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YESMUKHANBET SAIDAKHMETOVICH SMAILOV
(to the 70th birthday)

On October 18, 2016 was the 70th birthday of Yesmukhabet
Saidakhmetovich Smailov, member of the Editorial Board of the
Eurasian Mathematical Journal, director of the Institute of Applied
Mathematics (Karaganda), doctor of physical and mathematical sci-
ences (1997), professor (1993), honoured worker of the E.A. Buketov
Karaganda State University, honorary professor of the Sh. Valikanov
Kokshetau State University, honorary citizen of the Tarbagatai district
of the East-Kazakhstan region. In 2011 he was awarded the Order
“Kurmet” (= “Honour”).

Y.S. Smailov was born in the Kyzyl-Kesek village (the Aksuat dis-
trict of the Semipalatinsk region of the Kazakh SSR). He graduated
from the S.M. Kirov Kazakh State University (Almaty) in 1968 and in 1971 he completed
his postgraduate studies at the Institute of Mathematics and Mechanics of the Academy of
Sciences of the Kazakh SSR (Almaty). Starting with 1972 he worked at the E.A. Buketov
Karaganda State University (senior lecturer, associate professor, professor, head of the De-
partment of Mathematical Analysis, dean of the Mathematical Faculty; from 2004 director
of the Institute of Applied Mathematics).

In 1999 the American Biographical Institute declared professor Smailov “Man of the Year”
and published his biography in the “Biographical encyclopedia of professional leaders of the
Millennium”.

Professor Smailov is one of the leading experts in the theory of functions and functional
analysis and a major organizer of science in the Republic of Kazakhstan. He had a great
influence on the formation of the Mathematical Faculty of the E.A. Buketov Karaganda
State University and he made a significant contribution to the development of mathematics
in Central Kazakhstan. Due to the efforts of Y.S. Smailov, in Karaganda an actively oper-
ating Mathematical School on the function theory was established, which is well known in
Kazakhstan and abroad.

He has published more than 140 scientific papers, two textbooks for students and one
monograph. 10 candidate of sciences and 4 doctor of sciences dissertations have been de-
fended under his supervision.

Research interests of Professor Smailov are quite broad: the embedding theory of function
spaces; approximation of functions of real variables; interpolation of function spaces and
linear operators; Fourier series for general orthogonal systems; Fourier multipliers; difference
embedding theorems.

The Editorial Board of the Eurasian Mathematical Journal congratulates Yesmukhanbet
Saidakhmetovich Smailov on the occasion of his 70th birthday and wishes him good health
and new achievements in mathematics and mathematical education.




EURASTIAN MATHEMATICAL JOURNAL
ISSN 2077-9879
Volume 7, Number 4 (2016), 46 — 78

USE OF BUNDLES OF LOCALLY CONVEX SPACES
IN PROBLEMS OF CONVERGENCE
OF SEMIGROUPS OF OPERATORS. II

B. Silvestri

Communicated by V.I. Burenkov

Key words: bundles of locally convex spaces, one-parameter semigroups, spectrum and
resolvent.

AMS Mathematics Subject Classification: 55R25, 46K40, 46E10; 47A10, 47D06.

1 Introduction

The present part of the work is dedicated to establish Theorem 2.1 and its corollaries. This
result resolves the claim of extending the Kurtz’s result to the setting of bundles of {2—spaces.
More exacly we construct an element of the set Ag (0,20, &, X, RT). Roughly (T, 2, P) €
Ag (0,20, E, X,R") if and only if T (x) is the graph of the infinitesimal generator T, of a
Co—semigroup U(z) on €, for all x € X, [19, equality (1.1)] holds true and

U € T (p). (1.1)

Thus, according to the way of extending the Kurtz’ theorem which we intend to perform in
this work and outlined in the Introduction of [19], to find an element in Ag (U, 20, &, X, RT)
means to find an extension of [19, Theorem 1.1].

There are two strong hypotheses to be satisfied in Theorem 2.1. In constructing a model
for hypothesis (i7) one obtains Corollary 3.1, while we establish Corollary 4.3 and The-
orem 4.4 as an application of the stategy developped to ensure hypothesis (i). Among
the two hypothesis, (i) is the most difficult one to realize. It is the assumption that the
(0, &) —structure (U, W, X, R") has the Laplace duality property defined in Definition 2.

Roughly speaking the full Laplace duality property means that the natural action of
[Lcx £(€;) over [,y €., induces, by restriction, an action over I'(m) of the Laplace
trasform of I'(p). More exactly

(VA > 0) (£(T'(p))(-)(A) o T'() € T'(m)), (LD)
where
HP@W = [ P@E s = [ Fa)e) o).
The implicit assumption is that for all z € X and A > 0

mm C SI(RJr? ESZ(QSI)? MA)u
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where p) is the Laplace measure associated with A and £, (R, Lg_ (€,), iy) is the space of all
pa—integrable maps with values in the locally convex space Lg, (€,). We provide reasonable
conditions ensuring the above inclusion in Proposition 4.2.

In Section 4 we investigate a strategy for constructing sets having the full Laplace du-
ality property, result achieved in Corollary 4.2. Although in Section we worked in a wide
generality, here we present the applications of interest for the present introduction.

Firstly we note that by construction

['(m) C H ¢,

zeX

hence the natural duality action to consider over I'(7) is the restriction on it of the standard

action' of
(] ¢.)-
zeX

Secondly we note that the Laplace duality property is described in terms of the action
restricted over I'(7) of a subspace of [,y £1(RT, Lg, (€,); ia)-

Therefore the idea is to construct what we call in Definition 7 a U—Space, which is
essentially a couple formed by a locally convex space & and a linear map ¥ such that

BCL <H QS:E) as linear spaces

zeX

(1.2)
V(L (R, 6, 10) C [] L1(RY, Lo, (€2); 110,

rzeX

and most importantly such that the following relation between the two actions holds for all
Fe&(RT,& u),z€ X, A>0andveIl(n)

([r®@E dne).ew) = [Fodus.0) @ (13)

xT

Here £, (R, &, 1)) is the space of all 1y —integrable maps on R* and at values in the locally
convex space &, while for any linear space E we denote by (-,-) : End(E) x E — FE the
standard duality. In Corollary 4.1 we prove the existence of a U—Space whose topology we
assemble in Definition 9 as the final one with respect to a suitable set of linear continuous
maps.

Precisely because of (1.3) we can interpret (LD) as a duality problem. More exactly if
JF C Moo L1(RF, &, 1)) such that W(F) =TI'(p) then

LD < (VA > 0)((A\, (7)) C I'(n)), (1.4)

where for all A > 0

Ay = {/F(s) din(s)|F e F} < £(]] €.). (15)

zeX

namely (B,v) — B(v).
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There are two advantage of decoding the problem of finding the full Laplace duality property
into the problem of invariance (1.4). Firstly (1.4) is an example of a classical problem of
mwvaritance of a subspace of a linear topological space for the standard action of a subspace
of the space of all linear continuous operators on it. Secondly the relatively simple space
L1(RT, &, uy) appears in (1.4) through Ay while the subspace T'(p) of the much more involved
space [[ex Maso S1(RY, Lg, (€4); p1x) appears in (LD).

The crucial idea behind the construction of the space & performed in Definition 9 is the
use of the concept of locally convex final topology. Indeed the defining characteristic of this
topology allows in Lemma 4.4, to ensure that for all v € I'(7) the evaluation map

b>3A— Av e H ¢, is continuous. (1.6)

rzeX

And (1.3) is essentially a consequence of (1.6) attained through the two steps Theorem 4.2
and Theorem 4.3. Although we are mainly interested to the equality (1.3), there is an im-
portant result strictly determined by the locally convex final topology on &. Namely Theo-
rem 4.1 ensures that holds the second inclusion in (1.2) and that for all F € £,(R*, &, )

/P;r(\I/(F))(s) duy(s) = ljcro(/F(s) dpa(s)) o1,

2 General approximation theorem I
This section is devoted to the proof of the main Theorem 2.1.

Notation 1. We assume the notation in [19, section 2| and that all the vector spaces are
over C. Moreover we let lcp stand for the set of locally compact spaces.? For any set A
we let P(A) be the set of all subsets of A. If Y is a topological space and Z is topological
vector spaces we let Cs (Y, Z) denote the linear space of all continuous maps f : Y — Z
with compact support. For any U = ((&,7),m, X, ) full bundle of Q—spaces and any
(To, oo, ) € Pregraph ((0,)), set Xo = X — {x}, and for any ¢ € & ¢;(x) = Pri(o(z))
for all x € X and ¢ = 1,2. Moreover let us denote by T, the operator in &, such that
Graph(T,) = To(x), for all x € X, while T € [], . Graph(€, x &,) so that

{T X o) =T
T(200) = {d(20) | ¢ € P},

in addition set

D(T.) = Pr(T (wx)) = {1(2) | 6 € ).
Finally for any map F': A — B set R(F) = F(A) the range of F'.

2We implicitly consider all the sets involved in this work as elements of a fixed Universe say V. So the
set of all the models of a given structure say S, has to be understood as the subset of those elements of V'
satisfying the request defining S.
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Remark 1. Let U = ((&,7),m, X,9) be a full bundle of Q—spaces and (Ty, Too, P) €
Pregraph ((0,%0)). By [19, Corollary 4.1] V¢ € ®

¢; € T(m),i = 1,2
(Vo € Xo)(d2(x) = Todr(2)).
Lemma 2.1. Let U = ((&,7),m, X, M) be a full bundle of Q—spaces, where N = {v; |j € J}.

Moreover (To, Too, ®) € Pregraph ((0,0)). If for all x € Xy, v, € Dom(T,), A > 0 and
J € J we have vj(A —Ty)v,) > Av;(v,) and D(T,) is dense in &,_, then

(2.1)

(T, T, ®) € Gr(:0, V)

Moreover the following
To. : D(T:.) 2 ¢1(T00) = P2(T0) (2.2)

is a well-defined linear operator in &, such that Graph(T,_) = T(tx) and Vv, €
Dom(T,_), YA >0 and Vj € J we have

Vi((A =Ty )ve,) > Avj(va).

Proof. Clearly T (z) € Graph(€,_ x €,_) if and only if ¢1(2o) = 0, implies ¢o(xs) =
0., Yo € &, moreover denoting by 7, the corresponding operator we have that 7, :
D(T,.) — €, is a linear operator. Any real map F' defined on a topological space is ls.c.
at a point if and only if —F is u.s.c. at the same point, see |2, §6.2. Chapter 4|, thus by
[2, Proposition 3 §6.2. Chapter 4] and [2, (13),85.6. Chapter 4] F' : X — R is us.c. in
a € X if and only if lim,_,, F'(r) = F(a). Moreover by [2, §6.2. Chapter 4] we know that
F:X — Ris ls.c. at aif and only if F' is continuous at a providing R with the following
topology {0, [—o0, ], ]a,00[|a € R}. Thus for any map o : ¥ — X continuous at b such
that o(b) = a we have that F' o o is l.s.c. at a. Hence because (—F) oo = —(F o o) we can
state that if ¥ : X — R is u.s.c. at a then for any map o : ¥ — X continuous at b such
that o(b) = a we have that F o o is u.s.c. at a. Therefore by using [11, 1.6.(:i)] we have
Vo € '~ (r) and Vj € J

vj(0(zs)) = lim v;(o(x)). (2.3)

T—Too

Let ¢ € ® such that ¢ (2+) = 0, thus V¢ € &, VA > 0, Vo € X, and Vj € J we have by
(2.3) and (2.1)
Vj (A1 (o) — h2(To0) — M2 (7)) =
x@ Vi (A = Tp)(d1(2) + M (2))) 2
T 0y (61(0) + M (2) = M (610 24
where, the inequality comes by [2, Proposition 11 §5.6. Chapter 4|) and by the hypothesis
Vi (A =T,)(o1(x) + M (2))) > Av; ((d1(x) + Ai(2))) for all z € Xo. Now limy_,0o v/ =

0., for any v € €,_, hence by the fact that v;> = v; | €, is a continuous seminorm and
by (2.4) (Vj € J)(V¢ € D)

Vj (01(Too) — ¥2(250)) = lim Vi A¢1(To0) = $2(2o0) = A(T0))

A—00 A

> vj(d1(r0)).  (2.9)
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By hypothesis D(T,_) = {¢1(2x) | ¢ € T(2)} is dense in &, thus vj(¢s(zs)) = 0 for all
j € J. Indeed let j € J and v € &, thus I{¢*}aep net in @ such that limuep ¢f(2) = v
in €,_. So by the continuity of i~ and by (2.5) we have Vv € €,

vj (0= a(o)) = M v (¢ (o) — ta(200)) 2 lim v (7 () = v(v)-

aeD

True in particular for v = 31)9(2), which implies v; (¢2(2s)) = 0. Hence ¢s(25) = 0,
because of €, is a Hausdorff les for which {v{>};c; is a generating set of seminorms of its
topology. Thus T, is a well-defined (necessarly linear) operator in &, and consequently

ZToo

(T, 200, ®) € Gr(U,V). Finally (Vj € J)(Vop € ®)(VA > 0)
Vi((A =T )91(700))
Vj(Ag1 (o) — P2(20))
T 1 (0n(x) — (o)
T 1y ((A = T)en(a) >
(2))

by (2.1),(2.3)
by (2.1)

by hypothesis and |2, Proposition 11 §5.6. Chapter 4])

lim V(A1 (z Vi(Ap1(To0))-

T—Too

]

Lemma 2.2. In addition to the hypotheses and notation of Lemma 2.1 assume that (Vx €
Xo)(VA € R)(Vj € J)(Yv, € Dom(T}))

vi(1 = A )v,) > vj(vy). (2.6)
Thus (VA € R)(Yj € J)(Vv,,, € Dom(T}..))
V(1 = AT, )ven,) 2 vj(va ) (2.7)

Moreover VA € R

I -, )t e LR(1—-)NT,..), €..), (2.8)
(Vw € R(1 = \T,.))(Vj € J)y; (1 — AT,) " tw) < vj(w). '
Finally
R(1 — NT,.) is closed in &,_. (2.9)
Proof. (V5 € J)(V¢ € ®)(VA € R)
Vj<<1 =M, )01 (20)) =
Vi(91(2oo) = Ada(oc)) = by (2.1),(2.3)
Jim vi(61(2) = Ma(z)) = by (2.1)
$1_1>r£1 vi(1 = M) o1 (x)) > by (2.6) and |2, Proposition 11 §5.6. Chapter 4])
lim v;(¢1(2)) = (61 (2o0))

T—Too
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thus (2.7) follows. Let A € R, by (2.7) we obtain (2.8), indeed Vf, g € Dom(T,_ ) such that
1-MT,)f =1 -\, )g we have Vj € J

0=v;((L =T )(f —9) = v(f —9),
so f = g because of by construction &,_ is Hausdorff. Thus the following is a well-set map
1=AT ) " RA=AT, )2 (L= AT, ) f — [ €€,

moreover by (2.7) we obtain the second sentence of (2.8), hence the first one follows by the
fact that the inverse map of any linear operator is linear. By (2.8), |2, Proposition 3 §3.1.
Chapter 3] and |2, Proposition 11 §3.6. Chapter 2] we deduce that

Too

3!Becr (R(1 AL, € ))(B I R(L— A ) = (1— AT, )7L, (2.10)

Let w € R(1 — AT, ) thus 3{fa}taep net in Dom(T,_ ) such that

w:ilenll)(l—)\T%o)fm (2.11)
therefore by (2.10)
Bw = liII[1) fa, (2.12)
ae

while by (2.11) and (2.12)

w — Bw = lim ((fa - )\Txoofa) - fa)

a€D
= lim ~AT,._ fo.
So
Bw —w = iig% Ao fa- (2.13)

By (2.12), (2.13) and the fact that AT, is closed, we obtain

Bw € Dom(T,_,),
M, (Bw) = Bw — w,

which means w = (1 — AT, ) Bw, so w € R(1 — AT, ) and (2.9) follows. O

Lemma 2.3. Let us assume the hypotheses of Lemma 2.2, moreover let X € R — {0},
{An}nen € R — {0} such that lim,en A, = A, Thus

(MR = \T.) CR(L—AT,,).

neN
Proof. Set only in this proof T =T, . Let n € N, by (2.8) 3(1 =\, T)" ' : R(1-\.T..) —
Dom(t) moreover

{1 —AT = AAL=T),

(1= X\T) L= A1 = 7)1,

n
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Let g € ,,en R(1 = A\ T5.) thus

A=-2AD)A-NT)g—g=-A"-T)N\,'"=T)"'g—g

n

()\71()\71 o T)flg . )\;1(}\;1 . T)flg)

n

S>>

A=A =),

n

where in the second equality we considered that —T' (A1 —T)"lg —g = =X\ ' (A1 = T) g
obtained by (A\;1 = T)(A\;! —T)"lg = ¢g. Thus Vj € J by (2.8)

A

i (L=AT) (1= \T) g —g) < 3 A=A s (9)-

n

But lim,en (A=At =1 and limyen (A=A = 0so v (L= AT)(1 = N\, T) g —g) =0,
for all j € J. Therefore
lim(1 — AT)(1 -\, T) g =g,

neN

and the statement follows by (2.9). O

Lemma 2.4. Under the hypotheses and notation of Lemma 2.1 we have that 1 — NT,__ is a
closed operator.

Proof. Let (a,b) € Graph(1 — AT, ) closure in the space &, x €, with the product
topology. Thus (Ve > 0)(Vj € J)(3v( ;) € Dom(T,.))

vi(a —ve ) < 3,
vi(b— (1 = N, )vey) < 5.

SO
vi((b—a) + AN, vey) S vi(b— (1 = AT, )ve ) + vi(a —ve,;) <e.

Therefore (Ve > 0)(Vj € J)(Fv( ) € Dom(T;..))

vi(a = vey) <&
Vi ((b—a) = (=X, v )

which means (a, (b — a)) € Graph(—\T,_). Moreover —\T,_ is a closed operator thus
b—a= —\T,_a or equivalently (a,b) € Graph(1 — \T,_). O

Remark 2. By (2.1) we have V¢ € @ that ¢1(ve) = lim, . ¢1(2) and ¢o(zs) =
lim, ., ¢2(2) =lim, ., T,¢1(2), hence

¢1 (xoo) = hmz—moo ¢1 (Z)
sz¢l (xoo) = hmz~>azw Tz‘bl(z)-
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Definition 1. Let A € RT set

iy : Ces (R+,R) S5 f e“”‘f(s) ds,

R+

where the integral is with respect to the Lebesgue measure on RT.

Definition 2. Let 20 = ((M,7),p, X, R) and (U, 2, X,R") be a (6, &) —structure such
that
M, C [ L1(RY, L, (€,); 112), Vo € X. (2.14)

A>0

About S, and €, see [19, Definition 6] Let z € X, O C I'(p). and D C I'(7). By recalling the
notation in [19, equality (2.1)] we say that (0,20, X, R") has the Laplace duality property
on O and D at x, shortly LD,(O, D) if

(VA > 0)(£(T'5(p))r o Ip(w) € I*(m)).

Moreover we say that (0,20, X, R") has the full Laplace duality property on O and D,
shortly LD(O, D) if
(VA > 0)(£(0)y oD C I'(n)).

Finally LD is for LD(I'(p),I'(7)). Here £ : [[,cx M. — [1
X) (VA € RY)

Ls, (€)% such that (Vz €

rzeX

SENDO) = [N F)(s)ds
0
where we recall that the integration is with respect to the Lebesgue measure on R™ and
with respect to the locally convex topology on Lg, (€,). Finally we used the notation in [19,

equality (2.1)]

Remark 3. Under the notation of Definition 2 and by letting n be the Lebesgue measure
on R*, (2.14) follows if the following holds

M, C L1 (RT, Lg, (E,):n), Vo € X.

Moreover under assumptions of Definition 2 we have

L(I'5(p) S TH(p) .
{(Vt 2 O)(F%(p()ot o) C () = (2,90, X, R* ) has the LD, (O, D).

Similarly

-
{2(0) co = (0,20, X, R*) has the LD(O, D).

(Vt > 0)(O, 0D C I'(1))

A useful property is the following one
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Proposition 2.1. Let (0,20, X,R") be a (0, &) —structure satisfying (2.14), v, € X. Set
S.={Bj|l €L}, thenVz € X, VG € & (R*, Lg (&.); u») and Yw, € U, Bf

(/OOO e’AsG(s) ds)wz = /000 e*AsG(s)wz ds. (2.15)

Here in the second member the integration is with respect to the locally convex topology on
&,, while in the first member the integration is with respect to the locally convex topology on

Ls (€,).
Proof. Let z € X and v € |J,, Bf = €. thenmap Lg_(&€.) 5 A— Av € €, is linear and con-
tinuous. Indeed let [(v) € L such that v € By, thus we have v} (Av) < SUPyen; | vi(Aw) =

P} 1) (A). Hence by a well-known result in vector valued integration we have (2.15). O

Remark 4. Let U = ((&,7),7, X,MN) be a bundle of {2—spaces and & C ] .y &,. Set for
all v € [[,ex €
B,: X
v >z — {v(x)}, (2.16)
©={B,|we&}

Thus © C [[, .y Bounded(€&,) and Vv € £

EN]] Bu(z) = {v}. (2.17)

zeX

Therefore for all v € £, and for all € X with the notation of [19, Definition 6]

D(B.,€) = {v},

By, = {v(r)},

Sy = {{w(z)} |w € &},
£(O) =¢.

Recall that since the Dupre’ theorem any Banach bundle over a completely regular topo-
logical space is full.

Definition 3. Let U = ((&,7), 7, X, || - ||) be a full Banach bundle. Let zo, € X and U €
[L.cx, C (R, By(€&,)) be such that Uy(z) is a (Cp)—semigroup of contractions (respectively
of isometries) on €&, for all x € X,. Moreover let us denote by T the infinitesimal generator
of the semigroup Uy(z) for any = € X, and set

To(z) = Graph(T,), z € Xy

® = {¢ € I (mea) | (V& € Xo)(d(x) € To(x))}
E={vel(n)| (3¢ € ) (v(n) = b1(200))}
© = {B,|w e £},

(2.18)

where ((E(E®), 7(E®,£9)) , mga, X, n?®) is the bundle direct sum of the family {0, U}.

The following is a direct generalization to our context of the definition given in [14, Lm.
2.11]
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Definition 4. Let U = ((&, 1), 7, X,91) be a bundle of Q—spaces, where 9 = {v; |j € J}.
Moreover let Y be a topological space, so € Y, f € [[,cx €F and {2z, }nen € X. Then we
say that {f(zn)}nen 18 bounded if sup,, gyenvy Vi(f(2a)(8)) < oo for all j € J. {f(24)}nen is
equicontinuous at sq if for all 5 € J and for all € > 0 there exists a neighbourhood U of sq
such that for all s € U we have sup,,cy v (f(2n)(s) — f(2n)(s0)) < . Finally {f(z,)}nen is
equicontinuous if { f(z,) }nen 18 equicontinuous at s for every s € Y.

Proposition 2.2. Let us assume the notation of Definition 3. Thus {v(z)|v € £} =
{91(200) [ ¢ € @}

Proof. By definition follows the inclusion C. U being full we have (V¢ € ®)(Fv €
I'(m)(v(Teo) = ¢1(2x)). Thus (Vo € @)(Fv € €)(v(r) = ¢1(2)) hence the inclusion
D. ]

Theorem 2.1 (MAIN 1). Let ¥ = ((¢,7), 7, X,| ) be a Banach bundle where X is
a completely reqular space for which there exists xo, € X such that its filter of neighbour-
hoods admits a countable basis. Let Uy € [[,cx, C(RT, Bs(&,)) be such that Uy(z) is a
(Co)—semigroup of contractions (respectively of isometries) on &, for all x € X,.

If D(T,_) is dense in €, and g > 0 (respectively INg > 0, \; < 0) such that the range
RN — T.) is dense in €,_, (respectively the ranges R(Xo — Ty..) and R(A\ — Ty.) are
dense in &,__ ), then

(T, T, ®) € Gr(0, ),
and T, in (2.2) is the generator of a Co—semigroup of contractions (respectively of isome-
tries) on €,_.

Moreover assume that {v(z)|v € E} is dense in &, for all x € Xy, by taking the notation
in (2.18), let W = (M, ), p, X, R) and (V,W, X,RT) be a (0,E) —structure 3 such that
(2.14) holds.  Assume Uy ., (Ls.(€5)) C M, (respectively Uis(Ls.(€.)) € M) for all
z € X * and that there exists F € T'(p) such that F(rs) = U(zs) and

)
i (0,20, X, RY) has the LD, ({F'},E); or it has the LD({F'},E);

ii (Voe&)(FpeP) st g1(20) = V(2s) and (V{zntneny C X | limpen 2, = Too) we have
that {U(z,)()01(2n) — F(20)()v(2n) nen is a bounded equicontinuous sequence.

Then (Vv € £)(VK € Comp(R™))

zl—lgloo ESEHL{(z)(S)U(z) — F(z)(s)v(2)|| =0, (2.19)
and
UeT™(p). (2.20)
In particular
(T, 700, )} € Ao (T, 2, €, X,RT). (2.21)

Here T and D(T,.) are defined as in Notation 1 with Ty and ® given in (2.18), while
Uue erX M, such thatU | Xog =Uy and U () is the semigroup on €, generated by T, .

3Well set indeed by Proposition 2.2, the density assumptions and Remark 4 we have that S, is dense in
¢, forallz e X.
4See Proposition 4.2 for models of 9 satisfying (2.14) and Ullise,, (Ls. (€2)) € M.
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Proof. Since the Dupre’ theorem, see for example [11, Corollary 2.10|, we obtain that U
is full. By Lemma 2.1, [14, Lemmas (2.8) — (2.9)], and the Hille-Yosida theorem, see [14,
Theorem (1.2)], we have the first sentence of the statement for the case of semigroup of
contractions. By [5, Corollary 3.1.19.| applied to Ty, for any z € Xy, and by (2.7) we have
(VA € R)(Vv,,, € Dom(Ty..))

1 = AT v o 2 [V [l - (2.22)

Hence by [5, Corollary 3.1.19.], T, will be a generator of a strongly continuous semigroup
of isometries if we show that YA € R — {0}

R(1— AT, ) =€ (2.23)

Too *

Let us set
po(To) = (N €R — {0} |R(1 = AT) = &,).

By (2.8) po(T:..) = p(T,.) N (R — {0}), where p(T,_) is the resolvent set of T,. By |9,
Lemma 7.3.2] p(7,..) is open in C so po(7%., ) is open in R — {0} with respect to the topology
on R — {0} induced by that on C. By Lemma 2.3 we deduce that po(T_,) is also closed in
R — {0}, therefore po(T,.,) = R — {0} and (2.23) follows as well that 7,  is a generator of
a strongly continuous semigroup of isometries.

Now we shall apply [19, Lemma 5.1] in order to show the remaining part of the statement.
Let v € £ be fixed then by (2.18), (3¢ € P)(v(zx) = ¢1(2x)) thus by (2.1) and [19,
Corollary 3.1]

lim [Jo(2) — éx(2)]| = 0. (2.24)

2—Too

Now let ' € I'(p) of which in hypothesis so in particular

F(2o) =U(2s), (2.25)
moreover Vs € RT and z € X
[U(2)(s)v(z) = F(2)(s)v(2)] <
[U(2)(s)v(z) —U(2)(s)p1(2)|| + U (2)(s)1(2) — F(2)(s)v(2)| <
|

1 ) 1
[0(2) = o1 ()| + [[U(2)(s)pr(2) — F(2)(s)v(2)]- (2.26)

For any A > 0 let us set
Too = (A= To) " 01 (7cc)
thus g € Dom(T,_ ) hence by Remark 2 and the construction of T, 3¢* € ® such that

Tp g = lim, .. T.7(2). '

By (2.15) and (2.17) for all z € X and for all w, € |J,c¢ v(2)

([T reae. - [T rE s (2.28)
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Moreover by the fact that 2 is full we have that for all ¢ € ® there exists a v € I'(7) such
that v(ze) = ¢1(T), thus by construction of £

(Vo € ®)(Fv € &) (v(T0) = 1(T00))- (2.29)
Hence by (2.28), (2.29) and (2.25) for all ¢ € ¢

(/000 e M F (200)(8) ds) 1 (T0) = /000 e MU (200) (8) 1 (200 ds. (2.30)
Now set
§ = £(F),
thus by hypothesis (i) we have for all A > 0
EC)(Au() € T (). (2.31)
Moreover

§(T00) (M) V(To0) = €(To0) (N)P1(T00)
:/0 e MU(200)(5) b1 (200) ds by (2.30)
=\ —T,..) '¢1(2s) by [14, (1.3)]
= g} = ) (zo0) by (2.27). (2.32)

By the fact that % is full, by (2.31), the fact that ¢} € I'"=(7) by (2.1), by (2.32) and by
[19, Corollary 3.2] we have VA > 0

lim [ly3'(2) — €(z)(Mv(2)]| = 0. (2.33)

2—Too

Now (VA > 0)(Vz € X) set
wt(z) = (A1 = T.)¥7(2),

thus
H/Ooe—ks U(2)(s)p1(2) — F(2)(s)o(2)) ds|| <
I e 2)dsl| + | / w(=) = F(2)(s)o(2)) ds]| <
912) = G+ 19(E) = €N,
(2.34)

Here we consider that by hypothesis and by the first part of the statemet ||U/(2)|| < 1 for all
z € X, moreover we applied the Hille-Yosida formula [14, (1.3)]. Now

[f1(2) —w

[f1(2) = (AL =T2)¢
[61(2) = v(2)]| + [[o(2) = A(2)(Av(z) + A(2)(Mo(2) = (AL = T2)y

161(2) = v(2)] + Allg (2)(Nv(2) = 3 ()| + [ T7 (2) = (A& (2)(Mv(2) — v(=)]]-

(2.35)



58 B. Silvestri

By (2.27) T, ¢} (2s0) = Ty g2 moreover
o = —(A = To )95 + Ao
~(A =T )N = To) " '01(200) + AgS,
= gk — () = M) (N(0) — vl0), (2.36)

where in the last equality we used (2.32) and the construction of ¢. By (2.27) we have that
(X 2 2z = T,7(2)) € I®=(7), hence by (2.36), the fact that A(-)(A)v(-) — v € T%=(7) by
(2.31), we deduce by the fact that 2 is full and by [19, Corollary 3.2] that VA > 0

lim [[726(2) ~ (&) Ne(z) — ol =0. (237
Therefore by (2.35), (2.24), (2.33) and (2.37)
tim Jon(2) - w(2)] = 0.

By this one along with (2.33) we can state by using (2.34) that VA > 0

Jim | [ e e () - FEE) ds <o
Therefore VA > 0 and (V{2 }neny C X | limyen 2, = 2oo)
lm| / )(8)61(2n) — F(za)(s)0(z0)) ds]| = 0. (2.38)

By (2.38), hypothesis (i) and [14, Lemma (2.11)] we have (V{z, }nen C X | limyen 2, = To0)
and VK € Comp(R")

lim sup||[U(z,)(5)$1(zn) — F(2a)(s)v(24)|| = 0.

neN se i

Therefore since the hypothesis on z., we obtain VK € Comp(R™")

lim supl||U(z)(s)p1(z) — F(2)(s)v(z)|| = 0. (2.39)

Z—Too seK

In conclusion by (2.39), (2.24) and (2.26) we obtain VK € Comp(R™)

lim sup|[U(z)(s)v(z) — F(2)(s)v(z)|| =0, (2.40)

Z—Too seK

hence (2.19). By (2.17) and (2.40) we obtain [19, equality (5.8)]. Thus (2.20) and (2.21)
follow by [19, Lemma 5.1| by (2.17) and by the following one VK € Comp(R") and Vv € &

sup sup||U(2)(s)v(2)|| < sup [[v(z)]| < oo.
z€X s€eK zeX

where we considered that by construction ||U(2)(s)|| < 1, for all s € RT and z € X and that
v e I'(m). O

Remark 5. If W is full (JF € I'(p))(F(rs) = U(2o)), so hypotheses reduce.
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3 Corollary I. Construction of equicontinuous sequences

By providing conditions ensuring the bounded equicontinuity of which in hypothesis (7i) of
Theorem 2.1 we obtain the following

Corollary 3.1. Let us assume the hypotheses of Theorem 2.1 except (ii) replaced by the
following one

AGe ] & (R, Ls,(¢,) FH € [] £(€.)3F €T(p))

zeX zeX

such that F(rs) = U(Ts) and Vs > 0

SUD e x SUPso || F(2)(8)]| < 00
(V51> 0)(Fa > 0)(sup,eps, 5 SUP.ex |G (2)(0)]| < als — s1]) (3.1)
(V2 € X)(F(2)(s) = H(2) + [y G(2)(u) du),

where the integration is with respect to the Lebesque measure on [0, s] and with respect to the
locally convex topology on Ls_(€,). Then holds the statement of Theorem 2.1.

Proof. Let v € € thus (3¢ € P)(v(rs) = P1(Tx0)) 50 (V{20 ey € X | limpen 2, = Too) We
have

sup sup [[U(zn) (s)01(20) = F(zn) (s)0(zn) | < sup[|é1(zn)l + M sup [Joza)] < oo

neN s>0

Here in the first inequality we used ||U(z)(s)|| < 1 for all z € X and s > 0 by construction,
and M = sup,cy Sup, || F'(2)(s)|| < oo by hypothesis, while in the second inequality we
used the fact that v € cheX ¢,, by construction and that sup, .y [|¢1(2,)] < oo because

of 3 lim,en ||¢1(2,)|| € R by Remark 2 and by construction || - || is u.s.c. Moreover by [14,
(1.4)], (3.1) and S, = {{w(z)} |w € £} for all € X we have

U(zn)(s)¢1(2n) — F(2n)(s)v(20) = /OS (U (2) () T%, 01(20) — G(20)(w)v(2,)) du+
+ ¢1(2n) — H(zn)v(2n).

Thus for any s;, sy € RT
Sup [@U(2)(s1)$1(2n) — F(20)(s1)v(2n)) — U(20)(52)1(20) — F(2)(s2)v(20)) || <
|s1 — s2[sup sup [[U(2,)(u)T%, 61 (2n) — G(2n) (w)v(2,)]] <

neN u€lsy,s2]

|51 — 2] Sug(lszncbl(zn)H — allv(z,)[]) < Jls1 — sal.
ne

Here in the second inequality we used ||U(z)(u)]| < 1 by construction and the hypothesis,
in the third one the fact that sup,,cy |75, ¢1(2,)|| < 0o as well sup,,cy [|v(2,)]] < 00, because
of 3 lim,en |72, 01(2,)|| € R and 3 lim,ex ||[v(2,)| € R due to the fact that || - || is w.s.c.
by construction and Remark 2 for the first limit and the continuity of v for the second
one. Therefore hypothesis (ii) of Theorem 2.1 is satisfied, hence the statement follows by
Theorem 2.1. O
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4 Corollaries II. Construction of (,20, X, R") with the LD

In section 4.1 we develop a general strategy to establish the Laplace duality properties. When
this procedure is applied to fulfill hypothesis (i) of Theorem 2.1, we obtain Corollary 4.3
and Theorem 4.4. Let us start with the following simple result about the relation among
full and Laplace duality property.

Proposition 4.1. Let 20 = ((9M,~) , p, X, R) and (L, 2, X, RT) be a (6, E) —structure such
that U is a Banach bundle and ro € X. Assume that

1. 0 and 2 are full;

2. £ =T(r) and O is given in (2.16);

3. (VF € I'"=(p))(M(F) = sup,ex supyep+ || F'(2)(s)]| < 00);
4. (Vo € I'(p))(supgex supser+ [|o(x)(s)[| < 00);

5. the filter of neighbourhoods of x~, admits a countable basis.
If (0,20, X, R*) has the LD then it has the LD,

Proof. Let F' € T%=(p) and w € I'*~(7) thus by hypothesis (2) and [19, Corollary 3.1]
there exist 0 € I'(p) and v € I'(m) such that 0(zs) = F(rx), v(7a) = w(2s), and
VK € Comp(RT), Vv € €

{nmmm lw(z) = v(z)|| = 0 1)
lim, o sup,eg |(F(2)(s) — o(2)(s))o(z)]| = 0.

Moreover VA > 0

| / e F(z)(s)w(z) ds — / " Mol (s)ulz) ds| <
I[P W — o) ds + | / — o))l ds] <
M(F)[lv(z) —w(2)| +/0 M|[(F(2)(s) — a(2)(s))v(2)]| ds. (4.2)

By the hypotheses (3—4) sup, ¢ y sup,eg- || (F(2)(s)—0(2)(s))v(z) H < 0o hence V{z, }neny C X
such that lim,ey 2, = T we have by (4.1), (4.2) and a well-known theorem on convergence
of sequences of integrals that VA > 0

lim”/ooo M (2,)(s)w(z,) ds — /000 M0 (2,)(s)v(z,) ds|| = 0.

neN

Thus VYA > 0 by hypothesis (5)

lim H/OOO M F(2)(s)w(z) ds — /000 eMa(2)(s)v(z) dSH =0,

2Z—Too

hence the statement by [19, Corollary 3.1]. O
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Now we shall see that in the case of a bundle of normed space we can choose for all x a
simple space M, satisfying (2.14).

Proposition 4.2. Let 20 = ((IM,~) , p, X, R) and (L, 2, X, RT) be a (0, E) —structure such
that for all x € X, €, is a reflexive Banach space, S, C P,(€,) and

M, C {F eC (R, Lo (€,)) |(VA>0) (/R e F ()]l e, ds < 00) }.

Thus
M, C [ E1(RT, Ls, (€,); 1) (4.3)

A>0

In particular (4.3), and Uy, ., (Ls,(€;)) © M, hold if for any x € X

M, = {F €C. (R", Ls,(€,)) | sup ||[F(s)| e, < oo}

s€RT

Proof. The first sentence follows by [18, Corollary 2.6.], while the second sentence comes by
the first one. [

4.1 U-—spaces

Aim of this section is to establish a procedure ensuring the full Laplace duality property,
result achieved in Corollary 4.2. The core concept is that of U—Space provided in Definition 7,
whose existence is established in Corollary 4.1 by mean of a special locally convex final
topology constructed in Definition 9. Theorem 4.1, Theorem 4.2 and Theorem 4.3 represent
the steps to obtain Corollary 4.1.

Let us recall and introduce some notation. For any W, Z topological vector spaces over
K € {R,C} we denote by L(W, Z) the K—linear space of all continuous linear map on W
and with values in Z and set £(Z) = L(Z,Z) and Z* = L(Z,K). If Y is a topological space
we let Cos (Y, Z) denote the linear space of all continuous maps f : Y — Z with compact
support. If Z € Hles and Y is locally compact we denote by £;(Y, Z, u) the linear space of
all maps on Y and with values in Z which are essentially u—integrable in the sense described
in [4, Chapter 6]. Moreover for any family {Z,},cx of linear spaces and for all z € X set
Pr, : HyeX Zy3> fr flv)eZyand o, 0 Z, — HyeX Z, such that for all z # y and z, € Z,
Pr, o1,(2,) = 0,, while Pr, o1, = Id,. Let us set

(«,): End(H) x H > (A,v) — A(v) € H,

and for all z € X
(,0),  End (€;) x €, 3 (A,v) = A(v) € &,.

Definition 5. We call Q a consistent class of data if Q =
<X, }/, M, {Qim}meXu {Tg;}:ceX; {mm}meXa {Qz}zGXa <H7 ‘Z>> where

1. X is a set, Y is a locally compact space and p is a Radon measure on Y

2. {€,}.ex is a family of Hlcs;
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3. {7:}zex is a family of topologies such that (L(€,),7,) € Hles, Va € X;

4. {M,}rex is a family such that 9, = {V]""; | jz € J.} is a fundamental set of seminorms
of &,, Vo € X;

5. {Qq}rex is a family such that Q, = {¢_|a, € A,} is a fundamental set of seminorms
of <£(€x)77—x>7 Vo € X;

6. (H,%) € Hles such that

o 1 C [[,cx € as linear spaces;

1,(€;) CH, for all x € X;

Pr, e L((H,%),€,) and 1, € L (&, (H,T)), for all x € X;
JA C [[,ex £(€,) linear space such that

(a) 0(A) I H C L((H,T)),

(b) 2.(L(€&,)) C A for all z € X

where 6 is defined in Definition 8. We call X the base of , Y the locally compact space of Q
and p the Radon measure of . Moreover we call {€,},cx the primary family underlying 9,
while we call {7, },cx the secondary family underlying . We call Q entire if H =[], . €

In the present section let 9 = <X7 Y7 12 {ér}ze)ﬁ {TZ}m€X7 {mr}ze)ﬁ {QI}&?GX? <H7 ‘3>> be

a fixed consistent class of data.

Definition 6. Let 20 = ((9,~), p, X, R) be a bundle of 2—spaces such that for all x € X
mw - Sl(Ya <£(€$>?Tl’> ;:u)'

Set
0, : erX 21(Y (L(€, ) >' ) % HzeX € = [loex € (4.4)
O = (Jee H(@)(s) du(s), v(2)), € €. |

Remark 6. Let (0,20, X,R") be a (0,&) —structure satisfying (2.14) and O C T'(p),
D C I'(m). Then
LD(O,D) & (VA > 0) (O,, (0,D) CI'(n)). (4.5)

Similarly for all x € X
LD, (O, D) & (VA > 0) ([, (To(p), (7)) € T*(x)) . (4.6)

Definition 7. [ U—Spaces | & is a U—space with respect to {(L(€&,), 7z)}sex, T and D if
and only if

1. & € Hles;
2. & C L((H,T)) as linear spaces;

3. DCH,;
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4. (VT € lep) (3 ¥y € End(End(H)", [1,cx End(€,)Y)) (Vv € Radon(T))

\IJT('gl(Ta 6’ V)) - H '81 (T> <£(€x)a7—x> ;V) )

rzeX

and VF € £(T,6,v), Vv € D. Vo € X

([ orEr@ i) = [Foame.o) e (47)

xT

The reason of introducing the concept of U—spaces will be clarified by the following

Proposition 4.3. Let (U, 20, X,R") be a (O, &) —structure satisfying (2.14), and let & be
a U—space with respect to {Ls, (€;) trex, T and D. Then VA >0, F € £(RT, &, uy), v €D

Oy (s (F).0) = ([ Fo)io),0). (1)

Moreover if 3F C (oo L1(RT, &, p) such that Vg (F) = O then

LD(O, D) < (YA > 0)({By, D) C I'(x)). (4.9)

Here
By = {/F(s) dux(s) | F € F}.

Proof. (4.8) follows by (4.7), while (4.9) follows by (4.8) and Remark 6. O
Remark 7. In particular if 37 C ., &1 (R, &, uy) such that Ug+ (F) = O then

(6,D) CT'(r) = LD(O, D).
More in general if 9&; complete subspace of & and IF C {F €
MNyso S1(RT, &, ) | F(RT) C &g} such that Ug+(F) = O then

(8y,D) CT'(r) = LD(O, D).

Thus the U property expressed by (4.7) is an important tool for ensuring the satisfaction
of the LD. For this reason the remaining of the present section will be dedicated to the con-
struction of a space &, Definition (9), which is a U—space, see Theorem 4.3 and Corollary 4.2
for the LD(O, D).

Definition 8. Set
xu : End(H) = [Lex End(&,),
(Vo € X)(Vw € End(H))((Pry oxu)(w) = Pryow o 1,),
X = X[Tcx €
Well defined indeed by construction 2,(&,) C H, for all x € X. Finally set
0: [Tex End(€,) = End ([T,cx €2)
(Vo € X)(Vu € [[,ex End(&,))(Pr, 00(u) = Pry(u) o Pr,),
O = Im(xw) 2 u— 0(u) | H.

Well-posed by applying |1, Proposition 4, n°5, §1, Chapter 2].
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Remark 8. (Vz € X)(Vu € [[, .y End(€,)) we have (Pr, of(u) o1, = Pr,(u)).

Proposition 4.4. The space [,y €, with the product topology satisfies the request for the
space (H,%) in Definition 5 with the choice A =],y L(€,).
Proof. Pr, € L <Hy6 v €y, (’Ez> by definition of the product topology, moreover i, €

L (Qfm, [T,ex ny>. Indeed 1, is clearly linear and by considering that for any net {f®},ep
and any f in [] €, limaep f* = f if and only if limaep f*(y) = f(y) for all y € X,

we deduce that for any net {f%},ep and any f, in &, such that lim,ep f& = f. we
have limaep . (fg) = t%(fz), s0 2, is continuous. Let x € X and u € [[,. £(€;) so
Pr,.(u)oPr, € L (HyEX ¢, Gx), so (6a) follows by the definition of # and [2, Proposition 4,
Ne3, §2]. Finally (60) is trivial. O

The following is the main structure of the present section. For the definition and prop-
erties of locally convex final topologies see [3, Ned, §4].

Definition 9. Set for all x € X
G=0(A) I H,
g L(€) 3 fr > 1,0 oo Pry € Bnd ([]ex &)
hy : E(Gx) S forr g:c(f:c) I'H

We shall denote by & and call the locally convex space relative to the consistent class of
data 9, the lcs G provided with the locally convex final topology of the family of topologies
{7: }zex of the family {£(€,)}.cx, for the family of linear mappings {h, }rex-

Definition 10. Set in ] . End(€&,) the following binary operation o. For all z € X we
set Pry(foh) = f(z)o h(x).

It is easy to verify that <erx End(@x),+,o> is an algebra over K as well as
<HmeX E(er)? +7 O>‘

Lemma 4.1. G C L((H,%)), moreover 6 is a morphism of algebras. Finally if A is a
subalgebra of [],cy L(&;) then G is a subalgebra of L ((H,T)).

Proof. The first sentence is immediate by (6a) in Definition 5. Let u,v € [], .y £(€,) thus
forall z € X

Prof(uov) = (u(x) ov(z)) o Pr
= u(z) o Prof(v)
= Prof(u) o 0(v),
so O(uov) = 6(u) o O(v), similarly we can show that 6 is linear by the linearity of Pr, for all

x € X. Thus 0 is a morphism of algebras, so the last sentence of the statement follows by
the first one and the fact that A is an algebra. ]
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Proposition 4.5. 63,0x3(w) = wor,oPr, [ H for allw € End(H), Moreover 03,(Im(x3)) C
Dom(xy) and x3 0 0% = Id | Im(xy).

Proof. Let w € End(H) thus for all x € X we have (Pr, o8y o x%)(w) = Pr,(xx(w)) o Pr, |
H = Pr,owou,0Pr, | H and the first sentence of the statement follows. By the first sentence
and the assumption that 2,(€,) C H we have 0(Im(xy)) | H C End(H) so xy o Oy is well
set. Moreover for all x € X and u € I'm(x3) we have Pr, (xy (6(u) | H)) = Pr,o0(u) o, =
Pr,(u) o Pr, 01, = Pr,(u). O

Proposition 4.6. Let x € X, then
1. g, =001, soIm(h,) C G;
2. h, € End(L(€,),G);
3. IAh;t: Im(h,) — L(€,) and

{hgl = Pr,oxy | Im(hy),
Im(hy) = {0(1o(f2) | H| fo € L(E,)}.

Proof. Vy € X we have

0
Pryo0(1,(fs)) = Pr(e,(f,)) o Pr = { y T FY
! v fx ° Prxa r=1.
Moreover
0
Pryog:c(fx) :ProzxofxOPr: { yax%y
! v fx ° Prxa r=1y.

So the first sentence of statement (1) follows. Thus h, (L£(€,)) = ¢.(L(€,)) | H =
6 (1, (L(€,))) | H so by (6b) of Definition 5 the second sentence of statement (1) follows.
Statement (2) follows by the trivial linearity of g, and by the second sentence of statement
(1). Let f, € L(€,) and w = 1,0 f oPr, [ H. Then by the assumption (6) we have that w €
End(H), and xx(w) = 2,(f,), indeed Pr,(xy(w)) = Pryou, 0 f, 0 Pryow, = f, = Pro(u(fs)).
Thus 2,(f.) € Im(xy) so by Proposition 4.5 0(2,(f.)) | H € Dom(x3) and h;! is well set.
Moreover

(Er OXH) © h:c(fa:) = 111" OX# © Q’H(Z:c(fa:))
= Pr(u () = fr

where the first equality comes by statement (1) and by 2,(f.) € Im(x), while the second
by Proposition 4.5. Finally

Gz © F;r ox#(0(2(f2))) = ge © f;r(zx(fa:))

Thus statement (3) follows. O
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Lemma 4.2. If (L(€,),7,) is a topological algebra for all x € X and A is an algebra then
& is a topological algebra.

Proof. Let usset forall F € & Ly :® > H+— FoH € ®, well set & being an algebra by
Lemma 4.1. Thus for all x € X, f € A and [, € L(€E,)

(Lo(s) © ha)le = Lo(p) (0(1a(la)) | H) = 0(f 0 12(la)) | H
= (Bou(f(x)ol) 1 H = (g.(f(z)ol)) | H
= hz(f(l’) o lx) = (hg; o Lf(w))lza

where Ly, : L(€,) 5 s, — fy 058, € L(E,) for all f, € L(€&,). Here the first and fourth
equality follow by Proposition 4.6, the second one by Lemma 4.1. Moreover by hypothesis
L (5 is continuous, while h, is continuous by [3, Proposition 5, Ne4, §4 Chapter 2|, so Lg(s)0h,
is linear and continuous. Therefore Ly(y is linear and continous by [3, Proposition 5, Ne4, §4
Chapter 2|. Similarly Rp is linear and continuous, where Rr : & © H — H o F' € &, thus
the statement. ]

Definition 11. Set
U End(H)" — [l,ex End(€,)”

(Pry oWH)(F)(s) = (Pry oxa) (F(s)).

Moreover set

{A Loex End(€,)Y = (End ([Lex €))"
A(F)(s) = 0(F(-)(s))-
(€

VF € End(H)Y, VF € [l,ex End(€,)Y, Vo € X and Vs € Y, where F(:)(s) €
[[,ex End(€,) such that Pr,(F(-)(s)) = F(z)(s).
Finally set
Ay =AT{F e ] £(€) [(vs € V)(F()(s) € A)}.

zeX

Proposition 4.7. Let z € X and s €Y, then for all F € End(H)Y
1. (Pr, oV (F)(s) = PryoF(s) o1y
2. U o AY = 1Id;
3. Im(AY) C GY.
Proof. Statements (1) and (3) are trivial. Let F' € Dom(A}) so
(Prowit o AY)(F)(s) = (Proxa)(AY (F)(s)) = ProAY (F)(s) o1,
= Pro0(F()(s) o1 = PH(F()(5)) o Pro,
= F(2)(s) = Pr(F)(s).

and statement (2) follows. O
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Proposition 4.8. (Vz € X)(Vs € Y)(VF € GY) we have

(f;r oW (F)(s) o F;r = F;r o(F(s))

Proof. Let F € GY thus 3U € AY such that F(s) = 0(U(s)) | H, hence forallz € X,s € Y

(I?Cr oWH)(F)(s) o Pr = Pr(\If (F))(s) o Pr
= Pr F( ) Iy O Pr by Proposition 4.7

Definition 12. Let z € X

{LE . Hom(L(€,),K) — Hom (HyeX .c(ezy),K) ,

I.(ty) =t,oPr,.
Lemma 4.3. Let x € X thus

1. (Vt, € Hom(L(€&,),K))(Vy € X) we have

L(t))oxuoh,=t,,x =y
]ac(t:v) O XH Ohy = O,I 7é Y;

2. (Vt, € (L(€r), 7)) (Lu(te) o xn | © € &)
Proof. Let v € X and t, € Hom(L(€,),K) thus for all y € X and f, € L(€,) we have

I(ty) o x3 0 hy(fy) =tz 0 P;r oxw(ty 0 fy 0 P;r I H)
=t, o (Proy, o f, o Proy,),
@ y

and statement (1) follows. Statement (2) follows by statement (1) and [3, Proposition 5,
N4, §4 Chapter 2|. O
The following is the first main result of this section.

Theorem 4.1. We have

1. \Iﬂ{/l c HOTTL(Sl(}/’ 8, M), erX Sl(Yv <£(QS:B)7 T:v> 7/~L));
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2. (Vo € X)(Vs € Y)(VF € £,(Y, 6, 1))
[ B duts) = Pro( [ Fls)duts) o
Proof. Let z € X, set

A, :G> fr—Profou, € L(E,).

A, is well-defined by Lemma 4.1. By applying [3, Proposition 5, Ne3, §4 Chapter 2| A, €
L(&,(L(€,),1,)) if and only if (Vy € X)(A, o hy, € L((L(E,),7,),(L(E,),T,))). Moreover
Vy € X and Vf, € L(€,) we have

(A, 0 1y)(f,) = Prov, o f, o Pro,.

SO
Agohy=1d,x =y
Agohy, =0, #y.

In any case A, o hy, € L((L(€,),T,), (L(E,), 7)), thus
As € L(6,(L(E,), T2))

hence
(Vt, € (L(€y), Tu) )tz 0 Ay € B7). (4.10)

Therefore
t, (f;ro(/F(s) du(s)) ozx) = (ty 0 A) (/7(8) dp(s))
— [ (0 S)(F ) duts)
- / £ (ProF(s) o ) dy(s)
= [t (Rrow)(P)s)) duts),

where the second equality comes by (4.10) and [4, Proposition 1, Nel, §1, Chapter 6|, while
the last one comes by Proposition 4.7. ]

Definition 13. Let Z be a topological vector space set

{evz € Hom(Z,Hom(L(Z), Z),
(Vo e 2)(Vf € L(Z))(evz(v)(f)) = f(v)).

Moreover set 1 = evy and Vo € X set €, = evg,.
Lemma 4.4. Let D C H thus (A) = (B), where
(A) (Vz € X)(Vu, € Pry(D))(ex(vy) € LI(L(E,), Ta), L))
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(B) (Vo € D)(n(v) € L(&,(H,T))).
Proof. Let y € X thus for all v e H

n(v) o hy =10 5y(€r(v))'

Hence by (A) and the fact that by construction s, is continuous with respect to the topology
T we have for all v € D

n(v)ogy € LUL(E), ), (H, %))

Thus (B) follows by the universal property of any locally final topology, cf. [3, (ii) of
Proposition 5, Ne4, §4 Chapter 2. O

The following is the second main result of the section

Theorem 4.2. Let D C H and assume (A) of Lemma 4.4. Then (VF € £,(Y, &, pn))(Vx €
X)(Yv € D)

xT

J{mED e aute) = ([ Fo)duto)0) o) (411

Here the integral in the left-side is with respect to the p and the locally convex topology on
&, while the integral in the right-side is with respect to the p and the locally convex topology
on &.

Proof. (VF € £,(Y,®, u))(Vz € X)(Yv € D) we have
Pro( [ F(s)dpu(s))(v) = (Pron(v))( | F(s)du(s))
— [ (Bron)(F(s)) duts)
— [ (BroF(s)(e) duts)
— [ P E) () ela) du(s)
Here in the second equality we applied [4, Proposition 1, Nel, §1, Chapter 6] and the fact

that Pr,on(v) € L(B, €,) because of Lemma 4.4 and the linearity and continuity of Pr,
with respect to the topology ¥. Finally in the last equality we used Proposition 4.8. O

The following is the main result of this section

Theorem 4.3. Let D C H and assume (A) of Lemma 4.4. Then (VF € £,(Y, &, pn))(Vx €
X)(Yv € D)

([ et @D aue)oe)) =( [Fodus),o) @) (412)

x

Equivalently & is a U—space with respect to {{(L(€,), Tx) tzex, T and D. Here the integral
in the left-side is with respect to the p and the locally convex topology on (L(€,), T:).
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Proof. By (A) of Lemma 4.4, statement (1) of Theorem 4.1 and [4, Proposition 1, Nel, §1,
Chapter 6] we have (VF € £(Y, &, pn))(Vz € X)(Yv € D)

[ (B EN ) ot))dute) = { [ PrOEEN ) dutehofa))

T

hence the statement follows by Theorem 4.2. ]

Remark 9. By (4.12) and statement (2) of Theorem 4.1 (VF € £,(Y,®, u))(Vz € X) (Vv €

D)
</ F(s) d"(3>’“> (x) = < / F(s) du(s),zz(v(m))> (z).

Thus for all v,w € D and z € X

o) = u(e) = [ F o) (@) = ([ Fo)auts)w) (o).

Corollary 4.1. Let S € [], .y P(Bounded(&,)) and D such that

{N(x) = U, er, BE is total in €,,Vx € X, (413)

DCHN]],ex N(),

where S(x) = {B} |1, € L,}. Assume that for all x € X the topology 7, is generated by the
set of seminorms {p{,_ ; )| (l; jo) € Ly X Jo}, where b

Pl £(€2) 3 fors sup Vi (fow) € RY. (4.14)

Then
1. (A) of Lemma 4.4 for D =D;
2. (4.11) holds and & is a U—space with respect to {Ls)(€s)taex, T and D.

Proof. By request (4.13) we have that the les (£(€,), 7,;) is Hausdorff so the position is well-
set. By construction (Vz € X)(Vv, € D(z))(3, € L.)(v. € B ), so (Vfx € L(&,)) (V). €
Jy)

ijz <€w<vw)fw) = Vﬁ(fx(vx))

< p?jz,jz) (fx)7

hence statement (1) by [3, Proposition 5, Ne4, §1 Ch 2|. Statement (2) follows by statement
(1), Theorem 4.2 and Theorem 4.3 respectively. ]

®In others words (£(€,),7,) = Ls, (€,), see [19, Notation 2| and [19, Definition 4]
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Corollary 4.2 (LD(O,D)). Let (0,20, X,R") be a (O, &) —structure satisfying (2.14) and
Dm)NHN]],ex Bs # 0. Set

O CI'(p)
{D € 1(m) 1O Ly B (419)

If 3F C (Nyoo £1(RY, &, 1)) such that VI, (F) = O then (4.9) holds.
In particular if 3F C (Nyoo L1(RT, &, p1y) such that VI (F) = O then

(,D) C I(r) = LD(O, D).
Here By, for all x € X, is defined in [19, equality (5.3)]
Proof. By statement (2) of Corollary 4.1, Proposition 4.3 and Remark 7. ]

Remark 10. Note that if £ C O, as for example for the positions taken in Remark 4, we
have & C [[,cx Bg- Hence if £ CH we have £ CT(m) N H N [[,cx BE.

Corollary 4.3. Let us assume the hypotheses of Theorem 2.1 made exception for the (i)
replaced by the following one: € C H and 3F C (oo L1(RT, 8, ) such that VI (F) =
['(p) and

(6,€) CI(m).

Then all the statements of Theorem 2.1 hold true.

Proof. Since Remark 10, Corollary 4.2 and Theorem 2.1. [

4.2  Uniform convergence over K € Comp({H,T)).

In this section we assume given the following data

1. a Banach bundle U, a (0, &) —structure (U, M, X,Y) where O is defined in (2.16),
where we denote 20 = (M, v), p, X, R) and V = (&, 7), 7, X, {[| - |});

2. a Banach space (H, || - ||%) such that (#H,T) satisfies (6) of Definition 5, where ¥ is
the topology induced by the norm || - || and 7, is such that (£(&,),7,) = Lg, (&,) for
every r € X;

3. A asin (6) of Definition 5;
4. &, ¥ and A} as defined in Definition 9 and Definition 11 respectively.

The proof of the following Lemma is an adaptation to the present framework of the proof of
[8, Proposition 5.13].

Lemma 4.5. Let U € HmeX M, and o € X moreover assume that

1. £ECHC HZGX €, such that (3a > 0)(Vf € H)(|[fllsup < allflln), where || fllsup =
supgex |1/ ()]s

2. AF € I'(p) such that F(2o) =U(T) and {F(-)(s)|s €Y} CA
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3. {UC)(s)|s €Y} CA;

4. {F(s)|s € Y} and {U(s)|s € Y} are equicontinuous as subsets of L({(H, | -|l«)),
where U = AY (U). and F = AY(F).

Then (A) < (B) where
(A) U e T"=(p);
(B) For all K € Comp(H) such that K C & and for all K € Comp(Y')

lim supsup||U(z)(s)v(z) — F(2)(s)v(z)|| = 0.

2= Too s K veK

Proof. We shall prove only (A) = (B), indeed the other implication follows by (3) = (4) of
[19, Lemma 5.1]. So assume (A) to be true. In this proof let us set B(H) = L((H, || - |l2)),
moreover U = U} and A = A), moreover set F' = A} (F) for every F € I'(p); thus by
statement (2) of Proposition 4.7 W(F) = F and V() = U. Hence by Proposition 4.8 for all
veE Fel(p),ze XandseY

U(z)(s)v(z) = Uv)(2), F(2)(s)v(z) = (Fv)(2). (4.16)

By (A) and implication (4) = (3) of [19, Lemma 5.1] we have for all K € Comp(Y') and
vel
lim sup||U(z)(s)v(z) — F(z)(s)v(z)| = 0. (4.17)

Z—Too seK

Fix I € Comp(H) such that K C &, f € K and € > 0, thus by (4.17) and (4.16) there exists
U neighbourhood of z., such that

supsup||(U(s) = F(s)f) (2)]| < =/2 (4.18)

Define B B
M = max{sup,ey || F'(3)l| By, SuPsey 1U(S) |0y}
n=¢e/4aM
Uf)={g e LIIf —glln <n}

Thus for all g € 4U(f)

fg}ggg@\\( (5) = F(9)g) (=) <

sup gggH (U(s) = F()f) ()] + sup jggllﬂ(s)(g - N+ sup gggHF(s)(g - N <

¢/2 + asup|[U(s)(g = f)lly, + asup|| F()(g = ], <

5/2+2aMHg— fHH < €.
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Therefore (B) follows by considering that {$4(f)| f € K} is an open cover of the compact K.
Indeed let for example {4(f;) |7 = 1,...,n} a finite subcover of K thus by setting W = (., U,
with obvious meaning of U;, we have

sup sup supHL{ (s)g(z) — F(z)(s)g(z)H <e.
zeW seK gek

Remark 11. We can set H = HZeX ¢, with the usual norm || - ||sup-

Theorem 4.4 (K—Uniform Convergence). Let 0 = ((&, 1) ,m, X, || - ||) be a Banach bundle.
Let 200 € X and Uy € [ ex, C(RT, Bs(€,)) be such that Uy(x) is a (Co)—semigroup of
contractions (respectively of isometries) on &, for all x € Xy. Assume that

1. D(T,.) is dense in €,__;
2. 0 and W satisfy (2.18);

3. IXo > 0 (respectively INg > 0, \; < 0) such that the range R(\o — T...) is dense in
¢, (respectively the ranges R(Ng — Ty..) and R(A\ — Ty,) are dense in €,__);

Ulllince., (£s.(€2)) € M. (respectively Uis(Ls.(€.)) C M) for all z € X;
ECHCTx€

X 1s completely reqular and the filter of neighbourhoods of xo, admits a countable basis;
IF CMyoo L1(RT, &, 1) such that WH, (F) =T(p);

(FF el(p)(F(re) =U(zx)) such that

(a) ([ F(s)dur(s),E) CT(x), for all X > 0;

(b)) Vo € £)(Fd € D) s.t. d1(T00) = V(o) and (V{zp}neny C X | limyen 2, = Too)
we have that {U(z,)(-)P1(zn) — F(2n)(-)v(2n) bnen is a bounded equicontinuous
sequence.

ST N R A

Then
U el (p). (4.19)

Furthermore if

1. (Fa>0)(Vf € H)(|fllsup < all fll20),

2. {F()(s)|s € RT} C A and {U(-)(s)|s e RT} CA;

3. {F(s)|s € R*} and {U(s)|s € R*} are equicontinuous as subsets of L((H, |- ||l%))-
Then for all K € Comp(H) such that K C & and for all K € Comp(R™")

lim sup supHZ/{ Yo(z) — F(z)(s)v(z)” = 0. (4.20)
F oo se K vEK
Here D(T.,) is defined as in Notation 1 with Ty and ® given in (2.18). WhileU € [[,.x M.
such thatU | Xo = Uy andU(xy) is the semigroup on €, generated by T’ operator defined
n (2.2). Moreover || f||sup = sup,ex || f (2|2, while U = A} (U) and F = A} (F).
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Proof. By hypothesis (7) and statement (1) of Theorem 4.1, (2.14) follows. Moreover (4.15)
follows by hypothesis (5), and Remark 10. Hence by hyps. (7—8a), and Corollary 4.2 follows
the LD({F},€&). Then (4.19) follows by Theorem 2.1. (4.20) follows by (4.19) and Lemma
4.5. [

Remark 12. By statement (2) of Proposition 4.7 hypothesis (7) is equivalent to the follow-
ing one AR (T'(p)) C Myso £1(RT, B, 11y). In any case the form in hypothesis (7) has the
advantage to be considered as a tool for constructing I'(p). Finally note that

(®,€) C D(n) = (8a).

4.3 (H,%) as direct integral of a continuous field of left-Hilbert and
associated left-von Neumann algebras

Assume that U = ((€,7),7, X, M) is a continuous field of left-Hilbert algebras on X. Let
‘H be the direct integral of U with respect to some finite Radon measure on X and B C H

a linear space, set
A(B) = {X ST — La(m) |CL € B},

where L,, € B(€,) for any a, € &,, is the left multiplication on the left-Hilbert algebra &,.
Then H and A(B) satisfies the requirements in Definition 5, moreover

G(B) = 0(A(B)) | H = Lg (4.21)

where L, € B(H) for any a € H, is the left multiplication on the left-Hilbert algebra H. If
every &, is unital then H is unital, thus L, is an injective (isometric) map of H into B(H).
Therefore under this additional requirement we can take the following identification

G(B) ~ B as linear spaces.

Let H = {H' € T],.x €.}7, such that H? is a left Hilbert subalgebra of €,, while H is a
linear subspace of HY, for all k= 1,2 and z € X. Set

I'(m,H) = {ceH|(Vz € X)(o(z) € H))}
Dy={oeM|(Vz € X)(o(x) € H.)} (4.22)
By = {oe€H|(Vz € X)(o(z) € H2)}.

Thus I'(7, H) is a left Hilbert subalgebra of H and By, Dy are linear subspaces of I'(m, H), so
Lg,(Dy) C T'(m, H). (4.23)

By (4.23) and (4.21) follows that for all 0 € By, n € Dy and y € X

{<G(BH),DH> C I'(m, H), (4.24)

(0 (x — Low)) ) (y) = o(y)n(y).

Let us consider now the continuous field of left-von Neumann algebras associated with the
fixed field of Hilbert algebras, and by abusing of language, let us denote it with the same
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symbol U = ((&,7),m, X, M), as well as H will denote the associated direct integral with
respect to some finite Radon measure on X. Let A, be the modular operator associated
with the Hilbert algebra €, and o, the corresponding modular group. Thus we can set

Ar={S;: X 32— 0,(t) € Aut(&,) |t € R}
Ga =0(Ap) | H
X =0(5)H, teR

Note that for every t e R, v € H and z € X

Now if we set

for any linear subspace D of ‘H we have
(Ga, D) CT(m).
Finally note that to Ay we can associate the following map
Y:RT3t— %, €Ga,

for which we have for all x € X B
W%(E)(m) = 0,.

In the previous example we consider the extreme case in which I'(7) = H. In order to have
a model where I'(m) C H we have to get a more detailed structure, namely the half-side
modular inclusion. So for any x € X let (M, C €,,Q,) be a hsmi* and V, the Wiesbrock
one-parameter semigroup of unitarities associated with it so V, € Hstr(€,)" such that
N, = Ad(V,(1))€&,. Therefore what we are interested in is that for all ¢ € R

{Ad<v$<t>><e$> Ce,,

Ad(V,(1))(3,) € N, (4.25)

By using the first inclusion in (4.25) we can set

Ay ={Vi: X 32— Ad(V,(t)) | €, € Aut(&,) |t € R}
Gy =0(Ay) | H
V=0V, | H,tER.

Hence for all x € X and t € R

{Vt< v)(w) = Ad(V,(t))v(x)
FOV)(@)(t) = Ad(Va(1))

Therefore if we set D and I'(7) such that

DCI(n /mdu
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then by using the second inclusion in (4.25) we have
(Gv, D) C ['(x).

For any semi-finite von Neumann algebra 9t and any ¢ € Ny faithful we have that the Tomita-
Takesaki modular group of is inner (see |21, Theorem 8.3.14]) i.e. it is implemented by a
strongly continuous group morphism V : R — U(M), where UMN) = {U € N|U ! = U*},
so in particular

V(R) C 9. (4.26)

Now let (Hy, ms,§2) be a cyclic representation associated with ¢ and 9y = 7(N,,) which is
a von Neumann algebra ¢ being normal, then by (4.26) immediatedly we have

ms(V(R)) C Ny, (4.27)
By the invariance ¢ = ¢ o 05}51, and the cited unitary implementation we obtain that there

exists Wy unitary action on Hy such that

(4.28)

{Ac«m(m oy = Ad(my(V (1)) o 7y,
Wy(t) = AL,

where the second sentence comes by [21, Theorem 8.1.2|, with A, the modular operator
associated with (914, Q).
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