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n with the Lebesgue measureinto other rearrangement invariant spaes in the subritial or ritial ases and intogeneralized H�older-Zygmund spaes in the superritial ase. The investigation is basedon some real interpolation tehniques and estimates of the rearrangement of f in termsof the modulus of ontinuity of f .1 IntrodutionTo highlight the key issues around this paper, let us start with some bakgroundmaterial.1.1 BakgroundLet Lloc be the spae of all loally integrable funtions f on R

n with the Lebesguemeasure. Denote by M+ the spae of all loally integrable funtions g ≥ 0 on (0,∞)with the Lebesgue measure.Let ρF be a quasi-norm, de�ned on M+ with values in [0,∞], whih is monotone inthe sense that g1 ≤ g2 implies ρF (g1) ≤ ρF (g2). Denote by F the quasi-normed spae,onsisting of all loally integrable funtions in (0,∞) with the Lebesgue measure suhthat ‖g‖F := ρF (|g|) <∞.There is an equivalent quasi-norm ρp, alled a p−norm, that satis�es the triangleinequality ρp
p(g1 + g2) ≤ ρp

p(g1) + ρp
p(g2) for some p ∈ (0, 1] that depends only on thespae F (see [22℄).We say that the quasi-norm ρF satis�es Minkowski's inequality if for the equivalentquasi-norm ρp,

ρp
p

(∑
gj

)
.
∑

ρp
p(gj), gj ∈ M+. (1.1)1Researh of the seond author was partially supported by the Abdus Salam Shool of MathematialSienes, GC University Lahore as well as by a grant from HEC, Pakistan.



6 Z. Bashir, G.E. KaradzhovLet hF (u) be the dilation funtion generated by ρF

hF (u) = sup

{
ρF (gu)

ρF (g)
: g ∈ Lm

}
, gu(t) := g(tu),where

Lm := {g ∈ M+, tmg(t) is inreasing }, m > 2.The funtion umhF (u) is inreasing, submultipliative and
hF (1) = 1, hF (u)hF

(
1

u

)
≥ 1.We suppose that it is �nite. Therefore if αF and βF are the Boyd indies of F :

αF := sup
0<t<1

log hF (t)

log t
and βF := inf

1<t<∞

log hF (t)

log t
,then −m ≤ αF ≤ βF . We suppose that αF = βF .Let ϕ be a quasi-onave funtion in M+. This means that ϕ is non-dereasing and

ϕ(t)/t is non-inreasing. Let ϕ(∞) = ∞. De�ne the dilation funtion hϕ, generatedby ϕ:
hϕ(u) = sup

0<t<∞

ϕ(tu)

ϕ(t)
.Then hϕ is quasi-onave, submultipliative and

hϕ(1) = 1, 1 ≤ hϕ(u)hϕ

(
1

u

)
, hϕ(u) ≤ max(1, u).Therefore the lower and upper Boyd indies αϕ, βϕ, de�ned by

αϕ := sup
0<t<1

log hϕ(t)

log t
and βϕ := inf

1<t<∞

log hϕ(t)

log t
,satisfy 0 ≤ αϕ ≤ βϕ ≤ 1. We suppose that αϕ = βϕ > 0. Then ϕ(+0) = 0.Using the monotoniity of hF and hϕ, we see that for any p > 0 (f. [3℄, p. 147)

∫ 1

0

hp
ϕ(u)hp

F (u)
du

u
<∞ if αϕ + αF > 0; (1.2)

∫ ∞

1

hp
ϕ(u)hp

F (u)u−pk/ndu

u
<∞ if αϕ + αF < k/n. (1.3)We shall also onsider rearrangement invariant quasi-normed spaes G with a mono-tone quasi-norm ‖f‖G = ρG(f ∗), f ∈ Lloc, f
∗(∞) = 0, f ∗ being the dereasing rear-rangement of f, given by

f ∗(t) = inf{λ > 0 : µf(λ) ≤ t}, t > 0,where µf is the distribution funtion of f, de�ned by
µf(λ) = |{x ∈ R

n : |f(x)| > λ}|n ,
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|·|n denoting the Lebesgue n−measure. Let

f ∗∗(t) =
1

t

∫ t

0

f ∗(u)du.The lower and upper Boyd indies of G are de�ned similarly to [3℄. Let hG(u) be thedilation funtion generated by ρG

hG(u) = sup

{
ρG(g∗u)

ρG(g∗)
: g ∈ M+

}
, gu(t) := g

(
t

u

)
.The funtion hG is inreasing, submultipliative,

hG(1) = 1, hG(u)hG

(
1

u

)
≥ 1.Therefore, if αG and βG are the Boyd indies of G:

αG := sup
0<t<1

log hG(t)

log t
and βG := inf

1<t<∞

log hG(t)

log t
,then 0 ≤ αG ≤ βG. We shall suppose that αG = βG ≤ 1.Reall that w is slowly varying on (1,∞) (in the sense of Karamata), if for all

ε > 0 the funtion tεw(t) is equivalent to a non-dereasing funtion, and the funtion
t−εw(t) is equivalent to a non-inreasing funtion. By symmetry, we say that w isslowly varying on (0, 1) if the funtion t 7→ w(1

t
) is slowly varying on (1,∞). Finally,

w is slowly varying if it is slowly varying on (0, 1) and (1,∞).We use the notation a1 . a2 or a2 & a1 for nonnegative funtions or funtionals tomean that the quotient a1/a2 is bounded above; also, a1 ≈ a2 means that a1 . a2 and
a1 & a2. We say that a1 is equivalent to a2 if a1 ≈ a2.1.2 Basi de�nitions and main resultsThe lassial homogeneous Besov spaes bsr,q, 0 < s < k, 1 ≤ r < ∞, 0 < q ≤ ∞, arede�ned by �niteness of the quasi-norms

‖f‖bs
r,q

=

(∫ ∞

0

[t−sωk
r (t, f)]q

dt

t

)1/q

,where ωk
r (t, f) := sup|h|≤t ‖∆k

hf‖Lr is the standard modulus of ontinuity and Lr is theLebesgue spae on R
n. The following embedding is well known:

bsr,q →֒ Lu,q, 1/u = 1/r − s/n > 0,where Lu,q is the Lorentz spae [4℄. We an replae the base spae Lr in the de�nitionof the Besov spaes by the Lorentz spae Lr,v and de�ne more general homogeneousBesov spaes bsqLr,v, 1 ≤ v ≤ ∞. Then by interpolation,
bsqL

r,v = (Lr,v, wkLr,v)s/k,q,



8 Z. Bashir, G.E. Karadzhovwhere wkLr,v is the homogeneous Sobolev spae. Let k < n/r. Then wkLr,v →֒ Lr1,v,
1/r1 = 1/r − k/n, hene

bsqL
r,v →֒ Lu,q, 1/u = 1/r − s/n > 0,We prove below that Lu,q is the optimal rearrangement invariant target spae. Observethat it does not depend on v ∈ [1,∞], but only on the fundamental funtion of thebase spae Lr,v, whih is t1/r.For the inhomogeneous Besov spaes Bs

qL
r,v := bsqL

r,v ∩ Lr,v with the usual quasi-norm, we learly have the embedding
Bs

qL
r,v →֒ Lu,q ∩ Lr,v, 1/u = 1/r − s/n > 0and in [15℄, [16℄, [13℄ it is proved that this is the optimal rearrangement invariant targetspae.The above disussion suggests to de�ne the generalized homogeneous Besov spaesreplaing Lr as a base spae by an arbitrary rearrangement invariant Banah funtionspae on R

n with a fundamental funtion ϕE ≈ ϕ. Then
Λϕ →֒ E →֒Mϕ,where Mϕ is the Marinkieviz spae with a norm

‖f‖Mϕ := sup
0<t<∞

f ∗∗(t)ϕ(t)and Λϕ is the Lorentz spae with a norm
‖f‖Λϕ :=

∫ ∞

0

f ∗(t)dϕ(t) =

∫ ∞

0

f ∗(t)ϕ′(t)dt.Here we suppose that ϕ is onave and ϕ(+0) = 0.De�nition 1.1 (Besov spaes). Let E be a rearrangement invariant Banah funtionspae on Rn as in [23℄, with a fundamental funtion ϕE ≈ ϕ. We denote by bk(E,F ) thegeneralized homogeneous Besov spae, onsisting of all funtions f ∈ Lloc, f
∗(∞) = 0,suh that

‖f‖bk(E,F ) := ρF

(
ωk

E(t1/n, f)
)
<∞,where ωk

E(t, f) = sup
|h|≤t

‖∆k
hf‖E is the modulus of ontinuity of f ∈ Lloc of order k and

∆k
h is the di�erene operator with step h of order k.The orresponding generalized inhomogeneous Besov spae Bk(E,F ) has the quasi-norm

‖f‖Bk(E,F ) := ρF

(
ωk

E(t1/n, f)
)

+ ‖f‖E.



Optimal embeddings of generalized Besov spaes 9Under the following onditions the generalized Besov spaes ontain C∞
0 ,

ρF

(
χ(0,1)(t)t

k/n
)
<∞, ρF (χ(a,∞)) <∞, 0 < a < 1, (1.4)where χ(a,b) stands for the harateristi funtion of the interval (a, b).Then

‖f‖Bk(E,F ) ≈ ρF

(
χ(0,1)(t)ω

k
E(t1/n, f)

)
+ ‖f‖E (1.5)We suppose that the following ondition is satis�ed

0 ≤ αF ≤ k/n. (1.6)We an take F = Lq
∗(b(t)t

−s/n), where b is slowly varying and Lq
∗(w), or simply Lq

∗if w = 1, is the weighted Lebesgue spae with the quasi-norm
‖g‖Lq

∗(w) =

(∫ ∞

0

[w(t)|g(t)|]qdt
t

)1/q

, 0 < q ≤ ∞, w > 0, w ∈ M+.Then αF = βF = s/n and (1.6) means that 0 ≤ s ≤ k. For this reason we all the ases
αF = 0 or αF = k/n limiting. Sine bk(E,F ) is the K−interpolation between E andthe homogeneous Sobolev spae wkE, the limiting ase αF = 0 means that bk(E,F ) is�logarithmially lose" to E, while in the limiting ase αF = k/n the spae bk(E,F )is �logarithmially lose" to wkE. If E = Lr, 1 ≤ r ≤ ∞, then we get the lassialBesov spaes bsr,q = bk(Lr, Lq

∗(t
−s/n)) and Bs

r,q if 0 < s < k. It is well-known that theembedding properties of these spaes depend on the onditions: s < n/r (subritialase), s = n/r (ritial ase) and s > n/r (superritial ase). Therefore �rst we extendthese de�nitions for the generalized Besov spaes.De�nition 1.2. A ase is said to be subritial, ritial, superritial provided that
αF < αϕ, αF = αϕ, αF > αϕ respetively.The main goal of this paper is to prove optimal embeddings of the Besov spae
bk(E,F ), αF < αϕ, into rearrangement invariant quasi-normed spaes G. This is thesubritial ase.In the superritial ase αF > αϕ we prove optimal embeddings of the Besov spaes
Bk(E,F ) into the generalized H�older-Zygmund spaes CkH (f. [33℄) with the quasi-norm ‖f‖CkH := ‖f‖L∞ + ρH(ωk(t1/n, f)), where ρH is a monotone quasi-norm and

ωk(t, f) := sup
|h|≤t

sup
x∈Rn

|∆k
hf(x)|.We write ω(t, f) instead of ω1(t, f). We suppose that

ρH

(
χ(0,1)(t)

∫ t

0

uk/n

ϕ(u)

du

u

)
<∞ and ρH

(
χ(a,∞)

)
<∞, 0 < a < 1. (1.7)Then

‖f‖CkH ≈ ρH

(
χ(0,1)(t)ω

k(t1/n, f)
)

+ ‖f‖L∞ (1.8)Let hH(u) be the dilation funtion generated by ρH
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hH(u) = sup

{
ρH(gu)

ρH(g)
: g ∈ Lm

}
, gu(t) := g(tu).The funtion umhH(u) is inreasing, submultipliative and

hH(1) = 1, hH(u)hH

(
1

u

)
≥ 1.We suppose that hH is �nite. Therefore if αH and βH are the Boyd indies of H :

αH := sup
0<t<1

log hH(t)

log t
and βH := inf

1<t<∞

log hH(t)

log t
,then −m ≤ αH ≤ βH . We suppose that αH = βH .The spaes in the ritial ase αF = αϕ an be divided into two sublasses: in the�rst sublass the funtions may not be ontinuous - then the respetive spae bk(E,F )is embedded in a rearrangement invariant spae of type G, while the funtions in theseond sublass are ontinuous and the orresponding spae Bk(E,F ) is embedded ina H�older-Zygmund spae. The separating spae for these two sublasses is given by

F = L1
∗(1/ϕ) (f. Theorem 2.1).De�nition 1.3 (admissible ouple - non-superritial ase). We say that a ouple

ρF , ρG is admissible for the Besov spaes bk(E,F ) if the following ontinuous embeddingis valid:
bk(E,F ) →֒ G. (1.9)Moreover, ρF ( F ) is alled the domain quasi-norm (domain spae), and ρG (G) isalled the target quasi-norm (target spae).For example, by Theorem 2.1 below, the ouple F = Lq

∗(wϕ), G = Λq
0(v), 1 ≤ q ≤

∞, is admissible if v is related to w by the Mukenhoupt ondition [30℄:
(∫ t

0

[v(s)]q
ds

s

)1/q (∫ ∞

t

[w(s)]−rds

s

)1/r

. 1, 1/q + 1/r = 1.The spae Λq(w), 0 < q ≤ ∞ is the Lorentz spae with the quasi-norm ‖g‖Λq(w) =
‖g∗‖Lq

∗(w), w(2t) ≈ w(t) and Λq
0(w) = {f ∈ Λq(w); f ∗(∞) = 0}.De�nition 1.4 (admissible ouple - superritial ase). We say that a ouple ρF , ρHis admissible for the Besov spaes Bk(E,F ) if the following ontinuous embedding isvalid:

Bk(E,F ) →֒ CkH. (1.10)Moreover, ρF ( F ) is alled the domain quasi-norm (domain spae), and ρH (H) isalled target the quasi-norm (target spae).De�nition 1.5 (optimal target quasi-norm). Given a domain quasi-norm ρF , the op-timal target quasi-norm, denoted ρG(F ), is the strongest target quasi-norm, i.e.
ρG(g∗) . ρG(F )(g

∗), g ∈ M+ (1.11)for any target quasi-norm ρG suh that the ouple ρF , ρG is admissible.



Optimal embeddings of generalized Besov spaes 11De�nition 1.6 (optimal domain quasi-norm). Given a target quasi-norm ρG, the op-timal domain quasi-norm, denoted by ρF (G), is the weakest domain quasi-norm, i.e.
ρF (G)(g) . ρF (g), g ∈ Lm, (1.12)for any domain quasi-norm ρF suh that the ouple ρF , ρG is admissible.De�nition 1.7 (optimal ouple). An admissible ouple ρF , ρG is said to be optimal if

ρF = ρF (G) and ρG = ρG(F ).In the superritial ase the de�nitions of optimal quasi-norms are similar, but wehave to replae (1.11) and (1.12) by
ρH(χ(0,1)g) . ρH(F )(χ(0,1)g), g ∈ A;

ρF (H)(χ(0,1)g) . ρF (χ(0,1)g), g ∈ Lm.Here A := {g ∈ M+ : g(t) = 1
t

∫ t

0
h(u)du}, where h ∈ M+ is inreasing, h(2t) ≈ h(t)and h(+0) = 0. This hoie of A is motivated by the fat that the funtion h(t) =

ωk
E(t1/n, f) is inreasing, h(+0) = 0 if f is ontinuous, and g ≈ h.The optimal quasi-norms are uniquely determined up to equivalene, while theoptimal target quasi-Banah spaes G are unique.We give a haraterization of all admissible ouples, optimal target quasi-norms,optimal domain quasi-norms, and optimal ouples.In the subritial ase αF < αϕ the main result is that the optimal target quasi-norm satis�es ρG(F )(g) ≈ ρF (ϕg∗). Moreover, the ouple ρF , ρG(F ) is optimal. Forexample, the ouple F = Lq

∗(w), 0 < q ≤ ∞, αF = βF < αϕ, G = Λq
0(wϕ) is optimal(see Theorem 2.5 below). In the superritial ase αF > αϕ, we have ρH(F )(χ(0,1)g) ≈

ρF (χ(0,1)ϕg) and this ouple is optimal (see Theorem 3.4). We also prove that theouple ρH , ρF (H), ρF (H)(g) := ρH(Rϕg) is optimal if αϕ ≤ αF < k/n (see Theorem 3.5).In the ritial ase αF = αϕ we use real interpolation similarly to [7℄, but in asimpler way [1℄, and onsider domain quasi-norms ρF ,

ρF (g) := ρT ((bg/ϕ)∗∗µ ),where ρT is a monotone quasi-norm on (0,∞), satisfying βT < 1, and h∗µ means therearrangement of h with respet to the Haar measure on (0,∞), dµ := dt
t
, h∗∗µ (t) :=

1
t

∫ t

0
h∗µ(u)du. In this ase the optimal target quasi-norm ρG(F ) is

ρG(F )(g) := ρT ((cg∗)∗∗µ ).Here b and c belong to a large lass of Mukenhoupt slowly varying weights (see The-orem 2.6 ). For example, if ρT (g) :=
(∫∞

0
[g(t)]qdt

)1/q
, 1 < q ≤ ∞, then βT = 1/q < 1,and

ρF (g) ≈
(∫ ∞

0

[(bg/ϕ)∗µ(u)]
qdu

)1/q

=

(∫ ∞

0

[b(t)g(t)/ϕ(t)]q
dt

t

)1/q

.Hene F = Lq
∗(b/ϕ) and G(F ) = Λq

0(c) (see Example 2.6). Similar results are valid inthe ritial ase for the Besov spae Bk(E,F ), when they are embedded in CkH (seeTheorem 3.6).



12 Z. Bashir, G.E. KaradzhovThe problem of the optimal embeddings of Sobolev type spaes is onsidered in[1℄, [6℄, [7℄, [8℄, [9℄, [10℄, [12℄, [13℄, [18℄, [26℄, [27℄ and the same problem for Sobolevor Besov type spaes is treated in [14℄, [15℄, [16℄, [17℄, [19℄, [21℄, [25℄, [26℄, [27℄, [28℄,[29℄, [31℄, [11℄, [32℄, [33℄ by somewhat di�erent methods. In [15℄, [16℄, [13℄ the mainobjet is the generalized Calderon spae Λ(E,F ), where the optimal rearrangementinvariant target spae is haraterized. In [16℄ the anisotropi Calderon spaes are alsoinvestigated. As in [16℄, Setion 2, it an be proved that Bk(E,F ) = Λ(E,F1), where
ρF1(g) = ρF (g(t−1)) in the non-limiting ase 0 < αF < k/n. So the results in [15℄,[16℄, [13℄ are valid for the inhomogeneous Besov spaes, at least in the non-limitingase and non-superritial one. Here in the non-superritial ase we onsider only thehomogeneous Besov spaes bk(E,F ).The embedding of bk(E,F ) into rearrangement invariant spaes G is haraterizedby the ontinuity of the Hardy operator Qϕg(t) =

∫∞
t

g(u)
ϕ(u)

du
u

(see Theorem 2.1). In[15℄, [16℄, [13℄, the orresponding Hardy operator Hϕ di�ers by a fator tϕ′(t)
ϕ(t)

and
Hϕ . Qϕ. Therefore in the subritial ase αF < αϕ, the operator Hϕ is bounded in
F , thus suggesting that then the optimal rearrangement invariant target spae for theinhomogeneous Besov spaes Bk(E,F ) is G(F )∩E, where ρG(F )(g) = ρF (ϕEg

∗). This ison�rmed by the Example 9.7 in [16℄, where E = Lp, F = Lq(bt−s/n), b - slowly varying,
1/p > s/n > 0, 1 ≤ q ≤ ∞. Then the optimal target spae is Λq(t1/p−s/nb(t)) ∩ Lp. Inthe ritial ase s/n = 1/p the results in [16℄ are more general then ours.The embedding of Bk(E,F ) into the H�older-Zygmund spae CkH is haraterizedby the ontinuity of the operator Rϕg(t) =

∫ t

0
g(u)
ϕ(u)

du
u
(see Theorem 3.2).The plan of the paper is as follows. In Setion 2 we onsider embeddings in rear-rangement invariant spaes and in Setion 3 embeddings in H�older-Zygmund spaes.The main results in a slightly di�erent form are announed in [2℄.2 Embeddings in rearrangement invariant spaesIn this setion we suppose that αF = βF ≤ αϕ, i.e. here we onsider non-superritialase. Also αϕ = βϕ > 0. We also suppose that ρF satis�es the Minkowski inequality(1.1).2.1 Pointwise estimates for the rearrangementLemma 2.1. For k = 1 and k = 2

ϕ(t)[f ∗∗(t) − f ∗∗(2t)] . ωk
Mϕ

(t1/n, f), f ∈ Lloc. (2.1)Proof. The ase k = 1 is proved in [25℄ by another method and for k ≥ 2 a weakerversion is established in [26℄. Let t > 0 and let Bt be the ball in R
n with enter 0,radius h and measure 2t. Let u ∈ R

n, |u| ≤ h. Let ∆uf(x) := f(x+ u) − f(x). Then
|f(x)| ≤ |∆uf(x)| + |f(x+ u)| ,
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2t |f(x)| ≤
∫

Bt

|∆uf(x)| du+

∫ 2t

0

f ∗(s)ds.Now integrate with respet to x over a subset S of R
n with Lebesgue n−measure t andtake the supremum over all suh sets S. This gives (see [3℄, p. 53, Proposition 2.3.3)

2t[f ∗∗(t) − f ∗∗(2t)] ≤
∫

Bt

(∆uf)∗∗(t)du,whene (2.1) follows for k = 1.In the ase k = 2 we have ∆2
uf(x) := f(x+ 2u) − 2f(x+ u) + f(x), whene

|f(x)| ≤ 1

2

∣∣∆2
uf(x− u)

∣∣+ 1

2
[|f(x+ u)| + |f(x− u)|].Integration of this with respet to u over Bt gives

2t |f(x)| ≤ 1

2

∫

Bt

∣∣∆2
uf(x− u)

∣∣ du+

∫ 2t

0

f ∗(s)ds.Hene as before we have
2t[f ∗∗(t) − f ∗∗(2t)] ≤

∫

Bt

(∆2
uf)∗∗(t)du (2.2)whih implies (2.1) for k = 2.Lemma 2.2. Let k > 2 and f ∈ Lloc, f

∗(∞) = 0. If
∫ ∞

t

u(k−2)/n

ϕ(u)

du

u
.
t(k−2)/n

ϕ(t)
, or equivalently, k < 2 + nαϕ, (2.3)then

ϕ(t)[f ∗∗(t) − f ∗∗(2t)] . ωk
Mϕ

(t1/n, f). (2.4)Proof. We prove (2.4) by indution for k > 2. First we note that f ∗(∞) = 0 and
f ∗∗(t) =

∫ ∞

t

δf ∗∗(u)
du

u
(2.5)and also δf ∗∗(t) := f ∗∗(t) − f ∗(t) . f ∗∗(t) − f ∗∗(2t). If (2.4) is true for k − 2, we anwrite

f ∗∗(t) .

∫ ∞

t

ωk−2
Mϕ

(u1/n, f)

u(k−2)/n

u(k−2)/n

ϕ(u)

du

uand using the fat that the funtion u−(k−2)/nωk−2
Mϕ

(u1/n, f) is equivalent to dereasing,and (2.3), we get
ϕ(t)f ∗∗(t) . ωk−2

Mϕ
(t1/n, f).
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ϕ(t)(∆2

uf)∗∗(t) . ωk−2
Mϕ

(t1/n,∆2
uf).Applying also (2.2), we get

tϕ(t)[f ∗∗(t) − f ∗∗(2t)] .

∫

Bt

ωk−2
Mϕ

(t1/n,∆2
uf)du. (2.6)By using Lemma 4.11, p. 338 [3℄, we derive from (2.6) inequality (2.4).Lemma 2.3. Let αϕ = βϕ. Then for f ∈ Lloc, f

∗(∞) = 0,

f ∗∗(t) .

∫ ∞

t

ωk
Mϕ

(u1/n, f)

ϕ(u)

du

u
.

∫ ∞

t

ωk
E(u1/n, f)

ϕ(u)

du

u
. (2.7)Proof. If k ≤ 2 then (2.7) follows from (2.5) and (2.1). Let the integer m > 2 satisfy

nαϕ < m < 2 + nαϕ. Using Lemma 2.2 and (2.5), we obtain (2.7) for k = m. Let now
k > m. By Marhaud's inequality [3℄, p. 333, we an write

ωm
Mϕ

(u1/n, f) . um/n

∫ ∞

u

ωk
Mϕ

(σ1/n, f)

σm/n

dσ

σ
,therefore from (2.7) and Fubini's theorem it follows that

f ∗∗(t) .

∫ ∞

t

ωk
Mϕ

(σ1/n, f)

σm/n

(∫ σ

0

um/n

ϕ(u)

du

u

)
dσ

σ
.Sine m > nβϕ we have ∫ σ

0

um/n

ϕ(u)

du

u
.
σm/n

ϕ(σ)
.Therefore (2.7) follows.2.2 Admissible ouplesHere we give a haraterization of all admissible ouples ρF , ρG in the non-superritialase. We always suppose that αϕ = βϕ > 0 and αF = βF ≤ αϕ, αG = βG.Theorem 2.1 (non-limiting ase). Let 0 < αF < k/n. Then the ouple ρF , ρG isadmissible if and only if

ρG(Qϕg) . ρF (g), g ∈M, (2.8)where
Qϕg(t) :=

∫ ∞

t

g(u)

ϕ(u)

du

u
, t > 0, (2.9)and

M := {g ∈ Lm and Qϕg(t) <∞.}



Optimal embeddings of generalized Besov spaes 15Proof. It is lear that (1.9) follows from (2.7) and (2.8).Now we prove that (1.9) implies (2.8). To this end we hoose the test funtion ofthe form
f(x) =

∫ ∞

0

g(u)

ϕ(u)
ψ
(
|x|u−1/n

) du
u
,where g ∈M and ψ ≥ 0 is a smooth funtion with ompat support suh that ψ(|x|) =

1 if |x| ≤ c−1/n and the onstant c is hosen in suh a way that if h(x) := g(c|x|n) then
h∗ = g∗. We have

f(x) ≥
∫ ∞

c|x|n

g(u)

ϕ(u)

du

u
= (Qϕg)(c|x|n), whene f ∗(t) & Qϕg(t). (2.10)Let

f0t(x) :=

∫ t

0

g(u)

ϕ(u)
ψ
(
|x|u−1/n

) du
u
, f1t(x) :=

∫ ∞

t

g(u)

ϕ(u)
ψ
(
|x|u−1/n

) du
u
.Then

‖f0t‖Λϕ .

∫ t

0

g(u)

ϕ(u)
‖ψ(|x|u−1/n)‖Λϕ

du

u
, a > 1,

‖(Dkf1t‖Λϕ .

∫ ∞

t

g(u)

ϕ(u)
u−k/n‖ψ(|x|u−1/n)‖Λϕ

du

u
,

Dkf :=
∑

|α|=k |Dαf |. Sine ‖ψ(|x|u−1/n)‖Λϕ . ϕ(u), we get
‖f0t‖E .

∫ t

0

g(u)
du

u
, ‖Dkf1t‖E .

∫ ∞

t

u−k/ng(u)
du

u
.Thus

ωk
E(t1/n, f) .

∫ t

0

g(u)
du

u
+ tk/n

∫ ∞

t

u−k/ng(u)
du

u
. (2.11)If (1.9) is given then the above and (2.10) imply

ρG(Qϕg) . ρF (g)

×
(∫ 1

0

hp
F (u)

du

u
+

∫ ∞

1

hp
F (u)(u)u−pk/ndu

u

)1/p

.Here we are using the monotoniity properties of g ∈M and the Minkowski inequalityfor ρF . Sine 0 < αF < k/n, we obtain (2.8) due to (1.2), (1.3).In the limiting ases we suppose that E = Mϕ and in addition αϕ < 1. Then
‖f‖Mϕ ≈ sup f ∗(t)ϕ(t). (2.12)



16 Z. Bashir, G.E. KaradzhovTheorem 2.2 (limiting ases). Let αF = 0 or αF = k/n ≤ αϕ < 1. Then the ouple
ρF , ρG is admissible if and only if (2.8) is satis�ed for all g ∈M0, where M0 onsists ofall suh g ∈ M+ that g(t) is inreasing and t−k/ng(t) is dereasing as well as Qϕg(t) <
∞.Proof. It is lear that we need to prove only that (1.9) implies (2.8). To this end weuse the same test funtion as in (2.9) and split f as before: f = f0t + f1t. Then usingthe monotoniity of g ∈M0 and

∫ ∞

t

1

ϕ(u)

du

u
.

1

ϕ(t)
if αϕ > 0, (2.13)we get the estimates

f0t(x) .
g(t)

ϕ(c|x|n) , |D
kf1t(x)| .

t−k/ng(t)

ϕ(c|x|n)
,whene, using also (2.12),

‖f0t‖Mϕ . g(t), ‖Dkf1t‖Mϕ . t−k/ng(t).Therefore
ωk

Mϕ
(t1/n, f) . ωk

Mϕ
(t1/n, f0t) + ωk

Mϕ
(t1/n, f1t) . g(t). (2.14)If (1.9) is given then the above and (2.10) imply

ρG(Qϕg) . ρG(f ∗) . ρF

(
ωk

Mϕ
(t1/n, f)

)
. ρF (g).

2.3 Optimal quasi-normsHere we give a haraterization of the optimal domain and optimal target quasi-normsin the non-superritial ase αF ≤ αϕ.We an de�ne an optimal target quasi-norm by using Theorem 2.1 or Theorem 2.2.We put N = M in the non-limiting ase and N = M0 in the limiting ases.De�nition 2.1 (onstrution of the optimal target quasi-norm). For a given domainquasi-norm ρF , satisfying (1.4) and
(Qϕh)(a) . ρF (h), h ∈ N, 0 < a < 1, (2.15)we set

ρG(F )(g) := inf{ρF (h) : g∗ ≤ Qϕh, h ∈ N}, g ∈ M+, g∗(∞) = 0. (2.16)Theorem 2.3. Let αF = βF ≤ αϕ. Then the ouple ρF , ρG(F ) is admissible, the targetquasi-norm is optimal and hG(F )(u) ≤ hF ( 1
u
)hϕ(u), therefore αG(F ) = βG(F ) = αϕ −αF .Also

ρG(F )(Qϕ(χ(0,1)(t)t
k/n)) <∞, ρG(F )(Qϕ(χ(a,∞))) <∞, 0 < a < 1. (2.17)



Optimal embeddings of generalized Besov spaes 17Proof. Sine ρF is a monotone quasi-norm it follows that ρG(F ) is also a monotone quasi-norm. The ouple is admissible due to the inequality ρG(F )(Qϕh) ≤ ρF (h), h ∈ N andTheorem 2.1 or Theorem 2.2. Suppose that the ouple ρF , ρG is admissible. Then bythe same theorems, ρG(Qϕh) . ρF (h), h ∈ N. Therefore if g∗ ≤ Qh, h ∈ N, then
ρG(g∗) ≤ ρG(Qϕh) . ρF (h), whene ρG(g∗) . ρG(F )(g

∗).We onstrut an optimal domain quasi-norm by Theorem 2.1 or Theorem 2.2 asfollows.De�nition 2.2 (onstrution of an optimal domain quasi-norm). For a given targetquasi-norm ρG, satisfying Minkowski's inequality, we put
ρF (G)(g) := ρG(Qϕg), g ∈ N.Theorem 2.4. Let G be a rearrangement invariant spae, satisfying (2.17) and αϕ −

k/n ≤ αG = βG ≤ αϕ. Then ρF (G) is an optimal domain quasi-norm and hF (G)(u) ≤
hϕ(u)hG( 1

u
), therefore αF (G) = βF (G) = αϕ − αG. Moreover, in the non-limiting asethe ouple ρF (G), ρG is optimal if βG < 1. Also F (G) satis�es (1.4), (2.15).Proof. The ouple ρF (G), ρG is admissible sine ρF (G)(g) ≥ ρG(Qϕg). Moreover, ρF (G)is optimal, sine for any admissible ouple ρF , ρG we have ρG(Qϕg) . ρF (g), g ∈ N .Therefore,

ρF (G)(g) = ρG(Qϕg) . ρF (g).In the non-limiting ase we use g∗∗ = Qϕ(ϕδg∗∗) if g∗(∞) = 0. Sine ϕδg∗∗ ∈ M,we have
ρG(F (G)(g

∗∗) ≤ ρF (G)(ϕδg
∗∗) = ρG(Qϕ(ϕδg∗∗)) = ρG(g∗∗) . ρG(g∗).Here we use ρG(g∗∗) . ρG(g∗) if βG < 1. Hene the target quasi-norm is also optimal.Now we give some examples. In the limiting ases we suppose that αϕ < 1.Example 2.1. Consider the spae G = Λ1

0(v), satisfying (2.17), v(2t) ≈ v(t), βG =
αG ≤ αϕ. Using Theorem 2.4, we an onstrut an optimal domain quasi-norm

ρF (g) = ρG(Qϕg) =

∫ ∞

0

v(t)

(∫ ∞

t

g(u)

ϕ(u)

du

u

)
dt

t
=

∫ ∞

0

w(t)
g(t)

ϕ(t)

dt

t
,where w(t) =

∫ t

0
v(u)du

u
. Hene F = L1

∗(w/ϕ). If v is slowly varying, then αG = βG = 0and αF = βF = αϕ. In the non-limiting ase, 0 < αϕ < k/n, the ouple F, G is optimalif βG < 1.Example 2.2. Let G = C0 onsist of all bounded funtions suh that f ∗(∞) = 0 and
ρG(g) = g∗(0). Suppose G satis�es (2.17). Then αG = βG = 0 and ρF (G)(g) =

∫∞
0

g(t)
ϕ(t)

dt
t
,i.e. F (G) = L1

∗(1/ϕ) and the ouple is optimal in the non-limiting ase.



18 Z. Bashir, G.E. KaradzhovExample 2.3. Let G = Λ∞
0 (v) satisfy (2.17) and v(2t) ≈ v(t), βG = αG ≤ 1. Then
ρF (G)(g) = sup v(t)

∫ ∞

t

g(u)

ϕ(u)

du

u
.If v is slowly varying, then αG = βG = 0 and αF (G) = βF (G) = αϕ. Hene this ouple isoptimal in the non-limiting ase.Example 2.4. Let G be as in the previous example and 0 < αϕ < k/n. Sine

ρF (G)(g) ≤ sup
w(t)

ϕ(t)
g(t),

1

v(t)
=

∫ ∞

t

1

w(u)

du

u
,it follows that the ouple F1 = L∞

∗ (w/ϕ), G = Λ∞
0 (v) is admissible. Let w be slowlyvarying and let F1 satisfy (2.15). In order to prove that ρG is optimal, take any g ∈ M+,and de�ne h from w(t)

ϕ(t)
h(t) = sup0<u≤t v(u)g

∗(u). Then h ∈ M and ρF1(h) . ρG(g∗).On the other hand
Qϕh(t) =

∫ ∞

t

sup
0<x≤u

v(x)g∗(x)
1

w(u)

du

u
≥ sup

0<u≤t
v(u)g∗(u)

1

v(t)
≥ g∗(t).Hene ρG(F )(g

∗) ≤ ρF1(h) . ρG(g∗), therefore ρG is optimal.2.4 Subritial aseHere we suppose that αF = βF < αϕ, F satis�es (1.4), (2.15) and as before, αϕ = βϕ >
0. Also, in the limiting ases αF = 0 or αF = k/n, we suppose that αϕ < 1.Theorem 2.5. The optimal target quasi-norm ρG(F ) is given by

ρG(F )(g) ≈ ρ(g), where ρ(g) := ρF (ϕg∗∗), g ∈ M+, g∗(∞) = 0.Moreover, the ouple ρF , ρG(F ) is optimal and αG(F ) = βG(F ) = αϕ − αF < 1.Proof. First we prove that the beta index β of ρ satis�es β < 1. Indeed,
ρ(g∗u) ≤ hF (

1

u
)hϕ(u)ρF (ϕg∗∗),hene

ρ(g∗u) . hF (
1

u
)hϕ(u)ρ(g∗).Therefore β = αϕ − αF , in partiular β < 1. As a onsequene, ρ(g) ≈ ρF (ϕg∗).Sine

ρF (ϕQϕg) . ρF (g)

(∫ ∞

1

hp
ϕ(u)hp

F (u)
du

u

)1/p

. ρF (g) if αF < αϕ, g ∈ N,it follows that the ouple ρF , ρ is admissible. Therefore, ρ(g) . ρG(F )(g).



Optimal embeddings of generalized Besov spaes 19On the other hand, g . Qϕ(ϕg), g ∈ N, hene g∗ . Qϕ(ϕg) and sine g . g∗∗ for
g ∈ N , we have

ρG(F )(g
∗) . ρF (ϕg∗∗) . ρ(g∗).The ouple ρF , ρG(F ) is optimal, sine

ρF (G(F ))(g) = ρG(F )(Qϕg) ≈ ρF (ϕQϕg) & ρF (g), g ∈ Lm.Example 2.5. Let F = Lq
∗(w) with 0 < q ≤ ∞, αF = βF < αϕ satisfy (1.4), (2.15),

G = Λq
0(ϕw), w(2t) ≈ w(t). Then this ouple is optimal. In partiular, if w = b isslowly varying, then αF = βF = 0 < αϕ, i.e. this is a subritial and limiting ase.Thus if αϕ < 1, then

(∫ ∞

0

[b(t)ϕ(t)f ∗(t)]q
dt

t

)1/q

.

(∫ ∞

0

[b(t)ωk
Mϕ

(t1/n, f)]q)
dt

t

)1/q

.Analogous result is valid if w(t) = t−k/nb(t), k/n < αϕ < 1. Then αF = βF = k/n < αϕ,i.e. this is the other limiting ase.2.5 Critial aseHere we are going to use real interpolation for quasi-normed spaes, similarly to [1℄,[8℄, [7℄. Let (A0, A1) be a ouple of two quasi-Banah spaes (see [4℄, [5℄) and let
K(t, f) = K(t, f ;A0, A1) = inf

f=f0+f1

{‖f0‖A0
+ t ‖f1‖A1

}, f ∈ A0 + A1,be the K−funtional of Peetre (see [4℄). Then, the K−interpolation spae AΦ =
(A0, A1)Φ has a quasi-norm

‖f‖AΦ
= ‖K(t, f)‖Φ ,where Φ is a quasi-normed funtion spae with a monotone quasi-norm on (0,∞) withthe Lebesgue measure and suh that min{1, t} ∈ Φ. Then (see [5℄)

A0 ∩A1 →֒ AΦ →֒ A0 + A1.If Φ = Lq
∗(t

−θ), 0 < θ < 1, 0 < q ≤ ∞, we write (A0, A1)θ,q instead of (A0, A1)Φ. (see[4℄)Now we onstrut the required ouples of Mukenhoupt weights. Let the funtion
b satisfy the following properties:it inreases and slowly varies on (0,∞) with b(t2) ≈ b(t) (2.18)and for some ε > 0,

(1 + ln t)−1−εb(t) is inreasing for t > 1. (2.19)



20 Z. Bashir, G.E. KaradzhovLet
c(t) =

b(t)

1 + | ln t|) . (2.20)Then ∫ ∞

t

1

b(u)

du

u
.

1

c(t)
, t > 0. (2.21)Indeed, if 0 < t < 1 we an write:

∫ ∞

t

1

b(u)

du

u
=

∫ 1

t

1

b(u)

du

u
+

∫ ∞

1

(1 + ln u)−1−ε

b(u)(1 + ln u)−1−ε

du

u
.Using monotoniity properties (2.18), (2.19) and the fat that c(t) . 1 for 0 < t < 1,we get (2.21). The ase t > 1 is analogous, but simpler.Theorem 2.6. Let ρT be a monotone quasi-norm on M+ with βT < 1, satisfyingMinkowski's inequality. Here the index βT is de�ned in the same way as for G. Let b,

c be given by (2.18) - (2.20). Let ρF be de�ned by
ρF (g) := ρS(bg/ϕ),

S := (L1
∗, L

∞
∗ )T ( 1

t
), (2.22)and T (1

t
) has the quasi-norm ‖g‖T ( 1

t
) := ρT (g(t)/t). If 0 < αϕ < k/n, then the optimaltarget quasi-norm is given by

ρG(F )(g) := ρS(g∗c), g∗(∞) = 0.Proof. Let L∞
v be the weighted Lebesgue spae on (0,∞) with the Lebesgue measureand the norm

‖g‖L∞
v

:= sup |g(t)v(t)|.Then the operator Qϕ, de�ned by (2.9) is bounded in the following ouple of spaes:
Qϕ : L1

∗(b/ϕ) 7→ L∞
b and Qϕ : L∞

∗ (b/ϕ) 7→ L∞
c ,where b, c are given by (2.18), (2.20).De�ne S by (2.22). It is well known that ([4℄)

ρS(g) = ρT (g∗∗µ ) ≈ ρT (g∗µ), (2.23)where g∗∗µ (t) = 1
t

∫ t

0
g∗µ(s)ds. The equivalene in (2.23) is true beause βT < 1.By interpolation,

Q : F1 7→ G1,where
F1 := (L1

∗(b/ϕ), L∞
∗ (b/ϕ))T ( 1

t
), G1 := (L∞

b , L
∞
c )T ( 1

t
).Denote the quasi-norm in F1 by ρF . We have

ρF (g) = ρS(bg/ϕ) = ρT ((bg/ϕ)∗∗µ ) ≈ ρT ((bg/ϕ)∗µ).



Optimal embeddings of generalized Besov spaes 21Hene ρF is a monotone quasi-norm and αF = βF = αϕ; this is beause b is slowlyvarying and αS = βS = 0. Also F satis�es (1.4), (2.15).Now we haraterize the spae G1. Sine (see [4℄)
K(t, g;L∞

b , L
∞
c ) = tK

(
1

t
, g;L∞

c , L
∞
b

)
= t sup

s
|g(s)|min(c(s), b(s)/t),we get the formula

ρG1(g) = ρH(hg), hg(u) := sup
s

|g(s)|min(c(s), b(s)/u). (2.24)Also, sine L∞
b →֒ L∞

c it follows hg(u) ≈ sup |g(s)|c(s) if 0 < u < 1. Let
Hg(t) := hg(1 + | ln t|), 0 < t <∞.Then (Hg)

∗
µ(t) ≤ hg(t/2), hene by (2.23) and (2.24)

ρS(Hg) . ρG1(g).Note that Hg & gc, hene, if we de�ne the quasi-norm ρG(g) := ρS(g∗c), we get therelation
ρG(Qϕg) . ρG1(Qϕg) . ρF (g), g ∈M.Theorem 2.1 shows that the ouple ρF , ρG is admissible. Also αG = βG = 0.Now we want to prove that ρG is an optimal target quasi-norm. It is su�ies to seethat

ρG(g∗∗) ≈ ρG(F )(g
∗∗), g ∈ M+, g∗(∞) = 0,where ρG(F ) is de�ned by (2.16). And sine the quasi-norm ρG(F ) is optimal, we needonly to prove that ρG(F )(g

∗∗) . ρG(g∗∗). To this end �rst for any suh g we onstrut
h ∈ M suh that g∗ . Qϕh and ρF (h) . ρG(g∗∗). Let bh/ϕ = g1, where g1(t) =

g∗∗(t2/e2)c(t2) for 0 < t < 1 and g1(t) = g∗∗(
√
t/e)c(

√
t) if t > 1. Then h ∈ M and

ρF (h) ≈ ρS(g∗∗c) = ρG(g∗∗). On the other hand,
Qϕh(t) ≥

∫ √
te

t

g∗∗(s2/e)
c(s2)

b(s)

ds

s
≥ g∗∗(t)A(t) & g∗∗(t),sine

A(t) =

∫ √
te

t

c(s2)

b(s)

ds

s
≈
∫ √

te

t

1

1 + | ln s|
ds

s
& 1.Similarly, for t > 1 we obtain

Qϕh(t) ≥
∫ et2

t

g∗∗(
√
s/e)

1

1 + ln s

ds

s
& g∗∗(t).Thus Qϕh & g∗∗ and ρF (h) ≈ ρG(g∗∗). Then by the de�nition of ρG(F ) we get

ρG(F )(g
∗∗) . ρG(g∗∗).



22 Z. Bashir, G.E. KaradzhovExample 2.6. Let G = Λq
0(c), 1 < q < ∞, F = Lq

∗(b/ϕ), where b and c are slowlyvarying on (0,∞), b(t2) ≈ b(t), b(t) . (1 + | ln t|)c(t) and
(∫ t

0

cq(s)
ds

s

)1/q (∫ ∞

t

[b(s)]−r ds

s

)1/r

. 1, 1/q + 1/r = 1.Then the ouple F,G is admissible by [30℄ and using the same argument as above, wesee that G is an optimal target spae if 0 < αϕ < k/n.3 Embeddings in H�older-Zygmund spaesIn this setion we onsider the non-subritial ase, i.e. αF = βF ≥ αϕ. Also αϕ =
βϕ > 0 and in the limiting ase αF = k/n we suppose in addition that αϕ < 1 and
αϕ ≤ k/n.3.1 Equivalent quasi-norms in H�older-Zygmund spaesWe suppose that 0 ≤ αH = βH ≤ k/n and that ρH satis�es Minkowski's inequality forsome equivalent p−norm, denoted again by ρH for simpliity. Let χ(1,∞) ∈ H, where χstands for the harateristi funtion of the orresponding interval.Theorem 3.1. Let k ≥ 2 and 0 ≤ j ≤ k − 1.

• If j/n < αH < (j + 1)/n for 1 ≤ j ≤ k − 2, k ≥ 3, or αH < 1/n for j = 0, or
αH > (k − 1)/n for j = k − 1, then

‖f‖CkH ≈
j∑

l=0

‖Dlf‖L∞ + ρH(tj/nω(t1/n, Djf)). (3.1)
• If αH = (j + 1)/n, 0 ≤ j ≤ k − 2, then

‖f‖CkH ≈
j∑

l=0

‖Dlf‖L∞ + ρH(tj/nω2(t1/n, Djf)). (3.2)Proof. Sine ωk(t1/n, f) . tj/nω(t1/n, Djf), the left-hand side in (3.1) is bounded by theright one. For the onverse, onsider �rst the ase j/n < αH < (j+1)/n, 1 ≤ j ≤ k−2,
k ≥ 3. By Marhaud's inequality,

tj/nω(t1/n, Djf) . t(j+1)/n

∫ ∞

t

u−1/nωk(u1/n, Djf)
du

u
.Using also the estimate (f. [3℄, p. 342)

ωk(t1/n, Djf) .

∫ t

0

u−j/nωk(u1/n, f)
du

u
,



Optimal embeddings of generalized Besov spaes 23and Fubini's theorem, we get tj/nω(t1/n, Djf) . A(t), where
A(t) = t(j+1)/n

∫ ∞

t

u−(j+1)/nωk(u1/n, f)
du

u

+tj/n

∫ t

0

u−j/nωk(u1/n, f)
du

u
.Applying Minkowski's inequality, we obtain

ρH(tj/nω(t1/n, Djf)) . ρH(ωk(t1/n, f)),sine ∫ 1

0

hp
H(u)u−pj/ndu

u
+

∫ ∞

1

hp
H(u)u−p(j+1)/ndu

u
<∞due to j/n < αH < (j + 1)/n (f. (1.2), (1.3)).On the other hand (see [3℄, p. 341),

‖Djf‖L∞ .

∫ ∞

0

u−j/nωk(u1/n, f)
du

u
,whene

‖Djf‖L∞ .

∫ 1

0

u−j/nωk(u1/n, f)
du

u
+ ‖f‖L∞. (3.3)Sine ρH(g) ≥ g(t)ρH(χ(t,∞)) for inreasing g and

ρH(χ(1,∞)) ≤ hH(u)ρH(χ(u,∞)),we have
g(t) . hH(t)ρH(g), g ∈ Lm. (3.4)Therefore

∫ 1

0

u−j/nωk(u1/n, f)
du

u
.

∫ 1

0

u−j/nhH(u)
du

u
ρH(ωk(t1/n, f)).Hene (3.3) an be rewritten as

‖Djf‖L∞ . ρH(ωk(u1/n, f)) + ‖f‖L∞. (3.5)Finally, using the estimate ‖Dlf‖L∞ . ‖f‖L∞ + ‖Djf‖L∞, 1 ≤ l ≤ j − 1, we get (3.1).The proof of (3.2) is similar.Let now j = 0 and αH < 1/n. Then as above, but using only Marshaud inequality,we get (3.1).It remains to onsider the ase j = k − 1, αH > (k − 1)/n. Let wk
∞ be the homoge-neous Sobolev spae with a norm ‖f‖wk

∞
= ‖Dkf‖L∞. Sine (L∞, wk

∞)(k−1)/k,1 →֒ wk−1
∞(f. [4℄), we have

ω(t1/n, Dk−1f) . K(t1/n, f ;wk−1
∞ , wk

∞)

. K(t1/n, f ; (L∞, wk
∞)(k−1)/k,1, w

k
∞)



24 Z. Bashir, G.E. Karadzhovand by the Holmstedt reiteration formulae for the K−funtional (see [4℄), we obtain
ω(t1/n, Dk−1f) .

∫ t

0

u−(k−1)/nωk(u1/n, f)
du

u
.Hene applying Minkowski's inequality as above, we get

ρH(t(k−1)/nω(t1/n, Dk−1f)) . ρH(ωk(u1/n, f)).Using also (3.5) for j = k − 1, we �nish the proof.As an example, let ρH(g) = sup t−γ/nb(t)g(t), where 0 ≤ γ ≤ k, b is slowly varying.Then αH = βH = γ/n and CkH is the usual H�older-Zygmund spae Cγ if 0 < γ < kand b = 1 (f. [33℄).3.2 Admissible ouplesHere we give a haraterization of all admissible ouples ρF , ρH . We always supposethat αϕ = βϕ > 0 and αF = βF ≥ αϕ, αH = βH . Also let H satisfy (1.7), and let Fsatisfy (1.4). Moreover, let
∫ a

0

g(u)

ϕ(u)

du

u
. ρF (g), g ∈M1, 1 < a <∞, (3.6)and

ρH(χ(0,1)
g

ϕ
) . ρF (χ(0,1)g), g ∈M1. (3.7)Theorem 3.2 (non-limiting ase). Let 0 < αF < k/n. Then the ouple ρF , ρH isadmissible if and only if

ρH(χ(0,1)Rϕg) . ρF (χ(0,1)g), g ∈M1, (3.8)where
Rϕg(t) :=

∫ t

0

g(u)

ϕ(u)

du

u
, t > 0,and

M1 := {g ∈ Lm g(2t) ≈ g(t), and Rϕg(t) <∞.}Proof. We shall use (1.8). Next we prove that
ωk(t1/n, f) .

∫ t

0

ωk
Mϕ

(u1/n, f)

ϕ(u)

du

u
if αϕ > 0. (3.9)From (2.7) it follows

|f(x)| .

∫ ∞

0

ωk
Mϕ

(t1/n, f)

ϕ(t)

dt

t
.
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|∆k

hf(x)| .

∫ t

0

ωk
Mϕ

(u1/n, f)

ϕ(u)

du

u
+
ωk

Mϕ
(t1/n, f)

ϕ(t)
.Sine ∫ t

0

ωk
Mϕ

(u1/n, f)

ϕ(u)

du

u
&
ωk

Mϕ
(t1/n, f)

ϕ(t)
,we obtain (3.9).Now we prove that (3.8) implies (1.10). From (3.8) and (3.9) it follows

ρH

(
χ(0,1)(t)ω

k(t1/n, f)
)

. ρF

(
χ(0,1)(t)ω

k
Mϕ

(t1/n, f)
)
. (3.10)Using (2.7) and (2.13), we an write

sup |f(x)| .

∫ 1

0

ωk
Mϕ

(t1/n, f)

ϕ(t)

dt

t
+ ‖f‖Mϕ.Hene (3.6) gives sup |f(x)| . ‖f‖Bk(Mϕ,F ) . ‖f‖Bk(E,F ), whih together with (3.10)imply (1.10).Moreover, if f ∈ Bk(E,F ) then f is ontinuous: ω(t1/n, f) → 0 as t → 0. Indeed,by Marhaud's inequality and (3.9),

ω(t1/n, f) . t1/n

(∫ t

0

ωk
Mϕ

(u1/n, f)

ϕ(u)

du

u
+

∫ ∞

t

ωk
Mϕ

(u1/n, f)

ϕ(u)
u−1/ndu

u

)
.Let 0 < t < 1. Clearly, ∫ ∞

1

ωk
Mϕ

(u1/n, f)

ϕ(u)
u−1/ndu

u
<∞.Let

h(t) := t1/n

∫ 1

t

ωk
Mϕ

(u1/n, f)

ϕ(u)
u−1/ndu

u
.Sine ∫ 1

0
h(t)dt

t
<∞ it follows h(t) = 0(1) as t→ 0. Therefore

ω(t1/n, f) . t1/n + o(1), t→ 0.Now we prove that (1.10) implies (3.8). To this end we hoose the test funtion
f(x) =

∫ 1

0

g(u)

ϕ(u)
ψ
(
|x|u−1/n

) du
u
,where g ∈M1 and ψ ≥ 0 is in C∞

0 suh that ψ(|x|) = 1 for |x| ≤ 1/2 and ψ(|x|) = 0 if
|x| ≥ 1.Then

‖f‖Λϕ .

∫ 1

0

g(u)

ϕ(u)
‖ψ(|x|u−1/n)‖Λϕ

du

u
,
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‖f‖E . ‖f‖Λϕ .

∫ 1

0

g(u)
du

u
. (3.11)Therefore, using also (2.17), we get

‖f‖E . ρF (g).Let |h| = t1/n, 0 < t < 1. We estimate |∆k
hψ(|x|u−1/n)| from below for x = 0 and

u < t. Namely, we have
g(ct)

ϕ(ct)
+ ωk(t1/n, f) & Rϕg(t), 0 < t < 1/c, c = (2k)n (3.12)and ∫ 1

0

g(t)

ϕ(t)

dt

t
+ ωk(t1/n, f) & Rϕg(t), 1/c < t < 1. (3.13)Further, we use (3.7) and the same arguments as in the proof of Theorem 2.1 andonlude that (1.10) implies (3.8) due to (3.12), (2.11) and (3.11).Theorem 3.3 (limiting ase). Let E = Mϕ, αF = k/n ≥ αϕ and let (1.4), (3.6)be satis�ed, 0 < αϕ < 1. Then the ouple ρF , ρH is admissible if and only if (3.8) issatis�ed for all g ∈ M2, where M2 is the set of all g ∈ M+ with g(t) inreasing and

t−k/ng(t) dereasing as well as Rϕg(t) <∞.Proof. The arguments are the same as in the proof of Theorem 3.2, using also (2.14).3.3 Optimal quasi-normsHere we give a haraterization of the optimal domain and optimal target quasi-normswhen αF ≥ αϕ, hene αϕ ≤ k/n. In the limiting ase we also require αϕ < 1.We an de�ne an optimal domain quasi-norm by using Theorem 3.2 or Theorem3.3. Let S = M1 in the non-limiting ase and S = M2 in the limiting ases.De�nition 3.1 (onstrution of the optimal target quasi-norm). For a given domainquasi-norm ρF we set
ρH(F )(g) := inf{ρF (h) : g ≤ Rϕh, h ∈ S}, g ∈ A.Theorem 3.4. Let αF = βF ≥ αϕ and let ρF satisfy (1.4), (2.17).Then ρH(F ) satis�es (1.7), the ouple ρF , ρH(F ) is admissible, satis�es (3.7), thetarget quasi-norm is optimal and hH(F )(u) ≤ hF (u)hϕ(1/u), therefore αH(F ) = βH(F ) =

αF − αϕ.Moreover, if αF > αϕ, then the ouple is optimal and
ρH(F )(χ(0,1)g) ≈ ρF (χ(0,1)ϕg).



Optimal embeddings of generalized Besov spaes 27Proof. The proof follows by arguments similar to those in the proof of Theorem 2.3.To prove optimality of the ouple when αF > αϕ, let g ≤ Rϕh. Then ρF (ϕg) ≤
ρF (ϕRϕh) . ρF (h), whene ρF (ϕg) . ρH(F )(g). On the other hand, g . Rϕ(ϕg),whene ρH(F )(g) . ρF (ϕg). Finally, sine

ρF (H(F ))(g) = ρH(F )(Rϕg) & ρH(F )(g/ϕ) & ρF (g), g ∈ Lm,it follows that the domain quasi-norm is also optimal.De�nition 3.2 (onstrution of an optimal domain quasi-norm). For a given targetquasi-norm ρH , satisfying Minkowski's inequality, (1.7) and αH ≤ k/n− αϕ, we put
ρF (H)(g) := ρH(Rϕg), g ∈ S.Theorem 3.5. Let αH = βH ≤ k/n − αϕ, αϕ < k/n, and let (1.7) be satis�ed for

H. Then ρF (H) satis�es (1.4), (3.6), (3.7), it is an optimal domain quasi-norm and
hF (H)(u) ≤ hϕ(u)hH(u), therefore αF (H) = βF (H) = αH + αϕ. Moreover, this ouple isoptimal in the non-limiting ase.Proof. The proof is similar to that of Theorem 2.4. We only need to prove (1.4) andoptimalitty of ρH . We have

ρF (H)

(
χ(a,∞)

)
= ρH

(∫ t

0

χ(a,∞)(u)

ϕ(u)

du

u

)
≤

ρH(χ(a,∞))

∫ ∞

a

1

ϕ(u)

du

u
.

1

ϕ(a)
ρH(χ(a,∞)).The other ondition in (1.4) follows from (1.7). To hek optimality of ρH , let

g ∈ A, then by de�nition, g(t) = 1
t

∫ t

0
h(u)du, h is inreasing and h(+0) = 0. Hene

g is inreasing, equivalent to h and g(+0) = 0. If h1(t) := tg′(t), then g = Rϕ(ϕh1).Moreover, th1(t) is inreasing, sine th1(t) = h(t) − g(t) =
∫ t

0
udh(u). Therefore ϕh1 ∈

M1 and ρH(F (H))(g) ≤ ρF (H)(ϕh1) = ρH(g).Now we give examples. In the limiting ase αF = k/n, we suppose that 0 < αϕ < 1and αϕ ≤ k/n.Example 3.1. The ouple F = Lq
∗(w), H = Lq

∗(ϕw), αF > αϕ, satisfying (1.4), (3.6),(3.7) is optimal. In partiular, we an take w(t) = t−s/nb(t), b slowly varying, s/n > αϕ.Example 3.2. Consider the spae H = L1
∗(v), satisfying (1.7) and βH = αH ≤ k/n−

αϕ, αϕ < k/n. Using Theorem 3.5, we an onstrut an optimal domain quasi-norm
ρF (g) = ρH(Rϕg) =

∫ ∞

0

v(t)

(∫ t

0

g(u)

ϕ(u)

du

u

)
dt

t
=

∫ ∞

0

w(t)
g(t)

ϕ(t)

dt

t
,where w(t) =

∫∞
t
v(u)du

u
. Hene F = L1

∗(w/ϕ). If v is slowly varying, then αH = βH = 0and αF = βF = αϕ, i.e. this is a ritial ase. Moreover, this ouple is optimal.



28 Z. Bashir, G.E. KaradzhovExample 3.3. Let F = L1(1/ϕ) satisfy (1.4), (3.6), (3.7) with H = L∞ and βH =
αH ≤ k/n− αϕ, αϕ < k/n. Then this ouple is optimal.Example 3.4. Let H = L∞

∗ (v) satisfy (1.7) and βH = αH ≤ k/n − αϕ, αϕ < k/n.Then
ρF (H)(g) = sup v(t)

∫ t

0

g(u)

ϕ(u)

du

u
.If v is slowly varying, then αH = βH = 0, αF (H) = βF (H) = αϕ and the ouple isoptimal.3.4 Critial aseHere we use the same tehnique as in Setion 2.5. First we onstrut the requiredouples of Mukenhoupt weights. Let a slowly varying funtion b(t) satisfy the followingproperties:

b(t) is non-inreasing, b(t2) ≈ b(t), b(t) = 0 if t ≥ 1 (3.14)and for some ε > 0,

(1 − ln t)−1−εb(t) is non-inreasing if 0 < t < 1. (3.15)Let
c(t) =

b(t)

1 + | ln t|) . (3.16)Then ∫ t

0

1

b(u)

du

u
.

1

c(t)
, 0 < t < 1.Indeed, we an write:

∫ t

0

1

b(u)

du

u
=

∫ t

0

(1 − ln u)−1−ε

b(u)(1 − ln u)−1−ε

du

u
.

1

c(t)
.by using monotoniity property (3.15).Theorem 3.6. Let ρT be a monotone quasi-norm on M+ with βT < 1, satisfyingMinkowski's inequality. Let b, c be given by (3.14) - (3.16). Let ρF be de�ned by

ρF (g) := ρS(bg/ϕ),

S := (L1
∗, L

∞
∗ )T ( 1

t
).Let 0 < αϕ < k/n. Then the optimal target quasi-norm is given by

ρH(F )(g) := ρS(gc).



Optimal embeddings of generalized Besov spaes 29Proof. The operator Rϕ, de�ned by (3.2) is bounded in the following ouple of spaes:
R : L1

∗(b/ϕ) 7→ L∞
b and Rϕ : L∞

∗ (b/ϕ) 7→ L∞
c ,where b, c are given by (3.14), (3.16).By interpolation,

R : F1 7→ H1,where
F1 := (L1

∗(b/ϕ), L∞
∗ (b/ϕ))T ( 1

t
), H1 := (L∞

b , L
∞
c )T ( 1

t
).Denote the quasi-norm in F1 by ρF . We have

ρF (g) = ρS(bg/ϕ) = ρT ((bg/ϕ)∗∗µ ) ≈ ρT ((bg/ϕ)∗µ).Hene ρF is a monotone quasi-norm and αF = βF = αϕ, sine αS = βS = 0 and b isslowly varying. Also, (1.4), (3.6) are satis�ed.Analogously to the proof of Theorem 2.6, we haraterize the spae H1 and de�nethe quasi-norm ρH(g) := ρS(gc), hene
ρH(Rϕg) . ρH1(Rϕg) . ρF (g), g ∈M1.Theorem 3.2 shows that the ouple ρF , ρH is admissible. Finally, arguments similar tothose in the proof of Theorem 2.6 show that ρH is an optimal target quasi-norm. Weonly note that if b(t)h(t)/ϕ(t) = g(

√
te)c(

√
t) for 0 < t < 1 and h(t) = ϕ(t)g(2t) for

t ≥ 1, g ∈ A, then h ∈M1 and Rϕh & g(t).Example 3.5. Let 0 < αϕ < k/n. Let H = Lq
∗(c), 1 < q < ∞, F = Lq

∗(b/ϕ), where band c are slowly varying on (0, 1), b(t2) ≈ b(t), b(t) . (1 + | ln t|)c(t), c(t) = 0 for t ≥ 1and (∫ 1

t

cq(s)
ds

s

)1/q (∫ t

0

[b(s)]−r ds

s

)1/r

. 1, 1/q + 1/r = 1, 0 < t < 1.Then the ouple F,H is admissible by [30℄ and using the same argument as above, wesee that H is an optimal target spae.AknowledgmentsWe are grateful to the referee for the referenes [15℄, [16℄ and for the useful remarks.
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