
ISSN 2077–9879

Eurasian
Mathematical
Journal

2016, Volume 7, Number 4

Founded in 2010 by
the L.N. Gumilyov Eurasian National University

in cooperation with
the M.V. Lomonosov Moscow State University
the Peoples’ Friendship University of Russia

the University of Padua

Supported by the ISAAC
(International Society for Analysis, its Applications and Computation)

and
by the Kazakhstan Mathematical Society

Published by

the L.N. Gumilyov Eurasian National University
Astana, Kazakhstan



EURASIAN MATHEMATICAL JOURNAL

Editorial Board

Editors–in–Chief
V.I. Burenkov, M. Otelbaev, V.A. Sadovnichy

Editors

Sh.A. Alimov (Uzbekistan), H. Begehr (Germany), T. Bekjan (China), O.V. Besov (Rus-
sia), N.A. Bokayev (Kazakhstan), A.A. Borubaev (Kyrgyzstan), G. Bourdaud (France),
A. Caetano (Portugal), M. Carro (Spain), A.D.R. Choudary (Pakistan), V.N. Chubarikov
(Russia), A.S. Dzumadildaev (Kazakhstan), V.M. Filippov (Russia), H. Ghazaryan (Arme-
nia), M.L. Goldman (Russia), V. Goldshtein (Israel), V. Guliyev (Azerbaijan), D.D. Haroske
(Germany), A. Hasanoglu (Turkey), M. Huxley (Great Britain), M. Imanaliev (Kyrgyzstan),
P. Jain (India), T.Sh. Kalmenov (Kazakhstan), B.E. Kangyzhin (Kazakhstan), K.K. Ken-
zhibaev (Kazakhstan), S.N. Kharin (Kazakhstan), E. Kissin (Great Britain), V. Koki-
lashvili (Georgia), V.I. Korzyuk (Belarus), A. Kufner (Czech Republic), L.K. Kussainova
(Kazakhstan), P.D. Lamberti (Italy), M. Lanza de Cristoforis (Italy), V.G. Maz’ya (Swe-
den), E.D. Nursultanov (Kazakhstan), R. Oinarov (Kazakhstan), K.N. Ospanov (Kaza-
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English or in any other language, including electronically without the written consent of
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The procedure of reviewing a manuscript, established
by the Editorial Board of the Eurasian Mathematical Journal

1. Reviewing procedure
1.1. All research papers received by the Eurasian Mathematical Journal (EMJ) are

subject to mandatory reviewing.
1.2. The Managing Editor of the journal determines whether a paper fits to the scope of

the EMJ and satisfies the rules of writing papers for the EMJ, and directs it for a preliminary
review to one of the Editors-in-chief who checks the scientific content of the manuscript and
assigns a specialist for reviewing the manuscript.

1.3. Reviewers of manuscripts are selected from highly qualified scientists and specialists
of the L.N. Gumilyov Eurasian National University (doctors of sciences, professors), other
universities of the Republic of Kazakhstan and foreign countries. An author of a paper
cannot be its reviewer.

1.4. Duration of reviewing in each case is determined by the Managing Editor aiming at
creating conditions for the most rapid publication of the paper.

1.5. Reviewing is confidential. Information about a reviewer is anonymous to the authors
and is available only for the Editorial Board and the Control Committee in the Field of Ed-
ucation and Science of the Ministry of Education and Science of the Republic of Kazakhstan
(CCFES). The author has the right to read the text of the review.

1.6. If required, the review is sent to the author by e-mail.
1.7. A positive review is not a sufficient basis for publication of the paper.
1.8. If a reviewer overall approves the paper, but has observations, the review is confi-

dentially sent to the author. A revised version of the paper in which the comments of the
reviewer are taken into account is sent to the same reviewer for additional reviewing.

1.9. In the case of a negative review the text of the review is confidentially sent to the
author.

1.10. If the author sends a well reasoned response to the comments of the reviewer, the
paper should be considered by a commission, consisting of three members of the Editorial
Board.

1.11. The final decision on publication of the paper is made by the Editorial Board and
is recorded in the minutes of the meeting of the Editorial Board.

1.12. After the paper is accepted for publication by the Editorial Board the Managing
Editor informs the author about this and about the date of publication.

1.13. Originals reviews are stored in the Editorial Office for three years from the date of
publication and are provided on request of the CCFES.

1.14. No fee for reviewing papers will be charged.

2. Requirements for the content of a review
2.1. In the title of a review there should be indicated the author(s) and the title of a

paper.
2.2. A review should include a qualified analysis of the material of a paper, objective

assessment and reasoned recommendations.
2.3. A review should cover the following topics:
- compliance of the paper with the scope of the EMJ;
- compliance of the title of the paper to its content;
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- compliance of the paper to the rules of writing papers for the EMJ (abstract, key words
and phrases, bibliography etc.);

- a general description and assessment of the content of the paper (subject, focus, actuality
of the topic, importance and actuality of the obtained results, possible applications);

- content of the paper (the originality of the material, survey of previously published
studies on the topic of the paper, erroneous statements (if any), controversial issues (if any),
and so on);

- exposition of the paper (clarity, conciseness, completeness of proofs, completeness of
bibliographic references, typographical quality of the text);

- possibility of reducing the volume of the paper, without harming the content and
understanding of the presented scientific results;

- description of positive aspects of the paper, as well as of drawbacks, recommendations
for corrections and complements to the text.

2.4. The final part of the review should contain an overall opinion of a reviewer on the
paper and a clear recommendation on whether the paper can be published in the Eurasian
Mathematical Journal, should be sent back to the author for revision or cannot be published.
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YESMUKHANBET SAIDAKHMETOVICH SMAILOV

(to the 70th birthday)

On October 18, 2016 was the 70th birthday of Yesmukhabet
Saidakhmetovich Smailov, member of the Editorial Board of the
Eurasian Mathematical Journal, director of the Institute of Applied
Mathematics (Karaganda), doctor of physical and mathematical sci-
ences (1997), professor (1993), honoured worker of the E.A. Buketov
Karaganda State University, honorary professor of the Sh. Valikanov
Kokshetau State University, honorary citizen of the Tarbagatai district
of the East-Kazakhstan region. In 2011 he was awarded the Order
“Kurmet” (= “Honour”).

Y.S. Smailov was born in the Kyzyl-Kesek village (the Aksuat dis-
trict of the Semipalatinsk region of the Kazakh SSR). He graduated

from the S.M. Kirov Kazakh State University (Almaty) in 1968 and in 1971 he completed
his postgraduate studies at the Institute of Mathematics and Mechanics of the Academy of
Sciences of the Kazakh SSR (Almaty). Starting with 1972 he worked at the E.A. Buketov
Karaganda State University (senior lecturer, associate professor, professor, head of the De-
partment of Mathematical Analysis, dean of the Mathematical Faculty; from 2004 director
of the Institute of Applied Mathematics).

In 1999 the American Biographical Institute declared professor Smailov “Man of the Year”
and published his biography in the “Biographical encyclopedia of professional leaders of the
Millennium”.

Professor Smailov is one of the leading experts in the theory of functions and functional
analysis and a major organizer of science in the Republic of Kazakhstan. He had a great
influence on the formation of the Mathematical Faculty of the E.A. Buketov Karaganda
State University and he made a significant contribution to the development of mathematics
in Central Kazakhstan. Due to the efforts of Y.S. Smailov, in Karaganda an actively oper-
ating Mathematical School on the function theory was established, which is well known in
Kazakhstan and abroad.

He has published more than 140 scientific papers, two textbooks for students and one
monograph. 10 candidate of sciences and 4 doctor of sciences dissertations have been de-
fended under his supervision.

Research interests of Professor Smailov are quite broad: the embedding theory of function
spaces; approximation of functions of real variables; interpolation of function spaces and
linear operators; Fourier series for general orthogonal systems; Fourier multipliers; difference
embedding theorems.

The Editorial Board of the Eurasian Mathematical Journal congratulates Yesmukhanbet
Saidakhmetovich Smailov on the occasion of his 70th birthday and wishes him good health
and new achievements in mathematics and mathematical education.
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1 Introduction

The present part of the work is dedicated to establish Theorem 2.1 and its corollaries. This
result resolves the claim of extending the Kurtz’s result to the setting of bundles of Ω−spaces.
More exacly we construct an element of the set ∆Θ 〈V,W, E , X,R+〉. Roughly 〈T , x∞,Φ〉 ∈
∆Θ 〈V,W, E , X,R+〉 if and only if T (x) is the graph of the infinitesimal generator Tx of a
C0−semigroup U(x) on Ex, for all x ∈ X, [19, equality (1.1)] holds true and

U ∈ Γx∞(ρ). (1.1)

Thus, according to the way of extending the Kurtz’ theorem which we intend to perform in
this work and outlined in the Introduction of [19], to find an element in ∆Θ 〈V,W, E , X,R+〉
means to find an extension of [19, Theorem 1.1].

There are two strong hypotheses to be satisfied in Theorem 2.1. In constructing a model
for hypothesis (ii) one obtains Corollary 3.1, while we establish Corollary 4.3 and The-
orem 4.4 as an application of the stategy developped to ensure hypothesis (i). Among
the two hypothesis, (i) is the most difficult one to realize. It is the assumption that the
(Θ, E)−structure 〈V,W, X,R+〉 has the Laplace duality property defined in Definition 2.

Roughly speaking the full Laplace duality property means that the natural action of∏
x∈X L(Ex) over

∏
x∈X Ex, induces, by restriction, an action over Γ(π) of the Laplace

trasform of Γ(ρ). More exactly

(∀λ > 0) (L(Γ(ρ))(·)(λ) ◦ Γ(π) ⊆ Γ(π)) , (LD)

where
L(F )(x)(λ) +

∫ ∞
0

e−λsF (x)(s) ds
.
=

∫
R+

F (x)(s) dµλ(s).

The implicit assumption is that for all x ∈ X and λ > 0

Mx ⊆ L1(R+,LSx(Ex), µλ),
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where µλ is the Laplace measure associated with λ and L1(R+,LSx(Ex), µλ) is the space of all
µλ−integrable maps with values in the locally convex space LSx(Ex). We provide reasonable
conditions ensuring the above inclusion in Proposition 4.2.

In Section 4 we investigate a strategy for constructing sets having the full Laplace du-
ality property, result achieved in Corollary 4.2. Although in Section we worked in a wide
generality, here we present the applications of interest for the present introduction.

Firstly we note that by construction

Γ(π) ⊂
∏
x∈X

Ex,

hence the natural duality action to consider over Γ(π) is the restriction on it of the standard
action1 of

L
(∏
x∈X

Ex
)
.

Secondly we note that the Laplace duality property is described in terms of the action
restricted over Γ(π) of a subspace of

∏
x∈X L1(R+,LSx(Ex);µλ).

Therefore the idea is to construct what we call in Definition 7 a U−Space, which is
essentially a couple formed by a locally convex space G and a linear map Ψ such that

G ⊂ L

(∏
x∈X

Ex

)
as linear spaces

Ψ(L1(R+,G, µλ)) ⊆
∏
x∈X

L1(R+,LSx(Ex);µλ),
(1.2)

and most importantly such that the following relation between the two actions holds for all
F ∈ L1(R+,G, µλ), x ∈ X, λ > 0 and v ∈ Γ(π)〈∫

Ψ(F )(x)(s) dµλ(s), v(x)

〉
x

=

〈∫
F (s) dµλ(s), v

〉
(x). (1.3)

Here L1(R+,G, µλ) is the space of all µλ−integrable maps on R+ and at values in the locally
convex space G, while for any linear space E we denote by 〈·, ·〉 : End(E) × E → E the
standard duality. In Corollary 4.1 we prove the existence of a U−Space whose topology we
assemble in Definition 9 as the final one with respect to a suitable set of linear continuous
maps.

Precisely because of (1.3) we can interpret (LD) as a duality problem. More exactly if
∃F ⊂

⋂
λ>0 L1(R+,G, µλ) such that Ψ(F) = Γ(ρ) then

LD⇔ (∀λ > 0)(〈Aλ,Γ(π)〉 ⊆ Γ(π)), (1.4)

where for all λ > 0

Aλ +
{∫

F (s) dµλ(s) |F ∈ F
}
⊂ L

(∏
x∈X

Ex
)
. (1.5)

1namely (B, v) 7→ B(v).
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There are two advantage of decoding the problem of finding the full Laplace duality property
into the problem of invariance (1.4). Firstly (1.4) is an example of a classical problem of
invariance of a subspace of a linear topological space for the standard action of a subspace
of the space of all linear continuous operators on it. Secondly the relatively simple space
L1(R+,G, µλ) appears in (1.4) through Aλ while the subspace Γ(ρ) of the much more involved
space

∏
x∈X

⋂
λ>0 L1(R+,LSx(Ex);µλ) appears in (LD).

The crucial idea behind the construction of the space G performed in Definition 9 is the
use of the concept of locally convex final topology. Indeed the defining characteristic of this
topology allows in Lemma 4.4, to ensure that for all v ∈ Γ(π) the evaluation map

G 3 A 7→ Av ∈
∏
x∈X

Ex is continuous. (1.6)

And (1.3) is essentially a consequence of (1.6) attained through the two steps Theorem 4.2
and Theorem 4.3. Although we are mainly interested to the equality (1.3), there is an im-
portant result strictly determined by the locally convex final topology on G. Namely Theo-
rem 4.1 ensures that holds the second inclusion in (1.2) and that for all F ∈ L1(R+,G, µλ)∫

Pr
x

(Ψ(F ))(s) dµλ(s) = Pr
x
◦
(∫

F (s) dµλ(s)
)
◦ ıx.

2 General approximation theorem I

This section is devoted to the proof of the main Theorem 2.1.

Notation 1. We assume the notation in [19, section 2] and that all the vector spaces are
over C. Moreover we let lcp stand for the set of locally compact spaces.2 For any set A
we let P(A) be the set of all subsets of A. If Y is a topological space and Z is topological
vector spaces we let Ccs (Y, Z) denote the linear space of all continuous maps f : Y → Z
with compact support. For any V + 〈〈E, τ〉 , π,X,N〉 full bundle of Ω−spaces and any
〈T0, x∞,Φ〉 ∈ Pregraph ((V,V)), set X0 + X −{x∞}, and for any φ ∈ Φ φi(x) + Prxi (φ(x))
for all x ∈ X and i = 1, 2. Moreover let us denote by Tx the operator in Ex such that
Graph(Tx) = T0(x), for all x ∈ X0, while T ∈

∏
x∈X Graph(Ex × Ex) so that{

T � X − {x∞} + T0

T (x∞) + {φ(x∞) |φ ∈ Φ},

in addition set
D(Tx∞) +

x∞
Pr
1

(T (x∞)) = {φ1(x∞) |φ ∈ Φ}.

Finally for any map F : A→ B set R(F ) + F (A) the range of F .

2We implicitly consider all the sets involved in this work as elements of a fixed Universe say V . So the
set of all the models of a given structure say S, has to be understood as the subset of those elements of V
satisfying the request defining S.
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Remark 1. Let V + 〈〈E, τ〉 , π,X,N〉 be a full bundle of Ω−spaces and 〈T0, x∞,Φ〉 ∈
Pregraph ((V,V)). By [19, Corollary 4.1] ∀φ ∈ Φ{

φi ∈ Γx∞(π), i = 1, 2

(∀x ∈ X0)(φ2(x) = Txφ1(x)).
(2.1)

Lemma 2.1. Let V + 〈〈E, τ〉 , π,X,N〉 be a full bundle of Ω−spaces, where N + {νj | j ∈ J}.
Moreover 〈T0, x∞,Φ〉 ∈ Pregraph ((V,V)). If for all x ∈ X0, vx ∈ Dom(Tx), λ > 0 and
j ∈ J we have νj((λ− Tx)vx) ≥ λνj(vx) and D(Tx∞) is dense in Ex∞, then

〈T , x∞,Φ〉 ∈ Gr(V,V)

Moreover the following
Tx∞ : D(Tx∞) 3 φ1(x∞) 7→ φ2(x∞) (2.2)

is a well-defined linear operator in Ex∞ such that Graph(Tx∞) = T (x∞) and ∀vx∞ ∈
Dom(Tx∞), ∀λ > 0 and ∀j ∈ J we have

νj((λ− Tx∞)vx∞) ≥ λνj(vx∞).

Proof. Clearly T (x∞) ∈ Graph(Ex∞ × Ex∞) if and only if φ1(x∞) = 0x∞ implies φ2(x∞) =
0x∞ , ∀φ ∈ Φ, moreover denoting by Tx∞ the corresponding operator we have that Tx∞ :
D(Tx∞)→ Ex∞ is a linear operator. Any real map F defined on a topological space is l.s.c.
at a point if and only if −F is u.s.c. at the same point, see [2, §6.2. Chapter 4], thus by
[2, Proposition 3 §6.2. Chapter 4] and [2, (13),§5.6. Chapter 4] F : X → R is u.s.c. in
a ∈ X if and only if limx→a F (x) = F (a). Moreover by [2, §6.2. Chapter 4] we know that
F : X → R is l.s.c. at a if and only if F is continuous at a providing R with the following
topology {∅, [−∞,∞], ]a,∞[ | a ∈ R}. Thus for any map σ : Y → X continuous at b such
that σ(b) = a we have that F ◦ σ is l.s.c. at a. Hence because (−F ) ◦ σ = −(F ◦ σ) we can
state that if F : X → R is u.s.c. at a then for any map σ : Y → X continuous at b such
that σ(b) = a we have that F ◦ σ is u.s.c. at a. Therefore by using [11, 1.6.(ii)] we have
∀σ ∈ Γx∞(π) and ∀j ∈ J

νj(σ(x∞)) = lim
x→x∞

νj(σ(x)). (2.3)

Let ψ ∈ Φ such that ψ1(x∞) = 0x∞ thus ∀φ ∈ Φ, ∀λ > 0, ∀x ∈ X0 and ∀j ∈ J we have by
(2.3) and (2.1)

νj (λφ1(x∞)− φ2(x∞)− λψ2(x∞)) =

lim
x→x∞

νj ((λ− Tx)(φ1(x) + λψ1(x))) ≥

lim
x→x∞

λνj (φ1(x) + λψ1(x))) = λνj(φ1(x∞)), (2.4)

where, the inequality comes by [2, Proposition 11 §5.6. Chapter 4]) and by the hypothesis
νj ((λ− Tx)(φ1(x) + λψ1(x))) ≥ λνj ((φ1(x) + λψ1(x))) for all x ∈ X0. Now limλ→∞ v/λ =
0x∞ for any v ∈ Ex∞ , hence by the fact that νx∞j + νj � Ex∞ is a continuous seminorm and
by (2.4) (∀j ∈ J)(∀φ ∈ Φ)

νj (φ1(x∞)− ψ2(x∞)) = lim
λ→∞

νj (λφ1(x∞)− φ2(x∞)− λψ2(x∞))

λ
≥ νj(φ1(x∞)). (2.5)
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By hypothesis D(Tx∞) = {φ1(x∞) |φ ∈ T (x∞)} is dense in Ex∞ thus νj(ψ2(x∞)) = 0 for all
j ∈ J . Indeed let j ∈ J and v ∈ Ex∞ thus ∃ {φα}α∈D net in Φ such that limα∈D φ

α
1 (x∞) = v

in Ex∞ . So by the continuity of νx∞j and by (2.5) we have ∀v ∈ Ex∞

νj (v − ψ2(x∞)) = lim
α∈D

νj (φα1 (x∞)− ψ2(x∞)) ≥ lim
α∈D

νj (φα1 (x∞))) = νj(v).

True in particular for v = 3ψ2(x∞), which implies νj (ψ2(x∞)) = 0. Hence ψ2(x∞) = 0x∞
because of Ex∞ is a Hausdorff lcs for which {νx∞j }j∈J is a generating set of seminorms of its
topology. Thus Tx∞ is a well-defined (necessarly linear) operator in Ex∞ and consequently
〈T , x∞,Φ〉 ∈ Gr(V,V). Finally (∀j ∈ J)(∀φ ∈ Φ)(∀λ > 0)

νj((λ− Tx∞)φ1(x∞)) =

νj(λφ1(x∞)− φ2(x∞)) = by (2.1), (2.3)

lim
x→x∞

νj(λφ1(x)− φ2(x)) = by (2.1)

lim
x→x∞

νj((λ− Tx)φ1(x)) ≥ by hypothesis and [2, Proposition 11 §5.6. Chapter 4])

lim
x→x∞

νj(λφ1(x)) = νj(λφ1(x∞)).

Lemma 2.2. In addition to the hypotheses and notation of Lemma 2.1 assume that (∀x ∈
X0)(∀λ ∈ R)(∀j ∈ J)(∀vx ∈ Dom(Tx))

νj((1− λTx)vx) ≥ νj(vx). (2.6)

Thus (∀λ ∈ R)(∀j ∈ J)(∀vx∞ ∈ Dom(Tx∞))

νj((1− λTx∞)vx∞) ≥ νj(vx∞). (2.7)

Moreover ∀λ ∈ R{
∃ (1− λTx∞)−1 ∈ L(R(1− λTx∞),Ex∞),

(∀w ∈ R(1− λTx∞))(∀j ∈ J)νj((1− λTx∞)−1w) ≤ νj(w).
(2.8)

Finally
R(1− λTx∞) is closed in Ex∞. (2.9)

Proof. (∀j ∈ J)(∀φ ∈ Φ)(∀λ ∈ R)

νj((1− λTx∞)φ1(x∞)) =

νj(φ1(x∞)− λφ2(x∞)) = by (2.1), (2.3)

lim
x→x∞

νj(φ1(x)− λφ2(x)) = by (2.1)

lim
x→x∞

νj((1− λTx)φ1(x)) ≥ by (2.6) and [2, Proposition 11 §5.6. Chapter 4])

lim
x→x∞

νj(φ1(x)) = νj(φ1(x∞)).
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thus (2.7) follows. Let λ ∈ R, by (2.7) we obtain (2.8), indeed ∀f, g ∈ Dom(Tx∞) such that
(1− λTx∞)f = (1− λTx∞)g we have ∀j ∈ J

0 = νj((1− λTx∞)(f − g)) ≥ νj(f − g),

so f = g because of by construction Ex∞ is Hausdorff. Thus the following is a well-set map

(1− λTx∞)−1 : R(1− λTx∞) 3 (1− λTx∞)f 7→ f ∈ Ex∞ ,

moreover by (2.7) we obtain the second sentence of (2.8), hence the first one follows by the
fact that the inverse map of any linear operator is linear. By (2.8), [2, Proposition 3 §3.1.
Chapter 3] and [2, Proposition 11 §3.6. Chapter 2] we deduce that

(∃ !B ∈ L
(
R(1− λTx∞),Ex∞

)
)(B � R(1− λTx∞) = (1− λTx∞)−1). (2.10)

Let w ∈ R(1− λTx∞) thus ∃ {fα}α∈D net in Dom(Tx∞) such that

w = lim
α∈D

(1− λTx∞)fα, (2.11)

therefore by (2.10)
Bw = lim

α∈D
fα, (2.12)

while by (2.11) and (2.12)

w −Bw = lim
α∈D

((fα − λTx∞fα)− fα)

= lim
α∈D
−λTx∞fα.

So
Bw − w = lim

α∈D
λTx∞fα. (2.13)

By (2.12), (2.13) and the fact that λTx∞ is closed, we obtain{
Bw ∈ Dom(Tx∞),

λTx∞(Bw) = Bw − w,

which means w = (1− λTx∞)Bw, so w ∈ R(1− λTx∞) and (2.9) follows.

Lemma 2.3. Let us assume the hypotheses of Lemma 2.2, moreover let λ ∈ R − {0},
{λn}n∈N ⊂ R− {0} such that limn∈N λn = λ. Thus⋂

n∈N

R(1− λnTx∞) ⊆ R(1− λTx∞).

Proof. Set only in this proof T + Tx∞ . Let n ∈ N, by (2.8) ∃ (1−λnT )−1 : R(1−λnTx∞)→
Dom(t) moreover {

1− λT = λ(λ−1 − T ),

(1− λnT )−1 = λ−1
n (λ−1

n − T )−1.
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Let g ∈
⋂
n∈NR(1− λnTx∞) thus

(1− λT )(1− λnT )−1g − g =
λ

λn
(λ−1 − T )(λ−1

n − T )−1g − g

=
λ

λn

(
λ−1(λ−1

n − T )−1g − λ−1
n (λ−1

n − T )−1g
)

=
λ

λn
(λ−1 − λ−1

n )(λ−1
n − T )−1g,

where in the second equality we considered that −T (λ−1
n − T )−1g − g = −λ−1

n (λ−1
n − T )−1g

obtained by (λ−1
n − T )(λ−1

n − T )−1g = g. Thus ∀j ∈ J by (2.8)

νj
(
(1− λT )(1− λnT )−1g − g

)
≤
∣∣∣∣ λλn
∣∣∣∣ |λ−1 − λ−1

n |νj(g).

But limn∈N |λ−1−λ−1
n | = 1 and limn∈N |λ−1−λ−1

n | = 0 so νj ((1− λT )(1− λnT )−1g − g) = 0,
for all j ∈ J . Therefore

lim
n∈N

(1− λT )(1− λnT )−1g = g,

and the statement follows by (2.9).

Lemma 2.4. Under the hypotheses and notation of Lemma 2.1 we have that 1− λTx∞ is a
closed operator.

Proof. Let (a, b) ∈ Graph(1− λTx∞) closure in the space Ex∞ × Ex∞ with the product
topology. Thus (∀ε > 0)(∀j ∈ J)(∃ v(ε,j) ∈ Dom(Tx∞)){

νj(a− v(ε,j)) <
ε
2
,

νj(b− (1− λTx∞)v(ε,j)) <
ε
2
,

so
νj((b− a) + λTx∞v(ε,j)) ≤ νj(b− (1− λTx∞)v(ε,j)) + νj(a− v(ε,j)) ≤ ε.

Therefore (∀ε > 0)(∀j ∈ J)(∃ v(ε,j) ∈ Dom(Tx∞)){
νj(a− v(ε,j)) < ε,

νj
(
(b− a)− (−λTx∞v(ε,j))

)
,

which means (a, (b − a)) ∈ Graph(−λTx∞). Moreover −λTx∞ is a closed operator thus
b− a = −λTx∞a or equivalently (a, b) ∈ Graph(1− λTx∞).

Remark 2. By (2.1) we have ∀φ ∈ Φ that φ1(x∞) = limz→x∞ φ1(z) and φ2(x∞) =
limz→x∞ φ2(z) = limz→x∞ Txφ1(z), hence{

φ1(x∞) = limz→x∞ φ1(z)

Tx∞φ1(x∞) = limz→x∞ Tzφ1(z).
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Definition 1. Let λ ∈ R+ set

µλ : Ccs
(
R+,R

)
3 f 7→

∫
R+

e−sλf(s) ds,

where the integral is with respect to the Lebesgue measure on R+.

Definition 2. Let W + 〈〈M, γ〉 , ρ,X,R〉 and 〈V,W, X,R+〉 be a (Θ, E)−structure such
that

Mx ⊆
⋂
λ>0

L1(R+,LSx(Ex);µλ), ∀x ∈ X. (2.14)

About Sx and Ex see [19, Definition 6] Let x ∈ X, O ⊆ Γ(ρ). and D ⊆ Γ(π). By recalling the
notation in [19, equality (2.1)] we say that 〈V,W, X,R+〉 has the Laplace duality property
on O and D at x, shortly LDx(O,D) if

(∀λ > 0)(L(ΓxO(ρ))λ ◦ ΓxD(π) ⊆ Γx(π)).

Moreover we say that 〈V,W, X,R+〉 has the full Laplace duality property on O and D,
shortly LD(O,D) if

(∀λ > 0)(L(O)λ ◦ D ⊆ Γ(π)).

Finally LD is for LD(Γ(ρ),Γ(π)). Here L :
∏

x∈X Mx →
∏

x∈X LSx(Ex)R
+ such that (∀x ∈

X)(∀λ ∈ R+)

L(F )(x)(λ) +
∫ ∞

0

e−λsF (x)(s) ds,

where we recall that the integration is with respect to the Lebesgue measure on R+ and
with respect to the locally convex topology on LSx(Ex). Finally we used the notation in [19,
equality (2.1)]

Remark 3. Under the notation of Definition 2 and by letting n be the Lebesgue measure
on R+, (2.14) follows if the following holds

Mx ⊆ L1(R+,LSx(Ex); n), ∀x ∈ X.

Moreover under assumptions of Definition 2 we have{
L(ΓxO(ρ)) ⊆ ΓxO(ρ)

(∀t > 0)(ΓxO(ρ)t ◦ ΓxD(π) ⊆ Γx(π))
⇒
〈
V,W, X,R+

〉
has the LDx(O,D).

Similarly {
L(O) ⊆ O
(∀t > 0)(Ot ◦ D ⊆ Γ(π))

⇒
〈
V,W, X,R+

〉
has the LD(O,D).

A useful property is the following one
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Proposition 2.1. Let 〈V,W, X,R+〉 be a (Θ, E)−structure satisfying (2.14), x∞ ∈ X. Set
Sz = {Bz

l | l ∈ L}, then ∀z ∈ X, ∀G ∈ L1(R+,LSz(Ez);µλ) and ∀wz ∈
⋃
l∈LB

z
l(∫ ∞

0

e−λsG(s) ds
)
wz =

∫ ∞
0

e−λsG(s)wz ds. (2.15)

Here in the second member the integration is with respect to the locally convex topology on
Ez, while in the first member the integration is with respect to the locally convex topology on
LSz(Ez).

Proof. Let z ∈ X and v ∈
⋃
l∈LB

z
l = Ez then map LSz(Ez) 3 A 7→ Av ∈ Ez is linear and con-

tinuous. Indeed let l(v) ∈ L such that v ∈ Bz
l(v), thus we have ν

z
j (Av) ≤ supw∈Bz

l(v)
νzj (Aw)

.
=

pzj,l(v)(A). Hence by a well-known result in vector valued integration we have (2.15).

Remark 4. Let V + 〈〈E, τ〉 , π,X,N〉 be a bundle of Ω−spaces and E ⊆
∏

x∈X Ex. Set for
all v ∈

∏
x∈X Ex {

Bv : X 3 x 7→ {v(x)},
Θ +

{
Bw |w ∈ E

} (2.16)

Thus Θ ⊂
∏

x∈X Bounded(Ex) and ∀v ∈ E

E ∩
∏
x∈X

Bv(x) = {v}. (2.17)

Therefore for all v ∈ E , and for all x ∈ X with the notation of [19, Definition 6]
D(Bv, E) = {v},
BxBv = {v(x)},
Sx = {{w(x)} |w ∈ E},
E(Θ) = E .

Recall that since the Dupre’ theorem any Banach bundle over a completely regular topo-
logical space is full.

Definition 3. Let V + 〈〈E, τ〉 , π,X, ‖ · ‖〉 be a full Banach bundle. Let x∞ ∈ X and U0 ∈∏
x∈X0

C (R+, Bs(Ex)) be such that U0(x) is a (C0)−semigroup of contractions (respectively
of isometries) on Ex for all x ∈ X0. Moreover let us denote by Tx the infinitesimal generator
of the semigroup U0(x) for any x ∈ X0 and set

T0(x) + Graph(Tx), x ∈ X0

Φ + {φ ∈ Γx∞(πE⊕) | (∀x ∈ X0)(φ(x) ∈ T0(x))}
E + {v ∈ Γ(π) | (∃φ ∈ Φ)(v(x∞) = φ1(x∞))}
Θ +

{
Bw |w ∈ E

}
,

(2.18)

where 〈〈E(E⊕), τ(E⊕, E⊕)〉 , πE⊕ , X, n⊕〉 is the bundle direct sum of the family {V,V}.

The following is a direct generalization to our context of the definition given in [14, Lm.
2.11]
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Definition 4. Let V + 〈〈E, τ〉 , π,X,N〉 be a bundle of Ω−spaces, where N + {νj | j ∈ J}.
Moreover let Y be a topological space, s0 ∈ Y , f ∈

∏
x∈X EYx and {zn}n∈N ⊂ X. Then we

say that {f(zn)}n∈N is bounded if sup(n,s)∈N×Y νj(f(zn)(s)) <∞ for all j ∈ J . {f(zn)}n∈N is
equicontinuous at s0 if for all j ∈ J and for all ε > 0 there exists a neighbourhood U of s0

such that for all s ∈ U we have supn∈N νj(f(zn)(s) − f(zn)(s0)) ≤ ε. Finally {f(zn)}n∈N is
equicontinuous if {f(zn)}n∈N is equicontinuous at s for every s ∈ Y .

Proposition 2.2. Let us assume the notation of Definition 3. Thus {v(x∞) | v ∈ E} =
{φ1(x∞) |φ ∈ Φ}.

Proof. By definition follows the inclusion ⊆. V being full we have (∀φ ∈ Φ)(∃ v ∈
Γ(π))(v(x∞) = φ1(x∞)). Thus (∀φ ∈ Φ)(∃ v ∈ E)(v(x∞) = φ1(x∞)) hence the inclusion
⊇.

Theorem 2.1 (MAIN 1). Let V + 〈〈E, τ〉 , π,X, ‖ · ‖〉 be a Banach bundle where X is
a completely regular space for which there exists x∞ ∈ X such that its filter of neighbour-
hoods admits a countable basis. Let U0 ∈

∏
x∈X0

C (R+, Bs(Ex)) be such that U0(x) is a
(C0)−semigroup of contractions (respectively of isometries) on Ex for all x ∈ X0.

If D(Tx∞) is dense in Ex∞ and ∃λ0 > 0 (respectively ∃λ0 > 0, λ1 < 0) such that the range
R(λ0 − Tx∞) is dense in Ex∞, (respectively the ranges R(λ0 − Tx∞) and R(λ1 − Tx∞) are
dense in Ex∞), then

〈T , x∞,Φ〉 ∈ Gr(V,V),

and Tx∞ in (2.2) is the generator of a C0−semigroup of contractions (respectively of isome-
tries) on Ex∞.

Moreover assume that {v(x) | v ∈ E} is dense in Ex for all x ∈ X0, by taking the notation
in (2.18), let W + 〈〈M, γ〉 , ρ,X,R〉 and 〈V,W, X,R+〉 be a (Θ, E)−structure 3 such that
(2.14) holds. Assume U‖·‖B(Ez)

(LSz(Ez)) ⊆ Mz (respectively Uis(LSz(Ez)) ⊆ Mz) for all
z ∈ X 4 and that there exists F ∈ Γ(ρ) such that F (x∞) = U(x∞) and

i 〈V,W, X,R+〉 has the LDx∞({F}, E); or it has the LD({F}, E);

ii (∀v ∈ E)(∃φ ∈ Φ) s.t. φ1(x∞) = v(x∞) and (∀{zn}n∈N ⊂ X | limn∈N zn = x∞) we have
that {U(zn)(·)φ1(zn)− F (zn)(·)v(zn)}n∈N is a bounded equicontinuous sequence.

Then (∀v ∈ E)(∀K ∈ Comp(R+))

lim
z→x∞

sup
s∈K

∥∥U(z)(s)v(z)− F (z)(s)v(z)
∥∥ = 0, (2.19)

and
U ∈ Γx∞(ρ). (2.20)

In particular
{〈T , x∞,Φ〉} ∈ ∆Θ

〈
V,W, E , X,R+

〉
. (2.21)

Here T and D(Tx∞) are defined as in Notation 1 with T0 and Φ given in (2.18), while
U ∈

∏
x∈X Mx such that U � X0 + U0 and U(x∞) is the semigroup on Ex∞ generated by Tx∞.

3Well set indeed by Proposition 2.2, the density assumptions and Remark 4 we have that Sx is dense in
Ex for all x ∈ X.

4See Proposition 4.2 for models of M satisfying (2.14) and U‖·‖B(Ez)
(LSz

(Ez)) ⊆Mz.
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Proof. Since the Dupre’ theorem, see for example [11, Corollary 2.10], we obtain that V
is full. By Lemma 2.1, [14, Lemmas (2.8) − (2.9)], and the Hille-Yosida theorem, see [14,
Theorem (1.2)], we have the first sentence of the statement for the case of semigroup of
contractions. By [5, Corollary 3.1.19.] applied to Tx, for any x ∈ X0, and by (2.7) we have
(∀λ ∈ R)(∀vx∞ ∈ Dom(Tx∞))

‖(1− λTx∞)vx∞)‖x∞ ≥ ‖vx∞‖x∞ . (2.22)

Hence by [5, Corollary 3.1.19.], Tx∞ will be a generator of a strongly continuous semigroup
of isometries if we show that ∀λ ∈ R− {0}

R(1− λTx∞) = Ex∞ . (2.23)

Let us set
ρ0(Tx∞) + {λ ∈ R− {0} |R(1− λT ) = Ex}.

By (2.8) ρ0(Tx∞) = ρ(Tx∞) ∩ (R − {0}), where ρ(Tx∞) is the resolvent set of Tx. By [9,
Lemma 7.3.2] ρ(Tx∞) is open in C so ρ0(Tx∞) is open in R−{0} with respect to the topology
on R − {0} induced by that on C. By Lemma 2.3 we deduce that ρ0(Tx∞) is also closed in
R − {0}, therefore ρ0(Tx∞) = R − {0} and (2.23) follows as well that Tx∞ is a generator of
a strongly continuous semigroup of isometries.

Now we shall apply [19, Lemma 5.1] in order to show the remaining part of the statement.
Let v ∈ E be fixed then by (2.18), (∃φ ∈ Φ)(v(x∞) = φ1(x∞)) thus by (2.1) and [19,
Corollary 3.1]

lim
z→x∞

‖v(z)− φ1(z)‖ = 0. (2.24)

Now let F ∈ Γ(ρ) of which in hypothesis so in particular

F (x∞) = U(x∞), (2.25)

moreover ∀s ∈ R+ and z ∈ X

‖U(z)(s)v(z)− F (z)(s)v(z)‖ ≤
‖U(z)(s)v(z)− U(z)(s)φ1(z)‖+ ‖U(z)(s)φ1(z)− F (z)(s)v(z)‖ ≤

‖v(z)− φ1(z)‖+ ‖U(z)(s)φ1(z)− F (z)(s)v(z)‖. (2.26)

For any λ > 0 let us set
gλ∞ + (λ− Tx∞)−1φ1(x∞)

thus gλ∞ ∈ Dom(Tx∞) hence by Remark 2 and the construction of Tx∞ ∃ψλ ∈ Φ such that{
gλ∞ = ψλ1 (x∞) = limz∈x∞ ψ

λ
1 (z)

Tx∞g
λ
∞ = limz→x∞ Tzψ

λ
1 (z).

(2.27)

By (2.15) and (2.17) for all z ∈ X and for all wz ∈
⋃
v∈E v(z)

(∫ ∞
0

e−λsF (z)(s) ds
)
wz =

∫ ∞
0

e−λsF (z)(s)wz ds. (2.28)
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Moreover by the fact that V is full we have that for all φ ∈ Φ there exists a v ∈ Γ(π) such
that v(x∞) = φ1(x∞), thus by construction of E

(∀φ ∈ Φ)(∃ v ∈ E)(v(x∞) = φ1(x∞)). (2.29)

Hence by (2.28), (2.29) and (2.25) for all φ ∈ Φ(∫ ∞
0

e−λsF (x∞)(s) ds
)
φ1(x∞) =

∫ ∞
0

e−λsU(x∞)(s)φ1(x∞) ds. (2.30)

Now set
ξ + L(F ),

thus by hypothesis (i) we have for all λ > 0

ξ(·)(λ)v(·) ∈ Γx∞(π). (2.31)

Moreover

ξ(x∞)(λ)v(x∞) = ξ(x∞)(λ)φ1(x∞)

=

∫ ∞
0

e−λsU(x∞)(s)φ1(x∞) ds by (2.30)

= (λ− Tx∞)−1φ1(x∞) by [14, (1.3)]
.
= gλ∞ = ψλ1 (x∞) by (2.27). (2.32)

By the fact that V is full, by (2.31), the fact that ψλ1 ∈ Γx∞(π) by (2.1), by (2.32) and by
[19, Corollary 3.2] we have ∀λ > 0

lim
z→x∞

‖ψλ1 (z)− ξ(z)(λ)v(z))‖ = 0. (2.33)

Now (∀λ > 0)(∀z ∈ X) set
wλ(z) + (λ1− Tz)ψλ1 (z),

thus ∥∥∫ ∞
0

e−λs (U(z)(s)φ1(z)− F (z)(s)v(z)) ds
∥∥ ≤∥∥∫ ∞

0

e−λsU(z)(s)(φ1(z)− wλ(z)) ds
∥∥+

∥∥∫ ∞
0

e−λs
(
U(z)(s)wλ(z)− F (z)(s)v(z)

)
ds
∥∥ ≤

1

λ
‖φ1(z)− wλ(z)‖+ ‖ψλ1 (z)− ξ(z)(λ)v(z))‖.

(2.34)

Here we consider that by hypothesis and by the first part of the statemet ‖U(z)‖ ≤ 1 for all
z ∈ X, moreover we applied the Hille-Yosida formula [14, (1.3)]. Now

‖φ1(z)− wλ(z)‖ = (2.35)
‖φ1(z)− (λ1− Tz)ψλ1 (z)‖ ≤

‖φ1(z)− v(z)‖+ ‖v(z)− λξ(z)(λ)v(z) + λξ(z)(λ)v(z)− (λ1− Tz)ψλ1 (z)‖ ≤
‖φ1(z)− v(z)‖+ λ‖ξ(z)(λ)v(z)− ψλ1 (z)‖+ ‖Tzψλ1 (z)− (λξ(z)(λ)v(z)− v(z))‖.
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By (2.27) Tx∞ψλ1 (x∞) = Tx∞g
λ
∞ moreover

Tx∞g
λ
∞ = −(λ− Tx∞)gλ∞ + λgλ∞

= −(λ− Tx∞)(λ− Tx∞)−1φ1(x∞) + λgλ∞

= λgλ∞ − φ1(x∞) = λξ(x∞)(λ)v(x∞)− v(x∞), (2.36)

where in the last equality we used (2.32) and the construction of φ. By (2.27) we have that
(X 3 z 7→ Tzψ

λ
1 (z)) ∈ Γx∞(π), hence by (2.36), the fact that λξ(·)(λ)v(·) − v ∈ Γx∞(π) by

(2.31), we deduce by the fact that V is full and by [19, Corollary 3.2] that ∀λ > 0

lim
z→x∞

‖Tzψλ1 (z)− (λξ(z)(λ)v(z)− v(z))‖ = 0. (2.37)

Therefore by (2.35), (2.24), (2.33) and (2.37)

lim
z→x∞

‖φ1(z)− wλ(z)‖ = 0.

By this one along with (2.33) we can state by using (2.34) that ∀λ > 0

lim
z→x∞

∥∥∫ ∞
0

e−λs
(
U(z)(s)φ1(z)− F (z)(s)v(z)

)
ds
∥∥ = 0.

Therefore ∀λ > 0 and (∀{zn}n∈N ⊂ X | limn∈N zn = x∞)

lim
n∈N

∥∥∫ ∞
0

e−λs
(
U(zn)(s)φ1(zn)− F (zn)(s)v(zn)

)
ds
∥∥ = 0. (2.38)

By (2.38), hypothesis (ii) and [14, Lemma (2.11)] we have (∀{zn}n∈N ⊂ X | limn∈N zn = x∞)
and ∀K ∈ Comp(R+)

lim
n∈N

sup
s∈K

∥∥U(zn)(s)φ1(zn)− F (zn)(s)v(zn)
∥∥ = 0.

Therefore since the hypothesis on x∞ we obtain ∀K ∈ Comp(R+)

lim
z→x∞

sup
s∈K

∥∥U(z)(s)φ1(z)− F (z)(s)v(z)
∥∥ = 0. (2.39)

In conclusion by (2.39), (2.24) and (2.26) we obtain ∀K ∈ Comp(R+)

lim
z→x∞

sup
s∈K

∥∥U(z)(s)v(z)− F (z)(s)v(z)
∥∥ = 0, (2.40)

hence (2.19). By (2.17) and (2.40) we obtain [19, equality (5.8)]. Thus (2.20) and (2.21)
follow by [19, Lemma 5.1] by (2.17) and by the following one ∀K ∈ Comp(R+) and ∀v ∈ E

sup
z∈X

sup
s∈K

∥∥U(z)(s)v(z)
∥∥ ≤ sup

z∈X
‖v(z)‖ <∞.

where we considered that by construction
∥∥U(z)(s)

∥∥ ≤ 1, for all s ∈ R+ and z ∈ X and that
v ∈ Γ(π).

Remark 5. If W is full (∃F ∈ Γ(ρ))(F (x∞) = U(x∞)), so hypotheses reduce.
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3 Corollary I. Construction of equicontinuous sequences

By providing conditions ensuring the bounded equicontinuity of which in hypothesis (ii) of
Theorem 2.1 we obtain the following

Corollary 3.1. Let us assume the hypotheses of Theorem 2.1 except (ii) replaced by the
following one

(∃G ∈
∏
z∈X

L1

(
R+,LSx(Ex)

)
(∃H ∈

b∏
z∈X

L(Ez))(∃F ∈ Γ(ρ))

such that F (x∞) = U(x∞) and ∀s > 0
supx∈X sups>0 ‖F (x)(s)‖ <∞
(∀s1 > 0)(∃ a > 0)(supu∈[s1,s] supz∈X ‖G(z)(u)‖ ≤ a|s− s1|)
(∀z ∈ X)(F (z)(s) = H(z) +

∫ s
0
G(z)(u) du),

(3.1)

where the integration is with respect to the Lebesgue measure on [0, s] and with respect to the
locally convex topology on LSz(Ez). Then holds the statement of Theorem 2.1.

Proof. Let v ∈ E thus (∃φ ∈ Φ)(v(x∞) = φ1(x∞)) so (∀{zn}n∈N ⊂ X | limn∈N zn = x∞) we
have

sup
n∈N

sup
s>0
‖U(zn)(s)φ1(zn)− F (zn)(s)v(zn)‖ ≤ sup

n∈N
‖φ1(zn)‖+M sup

n∈N
‖v(zn)‖ <∞.

Here in the first inequality we used ‖U(z)(s)‖ ≤ 1 for all z ∈ X and s > 0 by construction,
and M + supz∈X sups>0 ‖F (z)(s)‖ < ∞ by hypothesis, while in the second inequality we
used the fact that v ∈

∏b
x∈X Ex, by construction and that supn∈N ‖φ1(zn)‖ < ∞ because

of ∃ limn∈N ‖φ1(zn)‖ ∈ R by Remark 2 and by construction ‖ · ‖ is u.s.c. Moreover by [14,
(1.4)], (3.1) and Sx = {{w(x)} |w ∈ E} for all x ∈ X we have

U(zn)(s)φ1(zn)− F (zn)(s)v(zn) =

∫ s

0

(U(zn)(u)Tznφ1(zn)−G(zn)(u)v(zn)) du+

+ φ1(zn)−H(zn)v(zn).

Thus for any s1, s2 ∈ R+

sup
n∈N
‖(U(zn)(s1)φ1(zn)− F (zn)(s1)v(zn))− (U(zn)(s2)φ1(zn)− F (zn)(s2)v(zn))‖ ≤

|s1 − s2| sup
n∈N

sup
u∈[s1,s2]

‖U(zn)(u)Tznφ1(zn)−G(zn)(u)v(zn)‖ ≤

|s1 − s2| sup
n∈N

(‖Tznφ1(zn)‖ − a‖v(zn)‖) ≤ J |s1 − s2|.

Here in the second inequality we used ‖U(z)(u)‖ ≤ 1 by construction and the hypothesis,
in the third one the fact that supn∈N ‖Tznφ1(zn)‖ <∞ as well supn∈N ‖v(zn)‖ <∞, because
of ∃ limn∈N ‖Tznφ1(zn)‖ ∈ R and ∃ limn∈N ‖v(zn)‖ ∈ R due to the fact that ‖ · ‖ is u.s.c.
by construction and Remark 2 for the first limit and the continuity of v for the second
one. Therefore hypothesis (ii) of Theorem 2.1 is satisfied, hence the statement follows by
Theorem 2.1.
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4 Corollaries II. Construction of 〈V,W, X,R+〉 with the LD

In section 4.1 we develop a general strategy to establish the Laplace duality properties. When
this procedure is applied to fulfill hypothesis (i) of Theorem 2.1, we obtain Corollary 4.3
and Theorem 4.4. Let us start with the following simple result about the relation among
full and Laplace duality property.

Proposition 4.1. Let W + 〈〈M, γ〉 , ρ,X,R〉 and 〈V,W, X,R+〉 be a (Θ, E)−structure such
that V is a Banach bundle and x∞ ∈ X. Assume that

1. V and W are full;

2. E = Γ(π) and Θ is given in (2.16);

3. (∀F ∈ Γx∞(ρ))(M(F ) + supx∈X sups∈R+ ‖F (x)(s)‖ <∞);

4. (∀σ ∈ Γ(ρ))(supx∈X sups∈R+ ‖σ(x)(s)‖ <∞);

5. the filter of neighbourhoods of x∞ admits a countable basis.

If 〈V,W, X,R+〉 has the LD then it has the LDx∞.

Proof. Let F ∈ Γx∞(ρ) and w ∈ Γx∞(π) thus by hypothesis (2) and [19, Corollary 3.1]
there exist σ ∈ Γ(ρ) and v ∈ Γ(π) such that σ(x∞) = F (x∞), v(x∞) = w(x∞), and
∀K ∈ Comp(R+), ∀v ∈ E{

limz→x∞ ‖w(z)− v(z)‖ = 0

limz→x∞ sups∈K ‖(F (x)(s)− σ(x)(s))v(x)‖ = 0.
(4.1)

Moreover ∀λ > 0 ∥∥∫ ∞
0

eλsF (z)(s)w(z) ds−
∫ ∞

0

eλsσ(z)(s)v(z) ds
∥∥ ≤∥∥∫ ∞

0

eλsF (z)(s)(w(z)− v(z)) ds
∥∥+

∥∥∫ ∞
0

eλs(F (z)(s)− σ(z)(s))v(z) ds
∥∥ ≤

1

λ
M(F )‖v(z)− w(z)‖+

∫ ∞
0

eλs
∥∥(F (z)(s)− σ(z)(s))v(z)

∥∥ ds. (4.2)

By the hypotheses (3−4) supz∈X sups∈R+

∥∥(F (z)(s)−σ(z)(s))v(z)
∥∥ <∞ hence ∀{zn}n∈N ⊂ X

such that limn∈N zn = x∞ we have by (4.1), (4.2) and a well-known theorem on convergence
of sequences of integrals that ∀λ > 0

lim
n∈N

∥∥∫ ∞
0

eλsF (zn)(s)w(zn) ds−
∫ ∞

0

eλsσ(zn)(s)v(zn) ds
∥∥ = 0.

Thus ∀λ > 0 by hypothesis (5)

lim
z→x∞

∥∥∫ ∞
0

eλsF (z)(s)w(z) ds−
∫ ∞

0

eλsσ(z)(s)v(z) ds
∥∥ = 0,

hence the statement by [19, Corollary 3.1].
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Now we shall see that in the case of a bundle of normed space we can choose for all x a
simple space Mx satisfying (2.14).

Proposition 4.2. Let W + 〈〈M, γ〉 , ρ,X,R〉 and 〈V,W, X,R+〉 be a (Θ, E)−structure such
that for all x ∈ X, Ex is a reflexive Banach space, Sx ⊆ Pω(Ex) and

Mx ⊆
{
F ∈ C

(
R+,LSx(Ex)

)
| (∀λ > 0)

(∫ ∗
R+

e−λs‖F (s)‖B(Ex) ds <∞
)}
.

Thus
Mx ⊂

⋂
λ>0

L1(R+,LSx(Ex);µλ). (4.3)

In particular (4.3), and U‖·‖B(Ex)
(LSx(Ex)) ⊆Mx hold if for any x ∈ X

Mx =
{
F ∈ Cc

(
R+,LSx(Ex)

)
| sup
s∈R+

‖F (s)‖B(Ex) <∞
}
.

Proof. The first sentence follows by [18, Corollary 2.6.], while the second sentence comes by
the first one.

4.1 U−spaces
Aim of this section is to establish a procedure ensuring the full Laplace duality property,
result achieved in Corollary 4.2. The core concept is that of U−Space provided in Definition 7,
whose existence is established in Corollary 4.1 by mean of a special locally convex final
topology constructed in Definition 9. Theorem 4.1, Theorem 4.2 and Theorem 4.3 represent
the steps to obtain Corollary 4.1.

Let us recall and introduce some notation. For any W,Z topological vector spaces over
K ∈ {R,C} we denote by L(W,Z) the K−linear space of all continuous linear map on W
and with values in Z and set L(Z) + L(Z,Z) and Z∗ + L(Z,K). If Y is a topological space
we let Ccs (Y, Z) denote the linear space of all continuous maps f : Y → Z with compact
support. If Z ∈ Hlcs and Y is locally compact we denote by L1(Y, Z, µ) the linear space of
all maps on Y and with values in Z which are essentially µ−integrable in the sense described
in [4, Chapter 6]. Moreover for any family {Zx}x∈X of linear spaces and for all x ∈ X set
Prx :

∏
y∈X Zy 3 f 7→ f(x) ∈ Zx and ıx : Zx →

∏
y∈X Zy such that for all x 6= y and zx ∈ Zx

Pry ◦ıx(zx) = 0y, while Prx ◦ıx = Idx. Let us set

〈·, ·〉 : End(H)×H 3 (A, v) 7→ A(v) ∈ H,

and for all x ∈ X
〈·, ·〉x : End (Ex)× Ex 3 (A, v) 7→ A(v) ∈ Ex.

Definition 5. We call Q a consistent class of data if Q =
〈X, Y, µ, {Ex}x∈X , {τx}x∈X , {Nx}x∈X , {Qx}x∈X , 〈H,T〉〉 where

1. X is a set, Y is a locally compact space and µ is a Radon measure on Y ;

2. {Ex}x∈X is a family of Hlcs;
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3. {τx}x∈X is a family of topologies such that 〈L(Ex), τx〉 ∈ Hlcs, ∀x ∈ X;

4. {Nx}x∈X is a family such that Nx + {νxjx | jx ∈ Jx} is a fundamental set of seminorms
of Ex, ∀x ∈ X;

5. {Qx}x∈X is a family such that Qx + {qxαx |αx ∈ Ax} is a fundamental set of seminorms
of 〈L(Ex), τx〉, ∀x ∈ X;

6. 〈H,T〉 ∈ Hlcs such that

• H ⊆
∏

x∈X Ex as linear spaces;

• ıx(Ex) ⊂ H, for all x ∈ X;

• Prx ∈ L (〈H,T〉 ,Ex) and ıx ∈ L (Ex, 〈H,T〉), for all x ∈ X;

• ∃A ⊆
∏

x∈X L(Ex) linear space such that

(a) θ(A) � H ⊆ L(〈H,T〉),
(b) ıx(L(Ex)) ⊆ A for all x ∈ X;

where θ is defined in Definition 8. We call X the base of Q, Y the locally compact space of Q
and µ the Radon measure of Q. Moreover we call {Ex}x∈X the primary family underlying Q,
while we call {τx}x∈X the secondary family underlying Q. We call Q entire if H =

∏
x∈X Ex.

In the present section let Q = 〈X, Y, µ, {Ex}x∈X , {τx}x∈X , {Nx}x∈X , {Qx}x∈X , 〈H,T〉〉 be
a fixed consistent class of data.

Definition 6. Let W + 〈〈M, γ〉 , ρ,X,R〉 be a bundle of Ω−spaces such that for all x ∈ X

Mx ⊆ L1(Y, 〈L(Ex), τx〉 ;µ).

Set {
�µ :

∏
x∈X L1(Y, 〈L(Ex), τx〉 ;µ)×

∏
x∈X Ex →

∏
x∈X Ex

�µ(H, v)(x) +
〈∫

R+ H(x)(s) dµ(s), v(x)
〉
x
∈ Ex.

(4.4)

Remark 6. Let 〈V,W, X,R+〉 be a (Θ, E)−structure satisfying (2.14) and O ⊆ Γ(ρ),
D ⊆ Γ(π). Then

LD(O,D)⇔ (∀λ > 0) (�µλ (O,D) ⊆ Γ(π)) . (4.5)

Similarly for all x ∈ X

LDx(O,D)⇔ (∀λ > 0) (�µλ (ΓxO(ρ),ΓxD(π)) ⊆ Γx(π)) . (4.6)

Definition 7. [ U−Spaces ] G is a U−space with respect to {〈L(Ex), τx〉}x∈X , T and D if
and only if

1. G ∈ Hlcs;

2. G ⊂ L (〈H,T〉) as linear spaces;

3. D ⊆ H;
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4. (∀T ∈ lcp)
(
∃ΨT ∈ End

(
End(H)T ,

∏
x∈X End(Ex)

Y
))

(∀ν ∈ Radon(T ))

ΨT

(
L1(T,G, ν)

)
⊆
∏
x∈X

L1 (T, 〈L(Ex), τx〉 ; ν) ,

and ∀F ∈ L1(T,G, ν), ∀v ∈ D. ∀x ∈ X〈∫
ΨT (F )(x)(s) dν(s), v(x)

〉
x

=

〈∫
F (s) dν(s), v

〉
(x) (4.7)

The reason of introducing the concept of U−spaces will be clarified by the following

Proposition 4.3. Let 〈V,W, X,R+〉 be a (Θ, E)−structure satisfying (2.14), and let G be
a U−space with respect to {LSx(Ex)}x∈X , T and D. Then ∀λ > 0, F ∈ L1(R+,G, µλ), v ∈ D

�µλ(ΨR+(F ), v) =

〈∫
F (s) dµλ(s), v

〉
. (4.8)

Moreover if ∃F ⊂
⋂
λ>0 L1(R+,G, µλ) such that ΨR+(F) = O then

LD(O,D)⇔ (∀λ > 0)(〈Bλ,D〉 ⊆ Γ(π)). (4.9)

Here
Bλ +

{∫
F (s) dµλ(s) |F ∈ F

}
.

Proof. (4.8) follows by (4.7), while (4.9) follows by (4.8) and Remark 6.

Remark 7. In particular if ∃F ⊂
⋂
λ>0 L1(R+,G, µλ) such that ΨR+(F) = O then

〈G,D〉 ⊆ Γ(π)⇒ LD(O,D).

More in general if ∃G0 complete subspace of G and ∃F ⊂
{
F ∈⋂

λ>0 L1(R+,G, µλ) |F (R+) ⊆ G0

}
such that ΨR+(F) = O then

〈G0,D〉 ⊆ Γ(π)⇒ LD(O,D).

Thus the U property expressed by (4.7) is an important tool for ensuring the satisfaction
of the LD. For this reason the remaining of the present section will be dedicated to the con-
struction of a space G, Definition (9), which is a U−space, see Theorem 4.3 and Corollary 4.2
for the LD(O,D).

Definition 8. Set
χH : End(H)→

∏
x∈X End(Ex),

(∀x ∈ X)(∀w ∈ End(H))((Prx ◦χH)(w) = Prx ◦w ◦ ıx),
χ + χ∏

x∈X Ex .

Well defined indeed by construction ıx(Ex) ⊂ H, for all x ∈ X. Finally set
θ :
∏

x∈X End(Ex)→ End
(∏

x∈X Ex
)
,

(∀x ∈ X)(∀u ∈
∏

x∈X End(Ex))(Prx ◦θ(u) = Prx(u) ◦ Prx),

θH : Im(χH) 3 u 7→ θ(u) � H.

Well-posed by applying [1, Proposition 4, n◦5, §1, Chapter 2].
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Remark 8. (∀x ∈ X)(∀u ∈
∏

x∈X End(Ex)) we have (Prx ◦θ(u) ◦ ıx = Prx(u)).

Proposition 4.4. The space
∏

x∈X Ex with the product topology satisfies the request for the
space 〈H,T〉 in Definition 5 with the choice A =

∏
x∈X L(Ex).

Proof. Prx ∈ L
(∏

y∈X Ey,Ex

)
by definition of the product topology, moreover ıx ∈

L
(
Ex,
∏

y∈X Ey

)
. Indeed ıx is clearly linear and by considering that for any net {fα}α∈D

and any f in
∏

y∈X Ey, limα∈D f
α = f if and only if limα∈D f

α(y) = f(y) for all y ∈ X,
we deduce that for any net {fαx }α∈D and any fx in Ex such that limα∈D f

α
x = fx we

have limα∈D ıx(f
α
x ) = ıx(fx), so ıx is continuous. Let x ∈ X and u ∈

∏
x∈X L(Ex) so

Prx(u) ◦Prx ∈ L
(∏

y∈X Ey,Ex

)
, so (6a) follows by the definition of θ and [2, Proposition 4,

№3, §2]. Finally (6b) is trivial.

The following is the main structure of the present section. For the definition and prop-
erties of locally convex final topologies see [3, №4, §4].

Definition 9. Set for all x ∈ X
G + θ(A) � H,
gx : L(Ex) 3 fx 7→ ıx ◦ fx ◦ Prx ∈ End

(∏
y∈X Ey

)
hx : L(Ex) 3 fx 7→ gx(fx) � H.

We shall denote by G and call the locally convex space relative to the consistent class of
data Q, the lcs G provided with the locally convex final topology of the family of topologies
{τx}x∈X of the family {L(Ex)}x∈X , for the family of linear mappings {hx}x∈X .

Definition 10. Set in
∏

x∈X End(Ex) the following binary operation ◦. For all x ∈ X we
set Prx(f ◦ h) + f(x) ◦ h(x).

It is easy to verify that
〈∏

x∈X End(Ex),+, ◦
〉

is an algebra over K as well as〈∏
x∈X L(Ex),+, ◦

〉
.

Lemma 4.1. G ⊂ L (〈H,T〉), moreover θ is a morphism of algebras. Finally if A is a
subalgebra of

∏
x∈X L(Ex) then G is a subalgebra of L (〈H,T〉).

Proof. The first sentence is immediate by (6a) in Definition 5. Let u, v ∈
∏

x∈X L(Ex) thus
for all x ∈ X

Pr
x
◦θ(u ◦ v) = (u(x) ◦ v(x)) ◦ Pr

x

= u(x) ◦ Pr
x
◦θ(v)

= Pr
x
◦θ(u) ◦ θ(v),

so θ(u ◦ v) = θ(u) ◦ θ(v), similarly we can show that θ is linear by the linearity of Prx for all
x ∈ X. Thus θ is a morphism of algebras, so the last sentence of the statement follows by
the first one and the fact that A is an algebra.
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Proposition 4.5. θH◦χH(w) = w◦ıx◦Prx � H for all w ∈ End(H), Moreover θH(Im(χH)) ⊂
Dom(χH) and χH ◦ θH = Id � Im(χH).

Proof. Let w ∈ End(H) thus for all x ∈ X we have (Prx ◦θH ◦χH)(w) = Prx(χH(w)) ◦Prx �
H = Prx ◦w◦ıx◦Prx � H and the first sentence of the statement follows. By the first sentence
and the assumption that ıx(Ex) ⊂ H we have θ(Im(χH)) � H ⊂ End(H) so χH ◦ θH is well
set. Moreover for all x ∈ X and u ∈ Im(χH) we have Prx (χH (θ(u) � H)) = Prx ◦θ(u) ◦ ıx =
Prx(u) ◦ Prx ◦ıx = Prx(u).

Proposition 4.6. Let x ∈ X, then

1. gx = θ ◦ ıx so Im(hx) ⊆ G;

2. hx ∈ End(L(Ex), G);

3. ∃h−1
x : Im(hx)→ L(Ex) and{

h−1
x = Prx ◦χH � Im(hx),

Im(hx) = {θ(ıx(fx)) � H | fx ∈ L(Ex)}.

Proof. ∀y ∈ X we have

Pry ◦ θ(ıx(fx)) = Pr
y

(ıx(fx)) ◦ Pr
y

=

{
0y, x 6= y

fx ◦ Prx, x = y.

Moreover

Pry ◦ gx(fx) = Pr
y
◦ıx ◦ fx ◦ Pr

x
=

{
0y, x 6= y

fx ◦ Prx, x = y.

So the first sentence of statement (1) follows. Thus hx (L(Ex)) = gx (L(Ex)) � H =
θ (ıx (L(Ex))) � H so by (6b) of Definition 5 the second sentence of statement (1) follows.
Statement (2) follows by the trivial linearity of gx and by the second sentence of statement
(1). Let fx ∈ L(Ex) and w = ıx ◦fx ◦Prx � H. Then by the assumption (6) we have that w ∈
End(H), and χH(w) = ıx(fx), indeed Prx(χH(w)) = Prx ◦ıx ◦ fx ◦ Prx ◦ıx = fx = Prx(ı(fx)).
Thus ıx(fx) ∈ Im(χH) so by Proposition 4.5 θ(ıx(fx)) � H ∈ Dom(χH) and h−1

x is well set.
Moreover

(Pr
x
◦χH) ◦ hx(fx) = Pr

x
◦χH ◦ θH(ıx(fx))

= Pr
x

(ıx(fx)) = fx,

where the first equality comes by statement (1) and by ıx(fx) ∈ Im(χH), while the second
by Proposition 4.5. Finally

gx ◦ Pr
x
◦χH(θ(ıx(fx))) = gx ◦ Pr

x
(ıx(fx))

= gx(fx) = θ(ıx(fx)).

Thus statement (3) follows.
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Lemma 4.2. If 〈L(Ex), τx〉 is a topological algebra for all x ∈ X and A is an algebra then
G is a topological algebra.

Proof. Let us set for all F ∈ G LF : G 3 H 7→ F ◦H ∈ G, well set G being an algebra by
Lemma 4.1. Thus for all x ∈ X, f ∈ A and lx ∈ L(Ex)

(Lθ(f) ◦ hx)lx = Lθ(f)(θ(ıx(lx)) � H) = θ(f ◦ ıx(lx)) � H
=
(
θ ◦ ıx(f(x) ◦ lx)

)
� H =

(
gx(f(x) ◦ lx)

)
� H

= hx(f(x) ◦ lx) = (hx ◦ Lf(x))lx,

where Lfx : L(Ex) 3 sx 7→ fx ◦ sx ∈ L(Ex) for all fx ∈ L(Ex). Here the first and fourth
equality follow by Proposition 4.6, the second one by Lemma 4.1. Moreover by hypothesis
Lf(x) is continuous, while hx is continuous by [3, Proposition 5, №4, §4 Chapter 2], so Lθ(f)◦hx
is linear and continuous. Therefore Lθ(f) is linear and continous by [3, Proposition 5, №4, §4
Chapter 2]. Similarly RF is linear and continuous, where RF : G 3 H 7→ H ◦ F ∈ G, thus
the statement.

Definition 11. Set {
ΨHY : End(H)Y →

∏
x∈X End(Ex)

Y ,

(Prx ◦ΨHY )(F )(s) = (Prx ◦χH)(F (s)).

Moreover set {
Λ :
∏

x∈X End(Ex)
Y →

(
End

(∏
x∈X Ex

))Y
,

Λ(F )(s) = θ(F (·)(s)).

∀F ∈ End(H)Y , ∀F ∈
∏

x∈X End(Ex)
Y , ∀x ∈ X and ∀s ∈ Y , where F (·)(s) ∈∏

y∈X End(Ex) such that Prx(F (·)(s)) = F (x)(s).
Finally set

ΛY
A + Λ �

{
F ∈

∏
x∈X

L(Ex)
Y | (∀s ∈ Y )(F (·)(s) ∈ A)

}
.

Proposition 4.7. Let x ∈ X and s ∈ Y , then for all F ∈ End(H)Y

1. (Prx ◦ΨHY )(F )(s) = Prx ◦F (s) ◦ ıx;

2. ΨHY ◦ ΛY
A = Id;

3. Im(ΛY
A ) ⊂ GY .

Proof. Statements (1) and (3) are trivial. Let F ∈ Dom(ΛY
A ) so

(Pr
x
◦ΨHY ◦ ΛY

A )(F )(s) = (Pr
x
◦χH)(ΛY

A (F )(s)) = Pr
x
◦ΛY

A (F )(s) ◦ ıx

= Pr
x
◦θ(F (·)(s)) ◦ ıx = Pr

x
(F (·)(s)) ◦ Pr

x
◦ıx

= F (x)(s) = Pr
x

(F )(s),

and statement (2) follows.
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Proposition 4.8. (∀x ∈ X)(∀s ∈ Y )(∀F ∈ GY ) we have

(Pr
x
◦ΨHY )(F )(s) ◦ Pr

x
= Pr

x
◦(F (s))

Proof. Let F ∈ GY thus ∃U ∈ AY such that F (s) = θ(U(s)) � H, hence for all x ∈ X, s ∈ Y

(Pr
x
◦ΨHY )(F )(s) ◦ Pr

x
= Pr

x
(ΨHY (F ))(s) ◦ Pr

x

= Pr
x
◦F (s) ◦ ıx ◦ Pr

x
, by Proposition 4.7

= (Pr
x
◦θ(U(s))) � H ◦ ıx ◦ Pr

x
.
= (Pr

x
(U(s)) ◦ Pr

x
) � H ◦ ıx ◦ Pr

x

= Pr
x

(U(s)) ◦ Pr
x
� H

.
= Pr

x
◦θ(U(s)) � H

= Pr
x
◦(F (s)).

Definition 12. Let x ∈ X{
Ix : Hom(L(Ex),K)→ Hom

(∏
y∈X L(Ey),K

)
,

Ix(tx) + tx ◦ Prx .

Lemma 4.3. Let x ∈ X thus

1. (∀tx ∈ Hom(L(Ex),K))(∀y ∈ X) we have{
Ix(tx) ◦ χH ◦ hy = tx, x = y

Ix(tx) ◦ χH ◦ hy = 0, x 6= y;

2. (∀tx ∈ 〈L(Ex), τx〉∗)(Ix(tx) ◦ χH � G ∈ G∗)

Proof. Let x ∈ X and tx ∈ Hom(L(Ex),K) thus for all y ∈ X and fy ∈ L(Ey) we have

Ix(tx) ◦ χH ◦ hy(fy) = tx ◦ Pr
x
◦χH(ıy ◦ fy ◦ Pr

y
� H)

= tx ◦ (Pr
x
◦ıy ◦ fy ◦ Pr

y
◦ıx),

and statement (1) follows. Statement (2) follows by statement (1) and [3, Proposition 5,
№4, §4 Chapter 2].

The following is the first main result of this section.

Theorem 4.1. We have

1. ΨHY ∈ Hom(L1(Y,G, µ),
∏

x∈X L1(Y, 〈L(Ex), τx〉 , µ));
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2. (∀x ∈ X)(∀s ∈ Y )(∀F ∈ L1(Y,G, µ))∫
Pr
x

(ΨHY (F ))(s) dµ(s) = Pr
x
◦
(∫

F (s) dµ(s)
)
◦ ıx.

Proof. Let x ∈ X, set
∆x : G 3 f 7→ Pr

x
◦f ◦ ıx ∈ L(Ex).

∆x is well-defined by Lemma 4.1. By applying [3, Proposition 5, №3, §4 Chapter 2] ∆x ∈
L(G, 〈L(Ex), τx〉) if and only if (∀y ∈ X)(∆x ◦ hy ∈ L(〈L(Ey), τy〉 , 〈L(Ex), τx〉)). Moreover
∀y ∈ X and ∀fy ∈ L(Ey) we have

(∆x ◦ hy)(fy) = Pr
x
◦ıy ◦ fy ◦ Pr

y
◦ıx,

so {
∆x ◦ hy = Id, x = y

∆x ◦ hy = 0, x 6= y.

In any case ∆x ◦ hy ∈ L(〈L(Ey), τy〉 , 〈L(Ex), τx〉), thus

∆x ∈ L(G, 〈L(Ex), τx〉)

hence
(∀tx ∈ 〈L(Ex), τx〉∗)(tx ◦∆x ∈ G∗). (4.10)

Therefore

tx

(
Pr
x
◦
(∫

F (s) dµ(s)
)
◦ ıx
)

= (tx ◦∆)
(∫

F (s) dµ(s)
)

=

∫
(tx ◦∆)(F (s)) dµ(s)

=

∫
tx
(
Pr
x
◦F (s) ◦ ıx

)
dµ(s)

=

∫
tx

(
(Pr
x
◦ΨHY )(F )(s)

)
dµ(s),

where the second equality comes by (4.10) and [4, Proposition 1, №1, §1, Chapter 6], while
the last one comes by Proposition 4.7.

Definition 13. Let Z be a topological vector space set{
evZ ∈ Hom(Z,Hom(L(Z), Z),

(∀v ∈ Z)(∀f ∈ L(Z))(evZ(v)(f)) + f(v)).

Moreover set η + evH and ∀x ∈ X set εx + evEx .

Lemma 4.4. Let D ⊆ H thus (A)⇒ (B), where

(A) (∀x ∈ X)(∀vx ∈ Prx(D))(εx(vx) ∈ L(〈L(Ex), τx〉 ,Ex));



Use of bundles of locally convex spaces in problems of convergence of semigroups of operators. II 69

(B) (∀v ∈ D)(η(v) ∈ L(G, 〈H,T〉)).

Proof. Let y ∈ X thus for all v ∈ H

η(v) ◦ hy = ıy ◦ εy(Pr
y

(v)).

Hence by (A) and the fact that by construction ıy is continuous with respect to the topology
T we have for all v ∈ D

η(v) ◦ gy ∈ L (〈L(Ey), τy〉 , 〈H,T〉) .
Thus (B) follows by the universal property of any locally final topology, cf. [3, (ii) of
Proposition 5, №4, §4 Chapter 2].

The following is the second main result of the section

Theorem 4.2. Let D ⊆ H and assume (A) of Lemma 4.4. Then (∀F ∈ L1(Y,G, µ))(∀x ∈
X)(∀v ∈ D) ∫ 〈

Pr
x

(ΨHY (F ))(s), v(x)
〉
x
dµ(s) =

〈∫
F (s) dµ(s), v

〉
(x). (4.11)

Here the integral in the left-side is with respect to the µ and the locally convex topology on
Ex, while the integral in the right-side is with respect to the µ and the locally convex topology
on G.

Proof. (∀F ∈ L1(Y,G, µ))(∀x ∈ X)(∀v ∈ D) we have

Pr
x
◦
(∫

F (s) dµ(s)
)
(v) = (Pr

x
◦η(v))

(∫
F (s) dµ(s)

)
=

∫
(Pr
x
◦η(v))(F (s)) dµ(s)

=

∫
(Pr
x
◦F (s))(v) dµ(s)

=

∫
Pr
x

(ΨHY (F ))(s)(v(x)) dµ(s).

Here in the second equality we applied [4, Proposition 1, №1, §1, Chapter 6] and the fact
that Prx ◦η(v) ∈ L(G,Ex) because of Lemma 4.4 and the linearity and continuity of Prx
with respect to the topology T. Finally in the last equality we used Proposition 4.8.

The following is the main result of this section

Theorem 4.3. Let D ⊆ H and assume (A) of Lemma 4.4. Then (∀F ∈ L1(Y,G, µ))(∀x ∈
X)(∀v ∈ D) 〈∫

Pr
x

(ΨHY (F ))(s) dµ(s), v(x)

〉
x

=

〈∫
F (s) dµ(s), v

〉
(x). (4.12)

Equivalently G is a U−space with respect to {〈L(Ex), τx〉}x∈X , T and D. Here the integral
in the left-side is with respect to the µ and the locally convex topology on 〈L(Ex), τx〉.
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Proof. By (A) of Lemma 4.4, statement (1) of Theorem 4.1 and [4, Proposition 1, №1, §1,
Chapter 6] we have (∀F ∈ L1(Y,G, µ))(∀x ∈ X)(∀v ∈ D)∫ 〈

Pr
x

(ΨHY (F ))(s), v(x)
〉
x
dµ(s) =

〈∫
Pr
x

(ΨHY (F ))(s) dµ(s), v(x)

〉
x

,

hence the statement follows by Theorem 4.2.

Remark 9. By (4.12) and statement (2) of Theorem 4.1 (∀F ∈ L1(Y,G, µ))(∀x ∈ X)(∀v ∈
D) 〈∫

F (s) dµ(s), v

〉
(x) =

〈∫
F (s) dµ(s), ıx(v(x))

〉
(x).

Thus for all v, w ∈ D and x ∈ X

v(x) = w(x)⇒
〈∫

F (s) dµ(s), v

〉
(x) =

〈∫
F (s) dµ(s), w

〉
(x).

Corollary 4.1. Let S ∈
∏

x∈X P(Bounded(Ex)) and D such that{
N(x) +

⋃
lx∈Lx B

x
lx
is total in Ex,∀x ∈ X,

D ⊆ H ∩
∏

x∈X N(x),
(4.13)

where S(x) = {Bx
lx
| lx ∈ Lx}. Assume that for all x ∈ X the topology τx is generated by the

set of seminorms {px(lx,jx) | (lx, jx) ∈ Lx × Jx}, where 5

px(lx,jx) : L(Ex) 3 fx 7→ sup
w∈Bxlx

νxjx(fxw) ∈ R+. (4.14)

Then

1. (A) of Lemma 4.4 for D = D;

2. (4.11) holds and G is a U−space with respect to {LS(x)(Ex)}x∈X , T and D.

Proof. By request (4.13) we have that the lcs 〈L(Ex), τx〉 is Hausdorff so the position is well-
set. By construction (∀x ∈ X)(∀vx ∈ D(x))(∃ lx ∈ Lx)(vx ∈ Bx

lx
), so (∀fx ∈ L(Ex))(∀jx ∈

Jx)

νxjx(εx(vx)fx) = νxjx(fx(vx))

≤ px
(lx,jx)

(fx),

hence statement (1) by [3, Proposition 5, №4, §1 Ch 2]. Statement (2) follows by statement
(1), Theorem 4.2 and Theorem 4.3 respectively.

5In others words 〈L(Ex), τx〉 = LSx(Ex), see [19, Notation 2] and [19, Definition 4]



Use of bundles of locally convex spaces in problems of convergence of semigroups of operators. II 71

Corollary 4.2 (LD(O,D)). Let 〈V,W, X,R+〉 be a (Θ, E)−structure satisfying (2.14) and
Γ(π) ∩H ∩

∏
x∈X BxB 6= ∅. Set{

O ⊆ Γ(ρ)

D ⊆ Γ(π) ∩H ∩
∏

x∈X BxB
(4.15)

If ∃F ⊂
⋂
λ>0 L1(R+,G, µλ) such that ΨHR+(F) = O then (4.9) holds.

In particular if ∃F ⊂
⋂
λ>0 L1(R+,G, µλ) such that ΨHR+(F) = O then

〈G,D〉 ⊆ Γ(π)⇒ LD(O,D).

Here BxB, for all x ∈ X, is defined in [19, equality (5.3)]

Proof. By statement (2) of Corollary 4.1, Proposition 4.3 and Remark 7.

Remark 10. Note that if E ⊂ Θ, as for example for the positions taken in Remark 4, we
have E ⊂

∏
x∈X BxB. Hence if E ⊆ H we have E ⊆ Γ(π) ∩H ∩

∏
x∈X BxB.

Corollary 4.3. Let us assume the hypotheses of Theorem 2.1 made exception for the (i)
replaced by the following one: E ⊆ H and ∃F ⊂

⋂
λ>0 L1(R+,G, µλ) such that ΨHR+(F) =

Γ(ρ) and
〈G, E〉 ⊆ Γ(π).

Then all the statements of Theorem 2.1 hold true.

Proof. Since Remark 10, Corollary 4.2 and Theorem 2.1.

4.2 Uniform convergence over K ∈ Comp(〈H,T〉).
In this section we assume given the following data

1. a Banach bundle V, a (Θ, E)−structure 〈V,M, X, Y 〉 where Θ is defined in (2.16),
where we denote W + 〈〈M, γ〉 , ρ,X,R〉 and V + 〈〈E, τ〉 , π,X, {‖ · ‖}〉;

2. a Banach space 〈H, ‖ · ‖H〉 such that 〈H,T〉 satisfies (6) of Definition 5, where T is
the topology induced by the norm ‖ · ‖H and τx is such that 〈L(Ex), τx〉 = LSx(Ex) for
every x ∈ X;

3. A as in (6) of Definition 5;

4. G, ΨHY and ΛY
A as defined in Definition 9 and Definition 11 respectively.

The proof of the following Lemma is an adaptation to the present framework of the proof of
[8, Proposition 5.13].

Lemma 4.5. Let U ∈
∏

x∈X Mx and x∞ ∈ X moreover assume that

1. E ⊆ H ⊆
∏b

x∈X Ex such that (∃ a > 0)(∀f ∈ H)(‖f‖sup ≤ a‖f‖H), where ‖f‖sup +
supx∈X ‖f(x)‖x;

2. ∃F ∈ Γ(ρ) such that F (x∞) = U(x∞) and {F (·)(s) | s ∈ Y } ⊆ A
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3. {U(·)(s) | s ∈ Y } ⊆ A;

4. {F (s) | s ∈ Y } and {U(s) | s ∈ Y } are equicontinuous as subsets of L(〈H, ‖ · ‖H〉),
where U + ΛY

A (U). and F + ΛY
A (F ).

Then (A)⇔ (B) where

(A) U ∈ Γx∞(ρ);

(B) For all K ∈ Comp(H) such that K ⊆ E and for all K ∈ Comp(Y )

lim
z→x∞

sup
s∈K

sup
v∈K

∥∥U(z)(s)v(z)− F (z)(s)v(z)
∥∥ = 0.

Proof. We shall prove only (A)⇒ (B), indeed the other implication follows by (3)⇒ (4) of
[19, Lemma 5.1]. So assume (A) to be true. In this proof let us set B(H) + L(〈H, ‖ · ‖H〉),
moreover Ψ + ΨHY and Λ + ΛY

A , moreover set F + ΛY
A (F ) for every F ∈ Γ(ρ); thus by

statement (2) of Proposition 4.7 Ψ(F ) = F and Ψ(U) = U . Hence by Proposition 4.8 for all
v ∈ E F ∈ Γ(ρ), z ∈ X and s ∈ Y

U(z)(s)v(z) = (Uv)(z), F (z)(s)v(z) = (Fv)(z). (4.16)

By (A) and implication (4) ⇒ (3) of [19, Lemma 5.1] we have for all K ∈ Comp(Y ) and
v ∈ E

lim
z→x∞

sup
s∈K

∥∥U(z)(s)v(z)− F (z)(s)v(z)
∥∥ = 0. (4.17)

Fix K ∈ Comp(H) such that K ⊆ E , f ∈ K and ε > 0, thus by (4.17) and (4.16) there exists
U neighbourhood of x∞ such that

sup
s∈K

sup
z∈U

∥∥((U(s)− F (s))f
)
(z)
∥∥ ≤ ε/2. (4.18)

Define 
M + max{sups∈Y ‖F (s)‖B(H), sups∈Y ‖U(s)‖B(H)}
η + ε/4aM

U(f) + {g ∈ K | ‖f − g‖H < η}.

Thus for all g ∈ U(f)

sup
z∈U

sup
s∈K

∥∥U(z)(s)g(z)− F (z)(s)g(z)
∥∥ =

sup
s∈K

sup
z∈U

∥∥((U(s)− F (s))g
)
(z)
∥∥ ≤

sup
s∈K

sup
z∈U

∥∥((U(s)− F (s))f
)
(z)
∥∥+ sup

s∈K
sup
z∈U

∥∥U(s)(g − f)(z)
∥∥+ sup

s∈K
sup
z∈U

∥∥F (s)(g − f)(z)
∥∥ ≤

ε/2 + a sup
s∈K

∥∥U(s)(g − f)
∥∥
H + a sup

s∈K

∥∥F (s)(g − f)
∥∥
H ≤

ε/2 + 2aM
∥∥g − f∥∥H < ε.
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Therefore (B) follows by considering that {U(f) | f ∈ K} is an open cover of the compact K.
Indeed let for example {U(fi) | i = 1, ..., n} a finite subcover ofK thus by settingW +

⋂n
i=1 Un

with obvious meaning of Ui, we have

sup
z∈W

sup
s∈K

sup
g∈K

∥∥U(z)(s)g(z)− F (z)(s)g(z)
∥∥ < ε.

Remark 11. We can set H =
∏b

x∈X Ex with the usual norm ‖ · ‖sup.

Theorem 4.4 (K−Uniform Convergence). Let V + 〈〈E, τ〉 , π,X, ‖ · ‖〉 be a Banach bundle.
Let x∞ ∈ X and U0 ∈

∏
x∈X0

C (R+, Bs(Ex)) be such that U0(x) is a (C0)−semigroup of
contractions (respectively of isometries) on Ex for all x ∈ X0. Assume that

1. D(Tx∞) is dense in Ex∞;

2. V and W satisfy (2.18);

3. ∃λ0 > 0 (respectively ∃λ0 > 0, λ1 < 0) such that the range R(λ0 − Tx∞) is dense in
Ex∞, (respectively the ranges R(λ0 − Tx∞) and R(λ1 − Tx∞) are dense in Ex∞);

4. U‖·‖B(Ez)
(LSz(Ez)) ⊆Mz (respectively Uis(LSz(Ez)) ⊆Mz) for all z ∈ X;

5. E ⊆ H ⊆
∏b

x∈X Ex

6. X is completely regular and the filter of neighbourhoods of x∞ admits a countable basis;

7. ∃F ⊂
⋂
λ>0 L1(R+,G, µλ) such that ΨHR+(F) = Γ(ρ);

8. (∃F ∈ Γ(ρ))(F (x∞) = U(x∞)) such that

(a)
〈∫

F (s) dµλ(s), E
〉
⊆ Γ(π), for all λ > 0;

(b) (∀v ∈ E)(∃φ ∈ Φ) s.t. φ1(x∞) = v(x∞) and (∀{zn}n∈N ⊂ X | limn∈N zn = x∞)
we have that {U(zn)(·)φ1(zn) − F (zn)(·)v(zn)}n∈N is a bounded equicontinuous
sequence.

Then
U ∈ Γx∞(ρ). (4.19)

Furthermore if

1. (∃ a > 0)(∀f ∈ H)(‖f‖sup ≤ a‖f‖H),

2. {F (·)(s) | s ∈ R+} ⊆ A and {U(·)(s) | s ∈ R+} ⊆ A;

3. {F (s) | s ∈ R+} and {U(s) | s ∈ R+} are equicontinuous as subsets of L(〈H, ‖ · ‖H〉).

Then for all K ∈ Comp(H) such that K ⊆ E and for all K ∈ Comp(R+)

lim
z→x∞

sup
s∈K

sup
v∈K

∥∥U(z)(s)v(z)− F (z)(s)v(z)
∥∥ = 0. (4.20)

Here D(Tx∞) is defined as in Notation 1 with T0 and Φ given in (2.18). While U ∈
∏

x∈X Mx

such that U � X0 + U0 and U(x∞) is the semigroup on Ex∞ generated by Tx∞ operator defined
in (2.2). Moreover ‖f‖sup + supx∈X ‖f(x)‖x, while U + ΛY

A (U) and F + ΛY
A (F ).
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Proof. By hypothesis (7) and statement (1) of Theorem 4.1, (2.14) follows. Moreover (4.15)
follows by hypothesis (5), and Remark 10. Hence by hyps. (7−8a), and Corollary 4.2 follows
the LD({F}, E). Then (4.19) follows by Theorem 2.1. (4.20) follows by (4.19) and Lemma
4.5.

Remark 12. By statement (2) of Proposition 4.7 hypothesis (7) is equivalent to the follow-
ing one ΛR+

A (Γ(ρ)) ⊆
⋂
λ>0 L1(R+,G, µλ). In any case the form in hypothesis (7) has the

advantage to be considered as a tool for constructing Γ(ρ). Finally note that

〈G, E〉 ⊆ Γ(π)⇒ (8a).

4.3 〈H,T〉 as direct integral of a continuous field of left-Hilbert and
associated left-von Neumann algebras

Assume that V = 〈〈E, τ〉 , π,X,N〉 is a continuous field of left-Hilbert algebras on X. Let
H be the direct integral of V with respect to some finite Radon measure on X and B ⊂ H
a linear space, set

A(B) +
{
X 3 x 7→ La(x) | a ∈ B

}
,

where Lax ∈ B(Ex) for any ax ∈ Ex, is the left multiplication on the left-Hilbert algebra Ex.
Then H and A(B) satisfies the requirements in Definition 5, moreover

G(B) + θ(A(B)) � H = LB (4.21)

where La ∈ B(H) for any a ∈ H, is the left multiplication on the left-Hilbert algebra H. If
every Ex is unital then H is unital, thus L(·) is an injective (isometric) map of H into B(H).
Therefore under this additional requirement we can take the following identification

G(B) ' B as linear spaces.

Let H + {Hi ∈
∏

x∈X Ex}2
i=0 such that H0

x is a left Hilbert subalgebra of Ex, while Hkx is a
linear subspace of H0

x, for all k = 1, 2 and x ∈ X. Set
Γ(π,H) +

{
σ ∈ H | (∀x ∈ X)(σ(x) ∈ H0

x)
}

DH +
{
σ ∈ H | (∀x ∈ X)(σ(x) ∈ H1

x)
}

BH +
{
σ ∈ H | (∀x ∈ X)(σ(x) ∈ H2

x)
}
.

(4.22)

Thus Γ(π,H) is a left Hilbert subalgebra of H and BH,DH are linear subspaces of Γ(π,H), so

LBH(DH) ⊆ Γ(π,H). (4.23)

By (4.23) and (4.21) follows that for all σ ∈ BH, η ∈ DH and y ∈ X{
〈G(BH),DH〉 ⊆ Γ(π,H),〈
θ
(
x 7→ Lσ(x)

)
, η
〉

(y) = σ(y)η(y).
(4.24)

Let us consider now the continuous field of left-von Neumann algebras associated with the
fixed field of Hilbert algebras, and by abusing of language, let us denote it with the same
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symbol V = 〈〈E, τ〉 , π,X,N〉, as well as H will denote the associated direct integral with
respect to some finite Radon measure on X. Let ∆x be the modular operator associated
with the Hilbert algebra Ex and σx the corresponding modular group. Thus we can set

A∆ + {St : X 3 x 7→ σx(t) ∈ Aut(Ex) | t ∈ R}
G∆ + θ(A∆) � H
Σt + θ(St) � H, t ∈ R.

Note that for every t ∈ R, v ∈ H and x ∈ X

Σt(v)(x) = σx(t)(v(x)).

Now if we set
Γ(π) + H

for any linear subspace D of H we have

〈G∆,D〉 ⊆ Γ(π).

Finally note that to A∆ we can associate the following map

Σ : R+ 3 t 7→ Σt ∈ G∆,

for which we have for all x ∈ X
ΨHR (Σ)(x) = σx.

In the previous example we consider the extreme case in which Γ(π) = H. In order to have
a model where Γ(π) ⊂ H we have to get a more detailed structure, namely the half-side
modular inclusion. So for any x ∈ X let 〈Nx ⊂ Ex,Ωx〉 be a hsmi+ and Vx the Wiesbrock
one-parameter semigroup of unitarities associated with it so Vx ∈ Hstr(Ex)

+ such that
Nx = Ad(Vx(1))Ex. Therefore what we are interested in is that for all t ∈ R+{

Ad(Vx(t))(Ex) ⊆ Ex,

Ad(Vx(t))(Nx) ⊆ Nx.
(4.25)

By using the first inclusion in (4.25) we can set
AV + {Vt : X 3 x 7→ Ad(Vx(t)) � Ex ∈ Aut(Ex) | t ∈ R}
GV + θ(AV ) � H
V t + θ(Vt) � H, t ∈ R.

Hence for all x ∈ X and t ∈ R{
V t(v)(x) = Ad(Vx(t))v(x)

ΨHR (V)(x)(t) = Ad(Vx(t))

Therefore if we set D and Γ(π) such that

D ⊆ Γ(π) +
∫ ⊕

Nx dµ(x) ⊂ H
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then by using the second inclusion in (4.25) we have

〈GV ,D〉 ⊆ Γ(π).

For any semi-finite von Neumann algebraN and any φ ∈ NN faithful we have that the Tomita-
Takesaki modular group σφN is inner (see [21, Theorem 8.3.14]) i.e. it is implemented by a
strongly continuous group morphism V : R → U(N), where U(N) + {U ∈ N |U−1 = U∗},
so in particular

V (R) ⊂ N. (4.26)

Now let 〈Hφ, πφ,Ωφ〉 be a cyclic representation associated with φ and Nφ + π(Nφ) which is
a von Neumann algebra φ being normal, then by (4.26) immediatedly we have

πφ(V (R)) ⊂ Nφ. (4.27)

By the invariance φ = φ ◦ σφN, and the cited unitary implementation we obtain that there
exists Wφ unitary action on Hφ such that{

Ad(Wφ(t)) ◦ πφ = Ad(πφ(V (t))) ◦ πφ,
Wφ(t) = ∆it

φ ,
(4.28)

where the second sentence comes by [21, Theorem 8.1.2], with ∆φ the modular operator
associated with 〈Nφ,Ωφ〉.
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