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From time to time the EMJ publishes survey papers.
The EMJ publishes 4 issues in a year.
The language of the paper must be English only.
The contents of EMJ are indexed in Scopus, Web of Science (ESCI), Mathematical

Reviews, MathSciNet, Zentralblatt Math (ZMATH), Referativnyi Zhurnal – Matematika,
Math-Net.Ru.

The EMJ is included in the list of journals recommended by the Committee for Control
of Education and Science (Ministry of Education and Science of the Republic of Kazakhstan)
and in the list of journals recommended by the Higher Attestation Commission (Ministry of
Education and Science of the Russian Federation).

Information for the Authors
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When the paper is accepted, the authors will be asked to send the tex-file of the paper
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The author who submitted an article for publication will be considered as a correspond-
ing author. Authors may nominate a member of the Editorial Board whom they consider
appropriate for the article. However, assignment to that particular editor is not guaranteed.

Copyright. When the paper is accepted, the copyright is automatically transferred to the
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Publication Ethics and Publication Malpractice

For information on Ethics in publishing and Ethical guidelines for journal publica-
tion see http://www.elsevier.com/publishingethics and http://www.elsevier.com/journal-
authors/ethics.

Submission of an article to the EMJ implies that the work described has not been pub-
lished previously (except in the form of an abstract or as part of a published lecture or
academic thesis or as an electronic preprint, see http://www.elsevier.com/postingpolicy),
that it is not under consideration for publication elsewhere, that its publication is approved
by all authors and tacitly or explicitly by the responsible authorities where the work was
carried out, and that, if accepted, it will not be published elsewhere in the same form, in
English or in any other language, including electronically without the written consent of
the copyright-holder. In particular, translations into English of papers already published in
another language are not accepted.

No other forms of scientific misconduct are allowed, such as plagiarism, falsifi-
cation, fraudulent data, incorrect interpretation of other works, incorrect citations,
etc. The EMJ follows the Code of Conduct of the Committee on Publication
Ethics (COPE), and follows the COPE Flowcharts for Resolving Cases of Suspected
Misconduct (http : //publicationethics.org/files/u2/NewCode.pdf). To verify origi-
nality, your article may be checked by the originality detection service CrossCheck
http://www.elsevier.com/editors/plagdetect.

The authors are obliged to participate in peer review process and be ready to provide
corrections, clarifications, retractions and apologies when needed. All authors of a paper
should have significantly contributed to the research.

The reviewers should provide objective judgments and should point out relevant published
works which are not yet cited. Reviewed articles should be treated confidentially. The
reviewers will be chosen in such a way that there is no conflict of interests with respect to
the research, the authors and/or the research funders.

The editors have complete responsibility and authority to reject or accept a paper, and
they will only accept a paper when reasonably certain. They will preserve anonymity of
reviewers and promote publication of corrections, clarifications, retractions and apologies
when needed. The acceptance of a paper automatically implies the copyright transfer to the
EMJ.

The Editorial Board of the EMJ will monitor and safeguard publishing ethics.
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The procedure of reviewing a manuscript, established
by the Editorial Board of the Eurasian Mathematical Journal

1. Reviewing procedure
1.1. All research papers received by the Eurasian Mathematical Journal (EMJ) are

subject to mandatory reviewing.
1.2. The Managing Editor of the journal determines whether a paper fits to the scope of

the EMJ and satisfies the rules of writing papers for the EMJ, and directs it for a preliminary
review to one of the Editors-in-chief who checks the scientific content of the manuscript and
assigns a specialist for reviewing the manuscript.

1.3. Reviewers of manuscripts are selected from highly qualified scientists and specialists
of the L.N. Gumilyov Eurasian National University (doctors of sciences, professors), other
universities of the Republic of Kazakhstan and foreign countries. An author of a paper
cannot be its reviewer.

1.4. Duration of reviewing in each case is determined by the Managing Editor aiming at
creating conditions for the most rapid publication of the paper.

1.5. Reviewing is confidential. Information about a reviewer is anonymous to the authors
and is available only for the Editorial Board and the Control Committee in the Field of Ed-
ucation and Science of the Ministry of Education and Science of the Republic of Kazakhstan
(CCFES). The author has the right to read the text of the review.

1.6. If required, the review is sent to the author by e-mail.
1.7. A positive review is not a sufficient basis for publication of the paper.
1.8. If a reviewer overall approves the paper, but has observations, the review is confi-

dentially sent to the author. A revised version of the paper in which the comments of the
reviewer are taken into account is sent to the same reviewer for additional reviewing.

1.9. In the case of a negative review the text of the review is confidentially sent to the
author.

1.10. If the author sends a well reasoned response to the comments of the reviewer, the
paper should be considered by a commission, consisting of three members of the Editorial
Board.

1.11. The final decision on publication of the paper is made by the Editorial Board and
is recorded in the minutes of the meeting of the Editorial Board.

1.12. After the paper is accepted for publication by the Editorial Board the Managing
Editor informs the author about this and about the date of publication.

1.13. Originals reviews are stored in the Editorial Office for three years from the date of
publication and are provided on request of the CCFES.

1.14. No fee for reviewing papers will be charged.

2. Requirements for the content of a review
2.1. In the title of a review there should be indicated the author(s) and the title of a

paper.
2.2. A review should include a qualified analysis of the material of a paper, objective

assessment and reasoned recommendations.
2.3. A review should cover the following topics:
- compliance of the paper with the scope of the EMJ;
- compliance of the title of the paper to its content;
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- compliance of the paper to the rules of writing papers for the EMJ (abstract, key words
and phrases, bibliography etc.);

- a general description and assessment of the content of the paper (subject, focus, actuality
of the topic, importance and actuality of the obtained results, possible applications);

- content of the paper (the originality of the material, survey of previously published
studies on the topic of the paper, erroneous statements (if any), controversial issues (if any),
and so on);

- exposition of the paper (clarity, conciseness, completeness of proofs, completeness of
bibliographic references, typographical quality of the text);

- possibility of reducing the volume of the paper, without harming the content and
understanding of the presented scientific results;

- description of positive aspects of the paper, as well as of drawbacks, recommendations
for corrections and complements to the text.

2.4. The final part of the review should contain an overall opinion of a reviewer on the
paper and a clear recommendation on whether the paper can be published in the Eurasian
Mathematical Journal, should be sent back to the author for revision or cannot be published.
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YESMUKHANBET SAIDAKHMETOVICH SMAILOV

(to the 70th birthday)

On October 18, 2016 was the 70th birthday of Yesmukhabet
Saidakhmetovich Smailov, member of the Editorial Board of the
Eurasian Mathematical Journal, director of the Institute of Applied
Mathematics (Karaganda), doctor of physical and mathematical sci-
ences (1997), professor (1993), honoured worker of the E.A. Buketov
Karaganda State University, honorary professor of the Sh. Valikanov
Kokshetau State University, honorary citizen of the Tarbagatai district
of the East-Kazakhstan region. In 2011 he was awarded the Order
“Kurmet” (= “Honour”).

Y.S. Smailov was born in the Kyzyl-Kesek village (the Aksuat dis-
trict of the Semipalatinsk region of the Kazakh SSR). He graduated

from the S.M. Kirov Kazakh State University (Almaty) in 1968 and in 1971 he completed
his postgraduate studies at the Institute of Mathematics and Mechanics of the Academy of
Sciences of the Kazakh SSR (Almaty). Starting with 1972 he worked at the E.A. Buketov
Karaganda State University (senior lecturer, associate professor, professor, head of the De-
partment of Mathematical Analysis, dean of the Mathematical Faculty; from 2004 director
of the Institute of Applied Mathematics).

In 1999 the American Biographical Institute declared professor Smailov “Man of the Year”
and published his biography in the “Biographical encyclopedia of professional leaders of the
Millennium”.

Professor Smailov is one of the leading experts in the theory of functions and functional
analysis and a major organizer of science in the Republic of Kazakhstan. He had a great
influence on the formation of the Mathematical Faculty of the E.A. Buketov Karaganda
State University and he made a significant contribution to the development of mathematics
in Central Kazakhstan. Due to the efforts of Y.S. Smailov, in Karaganda an actively oper-
ating Mathematical School on the function theory was established, which is well known in
Kazakhstan and abroad.

He has published more than 140 scientific papers, two textbooks for students and one
monograph. 10 candidate of sciences and 4 doctor of sciences dissertations have been de-
fended under his supervision.

Research interests of Professor Smailov are quite broad: the embedding theory of function
spaces; approximation of functions of real variables; interpolation of function spaces and
linear operators; Fourier series for general orthogonal systems; Fourier multipliers; difference
embedding theorems.

The Editorial Board of the Eurasian Mathematical Journal congratulates Yesmukhanbet
Saidakhmetovich Smailov on the occasion of his 70th birthday and wishes him good health
and new achievements in mathematics and mathematical education.
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Abstract. In this paper, expressions for the lower and upper bounds on the number of
IA-automorphisms of a finitely generated group have been obtained. Using these bounds a
few results including the one by Yadav and Vermani on Hasse principle have been derived
as simple corollaries. Considering groups of order pq, pqr and p2q the exact number of
IA-automorphisms have been obtained in terms of the distinct primes p, q and r.

1 Introduction

For a group G, we denote the group of all automorphisms on G by Aut(G). Following
Bachmuth [3], we call an automorphism α on G an IA-automorphism if and only if it
preserves all cosets of G′ i.e. x−1α(x) ∈ G′, ∀ x ∈ G; here G′ is the derived subgroup of G.
Clearly Inn(G) / Autc(G)/ IA(G)/ Aut(G), where Inn(G), Autc(G) and IA(G) denote the
groups of inner automorphisms, class preserving automorphisms, and IA-automorphisms of
G respectively. In this paper we try to obtain expressions for the bound of IA(G). The
paper is divided into two parts. In the first part we consider a finitely generated group to
obtain expressions for the bounds of IA(G). With the help of these bounds we also obtain
Yadav and Vermani’s result on Hasse Principle as a simple corollary. In the second part we
consider groups G of the types pq, pqr and p2q for distinct primes p, q, and r. We obtain
the expression for |IA(G)| in terms of these primes.

2 |IA(G)| of finitely generated groups

Let G be a finite p-group of order pn. Let {x1, x2 . . . , xd} be any minimal generating set for
G. Let α ∈ IA(G). Since α(xi) ∈ G′xi for 1 ≤ i ≤ d, there are at the most |G′| choices for
the image of xi under α. Hence,

|IA(G)| ≤
d∏
i=1

|G′| = |G′|d. (2.1)

Let |G′| = pm. Since G′ is contained in φ(G) ( where φ(G) is the Frattini subgroup of G),
then by the Burnside Basis Theorem d ≤ n−m. Hence,

|IA(G)| ≤ pmd ≤ (pm)n−m = pm(n−m). (2.2)
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Thus, pm(n−m) is an upper bound of IA(G) for the p-group G.
Also, as every inner automorphism is an IA-automorphism, it follows that |G/Z(G)| is

a lower bound of |IA(G)|. Thus,

|G/Z(G)| ≤ |IA(G)| ≤ pm(n−m). (2.3)

Obviously, for an abelian group G, both the lower and upper bounds for IA(G) are the
same, and are given by equal to 1.

Here we consider the examples where one or both of these upper and lower bounds are
attained and also where strict inequality follows at both the ends.

i. For the semidihedral group,

SD16 = 〈x, y|x8 = y2 = 1, y−1xy = x3〉,

|G/Z(G)| = 8, |IA(G)| = |G′|2 = 16. Hence, |Inn(G)| < |IA(G)| = |G′|2.

ii. For the dihedral group D8, |G/Z(G)| = |IA(G)| = |G′|2 = 4. Hence |Inn(G)| =
|IA(G)| = |G′|2.

iii. For the group

G = 〈x, y, z|xp3 = yp
2

= zp = 1, yxy−1 = x1+p, zxz−1 = x, zyz−1 = yxp
2〉,

|G/Z(G)| = |IA(G)| = p5, |G′|3 = p6. Hence |Inn(G)| = |IA(G)| < |G′|3.

iv. For the group G = D8 × D16, where D8 = 〈x, y|x2 = y2 = 1, (xy)4 = 1〉 and D16 =
〈z, w|z8 = w2 = 1, w−1zw = z−1〉, |G/Z(G)| = 25, |IA(G)| = 29, |G′|4 = 212. Hence
|Inn(G)| < |IA(G)| < |G′|4.

We now prove a result containing the expression for the upper bound in a different form for
the group of IA-automorphisms.

Theorem 2.1. Let G be a non-trivial p-group having order pn. Then

|IA(G)| ≤

{
p
n2

4 if n is even

p
n2−1

4 if n is odd.

Proof. If G is abelian, then the theorem holds trivially.
Now, consider G to be a non-abelian group and |G′| = pm. Let |φ(G)| = pt. Since G′ ⊆
φ(G), m ≤ t. By the Basis Theorem of Burnside, it follows that from any generating set
for G one can select n− t elements such that these n− t elements generate G. The number
n− t becomes maximum for t = m.
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But |G′| = pm. So we have 1 ≤ m ≤ n− 2.
Thus, all possible values of m(n−m) are{

n− 1, 2(n− 2), 3(n− 3), . . . , n2/4
}

if n is even, and
{n− 1, 2(n− 2), 3(n− 3), . . . , (n− 1)(n+ 1)/4} if n is odd.

Clearly the maximum value of m(n−m) is n2

4
when n is even, and (n−1)(n+1)

4
when n is odd.

Putting these values in inequality (2.2), we get

|IA(G)| ≤

{
p
n2

4 if n is even

p
n2−1

4 if n is odd.

Using the order inequality (2.1), we can obtain the following finiteness condition of IA(G)
for a finitely generated group G.

Theorem 2.2. Let G be a finitely generated group. Then IA(G) is finite if and only if
Inn(G) is finite.

Proof. Since G is a finitely generated group, assume that the number of generators is d.
By inequality (2.1),

|IA(G)| ≤ |G′|d.

If Inn(G) is finite, then |G/Z(G)| is finite, and hence by the Schur Theorem G′ is finite.
Therefore, by inequality (2.1), |IA(G)| ≤ |G′|d. The converse is obviously true.

In [5], Sh. Fouladi proved that, for a non-cyclic p-group G of maximal class and order
pn, |Autφ(G)| = p2n−4 if and only if G is metabelian, where Autφ(G) is the collection of
automorphisms which preserve the cosets of φ(G).

But whenever G is a p-group of maximal class with |G| = pn, then G′ = φ(G), and
|G′| = pn−2. Thus, by inequality (2.2) the upper bound for IA(G) is p2(n−2) = p2n−4. Hence,
using this result, we can restate the Fouladi result as follows.

Proposition 2.1. In a p-group G of maximal class and of order pn, IA(G) attains the upper
bound if and only if G is metabelian.

Consider a p-group G with a cyclic maximal subgroup. Then, by [8], either
(i) If p is odd and G is isomorphic to

M(pn) = 〈x, y|xpn−1

= 1 = yp, y−1xy = x1+pn−2〉.

(ii) If p = 2 and G is isomorphic to M(2n)(n ≥ 4), or the dihedral group D2n , or the
generalized quaternion group Q2n , or the quasi-dihedral group S2n which has the following
representation

S2n = 〈x, y|x2a = y2 = 1, y−1xy = x−1+a〉,
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where a = 2n−2 and n ≥ 4.
Notice that in the groups D2m , Q2m , S2m , the class of G is m − 1; φ(G) = G′, and G′ is

cyclic. Thus, for this case G is metabelian.

In [7] Yadav and Vermani proved that every non-abelian finite p-group of order pn having
a maximal subgroup which is cyclic enjoys “Hasse Principle” i.e. Autc(G) = Inn(G).

In analogy with Hasse Principle, here we find some conditions on G when IA(G) equals
Inn(G).

Theorem 2.3. Let G be a p-group with a cyclic maximal subgroup. Then IA(G) coincides
with Inn(G) if and only if G is of the type M(pn) or |G| = 23.

Proof. Let G be a (non-abelian) p-group with a cyclic maximal subgroup.
Then G is in one of the following classes:

(1) M(pn),
(2) p = 2 and G is a 2-group of maximal class.

In case (1), G′ = 〈xpn−1〉 which has order p, and Z(G) = 〈xp〉 which has order pn−2.
In this case, the maximum order of IA(G) is p2 and Inn(G) = G/Z(G) also has order

p2. Hence, IA(G) = Inn(G).
If |G| = 23, then the non abelian group G is isomorphic with D8 or Q8. In both of these

situations, IA(G) = Inn(G).
Conversely, let |IA(G)| = |Inn(G)|. Hence, in case (2), G is a metabelian 2−group of

maximal class. By Proposition 2.1, IA(G) attains upper bound. Hence, the order of IA(G)
is 22(n−2). But, |Inn(G)| = 2n−1.

So, |Inn(G)| = |IA(G)| implies 2n−1 = 22(n−2). That is, n = 3.

Lemma 2.1. [9] If G is an extraspecial p-group, then the order of G is p2n+1 and G is a
central product of

i. n-groups isomorphic to E(p3), or

ii. M(p3) and n − 1 groups isomorphic to E(p3), where E(p3) = 〈x, y|xp = yp = zp = 1 =
[z, x] = [z, y]〉 with z = [x, y], or

iii. n dihedral groups of order 8, or

iv. n− 1 dihedral groups of order 8 and a quaternion group of order 8.

We can use this characterization to prove the following result.

Theorem 2.4. For every extraspecial p-group G, Inn(G) = IA(G).

Proof. From the above characterization of extraspecial p-group, it is clear that extra-
special p-group is generated by 2n elements say x1, x2, . . . . . . xn, y1, y2, . . . . . . , yn, and |G′| =
|Z(G)| = p. Thus, the group G/G′ is an elementary abelian p-group of order p2n, and gen-
erated by the images x′i and y′i of the above generators.

Let G′ = 〈z〉 = cp. Then xi −→ xiz
ri and yi −→ yiz

si defines an IA-automorphism of G
for any ri, si ∈ {0, 1, . . . p− 1}.

Hence, |IA(G)| = p2n and |Inn(G)| = |G/Z(G)| = p2n. Thus, the result holds true.
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The main result of Yadav and Vermani[7] now follows as a simple corollary.

Corollary 2.1. Every extraspecial p-group enjoys “Hasse Principle".

Proof. By the above theorem, Inn(G) = IA(G). But Inn(G) ≤ Autc(G) ≤ IA(G). Hence
the result follows directly.

Proposition 2.2. Let G be a finite 2-generated p-group of class 2. Then IA(G) attains the
upper bound.

Proof. Since G is 2-generated group of class 2, G′ is cyclic.
Let the order of G′ be pc, and hence assume that G/G′ = Cpa × Cpb . Therefore, |G| =

pa+b+c.
By Proposition 5.4 of [2], |Z(G)| = pa+b−c. Thus,

|G/Z(G)| = pa+b+c

pa+b−c = (pc)2 = |G′|2 = |IA(G)|.

Hence, the result follows.

For a given x ∈ G, let CG(x) = {g ∈ G : gx = xg} be the centralizer of x in G.

We now quote two results in [6] without giving their proofs.

Lemma 2.2. Let G be a finite group and N a normal subgroup. Then for any x ∈ G,

|CG(x)| ≥ |CG/N(xN)|.

Lemma 2.3. Let G be a p-group of maximal class with |G| = pn ≥ p3. Then

1. Zi(G) is the unique normal subgroup of G of order pi (i = 1, 2, . . . , n− 2),

2. G has exactly p+ 1 normal subgroups of order pn−1 (i.e. maximal subgroups).

As a corollary of Lemma 2.3, in a p-group G of maximal class, the upper and lower central
series coincide. So, if the upper and lower central series are

1 = Z0(G) < Z1(G) < Z2(G) < . . . < Zn−2(G) < Zn−1(G) < Zn = G,

1 = γn+1(G) < γn(G) < γn−1(G) < . . . < γ2(G) = G′ < G,

then
Z1(G) = γn(G), Z2(G) = γn−1(G), . . .

Lemma 2.4. If G is a p-group of maximal class with |G| ≥ p4, then there is a unique
maximal subgroup whose center is bigger than the center of G, and the centers of other
maximal subgroups coincide with the center of G.
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Proof. As G is of maximal class, its center has order p, and for a maximal subgroup of M ,
Z(G) must be contained in Z(M).

In the upper central series of G, we have

|Z1(G)| = p, |Z2(G)| = p2, |Z3(G)| = p3, . . .

For x ∈ Z2(G)\Z1(G) the element xZ1(G) will be central in G/Z1(G) (since Z2(G)/Z1(G)
is, by definition, the center of G/Z1(G)). Hence the centralizer of xZ1(G) will be the full
group G/Z1(G) which has order pn−1. By Lemma 2.2, the centralizer of x in G has order
at least pn−1. Since x /∈ Z1(G) = Z(G), the centralizer of x must be a proper subgroup. It
follows that the centralizer of x must be of order pn−1, i.e. it is a maximal subgroup; call
it M0. Then, in M0, x is a central element, and as noted above Z(G) ⊆ Z(M0). Thus, the
center of M0 contains 〈x, Z(G)〉, which has order p2 (since x /∈ Z(G)).

Note that |Z2(G)| = p2, and x ∈ Z2(G)\Z1(G). Thus, 〈x, Z1(G)〉 = Z2(G), and hence
the center of M0 contains Z2(G).

If M1 is another maximal subgroup such that Z(M1) has order at least p2, then Z(M1)
will contain Z2(G) (by Lemma 2.3) i.e. Z(M1) ⊇ 〈x, Z1(G)〉, i.e. x is central in both M0

and M1.
Since M0,M1 are distinct maximal subgroups, 〈M0,M1〉 = G, and x is central in

〈M0,M1〉 = G, i.e. x ∈ Z(G) = Z1(G), a contradiction.
Thus, the centers of other maximal subgroups must have order p, and thus, the centers

coincide with the center of G.

Theorem 2.5. Let G be a p-group of maximal class, and IA(G) attain the upper bound
|G′|2. Then IA(G) = Autc(G) if and only if |G| = p3.

Proof. Let G be a p-group of maximal class.
Let |G| = p3, then |Z(G)| = |G′| = p, and G/Z(G) ∼= Cp × Cp. Thus, the p+ 1 maximal

subgroups of G have order p2, and so they are abelian. Let M0,M1, . . . ,Mp be the (abelian)
maximal subgroups, and take xi ∈Mi\Z(G). Then the conjugacy class of xi is xiG′. Thus,
it is easy to see that an automorphism preserves conjugacy classes of G if and only if it
preserves cosets of G′, i.e. Autc(G) = IA(G).

Consider now the case |G| > p3.
Here G has exactly p + 1 maximal subgroups, say M0,M1, . . . ,Mp, and one of these

maximal subgroups has the center bigger than the center of G, say M0, and the rest having
the centers equal to the center of G. Note that G′ has index p, in all Mi. However, for
x0 ∈M0\G′, its conjugacy class is not the whole coset x0G

′. This is verified by the following
arguments.

Since the center of M0 contains at least Z2(G) (which has order p2), the centralizer of x0

contains 〈x0, Z2(G)〉 (note that |G| > p3 so Z2(G) is proper subgroup). Thus, the centralizer
of x0 has order at least p3, so the index of the centralizer of x0 is at most pn−3 which is
strictly less than the order of G′ (equal to pn−2). This means that the conjugacy class of
x0 is not the full coset x0G

′. In other words, x0G
′ is a union of more than one conjugacy

classes.
Since IA(G) attains the upper bound, which means, given any x ∈ G\G′, for every

t ∈ G′, there is an IA-automorphism of G which takes x to xt, i.e. IA(G) permutes the
elements of the coset xG′ transitively.



36 R.G. Ghumde, S.H. Ghate

However, the coset x0G
′ is a union of more than one conjugacy class. Thus, taking t ∈ G′

such that x0 is not conjugate to x0t, there exists an IA-automorphism of G which takes x0

to x0t, and so this IA-automorphism is not preserving the conjugacy class of x0. Hence the
result follows.

Theorem 2.6. Let G be a p-group and N a normal subgroup such that N ≤ G′. Moreover,
let N be invariant under all the IA-automorphisms of G and Ḡ = G/N . If IA(G) attains
the upper bound, then IA(Ḡ) also attains the upper bound.

Proof. Let {x1, x2, . . . , xd} be a minimal generating set of G. Then {x̄1, . . . , x̄d} is a minimal
generating set for Ḡ.

Saying ‘IA(G) attains upper bound’ is equivalent to saying that, given any t1, t2, . . . , td
in G′, there is an IA-automorphism of G taking (x1, . . . , xd) to t1x1, . . . , tdxd.

N is a normal subgroup of G with N ≤ G′. Thus, the derived subgroup of Ḡ = G/N is
equal to G′/N .

Now, consider arbitrary t̄1, . . . , t̄d in the derived subgroup of Ḡ. Suppose that IA(G)
attains the upper bound. Then for t1, t2, . . . , td in G′, there is an IA-automorphism σ
of G taking (x1, . . . , xd) to (t1x1, . . . , tdxd). Since N is invariant under σ, σ induces an
automorphism of G/N , and also it takes (x̄1, . . . , x̄d) to (x̄1t̄1, . . . , x̄dt̄d). This means that
IA(Ḡ) attains the upper bound.

Definition 1. A group G is called a central product of its normal subgroups H and K if

1. HK = G,

2. H ∩K ⊆ Z(G),

3. every element of H commutes with every element of K.

The following result follows directly by the above definition.

Proposition 2.3. If G is a central product of H and K then,

i. Z(G) = Z(H)Z(K),

ii. G′ = H ′K ′.

If G is a central product of two groups H and K, then there are some interesting relations
between some natural subgroups of Aut(G) with subgroups of Aut(H) and Aut(K). As
an example, it follows by the Theorem of Yadav and Vermani [7] that if G is the central
product of H and K, then Autc(G) = Inn(G) if and only if Autc(H) = Inn(H) and
Autc(K) = Inn(K).

The question that arises naturally is whether such a relation also holds for IA-
automorphisms. At this stage it seems difficult to get any relation of this kind on IA-
automorphisms. One can, however, show that a one way implication holds for IAz-
automorphisms as stated below where IAz-automorphisms mean those IA-automorphisms
which preserve the center elementwise.

Proposition 2.4. Let G be central product of its subgroups H and K. If IAz(G) = Inn(G)
then IAz(H) = Inn(H) and IAz(K) = Inn(K).
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Proof. Let f ∈ IAz(H), define F : G −→ G by F (hk) = f(h)k, h ∈ H and k ∈ K.
We first show that F is well defined. To this end, let hk = h1k1, for h, h1 ∈ H, and

k, k1 ∈ K. We have to show that F (hk) = F (h1k1), i.e. f(h)k = f(h1)k1, i.e. f(h−1
1 h) =

k1k
−1. But H ∩K ⊆ Z(G) and f ∈ IAz(G)).Thus,

hk = h1k1 ⇒ h−1
1 h = k1k

−1 ⇒ h−1
1 h ∈ Z(G)⇒ h−1

1 h ∈ Z(H)⇒ k1k
−1 = h−1

1 h = f(h−1
1 h).

Hence F is well defined. It is easy to see that F is an isomorphism, and the extension of f
also.

Further,

F (hkG′) = F (hkH ′K ′) = F (hH ′)F (kK ′) = hH ′kK ′ = hkH ′K ′ = hkG′.

Therefore, F is an IA-automorphism ofG. Since f is the identity on Z(H), and, by definition,
it is obvious that F is the identity on Z(K). Therefore, F is the identity on Z(H)Z(K) =
Z(G), i.e. F is in IAz(G). This shows that every f in IAz(H) extends to an F in IAz(G).

By the hypothesis, F is an inner automorphism, say by the conjugation by h′k′. k′ acts
trivially on H by conjugation. So, F acts on H as the conjugation by h′.

By the definition of F , it is clear that the restriction of F on H is f . Hence, f is an
inner automorphism, namely conjugation by h′. It means every element of IAz(H) is inner.
Similarly we can show that IAz(K) = Inn(K).

The following example shows that the converse of the above proposition is not true.

Example 1. By the definition of the central product, it is clear that the direct product is
a special case of the central product. Consider groups H and K given by

H = 〈x, y : x4 = y2 = 1, yxy−1 = x−1〉, K = 〈z, w : z4 = w2 = 1, wzw−1 = z−1〉.

Here G′ = 〈x2, z2〉 and IAz(H) = Inn(H) and IAz(K) = Inn(K). Consider the map

f : H ×K −→ H ×K,

which we define on generators as follows

x −→ xz2, y −→ yz2, z −→ zx2, w −→ wx2.

Obviously f is an IAz-automorphism which is not an inner automorphism.

3 |IA(G)| for groups G of order pq, or pqr, or p2q

In this section we consider groups G of orders pq, pqr and p2q, where p, q, r are distinct
primes, and try to find the order of the group IA(G) in terms of p, q, r. They are considered
in Subsections 3.1, 3.2, 3.3 respectively.
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3.1 |IA(G)| for groups of order pq
It is well known (see Alperin[1]) that for each pair of primes p, q satisfying the condition
q|p− 1, there is a unique, up to an isomorphism, a non-abelian group of order pq having the
representation:

G = 〈x, y|xp = yq = 1, y−1xy = xu〉, (3.1)

where u is an element of order q in the multiplicative group Z∗p .

Theorem 3.1. For a non-abelian group of order pq satisfying the condition q|p−1, |IA(G)| =
p(p− 1).

Proof. By representation (3.1), it is clear that G′ = 〈x〉. Let α be an IA-automorphism of
G. Then we have α(x) = xi (1 ≤ i < p), α(y) = yxj (0 ≤ j < p).

On the other hand, for every choice of i, j in these equalities, if we denote by x1 the
element xi and by y1 the element yxj, then it is easy to see that x1 and y1 generate G and
satisfy the same relations as x, y, i.e.

xp1 = 1, yq1 = 1, y1x1y
−1
1 = xu1 .

Thus any IA-automorphism of G is uniquely determined for every pair of integers i, j satis-
fying the conditions 1 ≤ i < p and 0 ≤ j < p. Thus |IA(G)| = p(p− 1).

If q - p− 1 then G is a cyclic group in which case |IA(G)| = 1.

3.2 |IA(G)| for groups of order pqr
Let G be a non-abelian group of order pqr, with p > q > r. Then G always has a normal
subgroup P of order p. Since |P | and |G/P | are relatively prime, by the Schur-Zassenhaus
Theorem, P has a complement in G, i.e. there exists a subgroup H of order equal to
|G/P | = qr such that P ∩H = 1 and PH = G.

Let P = 〈x〉 for some x ∈ G. The subgroup H acts on P by conjugation, hence it induces
a homomorphism from H to Aut(P ):

φ : H → Aut(P ); φ(h) = (x→ hxh−1).

Since kerφ is a subgroup of H and |H| = qr, the order of kerφ can be

1, q, r, qr.

Case 1: ker φ is trivial. This means that φ is injective. Since P is cyclic, Aut(P ) is
abelian (cyclic), and thus H must also be cyclic.

Let H = 〈y〉 ∼= Cqr. Then, G has the representation

G = 〈x, y : xp = yqr = 1; yxy−1 = xi, for some positive integer i, i 6= 1〉. (3.2)
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Clearly, yxy−1 = xi, implies iqr ≡ 1(mod p).
It is easy to see that iq or ir can not be 1 modulo p, otherwise yq or yr ∈ kerφ.
By (3.2), it is clear that G′ = 〈x〉. Hence, any IA-automorphism of G will be of the form

x→ xa; y → xby; with 1 ≤ a < p and 0 ≤ b < p− 1. (3.3)

Let x1 = xa and y1 = xby. It is easy to see that xp1 = 1 and yqr1 = 1. Clearly, the order of y1

is neither q nor r. Thus, the order of y1 is qr.
So, for the above choices of integers a and b, the elements x1 and y1 satisfy the same

relations as the ones satisfied by x and y. Hence map (3.3) is an IA-automorphism of G,
and |IA(G)| = (p− 1)p.

Case 2: ker φ is of order q. In this case, kerφ together with P forms an abelian
(cyclic) subgroup of order pq, denote it by H. Clearly, H is normal in G. Therefore, if z is
an element of order pq and y is an element of order r, then G = 〈z, y〉, and yzy−1 = zi, i 6= 1.

So, the following three cases arise:
(A) y centralizes elements of order p but no element of order q in 〈z〉.
(B) y centralizes elements of order q but no element of order p in 〈z〉.
(C) y does not centralize any element of order p as well as of order q in 〈z〉.

In case (A), the subgroup of order p becomes central, hence G is of the form

G = Cp × (Cq o Cr).

Here, Z(G) = Cp, G
′ = Cq; and any IA-automorphism of G is nothing but an IA-

automorphism of Cq o Cr. By Theorem 3.1, it is clear that the order of the group of
IA-automorphisms of Cq o Cr is given by q(q − 1). Hence |IA(G)| = q(q − 1).

Case (B) is similar to case (A), where G will be of the form Cq × (Cp o Cr), and hence
|IA(G)| = p(p− 1).

Now, we consider case (C). Suppose that y does not centralize any element of order p or
q in 〈x〉. Hence Z(G) = 1, G has the representation,

G = 〈z, y : zpq = yr = 1, yzy−1 = zi〉; and ir ≡ 1(mod pq).

Here G′ = 〈z〉, and 〈z〉 = 〈zq〉 × 〈zp〉 ∼= Cp × Cq. Hence, an IA-automorphism of G has the
form

z → za, y → yxb.

where 1 ≤ a < pq and a is not divisible by p as well by q, and 0 ≤ b < pq. Clearly, every
choice of a, and b gives an IA-automorphism of G. Hence,

|IA(G)| = (p− 1)(q − 1)pq.

Case 3: ker φ is of order r. This means that a Sylow-r subgroup acts trivially on
Sylow-p subgroup; hence G contains a cyclic subgroup of order pr. Clearly, this subgroup of
order pr is normal in G. Thus, G is of the form

G = Cpr o Cq = (Cp × Cr) o Cq.
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Now Cq acts on Cpr by conjugation and since Cr is the unique subgroup of order r inside
the cyclic group Cpr, Cq acts by conjugation on Cr. But since r < q, the action of Cq on Cr
must be trivial, which means that Cr commutes with Cq. Therefore, the Sylow-r subgroup
in G is central, and hence G is of the form

G = Cr × (Cp o Cq).

Here Cr is the center of G and Cp is the commutator subgroup of G. Therefore, any IA-
automorphism of G is exactly the IA-automorphism of Cp o Cq. So,

|IA(G)| = (p− 1)p.

Case 4: ker φ is of order qr. In this case, the subgroup of order qr acts trivially on
the Sylow-p subgroup by conjugation i.e. Sylow-p subgroup is in the center of G. Thus, G
is of the form

G = Cp ×H,

where H is a subgroup of order qr. Since G is non-abelian, H must be non-abelian, and so

H = Cp × (Cq o Cr).

Again as in Case 3, Z(G) = Cp, G
′ = Cq and hence an IA-automorphism of G is nothing

but an IA-automorphism of Cq o Cr. Thus, |IA(G)| = (q − 1)q.
By using the arguments of IA-automorphism of group of order pqr, we can prove the

following important theorem.

Theorem 3.2. If G is a group of square-free order then |IA(G)| = φ(|G′|).|G′| (where φ is
Euler’s phi function).

Proof. It is well known that whenever G is a group of square free order, then G is a split
metacyclic group, i.e. G has following representation

G = Cm o Cn,

where, Cm is a maximal subgroup among all cyclic normal subgroups. Since, G is of square
free order this implies the center of G is inside Cm. Now, consider the conjugation action of
Cn on Cm. So, the fixed point set under the conjugation action by Cn is precisely the center
of G. Hence the centre becomes a direct abelian factor of G. Hence, G has the following
representation

G = A× (Cr o Cn),

where A is a direct abelian/cyclic factor. Here the action of cyclic group Cn on Cr has no
fixed point except the identity. This implies that Z(G) = A, G′ = Cr.

Since Z(G) ∩ G′ = 1, any IA-automorphism fixes Z(G) elementwise. Therefore, IA(G)
is nothing but an IA-automorphisms of the group H = Cr o Cn.

In the group H, Cn acts on Cr by conjugation and has no fixed points. This implies that
H ′ = Cr. Thus, H has the representation

H = 〈x, y|xr = yn = 1, yxy−1 = xi〉,
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where in ≡ 1 (mod r). Hence any IA-automorphism of H has the form x→ xa, y → xby,
where 1 ≤ a < r and is relatively prime to r, 0 ≤ b < r − 1.

It is easy to see that every choice of a, b in above conditions, gives an automorphisms
of G, and it is obviously an IA-automorphism. Thus, |IA(G)| = |IA(H)| = φ(|H ′|), |H ′| =
φ(|G′|).|G′|.

3.3 |IA(G)| for group of order p2q

It is well known that in groups of order p2q, a Sylow-p or a Sylow-q subgroup is normal.
Therefore, if Hp and Hq denote some Sylow-p and Sylow-q subgroups of G, then G is of the
form

G = Hp oHq or G = Hq oHp.

Here, either Hp
∼= Cp × Cp or Cp2 and Hq

∼= Cq.
1. G = Cp2 o Cq.
In this case G has the representation

G = 〈x, y : xp
2

= yq = 1, yxy−1 = xi〉, iq ≡ 1 mod(p2), i 6= 1.

One can easily note that the automorphism group of Cp2 is cyclic, hence it has at most one
subgroup of order q, hence there is at most one action of Cq on Cp2 by conjugation (via
automorphism of order q).

Here, i cannot be of the form 1 + kp, since for such i, the automorphism x → x1+kp is
of order a power of p, whereas y has order q. Hence, yxy−1x−1 = xi−1, where i − 1 is not
divisible by p. This implies that xi−1 is also a generator of the cyclic group 〈x〉 = Cp2 , i.e.
we have G′ = 〈x〉.
Then, an IA-automorphism of G is of the form

x→ xa, 1 ≤ a ≤ p2, (a, p) = 1, y → xby, 0 ≤ b ≤ p2. (3.4)

Let x1 = xa and y1 = xby with a, b chosen subject to the above conditions. Clearly, xp
2

1 = 1,
yq1 = 1, and also y1x1y

−1
1 = xi1.

Thus, for the specified choices of a, b, the elments x1 = xa and y1 = xby satisfy the same
relations as x, y. Hence, (3.4) defines an automorphism of G for all possible values of a and
b. So, |IA(G)| = (p2 − p)p2.

2. G = (Cp × Cp) o Cq.
The group Cp × Cp contains p + 1 subgroups of order p. Let Cp × Cp = 〈x, y〉 and

Cq = 〈z〉. Then z permutes the p + 1 subgroups of order p under conjugation. We should
consider two cases.

Case 1: Cq normalizes some Cp. In this case, z must fix one subgroup of order p
under conjugation, say, without loss of generality, 〈x〉. Thus, z〈x〉z−1 = 〈x〉.

Then z permutes remaining p subgroups of order p under conjugation, and again since
q does not divide p, there must be another subgroup of order p which is invariant under
conjugation by z, without loss of generality, we can say that it is 〈y〉. Hence,

z〈y〉z−1 = 〈y〉.
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Thus, to determine the structure of G, it is sufficient to know the value of zxz−1 and zyz−1

(one can easily note that z can not fix both x and y under conjugation, otherwise G will be
abelian). For getting these value, we have to consider following two cases.

z fixes only one of x and y by conjugation. Without loss of generality, consider
zxz−1 = x. Then zyz−1 = yi for some i with condition that i 6= 1 and iq ≡ 1 (mod p)
(hence y, z generate Cp o Cq). Then G has the representation

G = 〈x, y, z : xp = yp = zq = 1, xy = yx, zxz−1 = x, zyz−1 = yi〉, iq ≡ 1(mod p).

In fact, G has the form

〈x〉 × (〈y〉o 〈z〉) = Cp × (Cp o Cq).

Clearly, IA(G) = IA(Cp o Cq), and hence the number of IA-automorphisms of this group
is p(p− 1).

z does not fix any of x and y by conjugation. Without loss of generality, consider
zxz−1 = xi with condition that i 6= 1 and iq ≡ 1(mod p). Also, the action of z on 〈y〉 is given
by

zyz−1 = yj with j 6= 1 and jq ≡ 1(mod p).

Thus, G has the representation

G = 〈x, y, z : xp = yp = zq = 1, xy = yx, zxz−1 = xi, zyz−1 = yj〉, where, iq ≡ jq ≡ 1(mod p).

Here G′ = 〈x, y〉, and so any IA-automorphism of G is of the form

x→ xayb, y → xcyd, z → xeyfz,

where e, f are arbitrary in Zp, whereas a, b, c, d are so chosen that 〈x, y〉 = 〈xayb, xcyd〉, i.e.
the matrix [

a b
c d

]
is invertible.

With a, b, c, d satisfying the said conditions and e, f arbitrary in Zp, it is easy to see that
the above map is an automorphism of G. Thus, |IA(G)| = |GL(2, p)|.p.p.

HereGL(2, p) is the group of automorphisms of CP×Cp = 〈x, y〉, and the last contribution
of p.p number of automorphisms is by the automorphisms of the type

x→ x, y → y, z → (xeyf )z.

These automorphisms form a group isomorphic to Cp×Cp = 〈x, y〉; they are just multiplica-
tions of z by elements of 〈x, y〉. Further, these automorphisms are the identities on G′ (and
also on G/G′, as these are IA-automorphisms). Hence, these automorphisms form a normal
subgroup of IA(G) of order p2, and the automorphisms

x→ xayb, y → xcyd, z → z,
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form a subgroup of order |GL(2, p)| in IA(G). Thus, IA(G) ∼= (CP × Cp) oGL(2, p).
Case 2. Cq does not normalize any Cp. In this case, 〈z〉 does not normalize any

subgroup of order p in 〈x, y〉, i.e. z acts faithfully by conjugation on collection of subgroups
of order p in 〈x, y〉.

Let us consider Cp×Cp as a vector space, and conjugation of z induces an automorphism
or invertible linear map from this vector space to itself. Since z is not normalizing any
subgroup of order p, we have that the transformation has no invariant subspace of dim 1.

Thus, if Tz : 〈x, y〉 → 〈x, y〉 denotes the transformation induced by z, then Tz has no
eigenvalue in Zp. If v is any vector in the vector space 〈x, y〉, then Tz(v) and v should be
linearly independent, so they should span the whole space, i.e. they form a basis. With
respect to this basis, the matrix of Tz will be of the form[

0 a
1 b

]
.

Group theoretically, under conjugation by z this is same as

x→ y and y → xayb, i.e. zxz−1 = y and zyz−1 = xayb.

But there is a unique group of order p2q under such conditions (see [4]), and therefore the
group G has the form

G = 〈 x, y, z : xp = yp = zq = 1, xy = yx, zxz−1 = y, zyz−1 = xayb〉,

where a, b ∈ Zp are so chosen that the above matrix has no eigenvalues in Zp and it is order
of q. Here G/〈x, y〉 is cyclic, hence G′ ⊆ 〈x, y〉, and since no subgroup of order p in 〈x, y〉 is
normal in G, so G′ must be 〈x, y〉.

Therefore, an IA-automorphism of G is of the form

x→ xkyl, y → xrys, z → (xtyu)z, where the matrix
[
k r
l s

]
∈ GL(2, p), and t, u ∈ Zp.

Denoting the members in the right-hand sides of the above map by x1, y1, z1 respectively,
the above map is an automorphism of G if x1, y1, z1 satisfy the same relations as x, y, z, i.e.
z1x1z

−1
1 = y1, z1y1z

−1
1 = xa1y

b
1.

If z1x1z
−1
1 = y1 then z1(xkyl)z−1

1 = xrys i.e. yk(xayb)l = xrys. We have, r = al and s =
k + bl. Thus, from the known values of k, l the values of r, s are automatically determined.
Moreover, with these values of r, s, it is easy to see that the relation z1y1z

−1
1 = xa1y

b
1 is

satisfied automatically. The order of xtyuz must be q, since if it is divisible by p, then xtyuz
will commute with some element of order p. Since elements of order p are in the unique
Sylow-p subgroup 〈x, y〉, z will also commute, this is a contradiction. Hence, the order of
xtyuz is divisible by q only, and, as it should divide the order of the group also, it must be q.

Thus, for (k, l) 6= (0, 0) we find r, s by the above formula, and taking t, u arbitrarily in
Zp, we get an IA-automorphism given by

x→ xkyl, y → xalyk+bl, z → (xtyu)z

(k, l) which should be non zero, has p2 − 1 choices, and (t, u) has p2 choices. Hence
|IA(G)| = (p2 − 1)p2.
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3. G = Cq o Cp2. Here Cp2 acts on Cq by conjugation. The kernel of this action
is a proper subgroup of Cp2 (if the kernel is whole Cp2 , then G = Cq ×Cp2). Obviously here
G′ = 〈x〉, and G has the representation

G = 〈x, y : xq = yp
2

= 1, yxy−1 = xi〉, where ip2 ≡ 1 (mod q).

Consider the case ip ≡ 1 (mod q). In this case, the subgroup 〈yp〉 acts trivially on 〈x〉,
since ypxy−p = xi

p
= x1+kq = x. It follows that 〈yp〉 ⊆ Z(G), and in fact we have equality

(otherwise, the order of the center will be p2 or pq, and G/Z(G) will be then cyclic, a
contradiction).

Now, an IA-automorphism has the form

x→ xa, y → xby, where 1 ≤ a ≤ q and 0 ≤ b < q.

Clearly, each choice of a, b gives an automorphism, and hence |IA(G)| = q(q − 1). Also,
note that |Z(G)| = |〈yp〉| = p⇒ Inn(G) = pq.

Now, consider the case ip 6≡ 1 (mod q) but ip2 ≡ 1 (mod q). This case is similar to the
previous one, and hence |IA(G)| = q(q − 1).

4. G = Cq o (Cp × Cp). Here Cp × Cp acts on Cq by conjugation, hence we have a
homomorphism

Cp × Cp → Aut(Cq).

Since Aut(Cq) is cyclic, and Cp×Cp is non-cyclic, the above homomorphism has a non-trivial
kernel, and also it should be a proper subgroup of Cp × Cp, otherwise G will be abelian.

Let Cq = 〈x〉 and Cp × Cp = 〈y, z〉. Without loss of generality, we can assume that z is
in the kernel of action of Cp × Cp on Cq, i.e zxz−1 = x. This implies that z ∈ Z(G), hence
〈z〉 is a direct abelian factor of G, and hence

G = (〈x〉o 〈y〉)× 〈z〉 = (Cq o Cp)× Cp.

Here G′ = 〈x〉 = Cq and Z(G) ∩G′ = 1. Therefore IA(G) = IA(Cq o Cp) = q(q − 1).
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