is said that a function f € L,(IR™) belongs to the function space B; ,(R™) if it has all
partial derivatives up to the sth order and

R — ( /
0

Here W;(R") is the Sobolev space. The space B 4(Q) is defined as restriction of the space

B 4(R") on @ with inf-norm (see [12, Sec. 4.2.1]). Set Bg,p(Q) = L,(Q) and let EI;:},(Q)
denote the dual of B;ﬁ(Q) (here 1/p+1/p =1/0+1/0' =1).

wa(f9. 1)

£ -

%) < 00. (2.8)

Remark 1. We can use interpolation theorems for functions defined on R™ because Theorem
1 from Sec. 4.8.1 in [12] is true for Lipschitz domain as well by virtue of existence of an
extension operator independent of p, 0, and s (see [7]). See the definitions of real and complex
interpolations in [12].

Theorem 2.1. Let the form ®(v,w) be coercive with c; = 0, and f € L,(0,T}; HYQ))
(1<p < oo) Then problem (1.1)- (J 5’) has a unique weak solution u € W(A) if and only

if p € B (Q) forp>2 and p € B (Q) for p < 2. Moreover, this solution is given by

the formula
t

u(z, t) = Typ(x) + /Ttsf(x, s)ds, (2.9)

where {T;} (t > 0) is the analytic semigroup generated by the operator —A.

Proof. By virtue of [5, Theorem 1.55], the operator —A is a generator of the strongly con-
tinuous analytic semigroup 7;. Then the statement of the theorem follows by Theorems 3.6
and 3.7 in [3] for p € (H1(Q), Hl(Q))l_lp (see. [3, Ch. 1, Sec. 3|).

By [9, Corollary 3.3] it follows that D(A'Y?) = H'(Q) that is equal to the identity
D(A%) = [H(Q), H'(Q)]a for 0 < a <1 (see [1, Theorem 3.5]).
For p > 2, using formula (2) of Sec. 1.15.4 in [12]|, we obtain

(H™1(Q), H(@Q))1_1, = (D(A%), D(A)),_1, =
= (D(A"), D(A)), 2, = (Lo(Q). HNQ))y 2, = By, (@), (210)

For p < 2, using Theorem 2 of Sec. 1.10.3 and the Theorem on duality of Sec. 1.11.2 in
[12], we obtain

(H™'(@Q), H'(Q)1-1,, = (H'(Q), H Q)
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Remark 2. By virtue of [10, Theorem 3.2, if p = 2 and f € Ly(Q7r), then Definition 1 is
equivalent to the definition of a weak solution via integral equality.

Remark 3. We have to define boundary condition (1.2) for a function u(-,t) € HY(Q).
Rewrite it in the form
T*u=0 on Iy (2.12)

The value of operator T+: HY(Q) — HY2(0Q)) (where H-Y/2(Q) denotes the dual to
HY2(0Q) = [L2(0Q), H(8Q)]1/2) on a function u € W,,(A) is defined by the Green formula

(f(-, t), w) = (w, w) — (T"u, @|3Q>F + (Au(-,t), w), we HY(Q). (2.13)

If the function wu is sufficiently smooth (that in case of differeintial-difference operators, as
shown in [10], takes place near a smooth part of the boundary), then

THu = Z Ajjug, cos(v, z;). (2.14)

ij=1
Introduce the Hilbert space
Wy(A) = {w € Ly(0, T; D(A)) : wy € Ly(0, T; L2(Q)) }-

Definition 2. A function u € W),(A) is called a strong solution of problem (1.1)-(1.3) if it
satisfies the equation

Z_;L + Au(-,t) = f for almost all ¢ € (0, T) (2.15)

and the initial condition
Uli—o = . (2.16)
Theorem 2.2. Let the form ®[v,w] be coercive with co = 0 and 1 < p < 2. Then for any

2

f € Ly(0, T; Ly(Q)) and ¢ € B;;E(Q) problem (1.1)-(1.3) has a unique strong solution
defined by formula (2.9).

Proof. By virtue of [10, Theorem 4.1], the operator —A is a generator of the strongly contin-
uous analytic semigroup 7, and Tyu = Tyu for u € Lo(Q) (see [5, Theorem 1.55]). Then the
statement of the theorem follows by Theorems 3.6 and 3.7 in [3] for ¢ € (L2(Q), D(A)), s ,

(see. [3, Ch. 1, Sec. 3]).
By virtue of Theorem 2 of Sec. 1.10.3 in [12],

(12(@Q), DA, -1, = (L(Q), [12(@Q), DA) | =

_2
2—0p

) (2.17)

]

= (L2(Q), H'(Q)),_2

Remark 4. As it follows from the proof, the restriction p < 2 can be omitted, but we should
consider then the space (L2(Q), D(A))l_lp instead of (La(Q), Hl(Q))z_g ,- Moreover, in

general (without an assumption on smoothness of a solution), the description of the domain
D(A) is unknown. So we use the fact that D(AY?) = H'(Q).
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3 Generalization to Banach spaces

We need to consider the space H; (R™). It can be defined for 1 < p < oo as the space of all
distributions in S’ with finite norm

ull ey = [[Aullz, @& (3.1)

where A = F~1(1 + |£]?)Y/2F, here F is the Fourier transform in the sense of distributions.
The space H,(Q) is defined as a restriction of the space H,(R") on @ with the inf-norm.
For details see book [1].

1 1
Suppose that v € H)(Q) and v € H}(Q) for 1 < p < 0o, —+ = = 1. If operators A;;, B;,
p g
and C' are bounded in L,(Q), then there exists ¢3 > 0 such that

[2(u,0)| < esllullm@llvlimy@ (v € Hy(Q), v e Hy(Q)).

Denote the corresponding operator by A,: H)(Q) — ﬁgl(Q) = [HY(Q)]". Tt can be de-
scribed in the following way. For each v € H}(Q) the form ®(u, v) defines an antilinear

bounded functional on H;(Q), i.e., there exists f, € flp_l(Q) such that ®(u, v) = (f,, v) =
(Eofu, EV)rn, where & is an extension operator by zero and £ is an extension operator 7],
the form (-,-)gn is the extension of the form (-,-)p,®n) on H, ' (R") x H(R"). We used the

fact that elements from ﬁp_ 1(Q) are supported in Q. Then we set A,u = f,. The operator

A, is bounded:
@ (u, v)]
| Apull =10y < sup ———
P HL Q) 0 HUHH(}(Q)

Obviously, Ayu = Au if u € H)(Q) (p < 2). We consider the following problem

< csllullmy)-

w+ A, = f(z, t), (3.2)

uli—o = ¢(z). (3.3)

Definition 3. A function v € C([0,T); H,*(Q)) N C'((0,7); H,(Q)) is called a classical

’ P
solution of (3.2)-(3.3) if u(t,-) € H (Q) for 0 < t < T and equalities (3.2) and (3.3) are
satisfied on [0, T').

Theorem 3.1. Let f € L1(0, T; H, ' (Q)) be Lipschitz continuous on [0, T] and ¢ € H)(Q).

Then there exists § > 0 such that for

1 1
3~ —‘ < d problem (3.2)-(3.3) has a unique classical
b

solution.

Proof. Note that the spaces H}(Q) form an interpolation scale: [H}) (Q), Hp,(Q)], = H)(Q),

1 1-6 6
where — = —— + —. Operator A, is bounded, for example, for

(AN
Nl' w
o
=
Q.
&
Il
b

p P P2
is invertible (see Sec. 2). Applying the Shneiberg theorem on extrapolation of invertibility
1
(see, e.g., Theorem 13.7.3 in [1]), we obtain the existence of such 0 < § < 3 that operator

< 0.

A, remains invertible for
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The same theorem was used in [2| to prove the following estimate
lullmy@) + Ml gy 1) < call Flly 10 (3-4)

for (A,—AI)u = f, where ¢4 > 0 does not depend of f and A € {u € C: |argpu| > g - (51}U
B.,(0) for some e, > 0 and d; > 0. Another proof was given in [1, Sec. 17.4].

From estimate (3.4) it follows that operator —A, is a generator of an analytic semigroup
(see, e.g., Theorem 5.2 in [6]). Therefore, we can apply Corollary 2.11 in [6]. O
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