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Abstract. We prove optimal embeddings of generalized Besov spaces built-up over
rearrangement invariant function spaces defined on R™ with the Lebesgue measure
into other rearrangement invariant spaces in the subcritical or critical cases and into
generalized Holder-Zygmund spaces in the supercritical case. The investigation is based
on some real interpolation techniques and estimates of the rearrangement of f in terms
of the modulus of continuity of f.

1 Introduction

To highlight the key issues around this paper, let us start with some background
material.

1.1 Background

Let L;,. be the space of all locally integrable functions f on R™ with the Lebesgue
measure. Denote by M™ the space of all locally integrable functions g > 0 on (0, c0)
with the Lebesgue measure.

Let pr be a quasi-norm, defined on M with values in [0, oc], which is monotone in
the sense that g; < go implies pr(g1) < pr(g2). Denote by F the quasi-normed space,
consisting of all locally integrable functions in (0, c0) with the Lebesgue measure such
that gllr = pr(|g]) < oo.

There is an equivalent quasi-norm p,, called a p—norm, that satisfies the triangle
inequality p?(g1 + g2) < ph(g1) + ph(g2) for some p € (0, 1] that depends only on the
space F' (see [22]).

We say that the quasi-norm pp satisfies Minkowski’s inequality if for the equivalent
quasi-norm pp,

oy (Z gj) <S> (gy), g €M (1.1)
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Let hp(u) be the dilation function generated by pp

— a pr(gu) . — a(tu
hp(u) = p{ o) Y € Lm}a Gu(t) = g(tu),

where
Ly, :={g € MT, t™g(t) is increasing },m > 2.

The function u™hp(u) is increasing, submultiplicative and

he(1) = 1, he(u)he (1) > 1.

u

We suppose that it is finite. Therefore if ar and Br are the Boyd indices of F:

log hp(t log hp(t
Qp = sup 208 FY) r(t) and fBr := inf 26 Pl r(t)
o<t<1 logt I<t<oo  logt
then —m < ap < Br. We suppose that ap = Of.
Let ¢ be a quasi-concave function in M™. This means that ¢ is non-decreasing and

©(t)/t is non-increasing. Let ¢(oo) = co. Define the dilation function h,, generated
by :

) = s £

Then h, is quasi-concave, submultiplicative and

1
hy(1) =1, 1 < hy(u)h, (—) , hy(u) < max(1,u).
U
Therefore the lower and upper Boyd indices a,, 3, defined by

log h(t log h(t
Qp 1= sup log hy (%) and (3, ;= inf log hy(t)
o<t<1 logt I<t<oo  logt

Y

satisfy 0 < v, < B, < 1. We suppose that o, = 5, > 0. Then ¢(+0) = 0.
Using the monotonicity of hp and h,, we see that for any p > 0 (cf. [3], p. 147)

1
d
/ hf;(u)h%(u);u < oo if a, + ap > 0; (1.2)
0
Oohp P *pk/ndu .
D (u) b (u)u - <00 if oo, + ap < k/n. (1.3)
1

We shall also consider rearrangement invariant quasi-normed spaces G with a mono-
tone quasi-norm || f|l¢ = pa(f*), f € Lioe, [*(00) = 0, f* being the decreasing rear-
rangement of f, given by

fr(t) =inf{A > 0: pup(X) <t}, t >0,
where 1y is the distribution function of f, defined by

pyA) = {z e R - [f(2)] > A},
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|-|,, denoting the Lebesgue n—measure. Let

=1 [ £

The lower and upper Boyd indices of G are defined similarly to [3]. Let hg(u) be the
dilation function generated by pg

rc(9y) + t
hGu:sup{ geM },gut::g<— .
(u) (5] (t) "
The function hg is increasing, submultiplicative,

1
hg(l) = 1, hg(u)hg (—) Z 1.
U
Therefore, if ag and (g are the Boyd indices of G:
log ha(t log hq(t
Qg = sup 208 helt) c(t) and Bg := inf 08 het) a(t)
o<t<1 logt I<t<oo logt
then 0 < ag < Bg. We shall suppose that ag = 65 < 1.
Recall that w is slowly varying on (1,00) (in the sense of Karamata), if for all
e > 0 the function t“w(t) is equivalent to a non-decreasing function, and the function
t~¢w(t) is equivalent to a non-increasing function. By symmetry, we say that w is
slowly varying on (0, 1) if the function ¢ +— w(%) is slowly varying on (1, 00). Finally,
w is slowly varying if it is slowly varying on (0,1) and (1, 00).
We use the notation a; < ag or as 2 a; for nonnegative functions or functionals to
mean that the quotient a;/as is bounded above; also, a; &~ ay means that a; < ap and
a; 2 as. We say that aq is equivalent to ay if a1 = as.

1.2 Basic definitions and main results

The classical homogeneous Besov spaces 0}, 0 < s <k, 1 <r < 00,0 < ¢ < oo, are
defined by finiteness of the quasi-norms

oo 1/q
by = (/0 [twi(t, f)]q%) :

where Wl(t, f) := supy, <, | A} f|| - is the standard modulus of continuity and L" is the
Lebesgue space on R”. The following embedding is well known:

I/

by, — L 1ju=1/r —s/n >0,

where L™ is the Lorentz space [4]. We can replace the base space L” in the definition
of the Besov spaces by the Lorentz space L™ and define more general homogeneous
Besov spaces by L™, 1 < v < oo. Then by interpolation,

STTW __ v krrwv
qu = (L"",w"L"") s /k.q
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where w*L™ is the homogeneous Sobolev space. Let k < n/r. Then wkL™ — L7,
1/r1 =1/r — k/n, hence

b;L"" — L% 1/u=1/r —s/n >0,

We prove below that 1“9 is the optimal rearrangement invariant target space. Observe
that it does not depend on v € [1,00], but only on the fundamental function of the
base space L™", which is ¢'/".

For the inhomogeneous Besov spaces B;L"™" := b7 L™ N L™ with the usual quasi-
norm, we clearly have the embedding

BiL™ — L"IN L™, 1/u=1/r—s/n>0

and in [15], [16], [13] it is proved that this is the optimal rearrangement invariant target
space.

The above discussion suggests to define the generalized homogeneous Besov spaces
replacing L™ as a base space by an arbitrary rearrangement invariant Banach function
space on R"™ with a fundamental function ¢ = . Then

Ay — E — M,
where M, is the Marcinkievicz space with a norm

1fllaz, == sup [ (t)e(t)

0<t<oo

and A, is the Lorentz space with a norm

1lla, = / " P delt) = / " 0t

Here we suppose that ¢ is concave and p(+0) = 0.

Definition 1.1 (Besov spaces). Let E be a rearrangement invariant Banach function
space on R™ as in [23], with a fundamental function pg ~ ¢. We denote by b*(E, F) the
generalized homogeneous Besov space, consisting of all functions f € L., f*(c0) =0,
such that

I fllok e,y = pr (Wg(tl/na f)) < 00,

where wh(t, f) = sup ||A¥ f||g is the modulus of continuity of f € Ly, of order k and
|h|<t

AF is the difference operator with step h of order k.
The corresponding generalized inhomogeneous Besov space B*(E, F') has the quasi-
norm

15,y = pr (wB(E", ) + [1fll2-
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Under the following conditions the generalized Besov spaces contain C§°,

PF (X(OJ)(t)tk/”) < 00, pr(X(a)) <00, 0 <a <1, (1.4)

where x5 stands for the characteristic function of the interval (a, b).
Then

£l 5+ .y = pE (X0 (D", 1)) + (1l (1.5)
We suppose that the following condition is satisfied

0<ar<k/n. (1.6)

We can take F' = LI(b(t)t=*/"), where b is slowly varying and LI(w), or simply LJ
if w =1, is the weighted Lebesgue space with the quasi-norm

> dt\ "

oz = ([ TwlaIF) 0 << o0 ws 0, we M

Then ap = fr = s/n and (1.6) means that 0 < s < k. For this reason we call the cases
ap = 0 or ap = k/n limiting. Since b*(E, F) is the K —interpolation between E and
the homogeneous Sobolev space w*E, the limiting case ap = 0 means that b*(E, F) is
“logarithmically close" to E, while in the limiting case ap = k/n the space b*(E, F)
is “logarithmically close" to w*E. If E = L", 1 < r < oo, then we get the classical
Besov spaces b, = b¥(L", L4(t™*/")) and B  if 0 < s < k. It is well-known that the
embedding properties of these spaces depend on the conditions: s < n/r (subcritical
case), s = n/r (critical case) and s > n/r (supercritical case). Therefore first we extend

these definitions for the generalized Besov spaces.

Definition 1.2. A case is said to be subcritical, critical, supercritical provided that
ap < Qg, Op = 0y,, aF > a, Tespectively.

The main goal of this paper is to prove optimal embeddings of the Besov space
V(E,F), ar < a,, into rearrangement invariant quasi-normed spaces G. This is the
subcritical case.

In the supercritical case ar > a,, we prove optimal embeddings of the Besov spaces
BY(E, F) into the generalized Hélder-Zygmund spaces C*H (cf. [33]) with the quasi-

norm || f||crr = |||z + pu(wWF (Y™, f)), where pg is a monotone quasi-norm and
WH(t, f) := sup sup [A}f(x)].
|h|<t zeR™

We write w(t, f) instead of w'(¢, f). We suppose that

( ) Eukm du d ( ) 0 ) 7)
P | X, t/ —)<ooan,0 X(a,00)) <00, 0 <a<1. )
.1 0 e(u) u A \X(a,00)
Then

| fllcrn =~ pu (X(o,l)(t)wk(tl/n, f)) + || fllzee (1.8)

Let hy(u) be the dilation function generated by py
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o S P (9) — altu
() — p{pH<g> .geLm},guu). g(tu).

The function u™hy(u) is increasing, submultiplicative and

1
u
We suppose that hy is finite. Therefore if oy and Gy are the Boyd indices of H:

Qg = sup M and By := inf M
o<t<1 logt I<t<oo  logt
then —m < ay < By. We suppose that ay = Gy.

The spaces in the critical case ap = a,, can be divided into two subclasses: in the
first subclass the functions may not be continuous - then the respective space b*(E, F)
is embedded in a rearrangement invariant space of type G, while the functions in the
second subclass are continuous and the corresponding space B*(E, F) is embedded in
a Holder-Zygmund space. The separating space for these two subclasses is given by
F=LY1/p) (cf. Theorem 2.1).

Definition 1.3 (admissible couple - non-supercritical case). We say that a couple
pr, pa is admissible for the Besov spaces b (E, F) if the following continuous embedding
is valid:

VW(E,F)— G. (1.9)

Moreover, pr ( F) is called the domain quasi-norm (domain space), and pg (G) is
called the target quasi-norm (target space).

For example, by Theorem 2.1 below, the couple F' = Li(wyp), G = Ad(v), 1 < ¢ <
00, is admissible if v is related to w by the Muckenhoupt condition [30]:

(/ tmnq%)l/q (/ w[w<s>]-f§)l/r <1 gtlr=1

The space A%(w), 0 < ¢ < oo is the Lorentz space with the quasi-norm ||g||aew) =
197 [l 220wy, w(2t) = w(t) and Ag(w) = {f € A?(w); f*(c0) = 0}.

Definition 1.4 (admissible couple - supercritical case). We say that a couple pr, py
is admissible for the Besov spaces B*(E, F) if the following continuous embedding is
valid:

B*(E,F) — C*H. (1.10)

Moreover, pr ( F) is called the domain quasi-norm (domain space), and py (H) is
called target the quasi-norm (target space).

Definition 1.5 (optimal target quasi-norm). Given a domain quasi-norm pg, the op-
timal target quasi-norm, denoted pg(r), is the strongest target quasi-norm, i.e.

pc(9) S par)(g*), g € MT (1.11)

for any target quasi-norm pg such that the couple pg, pg is admissible.
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Definition 1.6 (optimal domain quasi-norm). Given a target quasi-norm pg, the op-
timal domain quasi-norm, denoted by pr(q), is the weakest domain quasi-norm, i.e.

prc)(9) S pr(9), 9 € Lim, (1.12)

for any domain quasi-norm pg such that the couple pr, pg is admissible.

Definition 1.7 (optimal couple). An admissible couple pg, pg is said to be optimal if
pr = prc) and pg = pe(r)-

In the supercritical case the definitions of optimal quasi-norms are similar, but we
have to replace (1.11) and (1.12) by

pr(X01)9) S PrF)(X019),9 € A;

pr) (X019) S Pr(X©01)9): 9 € Lin.

Here A := {g € M" : = L [*h(u)du}, where h € M* is increasing, h(2t) ~ h(t)
and h(+0) = 0. This ch01ce of A is motivated by the fact that the function h(t) =
wh(tY/™ ) is increasing, h(4+0) = 0 if f is continuous, and g = h.

The optimal quasi-norms are uniquely determined up to equivalence, while the
optimal target quasi-Banach spaces G are unique.

We give a characterization of all admissible couples, optimal target quasi-norms,
optimal domain quasi-norms, and optimal couples.

In the subcritical case ap < a, the main result is that the optimal target quasi-
norm satisfies pg(r)(g) ~ pr(wg*). Moreover, the couple pp, pg(r) is optimal. For
example, the couple F' = Li(w), 0 < ¢ < 00, ap = Bp < o, G = Al(wy) is optimal
(see Theorem 2.5 below). In the supercritical case ap > o, we have pym(X0,1)9) =
pr(Xo1¢g) and this couple is optimal (see Theorem 3.4). We also prove that the
couple pu, prmy, pr(9) == pur(Ryg) is optimal if o, < ap < k/n (see Theorem 3.5).

In the critical case ap = o, we use real interpolation similarly to [7], but in a
simpler way [1], and consider domain quasi-norms pp,

pr(g) = pr((bg/e);),

where pr is a monotone quasi-norm on (0, c0), satisfying fr < 1, and h;, means the
rearrangement of h with respect to the Haar measure on (0,00), du := 4, hir(t) =
1 fo u)du. In this case the optimal target quasi-norm pg(p) is

/?G(F)(g) = PT((CQ*)Z*)-

Here b and ¢ belong to a large class of Muckenhoupt slowly varying weights (see The-
orem 2.6 ). For example, if pr(g) := (f;"lg th) , 1 <qg<oo,then fr =1/q <1,

" prto) =~ ( | m[(bg/w;m)rdu) " ([ srswrer dt)

Hence F = Li(b/¢) and G(F) = A{(c) (see Example 2.6). Similar results are valid in
the critical case for the Besov space B*(E, F), when they are embedded in C*¥H (see
Theorem 3.6).
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The problem of the optimal embeddings of Sobolev type spaces is considered in
[1], [6], [7], 8], [9], [10], [12], [13], [18], [26], [27] and the same problem for Sobolev
or Besov type spaces is treated in [14], [15], [16], [17], [19], [21], [25], [26], [27], |28],
[29], [31], [11], [32], [33] by somewhat different methods. In [15], [16], [13] the main
object is the generalized Calderon space A(FE, F'), where the optimal rearrangement
invariant target space is characterized. In [16] the anisotropic Calderon spaces are also
investigated. As in [16], Section 2, it can be proved that B*(E, F) = A(FE, F}), where
pr (9) = pr(g(t™")) in the non-limiting case 0 < ar < k/n. So the results in [15],
[16], [13] are valid for the inhomogeneous Besov spaces, at least in the non-limiting
case and non-supercritical one. Here in the non-supercritical case we consider only the
homogeneous Besov spaces b*(E, F).

The embedding of b*(F, F) into rearrangement invariant spaces G is characterized

o g(u) du

by the continuity of the Hardy operator Q,g(t) = |, ORN (see Theorem 2.1). In
' (1)

[15], [16], [13], the corresponding Hardy operator H, differs by a factor 0
H, S Q. Therefore in the subcritical case ap < «, the operator H,, is bounded in
F, thus suggesting that then the optimal rearrangement invariant target space for the
inhomogeneous Besov spaces B¥(E, F) is G(F)NE, where pg(r)(9) = pr(ppg*). This is
confirmed by the Example 9.7 in [16], where E = LP, F' = Li(bt=*/"), b - slowly varying,
1/p>s/n>0,1<q< oo. Then the optimal target space is A?(t'/P=5/"p(t)) N LP. In
the critical case s/n = 1/p the results in [16| are more general then ours.

The embedding of B¥(E, F') into the Holder-Zygmund space C¥H is characterized
by the continuity of the operator R,g(t) = fot %%‘ (see Theorem 3.2).

The plan of the paper is as follows. In Section 2 we consider embeddings in rear-
rangement invariant spaces and in Section 3 embeddings in Holder-Zygmund spaces.

The main results in a slightly different form are announced in [2].

and

2 Embeddings in rearrangement invariant spaces

In this section we suppose that ap = Bp < o, i.e. here we consider non-supercritical
case. Also a, = B, > 0. We also suppose that pp satisfies the Minkowski inequality
(1.1).

2.1 Pointwise estimates for the rearrangement

Lemma 2.1. Fork=1 and k = 2

PO () = f(20] S win, (7", f), f € Lioe. (2.1)
Proof. The case k = 1 is proved in [25] by another method and for k& > 2 a weaker

version is established in [26]. Let ¢ > 0 and let B; be the ball in R™ with center 0,
radius h and measure 2¢. Let u € R", |u| < h. Let A, f(z) := f(z +u) — f(x). Then

[f (@) < [Auf (@) +|f(z + )],
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and, integrating with respect to uw over By,

2 |f(x)] < / Auf ()] du + / £ (s)ds

Now integrate with respect to x over a subset S of R™ with Lebesgue n—measure ¢ and
take the supremum over all such sets S. This gives (see [3], p. 53, Proposition 2.3.3)

2L (1) — f(21)] < / (Auf)™ (£)du

whence (2.1) follows for k = 1.
In the case k = 2 we have A% f(x) := f(z + 2u) — 2f(z + u) + f(z), whence

|/ ()] W T—u \+ [|f (@ +u)|+ [ f(z =)l
Integration of this with respect to u over B, gives

2t | f(x) /\AZ x—u\du+/ f(s

Hence as before we have
20— 0] < [ (A1) (0 (2.2)

which implies (2.1) for k = 2. O

Lemma 2.2. Let k > 2 and f € Ly, [*(00) =0. If

o) u(k—Z)/n du t(k—Q)/n
— < , or equivalently, k < 2+ nay,, 2.3
| ‘ 23
then
PO (t) = [ (20)) S wiy, (V" f). (2.4)

Proof. We prove (2.4) by induction for k£ > 2. First we note that f*(oco) =0 and

/ 57 () & (2.5)

and also 0 f*(t) := f*(t) — f*(t) < f**(t) — f*(2t). If (2.4) is true for k — 2, we can
write
< [

and using the fact that the function u~(=2/mwk"2(y1/" ) is equivalent to decreasing,
©
and (2.3), we get

p(t)f (1) S wir2(E7", f).
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In particular,
P(O(ALN) (1) S war (7", ALS).
Applying also (2.2), we get

tp()Lf () = f7(20] S / W2 (" AL f)du. (2.6)
By
By using Lemma 4.11, p. 338 [3], we derive from (2.6) inequality (2.4). O

Lemma 2.3. Let o, = B,. Then for f € Ly, f*(c0) =0,
[e8) wk ul/n’ oo,k 1/n
t p(u) u t o(u) u

Proof. If k < 2 then (2.7) follows from (2.5) and (2.1). Let the integer m > 2 satisfy
no, < m < 2+ no,. Using Lemma 2.2 and (2.5), we obtain (2.7) for kK = m. Let now
k > m. By Marchaud’s inequality [3], p. 333, we can write

m n m/n Wi, <U ’f) do
wip, (W™ f) S u™ /u ST

therefore from (2.7) and Fubini’s theorem it follows that
o0 k 1/7L o m/n
f**(t) 5/ wa(J 7f) (/ u d_u) d_O'
.o\ s

Since m > nf3, we have
/o um/nd_u < O.m/n'
0

plu) u ™ p(o)
Therefore (2.7) follows. 0

)

2.2 Admissible couples

Here we give a characterization of all admissible couples pg, pi in the non-supercritical
case. We always suppose that a, = 8, > 0 and ap = Br < ay,, ag = fa.

Theorem 2.1 (non-limiting case). Let 0 < ap < k/n. Then the couple pp,pa is
admissible if and only if

pc(Qp9) S pr(g), g € M, (2.8)
where
[T g(u) du
Qug(t) == /t ga >0, (2.9)
and

M :={g € L, and Q,g(t) < 0.}
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Proof. 1t is clear that (1.9) follows from (2.7) and (2.8).
Now we prove that (1.9) implies (2.8). To this end we choose the test function of
the form

- g(“) —1/n du

fla) = [ 2 ()

o ol B

where g € M and ¢ > 0 is a smooth function with compact support such that ¥ (|z|) =
Lif |z| < ¢7'/™ and the constant c is chosen in such a way that if h(z) := g(c|=|*) then

h* = g*. We have

f() > / T dn o g)(ele), whence £(t) 2 Qug(t).  (2.10)

|| o(u) u
Let
_ (9w —iymy QU _ [T 9w “i/my QU
o) i= [ L (o) S ) = [ S (el
Then .
I, 5 [ 28 10lala ), 5 0> 1
0 fuls, 5 [ 2t el ),
DEf o= i |01 Since [l S (o), we gt
t d o d
ol < [ a5 1D il S [ g
Thus
t d > d
R A R (2.11)

If (1.9) is given then the above and (2.10) imply

pc(Qpg) < pr(g) ,
« ( /0 IO /1 mh’}(u)(u)u”k/”d—u) g

u

Here we are using the monotonicity properties of g € M and the Minkowski inequality
for pp. Since 0 < ap < k/n, we obtain (2.8) due to (1.2), (1.3).
O

In the limiting cases we suppose that £ = M, and in addition «, < 1. Then

[ fllaz, = sup f*(£)@(t). (2.12)



16 Z. Bashir, G.E. Karadzhov

Theorem 2.2 (limiting cases). Let ap = 0 or ap = k/n < a, < 1. Then the couple
pr, pa 1 admissible if and only if (2.8) is satisfied for all g € My, where My consists of
all such g € M* that g(t) is increasing and t=%/"g(t) is decreasing as well as Q,g(t) <
00.

Proof. 1t is clear that we need to prove only that (1.9) implies (2.8). To this end we
use the same test function as in (2.9) and split f as before: f = fo; + f1;- Then using
the monotonicity of g € M, and

/ LU ) (2.13)
¢ pu) u ™ ot)
we get the estimates
g(t) k Mg (t)
f X 5 T N D f ~ )
) 2 gy 1P OIS

whence, using also (2.12),

| foellar, < 9(@), 1D" fulln, S t7%7g().

Therefore
Wit (877 F) S whr, (877, for) + @iy, (17 fie) S g(8)- (2.14)
If (1.9) is given then the above and (2.10) imply

p6(Qp9) S palf) S pr (Wir, (/7. 1)) S pr(9).

2.3 Optimal quasi-norms

Here we give a characterization of the optimal domain and optimal target quasi-norms
in the non-supercritical case ap < a,,.

We can define an optimal target quasi-norm by using Theorem 2.1 or Theorem 2.2.
We put N = M in the non-limiting case and N = Mj in the limiting cases.

Definition 2.1 (construction of the optimal target quasi-norm). For a given domain
quasi-norm pp, satisfying (1.4) and

(Qph)(a) < pr(h), h€ N, 0<a<l, (2.15)
we set
pary(9) == inf{pp(h) : " < Quh, h e N}, g€ M™, g*(c0) = 0. (2.16)

Theorem 2.3. Let ap = fr < ay,. Then the couple pr, pary is admissible, the target
quasi-norm is optimal and hepy(u) < hp(2)he(u), therefore agry = Bor) = oy — ap.
Also

par) (Qu (X0, O™)) < 00, par) (Qe(X(am))) < 00, 0 < a < 1. (2.17)
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Proof. Since pp is a monotone quasi-norm it follows that pg(r) is also a monotone quasi-
norm. The couple is admissible due to the inequality pg(r)(Qoh) < pr(h), h € N and
Theorem 2.1 or Theorem 2.2. Suppose that the couple pg, pg is admissible. Then by
the same theorems, po(Quh) S pr(h), h € N. Therefore if g* < Qh, h € N, then

pc(g*) < pa(Quh) < pr(h), whence p(g*) S par(g)- O

We construct an optimal domain quasi-norm by Theorem 2.1 or Theorem 2.2 as
follows.

Definition 2.2 (construction of an optimal domain quasi-norm). For a given target
quasi-norm pg, satisfying Minkowski’s inequality, we put

prc)(9) == pa(Qpg), g € N.

Theorem 2.4. Let G be a rearrangement invariant space, satisfying (2.17) and o, —
k/n < aq = Ba < ap. Then pp) is an optimal domain quasi-norm and hpg)(u) <
hw(u)hg(%), therefore apc) = Bre) = ap — ag. Moreover, in the non-limiting case
the couple prq), pa is optimal if g < 1. Also F(G) satisfies (1.4), (2.15).

Proof. The couple pp(q), pe is admissible since ppey(9) > pa(Q,9). Moreover, pp )
is optimal, since for any admissible couple pg, p we have pa(Q,9) < pr(g), g € N.
Therefore,

pr@)(9) = pa(Qp9) S pr(g)-

In the non-limiting case we use g** = Q,(pdg™*) if g*(co) = 0. Since pdg*™* € M,
we have

par@)(97) < pra)(wdg™) = pa(Qu(pdg™)) = palg™) < paly”).

Here we use pg(9™*) < pa(g*) if B < 1. Hence the target quasi-norm is also optimal.
U

Now we give some examples. In the limiting cases we suppose that a, < 1.

Example 2.1. Consider the space G = A}(v), satisfying (2.17), v(2t) ~ v(t), fg =
ag < ay,. Using Theorem 2.4, we can construct an optimal domain quasi-norm

prlo) =pe(@ua) = [ ote) ([T 20 9) S = [Tum S

where w(t) = fot v(u)2. Hence F = Li(w/¢). If v is slowly varying, then ag = g =0
and ap = Bp = a,. In the non-limiting case, 0 < a, < k/n, the couple F, G is optimal
if ﬁG < 1.

Example 2.2. Let G = Cj consist of all bounded functions such that f*(co) = 0 and
pa(g) = g*(0). Suppose G satisfies (2.17). Then ag = B¢ = 0 and pre)(9) = [, g(t) di

o) t°
i.e. F(G)= L.(1/p) and the couple is optimal in the non-limiting case.
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Example 2.3. Let G = AP (v) satisfy (2.17) and v(2t) = v(t), ¢ = ag < 1. Then

pr(c)(g) = supv(t) /too %d;u

If v is slowly varying, then ag = g = 0 and ape) = Br@) = a,. Hence this couple is
optimal in the non-limiting case.

Example 2.4. Let G be as in the previous example and 0 < o, < k/n. Since

w(t) 1 < 1 du
prc)(g) < sup mg(t)a o) :/t ww) u

it follows that the couple F} = L¥(w/p), G = AF°(v) is admissible. Let w be slowly
varying and let Fy satisfy (2.15). In order to prove that pg is optimal, take any g € M,
and define h from 28 p(t) = SUPgy<; V(w)g*(u). Then h € M and pr, (h) S pa(g®).

(®)
On the other hand ’

Quh(t) = /too sup 0(@)g" (@) —— 1 > sup w(u)g*(u)—s > g (8).

0<z<u w(u) v  o<u<t v(t) —

Hence pcr)(9*) < pr(h) S pa(g*), therefore pg is optimal.

2.4 Subcritical case

Here we suppose that ap = Bp < o, F satisfies (1.4), (2.15) and as before, o, = 3, >
0. Also, in the limiting cases ap = 0 or ap = k/n, we suppose that a,, < 1.

Theorem 2.5. The optimal target quasi-norm pgry 1s given by

pa(r)(9) = p(g), where p(g) = pr(pg™), g € M7, g*(c0) = 0.
Moreover, the couple pr, pa(ry 18 optimal and agry = Bar) = ap — ap < 1.

Proof. First we prove that the beta index 3 of p satisfies 3 < 1. Indeed,

(95) < hie(o)ho(w)or(pg™),
hence .
P(gu) S hr(—)he(u)p(g”).

Therefore 8 = a, — ap, in particular 8 < 1. As a consequence, p(g) = pr(pg*).
Since

du

00 1/p
pr(eQua) 5 prta) ([ 1 ) S pro)itar < g€ N,

it follows that the couple pp, p is admissible. Therefore, p(g) < pa)(9)-
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On the other hand, ¢ < Q,(¢g), g € N, hence g* < Q,(pg) and since g < ¢g** for
g € N, we have

par)(97) S prlvg™) S plg”).

The couple pr, pg(r) is optimal, since
prcE)(9) = par)(Qpg) = pr(0Qpg) Z Pr(9), g € L.
O

Example 2.5. Let F' = Li(w) with 0 < ¢ < 00, ap = fr < «, satisfy (1.4), (2.15),
G = A}(pw), w(2t) ~ w(t). Then this couple is optimal. In particular, if w = b is
slowly varying, then ap = B = 0 < «,, i.e. this is a subcritical and limiting case.
Thus if a, < 1, then

“roeoror?) < ([ Crod e pm) "
yi o

t t

Analogous result is valid if w(t) = t=%/"b(t), k/n < a, < 1. Then ap = Bp = k/n < a,
i.e. this is the other limiting case.

2.5 Critical case

Here we are going to use real interpolation for quasi-normed spaces, similarly to [1],
[8], [7]. Let (Ap, A1) be a couple of two quasi-Banach spaces (see [4], [5]) and let

K(tS) = K(t 5 Ao A) = ind {follag +1illa b S € Ao+ A,

be the K—functional of Peetre (see [4]). Then, the K —interpolation space Agp =
(Ao, A1)e has a quasi-norm

1/l ae = 1K g

where ® is a quasi-normed function space with a monotone quasi-norm on (0, co) with
the Lebesgue measure and such that min{1,¢} € ®. Then (see [5])

AoﬁAl ‘—>Aq> ‘—>A0+A1-
Ifo="L1t",0<0<1,0<q< oo, we write (A, 4;)g,, instead of (Agy, A;)s. (see
[4])

Now we construct the required couples of Muckenhoupt weights. Let the function
b satisfy the following properties:

it increases and slowly varies on (0,00) with b(t?) ~ b(t) (2.18)

and for some ¢ > 0,

(1+1Int)~'7°b(t) is increasing for ¢ > 1. (2.19)
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Le
t oy — M 20)
1+ |Int]) '
Then © 1 g .
/t e S a0 (2.21)

Indeed, if 0 < ¢t < 1 we can write:

[t [ [ e

Using monotonicity properties (2.18), (2.19) and the fact that c¢(¢t) < 1 for 0 < t < 1,
we get (2.21). The case ¢ > 1 is analogous, but simpler.

Theorem 2.6. Let pr be a monotone quasi-norm on M™ with By < 1, satisfying
Minkowski’s inequality. Here the index OB is defined in the same way as for G. Let b,
¢ be given by (2.18) - (2.20). Let pr be defined by

pr(g) == ps(bg/ ),
S = (L., L) 7, (2.22)

and T'(7) has the quasi-norm ||g||T(%) = pr(g(t)/t). If 0 < oo, < k/n, then the optimal
target quasi-norm is given by

per (9) == ps(g*c), g*(o00) = 0.

Proof. Let L° be the weighted Lebesgue space on (0,00) with the Lebesgue measure
and the norm

19llzee == sup[g(t)v(t)].
Then the operator @), defined by (2.9) is bounded in the following couple of spaces:
Qp : Li(b/p) = Li® and Q,: LE(b/¢) = L,
where b, ¢ are given by (2.18), (2.20).
Define S by (2.22). It is well known that ([4])
ps(9) = pr(g;") ~ pr(g;), (2.23)

where g7 (t) = %fot gy (s)ds. The equivalence in (2.23) is true because fr < 1.
By interpolation,

Q:FIHGM

where
Fy = (LA0/0) LE(0/9))rys Gr = (LF L)),

Denote the quasi-norm in F| by pr. We have

pr(g) = ps(bg/e) = pr((bg/e),") = pr((bg/¢),.)-
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Hence pp is a monotone quasi-norm and ap = Br = a,; this is because b is slowly
varying and ag = g = 0. Also F satisfies (1.4), (2.15).
Now we characterize the space Gy. Since (see [4])

Rt L 1) = 0 (.03 L 15 ) = tsuplg(s) minfe(s) (s) ),
we get the formula
P (9) = pulhg), hg(u) == sup|g(s)| min(c(s), b(s) /u). (2.24)
Also, since Lp® — L it follows h,(u) =~ sup |g(s)|c(s) if 0 < u < 1. Let
Hy(t) := hy(1+ |Int]), 0 <t < 0.
Then (Hg)y(t) < hy(t/2), hence by (2.23) and (2.24)

ps(Hy) < pey(9)-

Note that H, 2 gc, hence, if we define the quasi-norm pg(g) = ps(g*c), we get the
relation

pc(Qu9) < pay (Qug) S prlg), g € M.

Theorem 2.1 shows that the couple pg, pg is admissible. Also ag = G5 = 0.

Now we want to prove that pg is an optimal target quasi-norm. It is sufficies to see
that

koK

pc(97) =~ pary(9™), g € MT, g*(c0) =0,

where pg(p is defined by (2.16). And since the quasi-norm pg(py is optimal, we need
only to prove that pgr)(9™) S pa(g™). To this end first for any such g we construct
h € M such that ¢* < Quh and pp(h) < pa(g*). Let bh/¢ = g1, where gi(t) =
g (t2/e?)c(t?) for 0 < t < 1 and g,(t) = g**(\/t/e)e(v/t) if t > 1. Then h € M and
pr(h) = ps(g™*c) = pc(g*). On the other hand,

Vie c(s?) ds
Qunit) = [ g (105 2 040 2 470

since

A(t)—/ﬁc(32)§~/ﬁ;§>
A s ), 1+|lns|s ™

Similarly, for ¢ > 1 we obtain

0= [ WA 20

1+1n3? ~

*and pr(h) = pg(g™). Then by the definition of pgry we get

Thus Q,h 2>
pc(g™)- O

g*
par) () S palyg
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Example 2.6. Let G = A(c), 1 < ¢ < oo, F = Li(b/p), where b and ¢ are slowly
varying on (0, 00), b(t?) ~ b(t), b(t) < (1 + |Int|)c(t) and

(f cq<s>§)w (/ m[b<s>]—f%)w <1 Vgt lr=1,

Then the couple F, G is admissible by [30] and using the same argument as above, we
see that G is an optimal target space if 0 < a, < k/n.

3 Embeddings in Holder-Zygmund spaces

In this section we consider the non-subcritical case, i.e. ap = Br > a,. Also a, =
B, > 0 and in the limiting case ap = k/n we suppose in addition that a, < 1 and
a, < k/n.

3.1 Equivalent quasi-norms in Hoélder-Zygmund spaces

We suppose that 0 < ay = By < k/n and that py satisfies Minkowski’s inequality for
some equivalent p—norm, denoted again by py for simplicity. Let x(1 ) € H, where x
stands for the characteristic function of the corresponding interval.

Theorem 3.1. Let k> 2 and 0 < j < k—1.

o Ifj/n<ag<(+1)/nfor1<j<k—2 k>3 oray<1/n forj=20, or
ag > (k—1)/n for j =k —1, then

I lern 2 Y ID flle + pu (87 w(E/", DI f)). (3.1)
=0

o Ifag=(j+1)/n,0<j<k—2, then

j
Ifllern &Y ID flle + pu (87w (87, D f)). (3.2)
=0

Proof. Since w*(t¥/™ f) < t9/mw(tV/™, D7 f), the left-hand side in (3.1) is bounded by the
right one. For the converse, consider first the case j/n < ag < (j+1)/n,1 <j <k-2,
k > 3. By Marchaud’s inequality,

tj/nw(tl/n D]f) < t(jJrl)/n /OO ufl/nwk<u1/n D]f) du
Y ~ . Y U
Using also the estimate (cf. [3], p. 342)

k(pl/n 1ipy < ! —j/n, k(,1/n du
w(t ,Df)N u w(u af);a
0
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and Fubini’s theorem, we get t//"w(t'/", D7 f) < A(t), where
+1 X _G+N)/n, k1 du
A(t) = tUtb/m TS AR ALY CYAALN S e
’ u
t
+tj/n/ w IR f)d_u_
: u
Applying Minkowski’s inequality, we obtain
pr(t" Wt D)) S pu (W (", £)),

since .
Lodu [ o
/ 12 (uwyu i / B2, ()P D/ Y

0 U 1 U

< 00

due to j/n < ag < (j+1)/n (cf. (1.2), (1.3)).
On the other hand (see [3], p. 341),
e A e
0 u

whence

1
, , du
1Dl S [ i, 4 1o (33
0
Since pr(g) > g(t)pr(X(t,50)) for increasing g and

we have
9(t) S hu(t)pu(g), 9 € L. (3.4)
Therefore
1 ) d 1 ) d
[t S s [ ) e )
0 U 0 u

Hence (3.3) can be rewritten as

1D? fllze S prr (W (@™, ) + [ fl 2. (3:5)

Finally, using the estimate ||D'f||z < || fllzee + | D7 f]lz, 1 <1< j—1, we get (3.1).
The proof of (3.2) is similar.
Let now j = 0 and ay < 1/n. Then as above, but using only Marshaud inequality,

we get (3.1).
It remains to consider the case j = k — 1, ag > (k —1)/n. Let w* be the homoge-
neous Sobolev space with a norm || f|[,x = || D¥f|| . Since (L™, wk,)g-1)/x1 — wh*

(cf. [4]), we have

[e.e]

<
S K(tl/na f7 (Loo’ w]cfo)(kfl)/k,la U}];O)
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and by the Holmstedt reiteration formulae for the K —functional (see [4]), we obtain

_ b e du
u)(tl/n,Dk 1f) g U (k 1)/nwk(u1/n’f>_.
0 u

Hence applying Minkowski’s inequality as above, we get
pr(tED/ (Y DELE)) < pyr(wh(uh/™ f)).

Using also (3.5) for j = k — 1, we finish the proof. a

As an example, let py(g) = supt=/"b(t)g(t), where 0 < v < k, b is slowly varying.
Then ay = By = v/n and C*H is the usual Holder-Zygmund space C7 if 0 < v < k
and b =1 (cf. [33]).

3.2 Admissible couples

Here we give a characterization of all admissible couples pg, py. We always suppose
that a, = B, > 0 and ap = Br > ay,, oy = fg. Also let H satisfy (1.7), and let F
satisfy (1.4). Moreover, let

a d
/ M—uﬁpp(g), ge M, 1<a< oo, (3.6)
0 ‘P(U) U
and g
PH(X(0,1);) S pr(Xon9), 9 € M. (3.7)

Theorem 3.2 (non-limiting case). Let 0 < ap < k/n. Then the couple pr,py is
admissible if and only if

pr (X0 Re9) S pr(xon9), 9 € M, (3.8)
where
t
g(u) du
R,g(t ::/ =L — t>0,
0= J ol
and

M, :={g € L, g(2t) = g(t), and Ryg(t) < c0.}

Proof. We shall use (1.8). Next we prove that

tu)k (ul/n f) du
wE(E/ ) f ,5/ M T iy, > 0, 3.9
( ) A (3.9)

From (2.7) it follows

oo Lk tl/n’ d
s [Tl
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For |h| < tY/™ we get (using also (2.13))

t,k 1/n k 1/n
k < wig, (u ,f)d_u wiy, ", f)
A f(2)] < / L n e

Since
[ (0
o el w ™ oe)
we obtain (3.9).
Now we prove that (3.8) implies (1.10). From (3.8) and (3.9) it follows

pr (X (O (", ) < pr <X(071)(t)w§4¢(t1/”, f)) : (3.10)
Using (2.7) and (2.13), we can write

1, .,k tl/n’f d
sy £ [ ALy,

Hence (3.6) gives sup |f(z)| S I fllsrm,,r) S 1 lsx (), Which together with (3.10)
imply (1.10).

Moreover, if f € B*(E, F) then f is continuous: w(t'/", f) — 0 as t — 0. Indeed,
by Marchaud’s inequality and (3.9),

t,,k 1/71 oo,k 1/n
1/n < 1/n wM¢<u 7f)d_u wM¢<u 7f) ,1/nd_u

Let 0 <t < 1. Clearly,
o0 k 1/n
/ wM(PL : ’f)u_l/"d—u < 00.
1 p(u) u
Let e
Loy (™, d
h(t) = tl/"/ Mu—l/n_u.
t p(u) u
Since fol h(t)% < oo it follows h(t) = 0(1) as t — 0. Therefore

w(tm, f) <t 4 o(1), t — 0.

Now we prove that (1.10) implies (3.8). To this end we choose the test function

o )y du
fla) = [ L () O,

where g € M; and ¢ > 0 is in C§° such that ¢ (|z|) = 1 for |z| < 1/2 and ¥(|z|) =0 if
|z| > 1.
Then
du

Il 5 [ Zestotiadu ), 5
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hence

bod
I£lle <10, S [ o (3.11)

Therefore, using also (2.17), we get

1flle S pr(g)-

Let |h| = tY/", 0 < t < 1. We estimate |AF(|z|u='/")| from below for # = 0 and
u < t. Namely, we have

t
g(ct) +WREY ) 2 Rog(t), 0 <t < 1/c, ¢ = (2k)" (3.12)
plct)
and )
t) dt
/ gtt) dt + WY ) 2 Rog(t), 1/c <t < 1. (3.13)
o pt)
Further, we use (3.7) and the same arguments as in the proof of Theorem 2.1 and
conclude that (1.10) implies (3.8) due to (3.12), (2.11) and (3.11). O

Theorem 3.3 (limiting case). Let £ = M,, ar = k/n > «a, and let (1.4), (3.6)
be satisfied, 0 < o, < 1. Then the couple pp, py is admissible if and only if (3.8) is
satisfied for all g € My, where My is the set of all g € M™ with g(t) increasing and
t=*/mg(t) decreasing as well as R,g(t) < oo.

Proof. The arguments are the same as in the proof of Theorem 3.2, using also (2.14).
O

3.3 Optimal quasi-norms

Here we give a characterization of the optimal domain and optimal target quasi-norms
when ap > a, hence a, < k/n. In the limiting case we also require o, < 1.

We can define an optimal domain quasi-norm by using Theorem 3.2 or Theorem
3.3. Let S = M; in the non-limiting case and S = M, in the limiting cases.

Definition 3.1 (construction of the optimal target quasi-norm). For a given domain
quasi-norm pp we set

prr)(9) == inf{pr(h) : g < R,h, h € S}, g € A.

Theorem 3.4. Let ap = fr > oy, and let pp satisfy (1.4), (2.17).

Then prry satisfies (1.7), the couple pp, pury is admissible, satisfies (3.7), the
target quasi-norm is optimal and hgp)(u) < hp(u)hy(1/u), therefore apry = Buary =
O — Och.

Moreover, if ap > ay, then the couple is optimal and

PH(F)(X(0,1)9) ~ PF(X(O,l)SOg)-
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Proof. The proof follows by arguments similar to those in the proof of Theorem 2.3.
To prove optimality of the couple when ap > «,, let ¢ < R,h. Then pp(pg) <
pr(¢Rsh) S pr(h), whence pp(pg) S pu(ry(g). On the other hand, g S Ry(pg),
whence pur)(9) S pr(pg). Finally, since

pruw)(9) = prw)(Rog) 2 prwr)(9/9) 2 pr(9), 9 € L,
it follows that the domain quasi-norm is also optimal. O

Definition 3.2 (construction of an optimal domain quasi-norm). For a given target
quasi-norm py, satisfying Minkowski’s inequality, (1.7) and oy < k/n — a,, we put

pr)(9) == pa(Ryg), g € 5.

Theorem 3.5. Let ay = By < k/n — ay,, a, < k/n, and let (1.7) be satisfied for
H. Then ppy satisfies (1.4), (8.6), (3.7), it is an optimal domain quasi-norm and
heny(u) < hyp(w)hy(u), therefore apy = Brimy = am + o, Moreover, this couple is
optimal in the non-limiting case.

Proof. The proof is similar to that of Theorem 2.4. We only need to prove (1.4) and
optimalitty of py. We have

¢
X (a.00) (1) du
PF(H) (X(a,oo)) = pPH (/ ¥_) <
0

p(u) u
P (X(a,00)) /a ﬁ% S ﬁpH(X(am)-

The other condition in (1.4) follows from (1.7). To check optimality of pg, let
g € A, then by definition, g(t) = %fot h(u)du, h is increasing and h(40) = 0. Hence
g is increasing, equivalent to h and g(4+0) = 0. If hy(t) := tg'(t), then g = R, (¢oh1).
Moreover, thy(t) is increasing, since th(t) = h(t) — g(t) = f(f udh(u). Therefore ph, €

M, and pH(p(H))(g) < ,OF(H)(WM) = pu(9)-
O

Now we give examples. In the limiting case ap = k/n, we suppose that 0 < a, < 1
and a, < k/n.

Example 3.1. The couple F' = L%(w), H = Li(pw), ap > o, satisfying (1.4), (3.6),
(3.7) is optimal. In particular, we can take w(t) = t=*/"b(t), b slowly varying, s/n > a,.

Example 3.2. Consider the space H = Ll(v), satisfying (1.7) and 8y = ay < k/n —
ay, a, < k/n. Using Theorem 3.5, we can construct an optimal domain quasi-norm

(o) = pu(eg) = [t ([ LAY L [T D04

where w(t) = [ v(u)%. Hence F = LL(w/y). If v is slowly varying, then ay = By = 0

and ap = Bp = ay, i.e. this is a critical case. Moreover, this couple is optimal.
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Example 3.3. Let F' = L'(1/p) satisfy (1.4), (3.6), (3.7) with H = L and By =
ag < k/n— o, a, < k/n. Then this couple is optimal.

Example 3.4. Let H = L(v) satisfy (1.7) and 8y = ag < k/n — oy, o, < k/n.
Then

pran(a) =supu) [ SO

If v is slowly varying, then ay = By = 0, ap) = Br) = o, and the couple is
optimal.

3.4 Critical case

Here we use the same technique as in Section 2.5. First we construct the required
couples of Muckenhoupt weights. Let a slowly varying function b(t) satisfy the following
properties:

b(t) is non-increasing, b(t?) ~ b(t), b(t) = 0ift > 1 (3.14)

and for some € > 0,

(1 —Int)~'°b(t) is non-increasing if 0 < ¢ < 1. (3.15)

Let b)

t
) = —————. 3.16
O = T (3.16)

Then .
/ L du < ! ,0<t<1
o blu) u ™ cft)

Indeed, we can write:

[ a1
/0 b(u) u _/0 b(u)(1 —Inu)~1t—< u S c(t)

by using monotonicity property (3.15).

Theorem 3.6. Let pr be a monotone quasi-norm on M™ with Br < 1, satisfying
Minkowski’s inequality. Let b, ¢ be given by (3.14) - (3.16). Let pr be defined by

pr(g) == ps(bg/e),

S = (L, L:O)T(%)'

Let 0 < o, < k/n. Then the optimal target quasi-norm is given by

PH(F) (9) = ps(ge).
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Proof. The operator R, defined by (3.2) is bounded in the following couple of spaces:
R:Lib/g) = L and R,: L¥(b/g) — L,

where b, ¢ are given by (3.14), (3.16).
By interpolation,
R: F1 — Hl,

where
Fy = (Li(b/ﬂo)aLio(b/@))T(%)a Hy = (L?,LZ")T@-

Denote the quasi-norm in F} by pr. We have

pr(g) = ps(bg/¢) = pr((bg/e),") = pr((bg/¢);.)-

Hence pp is a monotone quasi-norm and ap = B = a,, since ag = g = 0 and b is
slowly varying. Also, (1.4), (3.6) are satisfied.

Analogously to the proof of Theorem 2.6, we characterize the space H; and define
the quasi-norm pg(g) := ps(gc), hence

pr(Ry9) S py(Rp9) S pr(g), g € M.

Theorem 3.2 shows that the couple pg, py is admissible. Finally, arguments similar to
those in the proof of Theorem 2.6 show that py is an optimal target quasi-norm. We
only note that if b(t)h(t)/p(t) = g(v/te)e(v/t) for 0 < t < 1 and h(t) = ¢(t)g(2t) for
t>1, g€ A, then h € My and R,h 2 g(t). O

Example 3.5. Let 0 < a, < k/n. Let H = Li(c), 1 < q < oo, FF' = Li(b/y), where b
and c are slowly varying on (0, 1), b(t?) ~ b(t), b(t) < (14| Int|)e(t), c¢(t) =0 for t > 1

h (/tl Cq(S)%)l/q (/ot[b(S)]_T%)l/r S11/g+l/r=10<t <L

Then the couple F, H is admissible by [30] and using the same argument as above, we
see that H is an optimal target space.
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