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Kokshetau State University, honorary citizen of the Tarbagatai district
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“Kurmet” (= “Honour”).
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from the S.M. Kirov Kazakh State University (Almaty) in 1968 and in 1971 he completed
his postgraduate studies at the Institute of Mathematics and Mechanics of the Academy of
Sciences of the Kazakh SSR (Almaty). Starting with 1972 he worked at the E.A. Buketov
Karaganda State University (senior lecturer, associate professor, professor, head of the De-
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linear operators; Fourier series for general orthogonal systems; Fourier multipliers; difference
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The Editorial Board of the Eurasian Mathematical Journal congratulates Yesmukhanbet
Saidakhmetovich Smailov on the occasion of his 70th birthday and wishes him good health
and new achievements in mathematics and mathematical education.
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Abstract. In this paper we introduce the notion of vector-valued functions periodic at
infinity. We characterize the sums of the usual periodic functions and functions vanishing
at infinity as a subclass of these functions. Our main focus is the development of the
basic harmonic analysis for functions periodic at infinity and an analogue of the celebrated
Wiener’s Lemma that deals with absolutely convergent Fourier series. We also derive criteria
of periodicity at infinity for solutions of difference and differential equations. Some of the
results are derived by means of the spectral theory of isometric group representations.

1 Introduction

Functions periodic at infinity appear naturally as bounded solutions of certain classes of
differential and difference equations. In this paper we develop basic harmonic analysis for
such functions. We introduce the notion of a generalized Fourier series of a function periodic
at infinity; the Fourier coefficients in this case may not be constants, they are functions
that are slowly varying at infinity. We prove analogues of the classical results on Ćesaro
summability (Theorems 2.1 and 2.2) and convergence (Theorem 2.3). One of our main
results is an extension of the celebrated Wiener’s Lemma for functions periodic at infinity
that have an absolutely convergent Fourier series. The proof of the theorem is based on
more abstract results in [2, 9, 10]. In Section 5, we also describe the solutions of certain
differential and difference equations in terms of functions periodic at infinity. We use methods
of the spectral theory of locally compact Abelian group representations (Banach modules
over group algebras) [3, 4, 12, 14].

2 Basic notation and statements of the main results

We begin by introducing the basic notation used in this paper for the standard function
spaces. We let X be a complex Banach space and EndX be the Banach algebra of all
bounded linear operators (endomorphisms) on X. By J we denote one of the intervals
R+ = [0,∞) or R = (−∞,∞). We write Cb = Cb(J, X) for the Banach space of X-valued
bounded continuous functions on J with the norm ‖x‖∞ = sup

t∈J
‖x(t)‖X . The closed sub-

space of bounded uniformly continuous functions is denoted by Cb,u = Cb,u(J, X). Another
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closed subspace, C0 = C0(J, X), consists af all functions in Cb that vanish at infinity, i.e.,
lim
|t|→∞

x(t) = 0. Other subspaces of Cb that are of interest to us in this paper are introduced

via the operator semigroup S : J→ End(Cb(J, X)) defined by

(S(t)x)(τ) = x(t+ τ), t, τ ∈ J. (2.1)

It should be noted that S is a group in the case J = R.

Definition 1. A function x ∈ Cb,u(J, X) is called slowly varying at infinity if
(S(t)x− x) ∈ C0(J, X) for all t ∈ J.

It should be mentioned that Definition 1 differs from the classical one given by J. Kara-
mata in 1930 (see [26]). In [26] a positive continuous function L : R+ → R+ is said to
be weakly oscillating if, for any λ > 0, L(λx)

L(x)
→ 1 as x → +∞. For example, such are the

functions lnν(x), ln lnν(x), ..., where ν ∈ R.
In view of Definition 1, we will call two functions x, y ∈ Cb(J, X) C0-equivalent if x− y ∈

C0(J, X). The functions listed below are slowly varying at infinity:
1) x1(t) = sin(ln(1 + t2)), t ∈ R;
2) x2(t) = arctg t, t ∈ R;
3) x3 : R+ → X, x3(t) = c + x0(t), t ≥ 0, where c is a vector from X and x0 is an

arbitrary function from C0(R+, X);
4) any continuously differentiable function x from Cb(R, X) with the property

x′ ∈ C0(R, X).
An equivalent definition for functions in Cb,u(R, X) is used in the theory of differential

equations ([18, Section 3.6.3]), where such functions are called stationary at infinity.

Definition 2. A function x ∈ Cb,u(J, X) is called periodic at infinity with period
ω > 0 (or ω−periodic at infinity) if (S(ω)x − x) ∈ C0(J, X), or, equivalently,
lim
|t|→∞

‖x(t+ ω)− x(t)‖X = 0.

Every function ω-periodic at infinity is a solution of the difference equation
x(t+ ω)− x(t) = y(t), t ∈ J, for some y ∈ C0(J, X), that is S(ω)x and x are C0-equivalent.
We also point out that each function slowly varying at infinity is periodic at infinity with
any period. The notion of a function almost periodic at infinity is given in [13].

The set of all functions slowly varying at infinity is denoted by
Csl,∞ = Csl,∞(J, X) and the set of all functions ω-periodic at infinity – by Cω,∞ = Cω,∞(J, X).
They form closed linear subspaces of Cb,u(J, X). The Banach space Cω = Cω(J, X) of all
continuous ω−periodic functions f : J → X is a closed subspace of Cω,∞(J, X). Thus, the
inclusions Csl,∞(J, X) ⊂ Cω,∞(J, X) ⊂ Cb,u(J, X) hold. Each of these subspaces is invariant
for the operators S(t), t ∈ J.

In the case X = C the symbol X will be omitted in the notation of the spaces in question.
For example, the space Cω,∞(J,C) will be denoted by Cω,∞(J).

The space Csl,∞(R) has the following properties:

1. Csl,∞(R) is not separable, since the family of functions {xα, α ≥ 0} in Cb(R+) with
xα(t) = exp(iα ln(1 + t)), α, t ≥ 0, has the property ‖xα − xβ‖∞ ≥

√
2 for each

α, β ∈ R+, α 6= β.
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2. The space Csl,∞(R) is an algebra under pointwise multiplication.

In the case X is a Banach algebra the function spaces un-
der consideration are Banach algebras under pointwise multiplication
(xy)(t) = x(t)y(t), t ∈ J, if the functions x, y belong to a corresponding subspace.
Moreover, each of these algebras is commutative if X is commutative and is a C∗-algebra if
X is a C∗-algebra. In particular, the algebras Csl,∞(J) and Cω,∞(J) are C∗-algebras.

Let B be a Banach algebra. By L1(R,B) we denote the Banach algebra of all absolutely
integrable functions f : R→ B with the multiplication defined by convolution:

(f ∗ g)(t) =

∫
R

f(t− s)g(s)ds, t ∈ R, f, g ∈ L1(R,B).

In the case B = C we have EndB ≈ C and we write L1(R) = L1(R,C).
The class of functions periodic at infinity contains bounded solutions to many difference

and differential equations (see Section 5). This is a consequence of the fact that the Laplace
convolution

(f
L∗ x)(t) =

t∫
0

f(t− τ)x(τ)dτ =

t∫
0

f(τ)x(t− τ)dτ

of functions x ∈ Cω(J, X) and f ∈ L1(J, EndX), while not usually a periodic function, is
always periodic at infinity.

Definition 3. Given a function x ∈ Cω,∞(J, X), we define its canonical Fourier coefficients
xn : J→ X, n ∈ Z, via

xn(t) =
1

ω

ω∫
0

x(t+ τ)e−i
2πn
ω

(t+τ)dτ, t, τ ∈ J, n ∈ Z. (2.2)

The series ∑
n∈Z

xn(t)ei
2πn
ω
t, t ∈ J, (2.3)

is then called the canonical Fourier series of the function x.

Obviously, if x ∈ Cω(R, X) then xk(t) ≡ xk = 1
ω

ω∫
0

x(τ)e−i
2πn
ω
τdτ, t ∈ R, k ∈ Z, are the

standard Fourier coefficients of a function x. Since C0-equivalence plays a major role in the
theory of Cω,∞ functions, we introduce the following definition.

Definition 4. An arbitrary series of the form∑
n∈Z

yn(t)ei
2πn
ω
t, t ∈ J, (2.4)

is called a generalized Fourier series of a function x ∈ Cω,∞(J, X) provided that the functions
yn ∈ Cb,u(J, X), n ∈ Z, are C0-equivalent to the canonical Fourier coefficients xn, n ∈ Z,
defined by (2.2).
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If a function x ∈ Cb,u(R, X) coincides with x ∈ Cω(R, X) on R+ and lim
t→−∞

‖x(t)‖ = 0

then x ∈ Cω,∞(R, X) and it has a generalized Fourier series of the form
∑
n∈Z

yn(t)ei
2πn
ω
t, t ∈ R,

where yn(t) ≡ xn(t), n ∈ Z, t ≥ 0, yn(t) = 0 for all t ≤ −1, and yn is continuous.

Lemma 2.1. The canonical Fourier coefficients xn, n ∈ Z, defined by (2.2) are slowly
varying at infinity, i.e. xn ∈ Csl,∞(J, X), n ∈ Z.

Proof. The statement follows from the equality

xn(t+ ω)− xn(t) =

=
1

ω

ω∫
0

(S(ω)x− x)(t+ τ)e−i
2πn
ω

(t+τ)dτ, t ∈ J, n ∈ Z.

Definition 4 and Lemma 2.1 imply that the Fourier coefficients of any generalized Fourier
series satisfy yn ∈ Csl,∞(J, X), n ∈ Z.We also get the following two statements about Ćesaro
sums.

Theorem 2.1. For each function x ∈ Cω,∞(J, X) there exists a sequence of functions (x0
n)

in C0(J, X) such that

lim
n→∞

sup
t∈J
‖x(t)−

n∑
k=−n

(
1− |k|

n+ 1

)
xk(t)e

i 2πk
ω
t − x0

n(t)‖ = 0,

where xk, k ∈ Z, are the canonical Fourier coefficients of a function x.

Theorem 2.2. For any function x ∈ Cω,∞(J, X) and any ε > 0 there exists a sequence of
functions (x0

n) in C0(J, X) and a sequence of functions (yn) in Csl,∞(J, X) such that

lim
n→∞

sup
t∈J
‖x(t)−

n∑
k=−n

(
1− |k|

n+ 1

)
yk(t)e

i 2πk
ω
t − x0

n(t)‖ = 0;

and for each k ∈ Z the function yk is C0-equivalent to the canonical Fourier coefficient xk
defined by (2.2) and admits a holomorphic extension to an entire function of exponential
type at most ε.

In view of the above results we introduce the following notion of convergence of general-
ized Fourier series.

Definition 5. A generalized Fourier series

x(t) ∼
∑
n∈Z

yn(t)ei
2πn
ω
t, t ∈ J,

of a function x ∈ Cω,∞(J, X) is called convergent to x with respect to the subspace C0(J, X),
or C0-convergent, if there exists a sequence (x0

n) of functions in C0(J, X) such that

lim
n→∞

sup
t∈J
‖x(t)−

n∑
k=−n

yk(t)e
i 2πk
ω
t + x0

n(t)‖ = 0.
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The notion of C0-convergence is well defined because it does not depend on the choice
of a generalized Fourier series of x. This follows from the C0-equivalence of the respective
Fourier coefficients of different generalized Fourier series to each other (and to the respective
canonical Fourier coefficients).

Definition 6. By the modulus of continuity at infinity of a function x ∈ Cb,u(J, X) we call
the function ω∞(·, x) : R+ → R+ defined by

ω∞(δ, x) = lim
µ→∞

sup
|t|≤δ,|τ |≥µ

‖x(t+ τ)− x(τ)‖X , δ ∈ R+.

Theorem 2.3. Every generalized Fourier series of a function x ∈ Cω,∞(J, X) converges to
x with respect to the subspace C0(J, X) provided that lim

n→∞
ω∞(n−1, x) lnn = 0.

Definition 7. We say that a function x ∈ Cω,∞(J, X) has an absolutely convergent Fourier
series if it has a generalized Fourier series (2.4) such that

∑
n∈Z
‖yn‖ <∞.

We note that if a twice continuously differentiable function x ∈ Cω,∞ satisfies x′, x′′ ∈ Cb,u
then x′, x′′ ∈ Cω,∞. After directly computing the canonical Fourier coefficients of x′′ one sees
that, in this case, the canonical Fourier series of x converges absolutely.

We also observe that if a function x has an absolutely convergent Fourier series then its
canonical Fourier series C0-converges to x, but it does not have to converge absolutely.

In the case X is a Banach algebra, the functions in Cω,∞(J, X) with absolutely conver-
gent Fourier series form a closed subalgebra of Cω,∞(J, X). This subalgebra is denoted by
Aω,∞(J, X) or Aω,∞(J) in the case X = C.

Theorem 2.5, which is the main result of this paper, is devoted to functions in Aω,∞(J, X).
It is an extension of the following well-known Wiener’s Tauberian Lemma (see, for example,
[1, 2, 8, 10, 11, 21, 25] for many other extensions and applications of the result).

Theorem 2.4. [28]. If f ∈ Aω(R) and f(t) 6= 0 for all t ∈ R, then also 1/f ∈ Aω(R).

From this point on we let X to be a Banach algebra with the identity e. We also let
e ∈ Cb(J, X) to be the identity function, i.e., e(t) ≡ e.

Definition 8. A function x ∈ Cb(J, X) is called invertible with respect to the sub-
space C0(J, X) or C0-invertible, if there is a function y ∈ Cb(J, X) such that
xy − e, yx− e ∈ C0(J, X), i.e. the functions xy and yx are both C0-equivalent to x. In this
case the function y is called an inverse function of x with respect to the subspace C0(J, X) or
a C0-inverse function of x.

We note that all C0-inverses of a function x ∈ Cb(J, X) are C0-equivalent to each other.

Theorem 2.5. Let X be a unital Banach algebra. If a C0-invertible function a ∈ Cω,∞(J, X)
has an absolutely convergent Fourier series then each of its C0-inverse functions also has an
absolutely convergent Fourier series.

The proofs of this and the following theorems are in Section 4. To formulate the next
result, let us consider a sequence of operators (AN) in EndCb,u(J, X) defined by AN =

1
N

N−1∑
k=0

S(kω), N ≥ 1. It is clear that ‖AN‖ = 1, N ≥ 1.

The following theorem answers the question of when a function periodic at infinity can
be written as a sum of a periodic function and a function vanishing at infinity.
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Theorem 2.6. A function x ∈ Cω,∞(J, X) can be written in the form x = x1 + x0 with
x1 ∈ Cω(J, X) and x0 ∈ C0(J, X) if and only if the limit lim

N→∞
ANx exists in Cb,u(J, X).

3 Harmonic analysis of periodic vectors and operators

The main result of this paper is proved by using a more general extension of Wiener’s lemma
from [9]. In this section we review the general theory of periodic vectors and operators which
allows us to explain the result. This is a part of the spectral theory of Banach modules and
group representations which appears in various sources such as [3, 4, 12, 14, 22].

In this section X is a complex Banach space and T : R→ EndX is a strongly continuous
isometric representation. The Banach space X is given a structure of a Banach L1(R)-
module via the formula

fx =

∫
R

f(t)T (−t)xdt, x ∈X , f ∈ L1(R). (3.1)

By f̂ : R→ C we denote the Fourier transform

f̂(λ) =

∫
R

f(t)e−iλtdt, λ ∈ R, (3.2)

of a function f ∈ L1(R).

Definition 9. By the Beurling spectrum of a vector x ∈ X we mean the set Λ(x) ⊂ R
defined by

Λ(x) = {λ0 ∈ R : fx 6= 0 for any f ∈ L1(R) with f̂(λ0) 6= 0}
or, equivalently,
Λ(x) = R\{µ0 ∈ R : there is a function f ∈ L1(R) such that
f̂(µ0) 6= 0 and fx = 0}.

In the following lemma [3, 12] we collect the basic properties of the Beurling spectrum
of an element in a Banach module.

Lemma 3.1. The following properties hold for all f ∈ L1(R) and x ∈X :

1. for any f ∈ L1(R) the equality fx = 0 implies that x = 0 (the L1(R)-module X is
non-degenerate);

2. Λ(x) is a closed subspace of R and Λ(x) = ∅ if and only if x = 0;

3. Λ(fx) ⊂ (suppf̂) ∩ Λ(x);

4. fx = 0 in case (suppf̂) ∩ Λ(x) = ∅ and fx = x in case Λ(x) is a compact and f̂ = 1
in a neighborhood of Λ(x);

5. Λ(x) = {λ0} is a singleton if and only if the vector x satisfies T (t)x = exp(iλ0t)x, t ∈
R, and x 6= 0.
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The Banach space Cb(R, X), even though the translation representation (2.1) is not
strongly continuous on it, still has the structure of a Banach L1(R)-module (see [3], [14])
defined via convolution

(f ∗ x)(t) =

∫
R

f(τ) (S(−τ)x) (t)dτ =

∫
R

f(τ)x(t− τ)dτ =

∫
R

f(t− τ)x(τ)dτ, (3.3)

t ∈ R, f ∈ L1(R), x ∈ Cb(R, X). The module structure is still non-degenerate and the other
properties of Lemma 3.1 hold s well. The subspace Cb,u(R, X) is then a closed submodule of
Cb(R, X) with the structure given by (3.1) with X = Cb,u(R, X) and T (t) = S(t), t ∈ R.

Definition 10. The nonessential spectrum Λ0(x) of a function x ∈ Cb(R, X) is the set of all
λ0 ∈ Λ(x) such that there is a function f ∈ L1(R) satisfying f̂(λ0) 6= 0 and f ∗x ∈ C0(R, X).
The set Λess(x) = Λ(x)\Λ0(x) is called the essential spectrum of x.

Definition 11. Let x ∈ Cb(R+, X). By x ∈ Cb(R, X) we denote a function which coincides
with x on R+ and possesses a property lim

t→−∞
x(t) = 0. By the essential spectrum Λess(x) of

a function x we mean the set Λess(x).

The above definition is well posed because Λess(x) does not depend on the chosen exten-
sion x ∈ Cb(R, X) of the function x on R. Indeed, all such extensions are C0-equivalent.

We note that the essential spectrum of a function x ∈ Cb(R, X) defined by x(t) = exp(it2),
t ∈ R, is empty. We also observe that Λess(x) ⊂ 2π

ω
Z for x(t) = y(t) + x0(t), t ≥ 0, for

y ∈ Cω(R+, X) and x0 ∈ C0(R+, X).
In another example, let z ∈ Cω(R, X) be an odd periodic function. It is obvious that

the function z1 : t 7→ z(|t|) is not periodic. But it is periodic at infinity with period ω and
Λess(z1) ⊆ 2π

ω
Z.

Definition 12. A vector x0 ∈X is called T -periodic with a period ω > 0, or (ω, T )-periodic,
if the equation T (ω)x0 = x0 holds.

The set of all (ω, T )-periodic vectors in X we denote by Xω = Xω(T ). It is a closed
subspace of X invariant under operators T (t), t ∈ R.

Theorem 3.1. A vector x0 ∈X is (ω, T )-periodic (in other words, x0 ∈Xω) if and only if
the following condition is satisfied:

Λ(x0) ⊂ 2π

ω
Z. (3.4)

Proof. Necessity. Let x0 be a vector from Xω. By the definition we get T (ω)x0 − x0 = 0.
Then for any f ∈ L1(R) from (3.1) we have

f(T (ω)x0 − x0) =

∫
R

f(τ)T (−τ)(T (ω)x0 − x0)dτ

=

∫
R

f(τ)T (−τ + ω)x0dτ − fx0
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=

∫
R

(T (ω)f) (u)T (−u)x0du− fx0 = (T (ω)f − f)x0 = 0.

If λ0 /∈ 2π
ω
Z one can consider a function f ∈ L1(R) with the property f̂(λ0) 6= 0. In this

case one has ĝ(λ0) = (eiλ0ω − 1)f̂(λ0) 6= 0 for the function g = S(ω)f − f ∈ L1(R). Thus,
there is a function g ∈ L1(R) with the properties gx = (S(ω)f − f)x = 0 and ĝ(λ0) 6= 0. By
Definition 10 one has λ0 /∈ Λ(x0) and inclusion (3.4) is proved.

Sufficiency. Suppose that for Λ(x0) condition (3.4) is fulfilled. Let us consider a vector
y0 = T (ω)x0 − x0 and a function f ∈ L1(R) such that suppf̂ is compact. By Lemma 3.1 we
have that

Λ(fy0) ⊂ suppf̂ ∩ Λ(y0) ⊂ suppf̂ ∩ Λ(x0) ⊂ suppf̂ ∩ 2π

ω
Z

is a finite set of the from
{

2π
ω
k1, ...,

2π
ω
kn
}
, k1, ..., kn ∈ Z.

It follows by the proof of Theorem 1 in [3] and Theorem 3.2.7 in [12] that the vector fx0

can be written as
fx0 = x1 + ...+ xn,

where Λ(xj) =
{

2π
ω
kj
}
, T (t)xj = ei

2π
ω
kjtxj, 1 ≤ j ≤ n. So we get fy0 = f(T (ω)x0 − x0) =

(T (ω)− I)fx0 =
n∑
j=1

(
ei2πkj − 1

)
xj = 0.

Since the set of functions in L1(R), whose Fourier transforms have compact support, is
dense in L1(R), and the L1(R)-module X is non-degenerate by Lemma 3.1, the equation
T (ω)x0 − x0 = 0 holds. Hence, x0 ∈Xω.

Since the equations T (t+ω)x−T (t)x = T (t)(T (ω)x−x) = 0, t ∈ R, hold for all x ∈Xω,
it follows that the function ϕx : R → X , ϕx(t) = T (t)x, is continuous and (ω, T )-periodic.
Its Fourier series is

ϕx(t) ∼
∑
n∈Z

xne
i 2πn
ω
t,

where

xn =
1

ω

ω∫
0

T (τ)xe−i
2πn
ω
τdτ, n ∈ Z. (3.5)

Definition 13. Given x ∈ Xω, the series
∑
n∈Z

xn is called its Fourier series if the vectors

xn, n ∈ Z, called the Fourier coefficients of x, are given by (3.5).

If the Fourier series of a vector x ∈X is absolutely convergent, i.e.
∑
n∈Z
‖xn‖ <∞, then

we write x =
∑
n∈Z

xn.

Lemma 3.2. For each f ∈ L1(R) and x ∈Xω we have fx ∈Xω, and the Fourier series of

fx is given by fx ∼
∞∑

k=−∞
f̂
(

2πk
ω

)
xk.
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Proof. First, formula (3.1) directly implies that fx ∈ Xω. Next, letting y = fx, formula

(3.5) yields yk = 1
ω

ω∫
0

T (τ)(fx)e−i
2πk
ω
τdτ. Finally, by (3.1) and (3.2) we get

yk =
1

ω

ω∫
0

T (τ)

∫
R

f(s)T (−s)xds

 e−i
2πk
ω
τdτ

=
1

ω

ω∫
0

∫
R

f(s)T (τ − s)xds

 e−i
2πk
ω
τdτ

=

∫
R

f(s)

 1

ω

ω∫
0

T (τ − s)xe−i
2πk
ω
τdτ

 ds

=

∫
R

f(s)

e−i 2πkω s

ω

ω∫
0

T (t)xe−i
2πk
ω
tdt

 ds

=

∫
R

f(s)xke
−i 2πk

ω
sds = f̂

(
2πk

ω

)
xk,

and the lemma is proved.

Below we list a few of the large number of the results of the classical Fourier theory
that were derived for (ω, T )-periodic vectors in Banach modules, for example, in [3, 4]. The
subspace Xω and the following lemma were also considered in [23, Theorem 16.7.2].

Lemma 3.3. The operators Pn ∈ EndXω, n ∈ Z, defined by

Pnx =
1

ω

ω∫
0

e−i
2πn
ω
τT (τ)xdτ, x ∈Xω,

are projectors and xn = Pnx, n ∈ Z, are the Fourier coefficients of x. Moreover, T (t)Pn =

ei
2πn
ω
tPn, t ∈ R, n ∈ Z, and ‖Pn‖ = 1 if Pn 6= 0.

Lemma 3.4. For each x ∈Xω the following equation holds:

lim
n→∞

‖xn‖ = 0,

where xn, n ∈ Z, are Fourier coefficients of x.

Proof. Let us consider an arbitrary vector x in the domainD(A) of the infinitesimal generator
[20] of the operator semigroup T . We get the following estimate:

‖xn‖ =

∥∥∥∥∥∥ 1

ω

ω∫
0

e−i
2πn
ω
τT (τ)xdτ

∥∥∥∥∥∥ =

∥∥∥∥∥∥ 1

ω

ω∫
0

ω

−2πin
e−i

2πn
ω
τT (τ)Axdτ

∥∥∥∥∥∥
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≤ ‖Ax‖
|n|

, n ∈ Z\{0},

i.e. lim
n→∞

‖xn‖ = 0. Since D(A) is dense in Xω the property lim
n→∞

‖xn‖ = 0 is fulfilled for all
x ∈Xω.

The following two theorems are contained in the more general results in [16], see also
[27]. For the sake of completeness we give the proofs.

Definition 14. The function ω(·, x) : R+ → R+ defined by

ω(δ, x) = sup
|t|≤δ
‖T (t)x− x‖,

is called the modulus of continuity of a vector x.

Theorem 3.2. Let x ∈Xω. Then

lim
n→∞

∥∥∥∥∥x−
n∑

k=−n

(
1− |k|

n+ 1

)
xk

∥∥∥∥∥ = 0,

where xk, k ∈ Z, are the Fourier coefficients of x.

Proof. Let us consider an arbitrary periodic vector x ∈ Xω and the functions fn ∈ L1(R)
defined by

fn(t) =
ω

4π4t2(n+ 1)
sin2 (n+ 1)πt

ω
, t ∈ R, n ∈ N.

Note that these functions have the following Fourier coefficients:

f̂n(λ) =

{
1− ω|λ|

2π(n+1)
, |λ| ≤ 2π(n+1)

ω
,

0 , |λ| > 2π(n+1)
ω

;
λ ∈ R, n ∈ N.

Hence,

f̂n(
2πk

ω
) =

{
1− |k|

n+1
, |k| ≤ n+ 1,

0 , |k| > n+ 1;
k ∈ Z, n ∈ N.

Lemma 3.2 implies that the convolution of fn and x is given by

fnx =
n∑

k=−n

(
1− |k|

n+ 1

)
xk, n ∈ N.

This leads to the following estimate:

‖x−
n∑

k=−n

(
1− |k|

n+ 1

)
xk‖ = ‖x− fnx‖

= ‖
∫
R

fn(τ)xdτ −
∫
R

fn(τ)T (−τ)xdτ‖ = ‖
∫
R

fn(τ) (x− T (−τ)x) dτ‖
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≤ ‖
δn∫

−δn

fn(τ)ω(δn, x)dτ‖+ 2‖x‖‖
∫

R\(−δn,δn)

fn(τ)dτ‖

≤ ω(δn, x)

δn∫
−δn

fn(τ)dτ + 2‖x‖
∫

R\(−δn,δn)

fn(τ)dτ

≤ ω(δn, x)

∞∫
−∞

fn(τ)dτ +
ω‖x‖

2π4(n+ 1)

∫
R\(−δn,δn)

sin2 (n+1)πτ
ω

τ 2
dτ

≤ ω(δn, x) +
ω‖x‖

π4(n+ 1)

∞∫
δn

dτ

τ 2
≤ ω(δn, x) +

ω‖x‖
π4(n+ 1)δn

→ 0, n→∞,

for any sequence {δn}∞n=0 with the properties lim
n→∞

δn = 0 and
lim
n→∞

(n+ 1)δn =∞.

Theorem 3.3. If x ∈Xω then∥∥∥∥∥x−
n∑

k=−n

xk

∥∥∥∥∥ ≤ Const · ω
(

1

n
, x

)
lnn, n ∈ N. (3.6)

In particular, the Fourier series of x converges to x if

lim
n→∞

ω

(
1

n
, x

)
lnn = 0.

Proof. Let En[x], n ≥ 1, be the best trigonometric polynomial approximation of x of order
n. From [29, p.123] we have ∥∥∥∥∥x−

n∑
k=−n

xk

∥∥∥∥∥ ≤ (Ln + 1)En[x], (3.7)

where Ln, n ≥ 1, is the Lebesgue constant, which satisfies the estimate (see [29, p.115])

Ln = 4π−2 lnn+O(1) ' 4π−2 lnn as n→∞. (3.8)

To prove our result we need the estimate for En(x), n ≥ 1. We consider a function
f ∈ L1(R) with the following properties:

1. f̂(0) = 1, f̂(λ) = f̂(−λ), λ ∈ R;

2. suppf̂ ⊂ [−1, 1];

3. f ≥ 0;

4.
∞∫
−∞
|t|f(t)dt = Mf <∞.
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Note that we need the third property only to simplify the proof. For an arbitrary α > 0 we
let fα(t) = αf(αt), t ∈ R. Then we have

Eα[x] ≤ ‖x− fαx‖ = ‖
∫
R

(T (−τ)x− x)fα(τ)dτ‖

≤
∫
R

‖T (−τ)x− x‖fα(τ)dτ

=

α∫
−α

‖T (−τ)x− x‖fα(τ)dτ +

∫
|τ |≥α

‖T (−τ)x− x‖fα(τ)dτ

≤ ω(
1

α
, x)

α∫
−α

fα(τ)dτ + ω(
1

α
, x)

∫
|τ |≥α

(|τ |α + 1)fα(τ)dτ

≤ ω(
1

α
, x)

2 +

∫
|τ |≥α

|τ |αfα(τ)dτ

 ≤ ω(
1

α
, x)

2 +

∫
|t|≥α2

|t|f(t)dt


≤ ω(

1

α
, x)

2 +

∫
R

|t|f(t)dt

 ≤ (2 +Mf )ω(
1

α
, x),

and the desired estimate (3.6) follows from (3.7) and (3.8).

Remark 1. For scalar periodic functions, the best approximation estimate in terms of
the modulus of continuity was derived by Jackson [24]. In [15] an analogous estimate
was obtained for bounded, uniformly continuous functions on R using the function f(t) =
96
πt4

sin4 t
4
, t ∈ R.

Along with the isometric (not necessary periodic) representation
T : R→ EndX we consider the representation T̃ : R → End(EndX ) defined by
T̃ (t)A = T (t)AT (−t), t ∈ R, A ∈ EndX .

Definition 15. An operator A ∈ EndX is called periodic with respect to the representation
T̃ with period ω > 0, or (ω, T̃ )-periodic, if

T̃ (ω)A = T (−ω)AT (ω) = A,

i.e. A commutes with T (ω), and the function t 7→ T (t)AT (−t) : R → EndX is continuous
in the uniform operator topology.

The set of (ω, T̃ )-periodic operators is a closed subalgebra of EndX . We denote it by
EndωX = (EndX )ω. The above definition is consistent with the notion of (ω, T )-periodicity
introduced in Definition 12. There we did not require the continuity of the function because
it automatically follows since the representation T is assumed to be strongly continuous.



Harmonic analysis of functions periodic at infinity 21

As in Definition 8 let us consider the Fourier series

A ∼
∑
n∈Z

An (3.9)

of an operator A with respect to the presentation T̃ , i.e.

An =
1

ω

ω∫
0

ei
2πn
ω
τT (τ)AT (−τ)dτ.

The notion of Fourier series for operators in the algebra C2π(R) was introduced in [19].
More generally, the concept was considered, for example, in [4, 9, 11, 12].

The following result appears in [2, 9].

Theorem 3.4. If an ω-periodic continuously invertible operator A ∈ EndωX has an abso-
lutely convergent Fourier series (3.9) then the inverse operator B = A−1 is also ω-periodic
and has an absolutely convergent Fourier series A−1 ∼

∑
n∈Z

Bn.

Remark 2. In [2] the result is formulated for elements of Banach algebras that are almost
periodic with respect to a group of algebra automorphisms. In the periodic case the two
formulations are equivalent as we essentially show in the proof of Theorem 2.5. We chose to
present the result for operators rather than general Banach algebras because we feel it to be
more instructive.

4 Proofs of the main results

In this section X is a unital Banach algebra and X = X (J, X) is the quotient space
Cb,u(J, X)/C0(J, X). Then X is a Banach space with the norm ‖x̃‖ = inf

y∈x+C0(J,X)
‖y‖, where

x̃ = x+ C0(J, X) is the equivalence class of the function x.Moreover, X is a Banach algebra
with the multiplication defined by

x̃ỹ = x̃y, x̃, ỹ ∈X . (4.1)

By X ω = X ω(J, X) we denote the quotient space Cω,∞(J, X)/C0(J, X), which we view as
a closed Banach subalgebra of X .

Clearly the subspaces Cω,∞(R, X) and C0(R, X) are closed submodules of the
L1(R)-module Cb,u(R, X), and the algebras X (R, X) and X ω(R, X) are both quotient mod-
ules. Formula (4.1), however, does not allow us to define the structure of an L1(R)-module in
Cb(R+, X). Nevertheless, the quotient spaces X (J, X) and X ω(J, X) have such a structure
when J ∈ {R+,R}.

Indeed, the case J = R is obvious, and in the case J = R+ the strongly continuous
isometric group S̃ : R→ End(X (R+, X)),

S̃(t)x̃ = S̃(t)x, t ∈ R, x̃ ∈X (R+, X), (4.2)
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is defined in the following way. In (4.2) by S̃(t)x, t ≥ 0, we mean the equivalence class of
the translation S(t)x of x as in (2.1), and by S̃(t)x, t < 0, we mean the equivalence class
containing the continuous function xt ∈ Cb(R+, X) defined by

xt(s) =

{
x(s+ t) , s+ t > 0,
−t−1x(0)s , s+ t ≤ 0, s ≥ 0.

With the above notation, the formula

fx̃ =

∫
R

f(τ)S̃(−τ)x̃dτ, f ∈ L1(R), x̃ ∈X (J, X), J ∈ {R+,R}, (4.3)

defines the structure of a Banach L1(R)-module on X and on X ω.
Directly by the definition of representation S̃ we get the equality S̃(ω)x̃ = x̃, x̃ ∈ X ω.

Therefore, the function t 7→ S̃(t)x̃ : R→X ω is continuous and ω-periodic, i.e. it belongs to
the Banach space Cω(R,X ω). Thus, we have proved the following result.

Lemma 4.1. A function x ∈ Cb,u(J, X) is ω-periodic at infinity if and only if the equivalence
class x̃ = x+ C0(J, X) is (ω, S̃)-periodic.

As a corollary of Lemma 4.1 it follows that X ω = Xω, i.e. every class x̃ ∈ X ω is an
(ω, S̃)-periodic vector in X according to Definition 12.

Proofs of Theorems 2.1, 2.2, 2.3. follows directly by Lemma 4.1 and Theorems 3.2 and 3.3,
where Xω = Cω,∞(J, X)/C0(J, X).

We are now ready to present the proof of the characterization result.

Proof of Theorem 2.6. Necessity. Let x ∈ Cω,∞(J, X) be a function such that x = x1 + x0,
where x1 ∈ Cω(J, X) and x0 ∈ C0(J, X). Then AN(x1 + x0) = x1 + ANx0, N ≥ 1. Since
x0 ∈ C0(J, X) we get lim

N→∞
ANx0 = 0 and hence lim

N→∞
ANx = x1.

Sufficiency. Let us consider a function x ∈ Cω,∞(J, X) such that the limit lim
N→∞

ANx = y

exists. We shall prove that there exist two functions x1 ∈ Cω(J, X) and x0 ∈ C0(J, X) such
that x = x1 + x0.

From

S(ω)y − y = lim
N→∞

(
1

N

N−1∑
k=0

S((k + 1)ω)x− 1

N

N−1∑
k=0

S(kω)x

)

= lim
N→∞

(
1

N
(S(Nω)x− x)

)
= 0

we get that y ∈ Cω(J, X) which means that ANy = y for all N ≥ 1.
Using the notation x− y = x0 ∈ Cω,∞(J, X) we get the following equalities:

lim
N→∞

ANx0 = lim
N→∞

AN(x− y) = lim
N→∞

(ANx− y) = y − y = 0. (4.4)

Along with the operators AN , N ≥ 1, one can consider a sequence (ÃN), N ≥ 1, of

operators from EndX ω defined by ÃN = 1
N

N−1∑
k=0

S̃(kω). Clearly, on one hand, ÃN x̃0 = x̃0 for
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all N ≥ 1. On the other hand, (4.4) implies lim
N→∞

ÃN x̃0 = 0̃, and therefore, x̃0 = 0̃. Thus, we
have proved that x0 ∈ C0(J, X) and, hence, x = y + x0 for y ∈ Cω(J, X), x0 ∈ C0(J, X).

This result can also be obtained with the help of [5, 6, 7], but our proof is easier.
Example 1. Let us consider a continuously differentiable function ϕ : R→ R such that
suppϕ ⊂ [0, 1] and ϕ(1

2
) = 1. Let us also consider an arbitrary number sequence (αn), n ≥ 1,

with the property lim
n→∞

αn = 0. Then one can construct the following sequence of functions
from Csl,∞(R+) :

x1(t) =

 ϕ
(

t−2m

ln(m+2)

)
, t ∈ [2m, 2m + ln(m+ 2)], m ≥ 0,

0 , t /∈
⋃
m≥0

[2m, 2m + ln(m+ 2)];

xn(t) =

{
αnx1 (t− (n− 1) ln(n+ 2)) , t ≥ 2n,
0 , t ∈ [0, 2n), n ≥ 2.

One should mention that the functions xn, n ∈ Z, have disjoint supports and
‖xn‖∞ = αn, n ≥ 1.

The series
∞∑
n=1

xn(t)eint converges absolutely to a 2π-periodic function x. Therefore, it is

a generalized (but not the canonical) Fourier series of x (see Definitions 3 and 4). Clearly
‖x̃n‖ = αn, n ≥ 1. From the arbitrariness of the sequence (αn) with the property lim

n→∞
αn = 0

we get that the Fourier coefficients of a function from C2π(R) can converge to zero as slowly
as we wish.

Proof of Theorem 2.5. Let a function a ∈ Cω,∞(J, X) be C0-invertible at infinity and a
function b ∈ Cb(J, X) be one of its C0-inverses. In this case ãb̃ = b̃ã = ẽ, which is the
identity of the Banach algebra X . Let us consider an operator A ∈ EndX defined by

Ax̃ = ãx̃, x̃ ∈X .

It is (ω, S̃)-periodic and its Fourier coefficients An, n ∈ Z, are given by Anx̃ = ãnx̃,
x̃ ∈ X , where an ∈ Csl,∞(J, X), n ∈ Z, are the canonical Fourier coefficients of a. Since
‖ãn‖ = inf

x0∈C0(J,X)
‖an + x0‖, the series

∑
n∈Z
‖An‖ =

∑
n∈Z
‖ãn‖ is absolutely convergent. The op-

erator A is continuously invertible and its inverse B = A−1 ∈ EndX is given by Bx̃ = b̃x̃.
Theorem 3.4 implies that the inverse operator B is also (ω, S̃)-periodic (with respect to the
presentation S̃) and its Fourier series B ∼

∑
n∈Z

Bn is absolutely convergent.

Since Bnx̃ = b̃nx̃, x̃ ∈ Cb,u(J, X)/C0(J, X), where b̃n, n ∈ Z, are Fourier coefficients of
b̃, and ‖Bn‖ = ‖b̃n‖ we get ∑

n∈Z

‖Bn‖ =
∑
n∈Z

‖b̃n‖ <∞.

This implies that the function b has an absolutely convergent Fourier series.
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5 Periodic at infinity solutions of difference and differential equa-
tions

In this section we illustrate the utility of the notions introduced and studied in this paper
by obtaining certain results about solutions of difference and differential equations. For
example, we shall use the following spectral criterion that is rather helpful while proving the
periodicity at infinity of bounded solutions. Just as in the previous section, we let X be a
unital Banach algebra and define X = Cb,u(J, X)/C0(J, X).

Theorem 5.1. A function x ∈ Cb,u(J, X) is ω-periodic at infinity if and only if

Λess(x) ⊂ 2π

ω
Z.

Proof. As we mentioned earlier, the quotient space X is a Banach L1(R)-module. Directly
from Definitions 9 and 10 we get the equality Λ(x̃) = Λess(x). Without loss of generality one
can assume J = R. Then the assertion of the theorem follows by Lemma 4.1 and Theorem 3.1.

Let us consider the following difference equation:

x(t+ 1) = Bx(t) + y0(t), t ∈ J, J ∈ {R+,R}, (5.1)

where B ∈ EndX, y0 ∈ C0(J, X).

Theorem 5.2. If the spectrum σ(B) of the operator B satisfies

σ(B) ∩ T ⊂ {1}. (5.2)

then each uniformly continuous and bounded solution x0 : J→ X of difference equation (5.1)
is 1-periodic at infinity.

Proof. Let us consider a function x0 ∈ Cb,u(J, X) that satisfies the difference equation (5.1),
i.e. S(1)x0 −Bx0 = y0. Since y0 ∈ C0(J, X) we get

S̃(1)x̃0 −Bx̃0 = 0̃. (5.3)

By Theorem 5.1 it suffices to prove the inclusion Λ(x̃0) ⊂ 2πZ.
Let us take an arbitrary λ0 ∈ R\2πZ and choose a function f ∈ L1(R) such that f̂(λ0) 6=

0, supp f̂ is compact, and (supp f̂) ∩ 2πZ = ∅. We shall prove that fx̃0 = 0. Formula (5.4)
implies

f(S̃(1)x̃0 −Bx̃0) = (S(1)f)x̃0 −Bfx̃0 = f1x̃0 −Bfx̃0 = 0̃, (5.4)

where by f1 we denote the function S(1)f ∈ L1(R).
In the case J = R+ we shall use the notation x0 ∈ Cb,u(R, X) for an arbitrary extension

of the function x0 on R with the property lim
t→−∞

x0(t) = 0. In the case J = R we set x0 = x0.

Formula (5.4) implies the inclusion (f1−Bf)∗x0 ∈ C0(J, X). Since σ(B) ∩ T ⊂ {1}, there
is a neighbourhood V ⊂ T of γ0 = eiλ0 such that the resolvent λ 7→ R(eiλ, B) : V → EndX
of the operator B is well defined.
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Let us consider a function ϕ ∈ L1(R) such that its Fourier transform ϕ̂ is an infinitely
differentiable function with the properties: ϕ̂(λ0) 6= 0 and supp ϕ̂ ⊂ [λ0 − δ, λ0 + δ], where
δ > 0 is sufficiently small to ensure eiλ ∈ ρ(B) for |λ − λ0| ≤ δ. Since the function λ 7→
(eiλI −B)−1 : R→ EndX is holomorphic, we get that the function

F̂ (λ) =

{
ϕ̂(λ)(eiλI −B)−1 , λ ∈ [λ0 − δ, λ0 + δ],
0 , λ /∈ [λ0 − δ, λ0 + δ];

is the Fourier transform of some function F : R→ EndX.
By the equalities

̂F ∗ (f1 −Bf)(λ) = F̂ (λ)(eiλI −B)f̂(λ) = ϕ̂(λ)f̂(λ)I,

λ ∈ R, and formula (5.4) it follows that F ∗ (f1 − Bf) ∗ x0 = (ϕ ∗ f) ∗ x0 ∈ C0(R, X). Let
us introduce the notation ϕ ∗ f = g. Then ĝ(λ0) = ϕ̂(λ0)f̂(λ0) 6= 0, and, therefore, λ0 does
not belong to the essential spectrum of x0.

Theorem 5.1 now implies that the function x0 is 1-periodic at infinity. Clearly, the
function x0 is also 1-periodic at infinity.

Corollary 5.1. Assume that an operator B ∈ EndX satisfies condition (5.2). Let us
consider the nonlinear equation

x(t+ 1) = Bx(t) + f(t, x(t)), t ≥ 0, (5.5)

where the function t 7→ f(t, x) is uniformly continuous with respect to x in any bounded subset
of X and the equation lim

t→∞
sup
‖x‖≤R

‖f(t, x)‖ = 0 holds for any R > 0. Then each uniformly

continuous and bounded solution of equation (5.5) is 1-periodic at infinity.

Corollary 5.2. If an operator B ∈ EndX satisfies condition (5.2), F0 ∈ C0(R+, EndX),
and a function g : X → C is cotinuous then each uniformly continuous and bounded solution
of equation

x(t+ 1) = Bx(t) + F0(t)g(x), t ≥ 0,

is 1-periodic at infinity.

Corollary 5.3. If an operator B ∈ EndX satisfies condition (5.2) and F0 ∈ C0(R+, EndX)
then each uniformly continuous and bounded solution of the equation

x(t+ 1) = (B + F0(t))x(t), t ≥ 0,

is 1-periodic at infinity.

Let us now consider a linear differential equation

ẋ(t)− Ax(t) = y(t), t ∈ J, (5.6)

where y ∈ L1(R, X) and A : D(A) ⊂ X → X is a generator of a C0-semigroup U : R+ →
EndX.
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Definition 16. A function x : J → X is called a mild solution of (5.6) (see [17]) if the
equality

x(t) = U(t− s)x(s) +

t∫
s

U(t− τ)y(τ)dτ, (5.7)

holds for all s ≤ t, s, t ∈ J.

We note that in the case J = R+ the last equality has to hold only for s = 0 and t ≥ 0.
It is obvious that x is uniformly continuous.

Theorem 5.3. If the inclusion
σ(U(1)) ∩ T ⊂ {1}. (5.8)

holds then each mild solution of (5.6) that is bounded on J is 1-periodic at infinity, i.e. x ∈
C1,∞(J, X).

Proof. Assume condition (5.8). Let x : J → X be a mild solution of (5.6) that is bounded
on J. By setting s = t in (5.7) and considering the function x at the point t + 1 we get the
following equality:

x(t+ 1) = U(1)x(t) +

t+1∫
t

U(t+ 1− τ)f(τ)dτ, t ∈ J.

We shall write U(1) = B,
t+1∫
t

U(t + 1 − τ)f(τ)dτ = y0(t), t ∈ J. Next, we will show that

y0 ∈ C0(J, X). We have

‖y0(t)‖ = ‖
t+1∫
t

U(t+ 1− τ)y(τ)dτ‖ ≤M

t+1∫
t

‖y(τ)‖dτ → 0 as |t| → ∞,

which follows by the boundedness of U and the estimate
t+1∫
t

‖y(τ)‖dτ ≤
n+1∫
n

‖y(τ)‖dτ +

n+2∫
n+1

‖y(τ)‖dτ → 0 as |n| → ∞

where y ∈ L1(R, X) and n = btc is the floor of t.
Hence, x satisfies difference equation (5.1). Equation (5.8) yields condition (5.2) of

Theorem 5.2 and, therefore, x ∈ C1,∞(J, X).

Theorem 5.4. Let us consider a bounded semigroup U : R+ → EndX. If the spectrum of
its infinitesimal generator A satisfies

σ(A) ∩ iR ⊂ i
2π

ω
Z, (5.9)

then each function ϕx : R+ → X defined by ϕx(t) = U(t)x, t ≥ 0, is ω-periodic at infinity.

Definition 16 directly implies that each function ϕx, x ∈ X, is a bounded mild solution
of (5.6) and, therefore, the conditions of Theorem 5.3 are satisfied.
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