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EMJ: from Scopus Q4 to Scopus Q3 in two years?!

Recently the list was published of all mathematical journals included in 2015 Scopus
quartiles Q1 (334 journals), Q2 (318 journals), Q3 (315 journals), and Q4 (285 journals).
Altogether 1252 journals.

With great pleasure we inform our readers that the Eurasian Mathematical Journal was
included in this list, currently the only mathematical journal in the Republic of Kazakhstan
and Central Asia.

It was included in Q4 with the SCImago Journal & Country Rank (SJR) indicator equal
to 0,101, and is somewhere at the bottom of the Q4 list. With this indicator the journal shares
places from 1240 to 1248 in the list of all 2015 Scopus mathematical journals. Nevertheless,
this may be considered to be a good achievement, because Scopus uses information about
journals for the three previous years, i. e. for years 2013-2015, and the EMJ is in Scopus
only from the first quarter of year 2015.

The SJR indicator is calculated by using a sophisticated formula, taking into account
various characteristics of journals and journals publications, in particular the average number
of weighted citations received in the selected year by the documents published in the selected
journal in the three previous years. This formula and related comments can be viewed on
the web-page

http : //www.scimagojr.com/journalrank.php?category = 2601&area = 2600&page =
1&totalsize = 373

(Help/Journals/Understand tables and charts/Detailed description of SJR.)
In order to enter Q3 the SJR indicator should be greater than 0,250. It looks like the

ambitious aim of entering Q3 in year 2017 is nevertheless realistic due to recognized high
level of the EMJ.

We hope that all respected members of the international Editorial Board, reviewers,
authors of our journal, representing more than 35 countries, and future authors will provide
high quality publications in the EMJ which will allow to achieve this aim.

On behalf of the Editorial Board of the EMJ
V.I. Burenkov, E.D. Nursultanov, T.Sh. Kalmenov,
R. Oinarov, M. Otelbaev, T.V. Tararykova, A.M. Temirkhanova



VICTOR IVANOVICH BURENKOV

(to the 75th birthday)

On July 15, 2016 was the 75th birthday of Victor Ivanovich Bu-
renkov, editor-in-chief of the Eurasian Mathematical Journal (together
with V.A. Sadovnichy and M. Otelbaev), director of the S.M. Nikol’skii
Institute of Mathematics, head of the Department of Mathematical
Analysis and Theory of Functions, chairman of Dissertation Coun-
cil at the RUDN University (Moscow), research fellow (part-time) at
the Steklov Institute of Mathematics (Moscow), scientific supervisor
of the Laboratory of Mathematical Analysis at the Russian-Armenian

(Slavonic) University (Yerevan, Armenia), doctor of physical and mathematical sciences
(1983), professor (1986), honorary professor of the L.N. Gumilyov Eurasian National Uni-
versity (Astana, Kazakhstan, 2006), honorary doctor of the Russian-Armenian (Slavonic)
University (Yerevan, Armenia, 2007), honorary member of staff of the University of Padua
(Italy, 2011), honorary distinguished professor of the Cardiff School of Mathematics (UK,
2014), honorary professor of the Aktobe Regional State University (Kazakhstan, 2015).

V.I. Burenkov graduated from the Moscow Institute of Physics and Technology (1963)
and completed his postgraduate studies there in 1966 under supervision of the famous Rus-
sian mathematician academician S.M. Nikol’skii.

He worked at several universities, in particular for more than 10 years at the Moscow
Institute of Electronics, Radio-engineering, and Automation, the RUDN University, and the
Cardiff University. He also worked at the Moscow Institute of Physics and Technology, the
University of Padua, and the L.N. Gumilyov Eurasian National University.

He obtained seminal scientific results in several areas of functional analysis and the theory
of partial differential and integral equations. Some of his results and methods are named
after him: Burenkov’s theorem of composition of absolutely continuous functions, Burenkov’s
theorem on conditional hypoellipticity, Burenkov’s method of mollifiers with variable step,
Burenkov’s method of extending functions, the Burenkov-Lamberti method of transition
operators in the problem of spectral stability of differential operators, the Burenkov-Guliyevs
conditions for boundedness of operators in Morrey-type spaces. On the whole, the results
obtained by V.I. Burenkov have laid the groundwork for new perspective scientific directions
in the theory of functions spaces and its applications to partial differential equations, the
spectral theory in particular.

More than 30 postgraduate students from more than 10 countries gained candidate of
sciences or PhD degrees under his supervision. He has published more than 170 scientific
papers. The lists of his publications can be viewed on the portals MathSciNet and Math-
Net.Ru. His monograph “Sobolev spaces on domains" became a popular text for both experts
in the theory of function spaces and a wide range of mathematicians interested in applying
the theory of Sobolev spaces.

In 2011 the conference “Operators in Morrey-type Spaces and Applications”, dedicated
to his 70th birthday was held at the Ahi Evran University (Kirsehir, Turkey). Proceedings
of that conference were published in the EMJ 3-3 and EMJ 4-1.

The Editorial Board of the Eurasian Mathematical Journal congratulates Victor
Ivanovich Burenkov on the occasion of his 75th birthday and wishes him good health and
new achievements in science and teaching!
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USE OF BUNDLES OF LOCALLY CONVEX SPACES
IN PROBLEMS OF CONVERGENCE
OF SEMIGROUPS OF OPERATORS. I
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Abstract. In this work we construct certain general bundles 〈M, ρ,X〉 and 〈B, η,X〉 of
Hausdorff locally convex spaces associated with a given Banach bundle 〈E, π,X〉. Then we
present conditions ensuring the existence of bounded sections U ∈ Γx∞(ρ) and P ∈ Γx∞(η)
both continuous at a point x∞ ∈ X, such that U(x) is a C0−semigroup of contractions on
Ex and P(x) is a spectral projector of the infinitesimal generator of the semigroup U(x), for
every x ∈ X.

1 Introduction

This work consists of three parts of which the present represents the first one. We construct
certain general bundles 〈M, ρ,X〉 and 〈B, η,X〉 of Hausdorff locally convex spaces associated
with a given Banach bundle 〈E, π,X〉. Then we present conditions ensuring the existence
of bounded sections U ∈ Γx∞(ρ) and P ∈ Γx∞(η) both continuous at a point x∞ ∈ X, such
that U(x) is a C0−semigroup of contractions on Ex and P(x) is a spectral projector of the
infinitesimal generator of the semigroup U(x), for every x ∈ X.

Here W + 〈M, ρ,X〉 and 〈B, η,X〉 are special kind of bundles of Hausdorff locally
convex spaces (bundle of Ω−spaces [10]) while V + 〈E, π,X〉 is a suitable Banach bundle
such that the common base space X is a completely regular topological space and the filter
of neighbourhoods of x∞ admits a countable basis1. Moreover for all x ∈ X the stalk
Mx +

−1
ρ (x) is a topological subspace of the space Cc (R+,LSx(Ex)) with the topology of

compact convergence, of all continuous maps defined on R+ and with values in LSx(Ex), and
the stalk Bx +

−1
η (x) is a topological subspace of LSx(Ex). Here Ex +

−1
π (x), while LSx(Ex),

is the space, of all linear bounded maps on Ex with the topology of uniform convergence
over the subsets of Sx ⊂ Bounded(Ex) which depends, for all x ∈ X, on the same subspace
E ⊆ Γ(π). Here ρ : M → X, η : B → X, and π : E → X are the projection maps of the
respecive bundles, Γx∞(ρ) is the set of all bounded sections of W continuous at x∞ with
respect to the topology on the bundle space M and Γ(π) is the set of all bounded continuous
sections of V.

1in particular X a metric space and x∞ any point of X.
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An essential factor is that the continuity at x∞ of U and P derives by a sort of con-
tinuity at the same point of the section T of the graphs of the infinitesimal generators of
the semigroups in the range of U , where the sort of continuity has to be understood in the
following sense. For every x ∈ X let T (x) be the graph of the infinitesimal generator Tx of
the semigroup U(x), then 

T (x∞) = {φ(x∞) |φ ∈ Φ}
Φ ⊆ Γx∞(πE⊕)

(∀x ∈ X)(∀φ ∈ Φ)(φ(x) ∈ T (x)),

(1.1)

where Γx∞(πE⊕) is the set of all bounded sections of the direct sum of bundles V⊕V which
are continuous at x∞.

Hence for any v ∈ Dom(Tx∞) there exists a bounded section φ of V⊕V such that{
(v, Tx∞v) = limx→x∞(φ1(x), φ2(x))

(φ1(x), φ2(x)) ∈ Graph(Tx),∀x ∈ X − {x∞},
(1.2)

where the limit is with respect to the topology on the bundle space of V⊕V2.
The main strategy for obtaining the continuity at x∞ of U and P, it is to correlate the

topologies on M and B, with the topology on E. Thus it is clear that the construction of the
right structures has a prominent role.

It is well-known the relative freedom of choice of the topology on the bundle space of any
bundle of Ω−spaces. More exactly fixed a suitable linear space say G of bounded sections
there exists always a topology on the bundle space such that all the maps in G are continuous.
Moreover if X is compact one can find a topology such that G is the whole space of bounded
continuous sections [10, Theorem 5.9]. This freedom of choice allows the construction of
examples of the above-mentioned correlations of topologies.

From the following simple result Corollary 3.1 and without entering in the definition of
the topology of a bundle of Ω−space, we can recognize the power of determining the right
set Γ(ζ) of continuous sections of a general bundle 〈Q, ζ,X〉 of Ω−space. Let f ∈

∏b
x∈X Qx

be any bounded section and x∞ ∈ X such that there exists a section σ ∈ Γ(ζ) such that
σ(x∞) = f(x∞). Then

f ∈ Γx∞(ζ) ⇔ (∀j ∈ J)( lim
z→x∞

νz
j (f(z)− σ(z)) = 0), (1.3)

where J is a set such that {νz
j | j ∈ J} is a directed fundamental set of seminorms of the

locally convex space Qz +
−1

ζ (z) for all z ∈ X. About the problem of establishing if there
are continuous bounded sections intersecting f in x∞, we can use an important result of the
theory of Banach bundles, stating that any Banach bundle over a locally compact base space
is full, namely for any point of the bundle space there exists a section passing on it. While
for more general bundles of Ω−spaces we can use the above described freedom.

2Later we shall see that the topology on the bundle space of V⊕V will be constructed in order to ensure
that the limit in (1.2) is equivalent to say that v = limx→x∞ φ1(x) and Tx∞v = limx→x∞ φ2(x), both limits
with respect to the topology on the bundle space E.
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The criterium we used for determining the correlations between M (resp.B) and E is
that of extending to a general bundle of Ω−spaces two properties of the topology of the space
Cc (Y,Ls(Z)).

Here Z is a normed space, S is a set of bounded subsets of Z, Ls(Z) is the space of all
linear continuous maps on Z with the pointwise topology, finally Cc (Y,Ls(Z)) is the space
of all continuous maps on a topological space Y with values in Ls(Z) with the topology of
uniform convergence over the compact subsets of Y .

In order to simplify the notation we here shall consider Z as a Banach space and take
LS(Z) = Bs(Z), i.e. the space of all bounded linear operators on Z with the strong operator
topology.

Let X be a compact space

M +{F ∈ Cb (X, Cc (Y,Bs(Z))) | (∀K ∈ Comp(Y ))

(C(F,K) + sup
(x,s)∈X×K

‖F (x)(s)‖B(Z) <∞)}

Mx + {F (x) |F ∈M}

Let V + 〈E, π,X〉 denote the trivial bundle with constant stalk Z so Γ(π) ' Cb (X,Z), set
Ax + {µK

(v,x) |K ∈ Comp(Y ), v ∈ Γ(π)},
µK

(v,x) : Mx 3 G 7→ sups∈K ‖G(s)v(x)‖,
M + {〈Mx,Ax〉}x∈X .

(1.4)

Then by using Lemma 5.2 and [10, Theorem 5.9] we can construct a bundle of Ω−spaces say
V(M,M) whose stalk at x is the locally convex space 〈Mx,Ax〉 and whose space of bounded
continuous sections Γ(πM) is such that Γ(πM) 'M.

Let f ∈
∏

x∈ X Mx be such that (∀K ∈ Comp(Y ))(sup(x,s)∈X×K ‖f(x)(s)‖B(Z) <∞) then
according to Theorem 5.1 we obtain that (1) ⇔ (2) ⇔ (3) with

1. (∀K ∈ Comp(Y ))(∀v ∈ Γ(π))

( lim
x→x∞

sup
s∈K

‖f(x)(s)v(x)− f(x∞)(s)v(x)‖ = 0);

2. f ∈ Γx∞(πM);

3. f : X → Cc (Y,Bs(Z)) continuous at x∞.

Moreover if Y is locally compact for all t ∈ Y

Γ(πM)t • Γ(π) ⊆ Γ(π). (1.5)

Therefore we constructed two bundles V and V(M,M) whose topologies are (I) stalkwise
related by {Ax}x∈X in (1.4) and for which hold (1) ⇔ (2) and (II) globally related by (1.5).
Finally Γx∞(πM) coincides with the subset of all maps f : X → Cc (Y,Bs(Z)) continuous
at x∞ such that (∀K ∈ Comp(Y ))(sup(x,s)∈X×K ‖f(x)(s)‖B(Z) < ∞). The extension at
general bundles of the property (I) leads to the concept of (Θ, E)−structure, provided
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in Definition 6 see Lemma 5.1, while the generalization of the property (II) leads to the
concept of compatible (Θ, E)−structure, given in Definition 6.

A similar and more important global correlation between M and E, this time for the
case in which the topology on each stalk Mx is that of the pointwise convergence instead
of the compact convergence, is that encoded in [19, eq (4.12)] in the definition of invariant
(Θ, E , µ)−structures provided in [19, Definition 10]. This closes the discussion about the
relationship between the topologies on M and E, in particular between those on B and E 3

Briefly we recall what here has to be understood as a classical stability problem in order
to understand how to generalize it through the language of bundles. The classical stability
problem could be so described. Fixed a Banach space Z find a sequence {Sn : Dn ⊆ Z → Z}
of possibly unbounded linear operators in Z and a sequence {Pn} ⊂ B(Z) where Pn is a
spectral projector of Sn for n ∈ N, such that

(A) whenever there exists an operator S : D ⊂ Z → Z such that S = limn→∞ Sn with
respect to a suitable topology or in any other generalized sense,

(B) then there exists a spectral projector P ∈ B(Z) of S such that P = limn→∞ Pn with
respect to the strong operator topology.

Here a spectral projector of an operator S in a Banach space is a continuous projector
associated with a closed S−invariant subspace Z0 such that σ(S � Z0) ⊂ σ(S), where σ(T )
is the spectrum of the operator T .

In [12, Ch IV ] one finds many stability theorems in which the limit in (A) has to be
understood with respect to the metric induced by the so called gap between the corresponding
closed graphs.

Additional stability theorems, even for operators defined in different spaces, are available.
They have been obtained by using the concept of Transition Operators introduced by Victor
I. Burenkov, see for expample [4], [5] and [6]. Instead to their stability theorems Massimo
Lanza de Cristoforis and Pier Domenico Lamberti employed functional analytic approaches,
see for examples [15], [16], [14].

If we try to generalize the classical stability problem to the case in which Z is replaced
by any sequence {Zn} of Banach spaces and Sn is defined in Zn for all n, then we would face
the following difficulty. How can we adapt the definition of the gap given by Kato to the
case of a sequence of different spaces? More in general in which sense has to be understood
the convergence of operators defined in different spaces.

A first step toward the generalization to the case of different spaces of the classical
stability problem is the following result of Thomas G. Kurtz [13].

Theorem 1.1 (2.1. of [13]). For each n, let Un(t) be a strongly continuous contraction
semigroup defined on Ln with the infinitesimal operator An. Let A = ex− limn→∞An. Then
there exists a strongly continuous semigroup U(t) on L such that limn→∞ Un(t)Qnf = U(t)f
for all f ∈ L and t ∈ R+ if and only if the domain D(A) is dense and the range R(λ0 − A)
of λ0 − A is dense in L for some λ0 > 0. If the above conditions hold A is the infinitesimal
generator of U and we have

lim
n→∞

sup
0≤s≤t

‖Un(s)Qnf −QnU(s)f‖n = 0, (1.6)

3Indeed it is sufficient to take Y = {pt} i.e. one point space.
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for every f ∈ L and t ∈ R+.

Here 〈L, ‖ · ‖〉 is a Banach space, {〈Ln, ‖ · ‖n〉}n∈N is a sequence of Banach spaces, {Qn ∈
B(L,Ln)}n∈N such that limn→∞ ‖Qnf‖n = ‖f‖ for all f ∈ L. Let f ∈ L and {fn}n∈N such
that fn ∈ Ln for every n ∈ N, thus he set 4

f = lim
n→∞

fn ⇔ lim
n→∞

‖fn −Qnf‖n = 0. (1.7)

Moreover if An : Dom(An) ⊆ Ln → Ln he defined
Graph(ex− limn→∞An) + {limn∈N s0(n) | s0 ∈ Φ0}
Φ0 + {(fn, Anfn)n∈N ∈ (Z × Z)N |
(∀n ∈ N)(fn ∈ Dom(An)) ∧ (∃ lim

n∈N
(fn, Anfn))},

(Gr)

where (f, g) = limn∈N(fn, Anfn)) if and only if f = limn∈N fn and g = limn∈NAnfn and all
these limits are those defined in (1.7). Whenever Graph(ex − limn→∞An) is a graph in L
Kurtz denoted by ex− limn→∞An the corresponding operator in L.

The Kurtz’s approach did not make use of the bundle theory, and, except when imposing
stronger assumptions, it cannot be implemented in terms of bundles of Ω−spaces.

What follows results fundamental for understanding the strategy behind this work. (1.3)
essentially generalizes (1.7). More importantly if the topology on M and that on E are
related by a (Θ, E)−structure (for a very simple model see (1.9)) then the convergence (1.3)
essentially generalizes the convergence (1.6) of the sequence of semigroups {Un}n∈N to the
semigroup U .5

4Notice the strong similarity of (1.7) with (1.3).
5Indeed if we set assume that there exists for every n ∈ N Sn ∈ B(Ln, L) such that SnQn = Id then (1.6)

would become
(∀t ∈ R+)(∀f ∈ L)( lim

n→∞
sup

0≤s≤t
‖(Un(s)−QnU(s)Sn)Qnf‖n = 0). (1.8)

Moreover let 〈M, ρ, X〉 and 〈E, π, X〉 be set as in the beginning and assume that {νz
(K,v) | (K, v) ∈

Comp(Y ), v ∈ E} is a fundamental set of seminorms on Mz for every z ∈ X, where E ⊆ Γ(π). Finally
assume that for all K ∈ Comp(Y ), v ∈ E and for all z ∈ X and fz ∈ Mz

νz
(K,v)(f

z) + sup
s∈K

‖fz(s)v(z)‖z. (1.9)

Thus (1.3) would read: if there exists σ ∈ Γ(ρ) such that σ(x∞) = F (x∞) then

F ∈ Γx∞(ρ) ⇔ (∀K ∈ Comp(Y ))(∀v ∈ E)( lim
z→x∞

sup
s∈K

‖(F (z)− σ(z))v(z)‖z = 0). (1.10)

Therefore by setting X the Alexandroff compactification of N, x∞ = ∞ and for all n ∈ N
En + Ln, E∞ + L

Mn + Cc (R+, Bs(Ln))
M∞ + Cc (R+, Bs(L))
E + {Qf | f ∈ L} ,

(1.11)

if there exist conditions under which we can obtain that{
{Qf | f ∈ L} ⊆ Γ(π)
{QV S |V ∈ U(L)} ⊆ Γ(ρ),

(1.12)
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We used the word “essentially” due to the difficulty to build a couple of Kurtz’ bundles,
namely two bundles of Ω−spaces 〈E, π,X〉 and 〈M, ρ,X〉 such that X is the Alexandroff
compactification of N and (1.11), (1.12) hold. In any case it is possible under strong as-
sumptions, see [19, Section 5]. Despite the difficulty of constructing Kurtz’s bundles, since
the above remark we opted to investigate to which extent the Kurtz’s Theorem 1.1 can be
extended in the framework of bundles of Ω−spaces, by using the concept of (Θ, E)−structure.

It is now clear that, in the way of extending the Kurtz’s Theorem, we replace the sequence
of Banach spaces {Ln}n∈N∪{∞} where L∞ + L, with a Banach bundle E, while we replace
the sequence {Cc

(
R+, Bs(Ln)

)
}n∈N∪{∞} by the bundle of Ω−spaces M. Hence the Kurtz’

convergences (1.6) and (1.7) will be replaced by the convergences of sections on the bundles
spaces M and E respectively. In this view definition (Gr) has to be replaced by that of Pre-
Graph section Definition 9 (essentially (1.1)), while the case in which Graph(ex−limn→∞An)
is a graph in L with that of Graph section Definition 8. Hence it arises as a natural question
which topology has to be selected for the bundle space of V⊕V.

An essential tool used in the definition of Graph(ex − limn→∞An) in (Gr) is that of
convergence of a sequence (fn, Anfn) in the direct sum of the spaces Ln ⊕ Ln, given by
construction as the convergence of both the sequences in Ln in the meaning of (1.7).

It is exactly this factorization the property which we want to preserve when selecting the
right topology on the bundle space of V⊕V.

It is a well-known result the solution of this problem in the special case of Banach
bundles. We generalize this result for a finite direct sum of general bundles of Ω−spaces, by
constructing in Theorem 4.1 a directed family of seminorms on the direct sum of Hausdorff
locally convex spaces that generates the product topology.

This result along with Lemma 4.1 allow to define the direct sum of (full) bundles of
Ω−spaces as given in Definition 2

The result that the topology on each stalk is the product topology, encoded in (4.6), the
choice provided in (4.7) of a set that will become a subset of bounded continuous sections
of the direct sum of bundles and the general convergence criterium in (1.3), allow to show
the claimed factorization property in Corollary 4.1. Namely any continuous map from X at
values in the direct sum

⊕n
i=1 Ei of bundles is continuous at a point if and only if all its n

components are continuous at the same point.
In [18, Theorem 2.1] we resolve the claim of extending the Kurtz’s result to the setting of

bundles of Ω−spaces. More exacly we construct an element of the set ∆Θ 〈V,W, E , X,R+〉
Definition 11. Roughly and limited to singletons we have that the singleton {〈T , x∞,Φ〉}
belongs to ∆Θ 〈V,W, E , X,R+〉 if and only if T (x) is the graph of the infinitesimal generator
Tx of a C0−semigroup U(x) on Ex, for all x ∈ X, (1.1) holds true and

U ∈ Γx∞(ρ). (1.13)

Thus, according to the discussed way of extending the Kurtz’ theorem, to find an element
in the set ∆Θ 〈V,W, E , X,R+〉 means to find an extension of Theorem 1.1.

where (Qf)(n) + Qnf , (Qf)(∞) + f , while (QV S)(n) + QnV Sn, (QV S)(∞) + V , for all n ∈ N and U(L),
is the set of all C0−semigroup on L, then by (1.10) and (1.8) follows that

U ∈ Γ∞(ρ),

where U(n) + Un and U(∞) + U .
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Finally let us outline how the main result of the entire work [19, Theorem 4.2] ex-
tends the classical stability problem at operators defined in different spaces. It provides the
existence of an element 〈T ,Φ, x∞〉 whose singleton belongs to the intersection of the set
∆Θ 〈V,W, E , X,R+〉 with the set ∆ 〈V,D,Θ, E〉 which ammounts to what follows. There
exists U satisfying (1.13) and there exists a section

P ∈ Γx∞(η), (1.14)

satisfying (1.15) with Tx the infinitesimal generator of the C0−semigroup U(x) for all x ∈ X.
Actually the result is stronger since it establishes that P(x) is a spectral projector of Tx for
all x ∈ X.

Roughly speaking and limited to singletons we have what follows, see Definition 10 for
the precise and general definition. Given a (Θ, E)−structure 〈V,D, X, {pt}〉 and denoted
D + 〈B, η,X〉, we have that the singleton of 〈T ,Φ, x∞〉 belongs to ∆ 〈V,D,Θ, E〉 if and only
if for all x ∈ X the set T (x) is a graph in Ex, (1.1) holds true and there exists P ∈ Γx∞(η)
such that P(x) is a projector on Ex for all x ∈ X and

P(x)Tx ⊆ TxP(x), (1.15)

where Tx is the operator in Ex whose graph is T (x).
In others words 〈T ,Φ, x∞〉 ∈ ∆ 〈V,D,Θ, E〉 if and only if T is a section of graphs in E

continuous at x∞ in the sense of (1.2) and such that there exists a section P of projectors
on E continuous at x∞ such that P commutes with T in the meaning of (1.15).

Notice that (1.15) is satisfied by any element of the resolution of the identity of a spectral
operator [8, Definition 18.2.1]. Moreover whenever Tx is the infinitesimal generator of a
C0−semigroup WT (x) of contractions on Ex, the most important case in this work, it results
that (1.15) is the property satisfied by all the spectral projectors of the form

P(x) + − 1

2πi

∫
Γ

R(−Tx; ζ) dζ,

where R(−Tx; ζ) is the resolvent map of the operator −Tx and Γ is a suitable closed curve
on the complex plane. Hence we can consider the commutation in (1.15) as the defining
property of what we here consider as the interesting bundle P of projectors associated with
T . Therefore as (1.13) represents the extension of the Kurtz’s theorem so (1.14) realizes
our initial claim to extend in the framework of bundles of Ω−spaces the classical stability
problem. Moreover the two solutions U and P are correlated since P(x) is a spectral projector
of the infinitesimal generator Tx of the semigroup U(x) for all x ∈ X, in particular (1.15)
holds true.
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The main results of this work are the following ones

1. Construction of a suitable directed fundamental set of seminorms of the topological
direct sum of a finite family of Hausdorff locally convex spaces, and construction of E⊕
satisfying FM(3)− FM(4) with respect to E⊕ (Theorem 4.1 and Lemma 4.1);

2. Factorization property of the convergence in any direct sum of bundles of Ω−spaces
(Corollary 4.1);

3. Characterization of sections of W continuous at a point when 〈V,W, X, Y 〉 is a
(Θ, E)−structure, (Lemma 5.1);

4. Construction of a (Θ, E)−structure 〈V,W, X, Y 〉 and characterization of a subset of
Γx∞(ρ) when V is trivial, (Theorem 5.1);

5. Construction of an element in the set ∆Θ 〈V,W, E , X,R+〉, ([18, Theorem 2.1, Corol-
lary 3.1, Corollary 4.3, Theorem 4.4]);

6. Conditions yielding the bounded equicontinuity of which in hypothesis (ii) of [18,
Theorem 2.1] ([18, Corollary 3.1]);

7. Conditions yielding the [18, eq. (2.14)] ([18, Proposition 4.2]);

8. [18, Lemma 4.4, Theorem 4.1, Theorem 4.2, Theorem 4.3, Corollary 4.1];

9. Laplace duality property [18, Corollary 4.2];

10. Consequence of being an 〈ν, η, E, Z, T 〉 invariant set V with respect to F ([19, Propo-
sition 2.1]);

11. Construction of a set ∆Θ 〈V,D,W, E , X,R+〉 by using an 〈ν, η,G, K(Γ),R+〉 invariant
set V with respect to {F T} ([19, Corollary 3.1]);

12. A bundle version of the Lebesgue theorem for a µ−related couple 〈V,Z〉 ([19, Theorem
4.1]);

13. [19, Lemma 4.1, Lemma 4.2, Corollary 4.1]

14. Construction of a section of spectral projectors continuous at a point, given a section
of semigroups continuous at the same point ([19, Corollary 4.2])

15. The Main result of the entire work namely the construction of an element in the set
∆ 〈V,D,Θ, E〉 ([19, Theorem 4.2]).

The main structures defined in this work are the following ones

1. Direct sum of full bundles of Ω−spaces (Definition 2);

2. (Invariant) (Θ, E)−structure 〈V,W, X, Y 〉, (Definition 6);

3. Graph section 〈T , x∞,Φ〉, (Definition 8);
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4. ∆ 〈V,D,Θ, E〉, (Definition 10);

5. ∆Θ 〈V,W, E , X,R+〉, (Definition 11);

6. ∆Θ 〈V,D,W, E , X,R+〉; (Definition 12);

7. 〈V,W, X,R+〉 with the Laplace duality property, ([18, Definition 2]);

8. U−Spaces ([18, Definition 7]);

9. The locally convex space G ([18, Definition 9]);

10. 〈ν, η, E, Z, T 〉 invariant set V with respect to F ([19, Definition 2]);

11. µ−related couple 〈V,Z〉 ([19, Definition 9]);

12. (Invariant) (Θ, E , µ)− structure 〈V,Q, X, Y 〉 ([19, Definition 10]);

13. (Θ, E)− structure 〈V,V(M,Γ(ξ)), X, Y 〉 underlying a (Θ, E , µ)− structure
〈V,Q, X, Y 〉 ([19, Definition 12]).

2 Notation

For any two sets X,Y we let Y X denote the set of maps defined on X and at values in
Y . Let Graph(X × Y ) denote the set of subsets of X × Y which are graphs, while for any
map f let Graph(f) denote its graph. If B is a base of a filter on X, we let FX

B denote
the filter on X generated by the base B. If S is any set then Pω(S) denotes the set of all
finite subsets of S. If τ is any topology on X and x ∈ X, then Iτ

x denotes the filter of
neighbourhoods of x of the topological space 〈X, τ〉. Let u.s.c. mean upper semicontinuous.
All vector spaces are assumed to be over K ∈ {R,C}, Hlcs stands for Hausdorff locally
convex spaces. We say that V + {〈Vx,Ax〉}x∈X is a nice family of Hlcs if {Vx}x∈X is a
family of Hlcs and there exists a set J for which ∀x ∈ X the set Ax + {µx

j }j∈J is a directed
6 family of seminorms on Vx generating the locally convex topology on it. For any family
of seminorms K on a vector space V we call the directed family of seminorms associated
with K the set {supF |F ∈ Pω(Γ)} with the order relation of pointwise order on RV . fss
stands for “fundamental set of seminorms”. Given two locally convex spaces (lcs) E and F
we denote by L(E,F ) the linear space of all linear and continuous maps on E with values
in F , and set L(E) + L(E,E), moreover let Pr(E) + {P ∈ L(E)|P ◦P = P} denote the set
of all continuous projectors on E. Let S be a set of bounded subsets of a lcs E, thus LS(E)
denotes the lcs whose underlining linear space is L(E) and whose locally convex topology
is that of uniform convergence over the subsets in S. When E is a normed space and S is
the set of all finite parts of E, then LS(E) will be denoted by Bs(E), while B(E) denotes
L(E) with the usual norm topology. Let {Ei}i∈I a family of lcs. Then we denote by τ0, τb,
τl, τl the topology on

⊕
i∈I Ei induced by the product topology on

∏
i∈I Ei, that induced by

the box topology on
∏

i∈I Ei (see [11]), the direct sum topology, Ch. 4, §3 of [11] and the
lc-direct sum topology Ch. 6, §6 of [11] respectively.

6I.e. (∀j1, j2 ∈ J)(∃ j ∈ J)(µx
j1

, µx
j1
≤ µx

j ) with the order relation of pointwise order on RVx .
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Let X, Y be two topological spaces then Comp(X) is the set of all compact subsets
of X, while C (X, Y ) is the set of all continuous maps on X valued in Y , while Cc (X, Y )
is the topological space of all continuous maps on X valued in Y with the topology of
uniform convergence over the compact subsets of Y . If Y is a uniform space then Cb(X, Y )
is the space of all bounded maps in C (X, Y ), while Cb

c(X, Y ) = Cc (X, Y ) ∩ Cb(X, Y ). If
E is a lcs then Cc (X,E) is a lcs, while if E is a Hlcs and Comp(X) is a covering of X,
for example if X is a locally compact space, then Cc (X,E) is a Hlcs. Let Y be a locally
compact space, µ ∈ Radon(Y ) and E ∈ Hlcs, then L1(Y,E, µ) denotes the linear space
of all scalarly essentially µ−integrable maps f : Y → E such that its integral belongs to
E, see [3, Ch. 6], while Meas(Y,E, µ) denotes the linear space of all µ−measurable maps
f : Y → E. Let E be a topological vector space, and 〈L(E), τ〉 the topological vector space
whose underlying linear space is L(E) provided by the topology τ . Thus U(〈L(E), τ〉) is
the set of all continuous semigroup morphisms defined on R+ and with values in 〈L(E), τ〉.
Moreover if ‖·‖ is any seminorm on L(E) (not necessarly continuous with respect to τ) we set
U‖·‖(〈L(E), τ〉) as the subset of all U ∈ U(〈L(E), τ〉) such that ‖U(s)‖ ≤ 1, for all s ∈ R+.
Let Uis(〈L(E), τ〉) be the subset of all U ∈ U(〈L(E), τ〉) such that there exists a fundamental
set of seminorms K on E such that U(s) is an isometry with respect to any element in K,
for all s ∈ R+. We use throughout this work the notation of [10] and often when referring to
Banach bundles those of [9]. In particular 〈〈E, τ〉 , p,X,N〉 or simply 〈E, p,X〉, whenever τ
and N are known, is a bundle of Ω−spaces (1.5. of [10]), where we denote by τ the topology
on E while with N + {νj | j ∈ J} the directed set of seminorms on E (1.3. of [10]). Thus we
set Nx + {νx

j | j ∈ J} with νx
j + νj � Ex and Ex +

−1
p (x), for all x ∈ X and j ∈ J . Moreover

for any U ⊆ X we call ΓU(p) the space of bounded continuous sections of 〈〈E, τ〉 , p,X,N〉
on U defined by

ΓU(p) + C (U,E)
⋂ b∏

x∈U

〈Ex,Nx〉

where
b∏

x∈U

〈Ex,Nx〉 +
{
σ ∈

∏
x∈U

Ex | (∀j ∈ J)(sup
x∈U

νx
j (σ(x)) <∞)

}
.

Let U ⊆ X and x ∈ U set

Γx
U(p) +

{
f ∈

b∏
x∈U

〈Ex,Nx〉 | f is continuous at x
}
.

So ΓU(p) =
⋂

x∈U Γx
U(p). We set Γ(p) + ΓX(p) and Γx(p) + Γx

X(p) for any x ∈ X. The
definition of trivial bundle of Ω−spaces is given in 1.8. of [10]. Whenever we mention
the properties FM(3), FM(4) we always mean those provided in [10, §5] and recalled in
Definition 13. If A + 〈〈B, τ〉 , ξ,X,N〉 is a bundle of Ω−spaces, x ∈ X and Q,S are subsets
of
∏

z∈X Bz, we set

Qx
S + {H ∈ Q | (∃F ∈ S)(H(x) = F (x))},

Qx
� + Qx

Γ(ξ),

Γx
S(ξ) + (Γx(ξ))x

S,

Γx
�(ξ) + (Γx(ξ))x

� .

(2.1)
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3 Continuous sections of bundles of Ω−spaces

In this section we provide simple but helpful results concerning convergence in bundles of
Ω−spaces and more specifically characterizations of the continuity of sections at a certain
point.

Proposition 3.1. Let V = 〈〈E, τ〉 , π,X,N〉 be a bundle of Ω−spaces where N + {νj | j ∈ J}.
Moreover let b ∈ E and {bα}α∈D a net in E. Then (1) ⇐ (2) ⇐ (3) ⇔ (4) where

1. limα∈D bα = b;

2. (∃U ∈ Op(X) |U 3 π(b))(∃σ ∈ ΓU(π))(σ ◦ π(b) = b) such that limα∈D π(bα) = π(b)
and (∀j ∈ J)(limα∈D νj(bα − σ(π(bα))) = 0);

3. (∃U ′ ∈ Op(X) |U ′ 3 π(b))(∃σ′ ∈ ΓU(π) |σ′ ◦ π(b) = b) and (∀U ∈ Op(X) |U 3
π(b))(∀σ ∈ ΓU(π) |σ ◦ π(b) = b) we have limα∈D π(bα) = π(b) and (∀j ∈
J)(limα∈D νj(bα − σ(π(bα))) = 0);

4. (∃U ′ ∈ Op(X) |U ′ 3 π(b))(∃σ′ ∈ ΓU(π))(σ′ ◦ π(b) = b) and limα∈D bα = b.

Moreover if V is locally full then (1) ⇔ (4).

Proof. Clearly (3) ⇒ (2). (2) is equivalent to say that (∃U ∈ Op(X) |U 3 π(b))(∃σ ∈
ΓU(π))(σ ◦ π(b) = b) such that (∀V ∈ Op(X) |π(b) ∈ V ⊆ U)(∃α(V ) ∈ D)(∀α ≥
α(V ))(π(bα) ∈ V ) and (∀j ∈ J)(∀ε > 0)(∃α(V ) ∈ D)(∀α ≥ α(j, ε))(νj(bα − σ(π(bα))) < ε).
Set α(V, j, ε) ∈ D such that α(V, j, ε) ≥ α(V ), α(j, ε) which there exists D being directed,
thus we have (∀V ∈ Op(X) |π(b) ∈ V ⊆ U)(∀j ∈ J)(∀ε > 0)(∃α(V, j, ε) ∈ D) such
that (∀α ≥ α(V, j, ε))(νj(bα − σ(π(bα))) < ε) and π(bα) ∈ V . Thus (1) follows by ap-
plying 1.5. V II of [10]. Finally by applying 1.5. V II of [10] (4) (respectively (1) if V is
locally full) is equivalent to (∃U ′ ∈ Op(X) |U ′ 3 π(b))(∃σ′ ∈ ΓU(π))(σ′ ◦ π(b) = b) and
(∀σ ∈ ΓU(π) |σ◦π(b) = b)(∀j ∈ J)(∀ε > 0)(∀V ∈ Op(X) |π(b) ∈ V ⊆ U)(∃α ∈ D)(∀α ≥ α)
we have π(bα) ∈ V and νj(bα − σ(π(bα))) < ε which is (3).

Theorem 3.1. Let V = 〈〈E, τ〉 , π,X,N〉 be a bundle of Ω−spaces, W ⊆ X and indicate
N = {νj | j ∈ J}. Moreover let f ∈ EW , x∞ ∈ W . Then (1) ⇐ (2) ⇔ (3) ⇐ (4) ⇔ (5) ⇔ (6)
where

1. f is continuous in x∞;

2. (∃U ∈ Op(X) |U 3 x∞)(∃σ ∈ ΓU(π))(σ(x∞) = f(x∞)) such that νj ◦ (f − σ ◦ π ◦ f) :
W ∩ U → R and π ◦ f : W → X are continuous in x∞ for all j ∈ J ;

3. π ◦ f : W → X is continuous in x∞ and (∃U ∈ Op(X) |U 3 x∞)(∃σ ∈
ΓU(π))(σ(x∞) = f(x∞)) such that

(∀j ∈ J)( lim
y→x∞,y∈W∩U

νj(f(y)− σ ◦ π ◦ f(y)) = 0);

4. (∃U ′ ∈ Op(X) |U ′ 3 x∞)(∃σ′ ∈ ΓU(π))(σ′(x∞) = f(x∞)) and (∀U ∈ Op(X) |U 3
x∞)(∀σ ∈ ΓU(π) |σ(x∞) = f(x∞)) we have νj◦(f−σ) : W∩U → R and π◦f : W → X
are continuous in x∞ for all j ∈ J ;
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5. π ◦ f : W → X is continuous in x∞ and (∃U ′ ∈ Op(X) |U ′ 3 x∞)(∃σ′ ∈
ΓU(π))(σ′(x∞) = f(x∞)) and (∀U ∈ Op(X) |U 3 x∞)(∀σ ∈ ΓU(π) |σ(x∞) = f(x∞))
we have

(∀j ∈ J)( lim
y→x∞,y∈W∩U

νj(f(y)− σ ◦ π ◦ f(y)) = 0);

6. (∃U ′ ∈ Op(X) |U ′ 3 x∞)(∃σ′ ∈ ΓU(π))(σ′(x∞) = f(x∞)) and f is continuous at x∞.

Moreover if V is locally full then (1) ⇔ (6) and if it is full we can choose U = X and
U ′ = X.

Proof. (1) is equivalent to say that for each net {xα}α∈D ⊂ W such that limα∈D xα = x∞ in
W , we have limα∈D f(xα) = f(x∞) in E. Similarly (2) is equivalent to say that for each net
{xα}α∈D ⊂ W such that limα∈D xα = x∞ in W , we have limα∈D π ◦ f(xα) = π ◦ f(x∞) and
(∀j ∈ J)(limα∈D νj ◦ (f − σ ◦ π ◦ f)(xα) = νj ◦ (f − σ ◦ π ◦ f)(x∞)). Thus (1) ⇐ (2) follows
by the corresponding one in Proposition 3.1 with the positions (∀α ∈ D)(bα + f(xα))
and b + f(x∞). Similarly (1) ⇐ (5) follows by (1) ⇐ (3) of Proposition 3.1. Finally
(5) ⇒ (6) follows by (5) ⇒ (1), while if (6) is true then π ◦ f is continuous at x∞ indeed
π is continuous, then (5) follows by the implication (4) ⇒ (3) of Proposition 3.1 with the
positions (∀α ∈ D)(bα + f(xα)) and b + f(x∞).

Corollary 3.1. Let V = 〈〈E, τ〉 , π,X,N〉 be a bundle of Ω−spaces, W ⊆ X and indicate
N = {νj | j ∈ J}. Moreover let f ∈

∏
x∈W Ex and x∞ ∈ W . Then (1) ⇐ (2) ⇔ (3) ⇐ (4) ⇔

(5) ⇔ (6) where

1. f is continuous in x∞;

2. (∃U ∈ Op(X) |U 3 x∞)(∃σ ∈ ΓU(π))(σ(x∞) = f(x∞)) such that νj◦(f−σ) : W∩U →
R is continuous in x∞ for all j ∈ J ;

3. (∃U ∈ Op(X) |U 3 x∞)(∃σ ∈ ΓU(π))(σ(x∞) = f(x∞)) such that

(∀j ∈ J)( lim
y→x∞,y∈W∩U

νj(f(y)− σ(y)) = 0);

4. (∃U ′ ∈ Op(X) |U ′ 3 x∞)(∃σ′ ∈ ΓU(π))(σ′(x∞) = f(x∞)) and (∀U ∈ Op(X) |U 3
x∞)(∀σ ∈ ΓU(π) |σ(x∞) = f(x∞)) we have that νj ◦(f−σ) : W ∩U → R is continuous
in x∞ for all j ∈ J ;

5. (∃U ′ ∈ Op(X) |U ′ 3 x∞)(∃σ′ ∈ ΓU(π))(σ′(x∞) = f(x∞)) and (∀U ∈ Op(X) |U 3
x∞)(∀σ ∈ ΓU(π) |σ(x∞) = f(x∞)) we have

(∀j ∈ J)( lim
y→x∞,y∈W∩U

νj(f(y)− σ(y)) = 0).

6. (∃U ′ ∈ Op(X) |U ′ 3 x∞)(∃σ′ ∈ ΓU(π))(σ′(x∞) = f(x∞)) and f is continuous at x∞

If V is locally full then (1) ⇔ (6) and if it is full we can choose U = X and U ′ = X.

Proof. By Theorem 3.1 and π ◦ f = Id.
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Proposition 3.2. Let V be full and such that there exists a linear space E such that for all
x ∈ X there exists a linear subspace Ex ⊆ E such that Ex = {x} × Ex, and that 7

{tv : X 3 x 7→ (x, v) ∈ Ex | v ∈
⋂
x∈X

Ex} ⊂ Γ(π),

If f0 ∈
∏

x∈X Ex and f ∈
∏

x∈X Ex such that f(x) = (x, f0(x)) for all x ∈ X and f0(x∞) ∈⋂
x∈X Ex, then (1) ⇔ (2) ⇔ (3), where

1. f is continuous at x∞

2. (∃U ∈ Op(X) |U 3 x∞)(∃σ ∈ Cb (U,E))(σ(x∞) = f(x∞)) such that for all j ∈ J

lim
z→x∞,z∈W∩U

νz
j (f(z)− σ(z)) = 0;

3. for all j ∈ J
lim

z→x∞,z∈W∩U
νz

j ((z, f0(z))− (z, f(x∞))) = 0.

Proof. By Corollary 3.1 (1) ⇔ (2). Let (3) hold then (2) is true by setting σ = tf(x∞) � U .
Let (2) hold then νz

j ((z, f0(z)) − (z, f(x∞))) ≤ νz
j ((z, f0(z)) − σ(z)) + νz

j (σ(z) − tf(x∞)(z)),
thus (3) follows by (2) and by Corollary 3.1 applied to the continuous map tf(x∞) � U .

Corollary 3.2. Let V + 〈〈E, τ〉 , π,X,N〉 be a bundle of Ω−spaces, W ⊆ X and indicate
N = {νj | j ∈ J}. Moreover let f, g ∈

∏
x∈W Ex and x∞ ∈ W . Then if V locally full or νj is

continuous ∀j ∈ J , then (1) → (2) where

1. f(x∞) = g(x∞) and f and g are continuous in x∞;

2. (∃U ∈ Op(X) |x∞ ∈ U) such that

(∀j ∈ J)( lim
y→x∞,y∈W∩U

νj(f(y)− g(y)) = 0).

Moreover if V is full we can choose U = X.

Proof. The statement is trivial in the case of continuiuty of all the νj. Whereas if V is locally
full by (1) → (5) of Corollary 3.1 we have (∃U ∈ Op(X))(∃σ ∈ ΓU(π))(σ(x∞) = f(x∞) =
g(x∞)) such that

(∀j ∈ J)( lim
y→x∞,y∈W∩U

νj(f(y)− σ(y)) = lim
y→x∞,y∈W∩U

νj(g(y)− σ(y)) = 0).

Therefore

lim
y→x∞,y∈W∩U

νj(f(y)− g(y)) ≤ lim
y→x∞,y∈W∩U

νj(f(y)− σ(y)) + lim
y→x∞,y∈W∩U

νj(g(y)− σ(y)) = 0.

7An example is when V is the trivial bundle.
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Corollary 3.3. Let 〈〈E, τ〉 , π,X,N〉 be a bundle of Ω−spaces, W ∈ Op(X) and indicate
N = {νj | j ∈ J}. Moreover let f ∈

∏b
x∈W Ex. Then (1) ⇐ (2) ⇔ (3) ⇐ (4) ⇔ (5) where

1. f ∈ ΓW (π);

2.
(∀x ∈ W )(∃Ux ∈ Op(X) |Ux 3 x)(∃σx ∈ ΓUx(π))(σx(x) = f(x))

such that νj ◦ (f − σx) is continuous in x, ∀j ∈ J ;

3.
(∀x ∈ W )(∃Ux ∈ Op(X) |Ux 3 x)(∃σx ∈ ΓUx(π))(σx(x) = f(x))

such that (∀j ∈ J)(limy→x,y∈W∩Ux νj(f(y)− σx(y)) = 0);

4.
(∀x ∈ W )(∃U ′

x ∈ Op(X) |U ′
x 3 x)(∃σ′x ∈ ΓUx(π))(σ′x(x) = f(x))

and
(∀Ux ∈ Op(X) |Ux 3 x)(∀σx ∈ ΓUx(π) |σx(x) = f(x))

we have that νj ◦ (f − σx) is continuous in x for all x ∈ W and j ∈ J ;

5.
(∀x ∈ W )(∃U ′

x ∈ Op(X) |U ′
x 3 x)(∃σ′x ∈ ΓUx(π))(σ′x(x) = f(x))

and
(∀x ∈ W )(∀Ux ∈ Op(X) |Ux 3 x)(∀σx ∈ ΓUx(π) |σx(x) = f(x))

we have (∀j ∈ J)(limy→x,y∈W∩Ux νj(f(y)− σx(y)) = 0).

Proof. By Corollary 3.1.

4 Direct Sum of Bundles of Ω−spaces

The aim of this section is to extend in Definition 2 the standard construction of direct sum of
Banach bundles to bundles of Ω−spaces. In order to do this in Theorem 4.1 we find a suitable
directed set of seminorms inducing the product topology on the direct sum of a finite family
of locally convex spaces. Then since Lemma 4.1 we can apply the general construction given
in Definition 15 to the objects defined in Definition 1. Finally the factorization property of
the convergence in any direct sum of bundles of Ω−spaces presented in Corollary 4.1, shows
that our definition extends the product topology and more in general it extends the usual
definition of direct sum of Banach bundles.

Theorem 4.1. Let {〈Ei, νi〉}n
i=1 be a family of lcs where νi = {νi,li | li ∈ Li} is a fundamental

directed set of seminorms of Ei. Let us set for all i = 1, ..., n, li ∈ Li and ρ ∈
∏n

i=1 Li{
ν̂i,li + νi,li ◦ Pri

µ̂ρ +
∑n

k=1 ν̂k,ρk
,

where Pri :
∏n

k=1Ek 3 x 7→ xi ∈ Ei.



Use of bundles of locally convex spaces in problems of convergence of semigroups of operators. I 67

Then µ̂ + {µ̂ρ | ρ ∈
∏n

i=1 Li} is a directed set of seminorms on
⊕n

i=1Ei. Moreover by
setting {

B(0) + {W ρ
ε | ε, ρ ∈

∏n
i=1 Li}

W ρ
ε + {x ∈

⊕n
i=1Ei | µ̂ρ(x) < ε},

we have that B(0) is a base of the filter of the neighbourhoods of 0 with respect to the unique
locally convex topology τ on

⊕n
i=1Ei generated by µ̂. In other words

F
⊕n

i=1 Ei

B(0) = Iτ
0 .

Finally we have τ = τ0 = τb = τl = τl.

Proof. Only in this proof we set I + {1, ..., n}, L +
∏

i∈I Li and E⊕ +
⊕n

i=1Ei. Due to the
fact that n <∞ we know that

∏n
i=1Ei = E⊕ so by [11] §4.3. the set {

∏n
i=1 Ui |Ui ∈ Ui} is a

0−basis for the box topology on E⊕ if Ui is a 0−basis for the topology on Ei. Moreover νi

is directed so by II.3 of [2] we can choose

Ui = {V (νi,li , ε) | ε > 0, li ∈ Li},
V (νi,li , ε) + {xi ∈ Ei | νi,li(xi) < ε}.

(4.1)

Thus if we set {
B1(0) + {Uρ

η | η ∈ (R+
0 )n, ρ ∈ L},

Uρ
η + {x ∈ E⊕ | (∀i ∈ I)(ν̂i,ρi

(x) < ηi)};
(4.2)

then B1(0) is a 0−basis for the topology τ0. Moreover Uρ
ε =

⋂n
i=1 V (ν̂i,ρi

ηi) so if we set

G(0) +
{⋂

s∈M

V (ν̂sεM(s)) |M ∈ Pω

(⋃
i∈I

{i} × Li

)
, εM : M → R+

0

}
,

then by (4.2) B1(0) ⊆ G(0). Moreover by applying II.3 of [2], G(0) is a basis of a filter thus

FE⊕

B1(0) ⊆ FE⊕

G(0).

Now for allM ∈ Pω

(⋃
i∈I{i} × Li

)
we haveM =

⋃
i∈I Mi withMi + M∩({i}×Li) = {i}×Qi

for some Qi ∈ Pω(Li). Hence ∀M ∈ Pω

(⋃
i∈I{i} × Li

)
and ∀εM : M → R+

0

T +
⋂
s∈M

V (ν̂s, εM(s)) =
⋂
i∈I

⋂
s∈Mi

V (ν̂s, εM(s))

=
⋂
i∈I

⋂
li∈Qi

{x ∈ E⊕ |xi ∈ V (νi,li , εM(i, li))

=
⋂
i∈I

{
x ∈ E⊕ |xi ∈

⋂
li∈Qi

V (νi,li , εM(i, li))
}
.

Moreover we know that Ui is a basis of a filter on Ei thus for any i ∈ I there exists λi > 0
and ki ∈ Li such that

V (νi,ki
, λi) ⊆

⋂
li∈Qi

V (νi,li , εM(i, li)),
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hence
G(0) 3 T ⊇

⋂
i∈I

{x ∈ E⊕ |xi ∈ V (νi,ki
, λi)}

=
⋂
i∈I

V (ν̂i,ki
, λi) ∈ B1(0).

Therefore by a well-known property of filters FE⊕

G(0) ⊆ FE⊕

B1(0) then

FE⊕

G(0) = FE⊕

B1(0). (4.3)

By applying II.3 of [2] we know that FE⊕

G(0) is the 0−neighbourhood’s filter with respect to
the locally convex topology generated by the family of seminorms {νs | s ∈

⋃
i∈I{i} × Li}

thus by (4.2) and (4.3) {
νs | s ∈

⋃
i∈I

{i} × Li

}
is a fss for τ0. (4.4)

Now µ̂ is a set of seminorms on E⊕. Let ρ1, ρ2 ∈ L then by the hypothesis that νi is
directed, for all i ∈ I there exists ρi ∈ Li such that ρi ≥ ρ1, ρ2 thus µ̂ρ ≥ µ̂ρ1 , µ̂ρ2 , hence µ̂ is
directed. Therefore setting {

B(0) + {W ρ
ε | ε > 0, ρ ∈ L}

W ρ
ε + {x ∈ E⊕ | µ̂ρ(x) < ε}

by applying II.3 of [2]

B(0) is the 0−basis for the topology generated by µ̂. (4.5)

Now (∀(k, lk) ∈
⋃

i∈I{i} × Li)(∃ ρ ∈ L)(ν̂k,lk ≤ aµ̂ρ) indeed keep any ρ s.t. ρ(k) = lk. While
(∀ρ ∈ I)(m ∈ N)(∃ s1, ..., sm ∈

⋃
i∈I{i} × Li)(∃ a > 0)(µ̂ρ ≤ a supr ν̂sr) indeed it is sufficient

to set m = n, a = n and si = (i, ρi) for all i ∈ I. Therefore by applying Corollary 1 II.7 of
[2] and by (4.5) and (4.4) we have that µ̂ is a directed fss for the topology τ0 hence the part of
the statement concerning τ0 follows. By Prop. 2, §3, Ch 4 of [11] we know that τ0 = τb = τl.
Finally τl = τl by the fact that τl is the finest locally convex topology among those which
are coarser than τl, §6, Ch 6 of [11], and the just now shown fact that τl is locally convex
being equal to τ0 which is generated by µ̂.

Notation 1. In the remaining of the present Section 4 we let {Vi}n
i=1 be a family of full

bundles of Ω−spaces. Here Vi = 〈〈Ei, τi〉 , πi, X,Ni〉, Ni = {νi,li | li ∈ Li} moreover Nx
i +

{νx
i,li
| li ∈ Li}, with νx

i,li
+ νi,li � (Ei)x and (Ei)x +

−1
πi(x) for all i = 1, ..., n and x ∈ X.

Definition 1. Define

1. E⊕x +
⊕n

i=1 (Ei)x;

2. n⊕x + {µ̂x
ρ | ρ ∈

∏n
i=1 Li}, where

µ̂x
ρ =

n∑
i=1

ν̂x
i,ρi

; (4.6)
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3. E⊕ + {〈E⊕x , n⊕x 〉}x∈X ;

4. E⊕ is the linear subspace of
∏

x∈X E⊕x generated by the following set

n⋃
i=1

Γ̃(πi). (4.7)

Here Prx
i : E⊕x 3 x 7→ x(i) ∈ (Ei)x while ν̂x

i,ρi
= νx

i,ρi
◦Prx

i and Ix
i : (Ei)x → E⊕x is the canonical

inclusion, i.e. Prx
j ◦Ix

i = δi,j Id
x, finally Γ̃(πi) + {f̃ | f ∈ Γ(πi)}, with f̃(x) + Ix

i (f(x)).

Notice that {〈(Ei)x ,N
x
i 〉}n

i=1 for all x ∈ X is a family of Hlcs where Nx
i is a directed

family of seminorms defining the topology on (Ei)x, for all i = 1, . . . , n.

Lemma 4.1. E⊕ satisfies FM(3)− FM(4) with respect to E⊕.

Proof. Ix
i is a bijective map onto its range whose inverse is Prx

i � Range(Ix
i ). Moreover

by definition of the product topology Prx
i is continuous with respect to the topology τ i

0 on
Range(Ix

i ) induced by τ0 [1, Ch.1], while Ix
i is continuous with respect to τ i

0 by [11, § 4.3 Pr.1]
and the definition of τl. Hence by Theorem 4.1 Ix

i is an isomorphism of the tvs’s 〈(Ei)x ,N
x
i 〉

and Ix
i ((Ei)x) as subspace of 〈E⊕x , n⊕x 〉. Since [10, 1.5.III] and [10, 1.6.viii]8 we deduce that

{σ(x) |σ ∈ Γ(πi)} is dense in 〈(Ei)x ,N
x
i 〉. Therefore ∀i = 1, ..., n and ∀x ∈ X

{Ix
i (σ(x)) |σ ∈ Γ(πi)} is dense in Ix

i ((Ei)x). (4.8)

where Ix
i ((Ei)x) has to be intended as topological vector subspace of 〈E⊕x , n⊕x 〉. So by the

continuity of the sum on 〈E⊕x , n⊕x 〉 and the fact that E⊕x is generated as linear space by the
set
⋃n

i=1 I
x
i ((Ei)x) we can state ∀x ∈ X that

{F (x) |F ∈ E⊕} is dense in
〈
E⊕x , n

⊕
x

〉
. (4.9)

Namely by (4.8)

(∀v ∈ E⊕)(∀i = 1, ..., n)(∃ {σαi
}αi∈Di

net ⊂ Γ(πi))

such that

v =
n∑

i=1

Ix
i (

x

Pr
i
(v)) =

n∑
i=1

lim
αi∈Di

Ix
i (σαi

(x))

=
n∑

i=1

lim
α∈D

wi
α(x) = lim

α∈D

n∑
i=1

wi
α(x)

= lim
α∈D

n∑
i=1

Ix
i (σα(i)(x)),

where D +
∏n

i=1Di while wi
α(x) + Ix

i (σα(i)(x)) for all α ∈ D. Moreover ∀α ∈ D

(
X 3 x 7→

n∑
i=1

Ix
i (σα(i)(x))

)
∈ E⊕

8which ensures that the locally convex topology on (Ei)x generated by the set of seminorms Nx
i is exactly

the topology induced on it by the topology τi on Ei, for all i and x ∈ X.
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then (4.9) and FM(3) follow.
Finally FM(4) follows by [10, 1.6.iii] applied to any σi ∈ Γ(πi) for all i = 1, ..., n indeed

∀σi ∈ Γ(πi)

ˆνx
i,ρi

(σ̃i(x)) = νx
i,ρi
◦

x

Pr
i
◦Ix

i ◦ σi(x) = νx
i,ρi
◦ σi(x).

Now we are able to extend to bundles of Ω−spaces, the standard construction of direct
sum of Banach bundles. Namely by Theorem 4.1 we know that n⊕x is a directed set of
seminorms on E⊕x inducing on E⊕x the product topology, thus since Lemma 4.1 we can apply
Definition 15 and set the following

Definition 2. We call bundle direct sum of the family {Vi}n
i=1 the following bundle of

Ω−spaces
n⊕

i=1

Vi + V(E⊕, E⊕).

Remark 1. By Definition 15 and Definition 2

n⊕
i=1

Vi =
〈〈

E(E⊕), τ(E⊕, E⊕)
〉
, πE⊕ , X, n

⊕〉
where

1. E(E⊕) +
⋃

x∈X{x} × E⊕x , πE⊕ : E(E⊕) 3 (x, v) 7→ x ∈ X.

2. n⊕ = {µ̂ρ : | ρ ∈
∏n

i=1 Li}, with µ̂ρ : E(E⊕) 3 (x, v) 7→ µ̂x
ρ(v);

3. τ(E⊕, E⊕) is the topology on E(E⊕) such that for all (x, v) ∈ E(E⊕)

IE(E⊕)
(x,v) + F

E(E⊕)

B⊕((x,v)).

Here we recall that F
E(E⊕)

B⊕((x,v)) is the filter on E(E⊕) generated by the following base of
filters

B⊕((x, v)) +
{
TE⊕(U, σ, ε, ρ) |U ∈ Open(X), σ ∈ E⊕, ε > 0, ρ ∈

n∏
i=1

Li

|x ∈ U, µ̂x
ρ(v − σ(x)) < ε

}
,

where
TE⊕(U, σ, ε, ρ) +

{
(y, w) ∈ E(E⊕) | y ∈ U, µ̂y

ρ(w − σ(y)) < ε
}
.

In what follows we state the factorization property of convergence which proves that our
construction of bundle direct sum of a family of bundles of Ω−spaces, extends the standard
definition provided in the Banach bundle case.
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Corollary 4.1. Let f : X → E(E⊕) and x ∈ X. Thus f is continuous in x if and only
if f i

0 : X → Ei is continuous in x for all i = 1, ..., n, where f0 : X →
⋃

z∈X E⊕z such that
∀z ∈ X f(z) = (z, f0(z)) and

f i
0(z) +

πE⊕ (f(z))

Pr
i

◦f0(z).

In particular f ∈ Γ(πE⊕) if and only if (X 3 z 7→ Prz
i ◦f0(z) ∈ (Ei)z) ∈ Γ(πi), for all i =

1, ..., n.

Proof. Since the definition of E⊕, the request that all the bundles in the family {Vi}n
i=1 are

full and the fact that E⊕ is linearly isomorphic to a subspace of Γ(πE⊕) we obtain that, when
applied to the bundle direct sum of the family {Vi}n

i=1, the first part of (6) in Theorem 3.1 is
satisfied by global sections belonging to E⊕. Therefore the statement follows since (5) ⇔ (6)
in Theorem 3.1.

Convention 1. By construction we have that Γ(πE⊕) ⊂
∏

x∈X{x} × E⊕x . In what follows,
except contrary mention, we convein to consider with abuse of language in the obvious
manner

Γ(πE⊕) ⊂
∏
x∈X

n⊕
i=1

(Ei)x .

Similarly for Γx(πE⊕) for any x ∈ X. Moreover in the case in which for any i = 1, ..., n we
have Vi = V(Ei, Ei), with obvious meaning of the symbols we consider

Γ(πE⊕) ⊂
∏
x∈X

n⊕
i=1

(Ei)x .

5 (Θ, E)−structure

In Definition 6 we define the concept of (Θ, E)−structure. In Lemma 5.1 and Corol-
lary 5.1 we characterize basic properties of this structure. In Theorem 5.1 we construct the
(Θ, E)−structure described in Introduction and provide a set of continuous sections which
serves as a model to build the general definition. Finally in Proposition 5.1 we provide a
characterization of continuous sections related to a suitable (Θ, E)−structure. In order to
construct the structure provided in Definition 6 we need a sequence of steps starting with
the following

Definition 3. 〈X,E,S〉 is a map system if

1. X is a set;

2. E = {〈Ex,Nx〉}x∈X is a nice family of Hlcs with Nx + {νx
j | j ∈ J} for all x ∈ X;

3. (∃L 6= ∅)(S = {Sx}x∈X) where Sx + {Bx
l | l ∈ L} ⊆ Bounded(Ex) and

⋃
l∈LB

x
l is total

in Ex for all x ∈ X.

Definition 4. We say that M is a map pre-bundle relative to 〈X, Y,E,S〉 if

1. 〈X,E,S〉 is a map system;
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2. M = {〈Mx,Rx〉}x∈X is a nice family of Hlcs;

3. Y is a Hausdorff topological space and ∀x ∈ X

Mx ⊆ C (Y,LSx(Ex)) ;

Rx =
{

sup
(K,j,l)∈O

qx
(K,j,l) � Mx | O ∈ Pω (Comp(Y )× J × L)

}
.

Here we recall that Pω(A) is the set of all finite parts of the set A, LSx(Ex), for all x ∈ X, is
the lcs of all continuous linear maps L(Ex) on Ex with the topology of uniform convergence
over the sets in Sx, hence its topology is generated by the following set of seminorms{

px
j,l : L(Ex) 3 φ 7→ sup

v∈Bx
l

νx
j (φ(v)) | l ∈ L, j ∈ J

}
. (5.1)

Thus by the totality hypothesis and by [2, Prop. 3, III.15] LSx(Ex) is Hausdorff. Finally
for all (K, j, l) ∈ Comp(Y )× J × L we set

qx
(K,j,l) : Cc (Y,LSx(Ex)) 3 f 7→ sup

t∈K
px

j,l(f(t)). (5.2)

Remark 2. By the fact that {t} is compact for all t ∈ Y we have that
⋃

K∈Comp(Y )K =

Y thus by the shown fact that LSx(Ex) is Hausdorff we deduce by [1, Proposi-
tion (1), §1.2, Ch 10] that Cc (Y,LSx(Ex)) is Hausdorff. Moreover by [1, Definition (1),
§1.1, Ch 10] and by the fact that (5.1) is a fss on LSx(Ex), we can deduce that{

sup(K,j,l)∈O q
x
(K,j,l) | O ∈ Pω (Comp(Y )× J × L)

}
is a directed fss on Cc (Y,LSx(Ex)). Hence

〈Mx,Rx〉 is a topological vector subspace of Cc (Y,LSx(Ex)) so it is Hausdorff, hence by the
construction of Rx we can state that {〈Mx,Rx〉}x∈X is a nice family of Hlcs in agreement
with request (2) in Definition 4.

Next we provide the explicit form of V(M,M).

Remark 3. Let M = {〈Mx,Rx〉}x∈X be a map pre-bundle relative to〈
X,Y,E = 〈Ex,Nx〉x∈X ,S

〉
, moreover let M satisfy FM(3) − FM(4) with respect to

M. Let us denote Nx = {νx
j | j ∈ J} for all x ∈ X and use the notation in Definition 4.

Thus for the bundle V(M,M) generated by the couple 〈M,M〉 we have

1. V(M,M) = 〈〈E(M), τ(M,M)〉 , πM, X,R〉;

2. E(M) +
⋃

x∈X{x} ×Mx, πM : E(M) 3 (x, f) 7→ x ∈ X;

3. R =
{
sup(K,j,l)∈O q(K,j,l) | O ∈ Pω (Comp(Y )× J × L)

}
, with q(K,j,l) : E(M) 3 (x, f) 7→

qx
(K,j,l)(f);

4. τ(M,M) is the topology on E(M) such that for all (x, f) ∈ E(M)

IE(M)
(x,f) + F

E(M)
BM((x,f))
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is the neighbourhood’s filter of (x, f) with respect to it. Here F
E(M)
BM((x,f)) is the filter on

E(M) generated by the following filter’s base

BM((x, f)) + {TM (U, σ, ε,O) |U ∈ Open(X), σ ∈M, ε > 0,

O ∈ Pω (Comp(Y )× J × L) |x ∈ U, sup
(K,j,l)∈O

qx
(K,j,l)(f − σ(x)) < ε},

where ∀U ∈ Open(X), σ ∈M, ε > 0 and ∀O ∈ Pω (Comp(Y )× J × L)

TM (U, σ, ε,O) +
{
(y, g) ∈ E(M) | y ∈ U, sup

(K,j,l)∈O
qy
(K,j,l)(g − σ(y)) < ε

}
.

Remark 4. Let M = {〈Mx,Rx〉}x∈X be a map pre-bundle relative to〈
X, Y,E = 〈Ex,Nx〉x∈X ,S

〉
, moreover let M satisfy FM(3) − FM(4) with respect to

M. Thus by Remark 12 ∀U ∈ Open(X), σ ∈M, ε > 0 and ∀O ∈ Pω (Comp(Y )× J × L)

TM(U, σ, ε,O) =
⋃
y∈U

BMy ,O,ε(σ(y))

where for all s ∈ My

BMy ,O,ε(s) +
{
(y, f) ∈ E(M)y | sup

(K,j,l)∈O
qy
(K,j,l) (f − s) < ε

}
.

By applying Remark 11 we have the following

Remark 5. Let M be a map pre-bundle relative to 〈X, Y,E,S〉, moreover let M satisfy
FM(3)− FM(4) with respect to M. Thus

1. V(M,M) is a bundle of Ω−spaces;

2. with the notation of Definition 3 V(M,M) is such that

(a) 〈E(M)x, τ(M,M)〉 as topological vector space is isomorphic to 〈Mx,Rx〉 for all
x ∈ X;

(b) M is canonically isomorphic to a linear subspace of Γ(πM) and if X is compact
and M is a function module, then M' Γ(πM).

In Definition 6 we generalize the topology of uniform convergence to bundles 〈M, ρ,X〉 of
Ω−spaces, where {Mx}x∈X is a map pre-bundle relative to 〈X, Y, {Ex}x∈X ,S〉 and 〈E, π,X〉
is a bundle of Ω−spaces. The aim is to correlate the topology on M with that on E in order
to extend the correlation established in the introduction for the trivial bundle case.

Definition 5.
(•) :

∏
x∈X

(Ex)
Ex ×

∏
x∈X

Ex →
∏
x∈X

Ex

such that for all F ∈
∏

x∈X(Ex)
Ex , v ∈

∏
x∈X Ex we have

(F • w)(x) + F (x)(w(x)).
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Definition 6 ( (Θ, E)−structures). We say that 〈V,W, X, Y 〉 is a (Θ, E)−structure if

1. V + 〈〈E, τ〉 , π,X,N〉 is a bundle of Ω−spaces;

2. E ⊆ Γ(π);

3. Θ ⊆
∏

x∈X Bounded(Ex);

4. ∀B ∈ Θ

(a) D(B, E) 6= ∅;
(b)

⋃
B∈Θ Bx

B is total in Ex for all x ∈ X;

5. W + 〈〈M, γ〉 , ρ,X,R〉 is a bundle of Ω−spaces such that {〈Mx,Rx〉}x∈X is a map
pre-bundle relative to 〈X, Y, {〈Ex,Nx〉}x∈X ,S〉.

Here S + {Sx}x∈X and (∀B ∈ Θ)(∀x ∈ X)
D(B, E) + E ∩

(∏
x∈X Bx

)
Bx

B + {v(x) | v ∈ D(B, E)}}
Sx + {Bx

B |B ∈ Θ}.
(5.3)

Moreover 〈V,W, X, Y 〉 is an invariant (Θ, E)−structure if it is a (Θ, E)−structure such that

{
F ∈

b∏
z∈X

Mz | (∀t ∈ Y )(Ft • E(Θ) ⊆ Γ(π))
}

= Γ(ρ). (5.4)

Finally 〈V,W, X, Y 〉 is a compatible (Θ, E)−structure if it is a (Θ, E)−structure such that
for all t ∈ Y

Γ(ρ)t • E(Θ) ⊆ Γ(π). (5.5)

Here
E(Θ) +

⋃
B∈Θ

D(B, E),

and St + {Ft |F ∈ S} and Ft ∈
∏

x∈X L(Ex) such that Ft(x) + F (x)(t), for all S ⊆∏
x∈X L(Ex)

Y t ∈ Y , and F ∈ S.

Remark 6. Let 〈V,W, X, Y 〉 be a (Θ, E)−structure. Then for all x ∈ X

Rx = { sup
(K,j,B)∈O

qx
(K,j,B) � Mx |O ∈ Pω(Comp(Y )× J ×Θ)} (5.6)

where by using the notation of Definition 6 we set N = {νx
j | j ∈ J} and for all K ∈

Comp(Y ),j ∈ J , B ∈ Θ

qx
(K,j,B) : Cc (Y,LSx(Ex)) 3 fx 7→ sup

t∈K
sup

v∈D(B,E)

νx
j (fx(t)v(x)) . (5.7)
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Remark 7. Let V + 〈〈E, τ〉 , π,X,N〉 be a bundle, M = {〈Mx,Rx〉}x∈X a map pre-bundle
relative to 〈X, Y, {〈Ex,Nx〉}x∈X ,S〉 andM satisfy FM(3)−FM(4) with respect to M. Then
Remark 3 allows us to construct W satisfying the condition (5) in Definition 6.

The following characterization of U ∈ Γx∞
U (ρ) will be basic in the sequel.

Lemma 5.1. Let 〈V,W, X, Y 〉 be a (Θ, E)−structure, x∞ ∈ W ⊆ X and U ∈
∏b

x∈W Mx.
By using the notation in Definition 6 we have (1) ⇐ (2) ⇐ (3) ⇔ (4) moreover if W is
locally full (1) ⇔ (2) ⇔ (3) ⇔ (4), finally if W is full we can choose U = X in (2) and
U ′ = X in (3) and (4). Here

1. U ∈ Γx∞
W (ρ);

2. (∃U ∈ Op(X) |U 3 x∞)(∃F ∈ ΓU(ρ))(F (x∞) = U(x∞)) such that (∀j ∈ J)(∀K ∈
Comp(Y ))(∀B ∈ Θ)

lim
z→x∞,z∈W∩U

sup
t∈K

sup
v∈D(B,E)

νj (U(z)(t)v(z)− F (z)(t)v(z)) = 0; (5.8)

3. (∃U ′ ∈ Op(X) |U ′ 3 x∞)(∃F ∈ ΓU ′(ρ))(F (x∞) = U(x∞)) and (∀U ∈ Op(X) |U 3
x∞)(∀F ∈ ΓU(ρ) |F (x∞) = U(x∞)) we have (5.8) (∀j ∈ J)(∀K ∈ Comp(Y ))(∀B ∈
Θ);

4. (∃U ′ ∈ Op(X) |U ′ 3 x∞)(∃F ∈ ΓU ′(ρ))(F (x∞) = U(x∞)) and U ∈ Γx∞
W (ρ).

Proof. Since Corollary 3.1 and Definition 4.

Corollary 5.1. Let us assume the hypotheses of Lemma 5.1 and that W is full. Moreover
let B ∈ Θ and v ∈ D(B, E). Then (1) ⇒ (2), where

1. U ∈ Γx∞
W (ρ) and ∃F ∈ Γ(ρ) such that F (x∞) = U(x∞) and (∀t ∈ Y )(F (·)(t) • v ∈

Γ(π));

2. (∀t ∈ X)(U(·)(t) • v ∈ Γx∞
W (π)).

Proof. By the position (1) and by the implication (1) ⇒ (3) of Lemma 5.1 and by the fact
that the union of all compact subsets of Y is Y , being locally compact, we deduce that
(∃F ∈ Γ(ρ))(F (x∞) = U(x∞)) such that (∀j ∈ J)(∀t ∈ Y )(∀B ∈ Θ) and ∀v ∈ D(B, E){

limz→x∞,z∈W νj (U(z)(t)v(z)− F (z)(t)v(z)) = 0,

F (·)(t) • v ∈ Γ(π).

Thus the statement follows by implication (3) ⇒ (1) of Corollary 3.1.

Let us conclude this section with two results constructing a (Θ, E)−structure and de-
scribing Γx∞(ρ) when V is trivial.
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Lemma 5.2. Let Z be a normed space X, Y be two topological spaces. Set for all x ∈ X and
v ∈ Cb (X,Z) 

M +{F ∈ Cb (X, Cc (Y,Ls(Z))) | (∀K ∈ Comp(Y ))

(C(F,K) + sup
(x,s)∈X×K

‖F (x)(s)‖B(Z) <∞)},

Mx + {F (x) |F ∈M},
µK

(v,x) : Mx 3 G 7→ sups∈K ‖G(s)v(x)‖,
Ax + {µK

(w,x) |K ∈ Comp(Y ), w ∈ Cb (X,Z)},
M + {〈Mx,Ax〉}x∈X .

closure in Cc (Y,Bs(Z)). Then M satisfies FM3− FM4 with respect to M

Proof. FM(3) is true by construction, let v ∈ Cb (X,Z), K ∈ Comp(Y ), F ∈M, then

sup
x∈X

µK
(v,x)(F (x)) ≤ sup

(x,s)∈X×K

‖F (x)(s)‖B(Z) sup
x∈X

‖v(x)‖ <∞.

For all x, x0 ∈ X

µK
(v,x)(F (x)) ≤ C‖v(x)− v(x0)‖+ sup

s∈K
‖F (x)(s)v(x0)‖, (5.9)

where C + sup(x,s)∈X×K ‖F (x)(s)‖B(Z). Moreover the map Cc (Y,Bs(Z)) 3 f 7→
sups∈K ‖f(s)w‖ ∈ R+, for all w ∈ Z is a continuous seminorm, hence by the continu-
ity of F also the map X 3 x 7→ sups∈K ‖F (x)(s)w‖ ∈ R+ is continuous. So by (5.9)
limx→x0 µ

K
(v,x)(F (x)) ≤ sups∈K ‖F (x0)(s)v(x0)‖ = µK

(v,x0)(F (x0)), and by [1, (15), §5.6] we
have

lim
x→x0

µK
(v,x)(F (x)) = µK

(v,x0)(F (x0)).

Therefore by [1, (13), §5.6], [1, Proposition 3, §6.2], and the fact that any map g is u.s.c. at
a point if and only if −g is l.s.c., we can state that X 3 x 7→ µK

(v,x)(F (x)) is u.s.c. at x0 for
all x0 ∈ X, hence it is u.s.c., which is the FM(4) condition.

Remark 8. Let V + 〈〈E, τ〉 , π,X,N〉 be a bundle of Ω−spaces and E ⊆
∏

x∈X Ex. Set for
all v ∈

∏
x∈X Ex {

Bv : X 3 x 7→ {v(x)},
Θ + {Bw |w ∈ E}

Thus Θ ⊂
∏

x∈X Bounded(Ex) and ∀v ∈ E

E ∩
∏
x∈X

Bv(x) = {v}.

Therefore for all v ∈ E , and for all x ∈ X with the notation of Definition 6
D(Bv, E) = {v},
Bx

Bv
= {v(x)},

Sx = {{w(x)} |w ∈ E},
E(Θ) = E .
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By Lemma 5.2 and Definition 15 we can construct the bundle V(M,M) generated by
the couple 〈M,M〉. In the following result we construct a (Θ, E)−structure and describe a
subset of Γx∞(ρ).

Theorem 5.1. Let us assume the notation and hypotheses of Lemma 5.2, let V be the trivial
Banach bundle with constant stalk Z and set Θ + {Bv | v ∈ Cb (X,Z)}. Then

1. 〈V,V(M,M), X, Y 〉 is a (Θ, Cb (X,Z))− structure, moreover if X is compact and Y
is locally compact then it is compatible;

2. Let f ∈
∏

x∈ X Mx be such that sup(x,s)∈X×K ‖f(x)(s)‖B(Z) <∞ for all K ∈ Comp(Y )
then (a) ⇔ (b) ⇔ (c) ⇔ (d), where

(a) f ∈ Γx∞(πM);
(b) (∀K ∈ Comp(Y ))(∀v ∈ Cb (X,Z))

lim
x→x∞

sup
s∈K

‖f(x)(s)v(x)− f(x∞)(s)v(x)‖ = 0

(c) f : X → Cc (Y,Bs(Z)) continuous at x∞;
(d) (∀K ∈ Comp(Y ))(∀w ∈ Z)

lim
x→x∞

sup
s∈K

‖f(x)(s)w − f(x∞)(s)w‖ = 0.

Proof. By Remark 7 and Lemma 5.2 we have that (5) of Definition 6 follows. Γ(π) '
Cb (X,Z) hence by Remark 8 the other requests of Definition 6 follow. Thus the first sentence
of statement (1). If X is compact by Lemma 5.2 and Remark 11 follows that M ' Γ(πM),
moreover by Remark 8 we have E(Θ) = E and finally E .

= Γ(π) ' Cb (X,Z). Hence the
second sentence of statement (1) follows if we show that Mt • Cb (X,Z) ⊆ Cb (X,Z). To this
end fix v ∈ Cb (X,Z), F ∈ M, s ∈ Y and Ks a compact neighbourhood of s, which there
exists by the hypothesis that Y is locally compact. Then we have for all x, x0 ∈ X

‖F (x)(s)v(x)− F (x∞)(s)v(x0)‖ ≤
C(F,Ks)‖v(x)− v(x0)‖+ ‖ (F (x)(s)− F (x0)(s)) v(x0)‖

(5.10)

By considering that F ∈ Cb (X, Cc (Y,Bs(Z))) and that s ∈ Ks we have that
limx→x0 ‖(F (x)(s) − F (x0)(s))v(x0)‖ = 0. Hence by (5.10) we deduce that Fs • v is con-
tinuous at x0, so continuous on X, in particular X being compact it is also ‖ · ‖Z−bounded.
Thus Fs • v ∈ Cb (X,Z) and the second sentence of the statement follows.

Fix f ∈
∏

x∈ X Mx such that (∀K ∈ Comp(Y ))(C(f,K) + sup(x,s)∈X×K ‖f(x)(s)‖B(Z) <
∞). (a) ⇔ (b) follows by Lemma 5.1, the fact that M ⊆ Γ(πM) by Remark 11, and by
(H : X 3 x 7→ f(x∞) ∈ Cc (Y,Bs(Z))) ∈ M, indeed H it is bounded and continuous
being constant, moreover sup(x,s)∈X×K ‖H(x)(s)‖B(Z) = sups∈K ‖f(x∞)(s)‖B(Z) <∞, for all
K ∈ Comp(Y ). (b) ⇒ (d) follows by the fact that (X 3 x 7→ w ∈ Z) ∈ Cb (X,Z), and
(c) ⇔ (d) is trivial. For all K ∈ Comp(Y ), x ∈ X and s ∈ K

‖(f(x)(s)− f(x∞)(s))v(x)‖ ≤
‖f(x)(s)v(x)− f(x∞)(s)v(x∞)‖+ ‖f(x∞)(s)v(x∞)− f(x∞)(s)v(x)‖ ≤

‖f(x)(s)(v(x)− v(x∞))‖+ ‖(f(x)(s)− f(x∞)(s))v(x∞)‖+ ‖f(x∞)(s)(v(x∞)− v(x))‖ ≤
(‖f(x)(s)‖+ ‖f(x∞)(s)‖) ‖v(x∞)− v(x)‖+ ‖(f(x)(s)− f(x∞)(s))v(x∞)‖ ≤

2C(f,K)‖v(x∞)− v(x)‖+ ‖(f(x)(s)− f(x∞)(s))v(x∞)‖.
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Hence (d) implies (b).

Definition 7. Let 〈V,W, X, Y 〉 be a (Θ, E)−structure, Y0 ⊂ Y and V ∈
∏

x∈X Mx. We say
that V is equicontinuous on Y0 if and only if (∀j ∈ J)(∃a > 0)(∃ j1 ∈ J)(∀z ∈ X)(∀vz ∈ Ez)

sup
t∈Y0

νj (V(z)(t)vz) ≤ aνj1(vz). (5.11)

V is equicontinuous if and only if it is equicontinuous on Y . V is pointwise equicontinuous
if and only if it is equicontinuous on every point of Y and compactly equicontinuous if and
only if it is equicontinuous on every compact of Y .

Note that in case V is trivial with costant stalk E then V is equicontinuous on Y0 if
and only if it is equicontinuous in the standard sense9 the following set of maps {V0(z)(t) ∈
L(E) | (z, t) ∈ X × Y0}, where V0 ∈

(
L(E)Y

)X such that V(z) = (z,V0(z)) for all z ∈ X.

Proposition 5.1. Let V be trivial with costant stalk E, A0 ∈ Bounded(E), x∞ ∈ X and
E0 ⊆ Cb (X,E)

E0 equicontinuous set at x∞
{(X 3 x 7→ a ∈ E) | a ∈ A0} ⊂ E0.

(5.12)

Moreover let 〈V,W, X, Y 〉 be a (Θ, E)−structure such that for all x ∈ X

Mx = Cc (Y,LSx({x} × E)) .

and {
E =

∏
x∈X{x} × E0

Θ = {BA0}

where BA0(x) + {x} × A0, then
Sx = {x} × A0,∀x ∈ X
Mx ' {x} × Cc (Y,LA0(E)) .

M =
⋃

x∈X Mx '
⋃

x∈X{x} × Cc (Y,LA0(E))∏
x∈X Mx '

∏
x∈X{x} × Cc (Y,LA0(E)) ' Cc (Y,LA0(E))X .

(5.13)

If W is full and

{X 3 x 7→ tf (x) = (x, f) ∈ Mx | f ∈ Cc (Y,LA0(E))} ⊂ Γ(ρ),

then for all V ∈
∏b

x∈X Mx, (1) ⇒ (2) and (3) ⇔ (4), where

1. V ∈ Γx∞(ρ)

2. V0 ∈ C (X, Cc (Y,LA0(E))),

3. V is compactly equicontinuous and V ∈ Γx∞(ρ)

9See for instance [1, Def 1, §2.1, Ch. 10].
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4. V is compactly equicontinuous and V0 ∈ C (X, Cc (Y,LA0(E))).

Here in (2) − (4) we consider the isomorphism
∏

x∈X Mx ' Cc (Y,LA0(E))X , and set V0 ∈
Cc (Y,LA0(E))X such that V(x) = (x,V0(x)) for all x ∈ X.

Proof. For all x ∈ X by (5.3) Bx
BA0

= {(x, v0(x)) | v0 ∈ E0, v0(X) ⊆ A0} so Bx
BA0

⊆ A0.
Moreover by construction (X 3 x 7→ a ∈ E) ∈ E0 for all a ∈ A0, thus Bx

BA0
= A0. Thus the

first equality in (5.13) follows, the others are trivial. By Proposition 3.2

(1) ⇔ lim
z→x∞

sup
t∈K

sup
v0∈E0∩BA0

νj ((V0(z)(t)− V0(x∞)(t))v0(z)) = 0. (5.14)

Moreover by construction we deduce that {(X 3 x 7→ a ∈ E) | a ∈ A0} ⊂ E0 ∩ BA0 , so (2)
follows by (1) and (5.14). Let v0 ∈ E0 then for all z ∈ X and t ∈ Y

(V(z)(t)− V(x∞)(t))v0(z) = V(z)(t)(v0(z)− v0(x∞))+

(V(z)(t)− V(x∞)(t))v0(x∞) + V(x∞)(t)(v0(z)− v0(x∞)). (5.15)

Moreover by the hypothesis of equicontinuity at x∞ of the set E0, for all j ∈ J

lim
z→x∞

sup
v0∈E0

νj(v0(z)− v0(x∞)) = 0. (5.16)

By (5.15) and (5.11) for all j ∈ J there exists j1 ∈ J and a > 0 such that for all z ∈ X

sup
t∈K

sup
v0∈E0∩BA0

νj ((V0(z)(t)− V0(x∞)(t))v0(z)) ≤

2a sup
v0∈E0∩BA0

νj1 (v0(z)− v0(x∞)) +

sup
t∈K

sup
v0∈E0∩BA0

νj (V(z)(t)− V(x∞)(t)) v0(x∞). (5.17)

Therefore by (5.17), (5.16) and by (4) follows

lim
z→x∞

sup
t∈K

sup
v0∈E0∩BA0

νj ((V0(z)(t)− V0(x∞)(t))v0(z)) = 0.

Hence (1) follows by (5.14).

6 Main claim

In this section we state in a precise way the claims outlined in Introduction. The main
Claim 6.1 which essentially establishes the existence of T and P satisfying (1.1), (1.14)
and (1.15). The auxiliary Claim 6.2 which provides U satisfying (1.13) and then Claim 6.3.
Proposition 6.1 provides the main properties of those realizations of the main claim obtained
combining realizations of the two auxiliary ones. We anticipate that [19, Theorem 4.2]
resolves the main claim in this fashion. In what follows when dealing with bundle direct
sums we use the notation provided in Remark 1.
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Definition 8. Let Vi + 〈〈Ei, τi〉 , πi, X,Ni〉 be a full bundle of Ω−spaces for any i = 1, 2.
Then we call set of graph sections relative to V1 and V2 the set Gr(V1,V2) of the elements
〈T , x∞,Φ〉 such that

1. T ∈
∏

x∈X Graph((E1)x × (E2)x);

2. x∞ ∈ X;

3. Φ is a linear subspace of Γx∞(πE⊕);

4. (∀x ∈ X)(∀φ ∈ Φ)(φ(x) ∈ T (x))

5. Asymptotic Graph
{φ(x∞) |φ ∈ Φ} = T (x∞). (6.1)

Definition 9. Let Vi + 〈〈Ei, τi〉 , πi, X,Ni〉 be a full bundle of Ω−spaces for any i = 1, 2.
Then we call set of pregraph sections relative to V1 and V2 the set Pregraph (V1,V2) of
the elements 〈T0, x∞,Φ〉 such that

1. x∞ ∈ X;

2. T0 ∈
∏

x∈X−{x∞}Graph((E1)x × (E2)x);

3. Φ is a linear subspace of Γx∞(πE⊕);

4. (∀x ∈ X − {x∞})(∀φ ∈ Φ)(φ(x) ∈ T0(x)).

We shall see in [18, Lemma 2.1] that it is possible to construct from any suitable pregraph
section 〈T0, x∞,Φ〉 a corresponding graph section 〈T , x∞,Φ〉 such that T extends T0, while
T (x∞) is defined by (6.1). To this end it is sufficient to show that T (x∞) ∈ Graph((E1)x∞×
(E2)x∞).

Remark 9. The request that any φ ∈ Φ is a section continuous in x∞ implies that
{limz→x∞ φ(z) |φ ∈ Φ} = T (x∞) ∈ Graph((E1)x∞

× (E2)x∞
)

with
φ(z) ∈ T (z) ∈ Graph((E1)z × (E2)z), ∀z ∈ X − {x∞},

which justifies the name of asymptotic graph given to (6.1). Moreover by setting X 3 z 7→
φi(z) + Prz

i (φ(z)) we have by Corollary 4.1 for all i = 1, 2
{limz→x∞ φi(z) |φ ∈ Φ} = Prx∞

i (T (x∞))

with
φ(z) ∈ T (z) ∈ Graph((E1)z × (E2)z), ∀z ∈ X − {x∞}.

(6.2)

Finally for i = 1, 2 by Corollary 4.1 and Corollary 3.1 we have (1i) ⇔ (2i)

(1i) (∃σ ∈ Γ(π))(σ(x∞) = φi(x∞)) such that

(∀j ∈ J)( lim
z→x∞

νj(φi(z)− σ(z)) = 0);
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(2i) (∀σ ∈ Γ(π) |σ(x∞) = φi(x∞)) we have

(∀j ∈ J)( lim
z→x∞

νj(φi(z)− σ(z)) = 0).

Definition 10. Let 〈V,D, X, {pt}〉 be a (Θ, E)−structure such that V is full and let us
denote D + 〈〈B, γ〉 , η,X,L〉. Thus Ω ∈ ∆ 〈V,D,Θ, E〉 if

1. Ω ⊆ Gr(V,V);

2. Section of projectors associated with 〈T , x∞,Φ〉: ∀ 〈T , x∞,Φ〉 ∈ Ω

(∃P ∈ Γx∞(η) ∩
∏
x∈X

Pr(Ex)) (∀x ∈ X) (P(x)Tx ⊆ TxP(x)) . (6.3)

Here Tx : Dx ⊆ Ex → Ex is the map such that T (x) = Graph(Tx), for all x ∈ X.

Claim 6.1 (MAIN). Under the assumptions in Definition 10, possibly with 〈V,D, X, {pt}〉
invariant, find elements in the set

∆ 〈V,D,Θ, E〉 .

Definition 11. Let 〈V,W, X,R+〉 be a (Θ, E)−structure. Let us denote V +
〈〈E, τ〉 , π,X,N〉 and W + 〈〈M, γ〉 , ρ,X,R〉. We require that V is full, {Ex}x∈X is
a family of sequentially complete Hlcs and U(LSx(Ex)) ⊂ Mx for all x ∈ X. Then
Ω ∈ ∆Θ 〈V,W, E , X,R+〉 if and only if

1. Ω ⊆ Gr(V,V);

2. Section of semigroups associated with 〈T , x∞,Φ〉: ∀ 〈T , x∞,Φ〉 ∈ Ω

∃U〈T ,x∞,Φ〉 ∈ Γx∞(ρ)

such that ∀x ∈ X

(a) U〈T ,x∞,Φ〉(x) is an equicontinuous (C0)−semigroup on Ex;

(b) (∀x ∈ X)(T (x) = Graph(Rx)).

Here Rx is the infinitesimal generator of the semigroup U〈T ,x∞,Φ〉(x) ∈ Cc (R+,LSx(Ex)).

Claim 6.2 (S). Under the assumptions in Definition 11, possibly with 〈V,W, X,R+〉 com-
patible, find elements in the set

∆Θ

〈
V,W, E , X,R+

〉
.

Remark 10. Notice that ∀ 〈T , x∞,Φ〉 ∈ Ω there exists only one semigroup section associated
with it. Moreover U〈T ,x∞,Φ〉 is characterized by any of the equivalent conditions in Lemma
5.1 with U = X and Y = R+.
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Definition 12. Let 〈V,W, X,R+〉 be a (Θ, E)−structure and 〈V,D, X, {pt}〉 be a
(Θ, E)−structure. Let us denote V + 〈〈E, τ〉 , π,X,N〉, D + 〈〈B, γ〉 , η,X,L〉 and
W + 〈〈M, γ〉 , ρ,X,R〉. We require that V is full, {Ex}x∈X is a family of sequentially
complete Hlcs and U(LSx(Ex)) ⊂ Mx for all x ∈ X. Then Ψ ∈ ∆Θ 〈V,D,W, E , X,R+〉 if
and only if

1. Ψ ⊆
⋃

z∈X Γz(ρ);

2. (∀U ∈ Ψ)(∀x ∈ X) (U(x) is an equicontinuous (C0)−semigroup on Ex);

3. Section of projectors associated with U : (∀z ∈ X)(∀U ∈ Ψ ∩ Γz(ρ))

(∃P ∈ Γz(η) ∩
∏
y∈X

Pr(Ey))(∀x ∈ X)(P(x)Hx ⊆ HxP(x)). (6.4)

Here Hx is the infinitesimal generator of the semigroup U(x) ∈ Cc (R+,LSx(Ex)) for all
x ∈ X.

Claim 6.3 (S-P). Under the assumptions in Definition 12, possibly with 〈V,W, X,R+〉 com-
patible and 〈V,D, X, {pt}〉 invariant, find elements in the set ∆Θ 〈V,D,W, E , X,R+〉 .

Claims 6.2 and 6.3 can be used to solve the main claim 6.1 indeed

Proposition 6.1. Under the notation and request in Definition 12 assume that

1. Ω ∈ ∆Θ 〈V,W, E , X,R+〉;

2. Ψ ∈ ∆Θ 〈V,D,W, E , X,R+〉;

3. (∀ 〈T , x∞,Φ〉 ∈ Ω)(U〈T ,x∞,Φ〉 ∈ Ψ).

Thus Ω ∈ ∆ 〈V,D,Θ, E〉, namely Ω satisfies the claim 6.1. Moreover

(∀ 〈T , x∞,Φ〉 ∈ Ω) (∃P ∈ Γx∞(η)) (∃U ∈ Γx∞(ρ))

1. U(x) is an equicontinuous (C0)−semigroup on Ex, for all x ∈ X;

2. (∀x ∈ X) (P(x) ∈ Pr(Ex));

3. (∀x ∈ X)(T (x) = Graph(Rx));

4. ∀x ∈ X
P(x)Rx ⊆ RxP(x).

Here Rx is the infinitesimal generator of the semigroup U(x) ∈ Cc (R+,LSx(Ex)), for all
x ∈ X.

We conclude this chapter by anticipating that [18, Theorem 2.1] resolves Claim 6.2 while
[19, Theorem 4.2] resolves Claims 6.1 and 6.3.
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7 Appendix

Excluding Definition 14 which is ours, in this appendix we provide some of those definitions
essentially present in [10] we need in the work and some simple results concerning them. In
this section X is a topological space.

Definition 13 (FM(3) − FM(4) in §5 of [10]). Let V + {〈Vx,Ax〉}x∈X be a nice family
of Hlcs with Ax + {µx

j }j∈J for all x ∈ X. We say that G satisfies FM(3) − FM(4) with
respect to V if G is a linear subspace of

∏b
x∈X 〈Vx,Ax〉 and

FM(3) {f(x) | f ∈ G} is dense in Vx for all x ∈ X;

FM(4) X 3 x 7→ µx
j (f(x)) is u.s.c. ∀j ∈ J and ∀f ∈ G.

We introduce a stronger condition namely we say that G satisfies FM(3∗)−FM(4) with
respect to V if FM(3∗) and FM(4) hold where

(∀x ∈ X)({f(x) | f ∈ G} = Vx). FM(3∗)

Definition 14. Let V′ + {〈Vx,A′
x〉}x∈X be a family of Hlcs where A′

x + {µx
jx
}jx∈Jx is a

directed family of seminorms on Vx generating the locally convex topology on it, for all
x ∈ X. Then we set 

J +
∏

x∈X Jx;

µx
j + µx

j(x), ∀x ∈ X, j ∈ J ;

Ax + {µx
j }j∈J , ∀x ∈ X.

Clearly the range of Ax equals that of A′
x and Ax is directed. Thus V + {〈Vx,Ax〉}x∈X

is a nice family of Hlcs, called the nice family of Hlcs associated with V′.

Definition 15 (Essentially §5.2, §5.3 and Proposition 5.8 of [10]). Let E =
{〈Ex,Nx〉}x∈X be a nice family of Hlcs with Nx + {νx

j | j ∈ J} for all x ∈ X. Moreover
let E satisfy FM(3)− FM(4) with respect to E. Since [10, Proposition 5.8] we can define

V(E, E)

to be the bundle generated by 〈E, E〉, if

1. V(E, E) = 〈〈E(E), τ(E, E)〉 , πE, X,N〉;

2. E(E) +
⋃

x∈X{x} × Ex, πE : E(E) 3 (x, v) 7→ x ∈ X.

3. N = {νj | j ∈ J}, with νj : E(E) 3 (x, v) 7→ νx
j (v);

4. τ(E, E) is the topology on E(E)10 such that for all (x, v) ∈ E(E)

Iτ(E,E)
(x,v) + F

E(E)
BE((x,v)).

10By applying [10, §5.3.] and [1, Ch.1] we know that this topology exists.
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Here we recall that Iτ(E,E)
(x,v) is the filter of neighbourhoods of (x, v) with respect to the

topology τ(E, E), while F
E(E)
B((x,v)) is the filter on E(E) generated by the following base of

filters

BE((x, v)) + {TE(U, σ, ε, j) |U ∈ Open(X), σ ∈ E , ε > 0, j ∈ J,
U 3 x, νx

j (v − σ(x)) < ε},

where
TE(U, σ, ε, j) +

{
(y, w) ∈ E(E) | y ∈ U, νy

j (w − σ(y)) < ε
}
. (7.1)

E is canonically isomorphic to a linear subspace of Γ(πE) indeed

Remark 11. Let E = {〈Ex,Nx〉}x∈X be a nice family of Hlcs with Nx + {νx
j | j ∈ J} for

all x ∈ X. Moreover let E satisfy FM(3) − FM(4) with respect to E, and V(E, E) be the
bundle generated by the couple 〈E, E〉. Thus according to [10, Prps. 5.8, 5.9] we have that

1. V(E, E) is a bundle of Ω−spaces;

2. V(E, E) is such that

(a) 〈E(E)x, τ(E, E)〉 as topological vector space is isomorphic to 〈Ex,Nx〉 for all x ∈ X;

(b) E is canonically isomorphic 11 to a linear subspace of Γ(πE) and if X is compact
and E is a function module see [10, § 5.1], then E ' Γ(πE).

Remark 12. Let E be a nice family of Hlcs and let E satisfy FM(3− 4) with respect to E.
Thus for all U ∈ Open(X), σ ∈ E , ε > 0, j ∈ J

TE(U, σ, ε, j) =
⋃
y∈U

BEy ,j,ε(σ(y))

where for all s ∈ Ey

BEy ,j,ε(s) +
{
(y, w) ∈ E(E)y | νy

j (w − s) < ε
}
.

Definition 16 (Essentially §1.5(II) and §1.5(vii) of [10]). Let P + 〈〈E, τ〉 , p,X,N〉 be
a locally full bundle of Ω−spaces, and let us denote N + {νj | j ∈ J}. Set{

Kloc +
∏

α∈EKloc
α

Kloc
α + {(U, σU) |U ∈ Op(X), σU ∈ ΓU(p) | p(α) ∈ U, σU(p(α)) = α} .

Moreover ∀α ∈ E and ∀l ∈ Kloc set{
Bloc

l (α) +
{
T loc(V, l2(α), ε, j) |V ∈ Op(X), ε > 0, j ∈ J | p(α) ∈ V ⊆ l1(α)

}
,

T loc(U, σU , ε, j) + {β ∈ E | p(β) ∈ U, νj(β − σU(p(β))) < ε} ,

(∀U ∈ Op(X))(∀j ∈ J)(∀ε > 0)(∀σU ∈ ΓU(p)).
11I.e. σ ↔ f if and only if σ(x) = (x, f(x))
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If P is a full bundle then we can set{
K +

∏
α∈EKα

Kα + {(U, σ) |U ∈ Op(X), σ ∈ Γ(p) | p(α) ∈ U, σ(p(α)) = α} .

Moreover ∀α ∈ E and ∀l ∈ K set{
Bl(α) + {T (V, l2(α), ε, j) |V ∈ Op(X), ε > 0, j ∈ J | p(α) ∈ V ⊆ l1(α)} ,
T (U, σ, ε, j) + T loc(U, σ � U, ε, j),

(∀U ∈ Op(X))(∀j ∈ J)(∀ε > 0)(∀σ ∈ Γ(p)). Any set T loc(U, σ � U, ε, j) for a fixed ε > 0 is
called ε−tube.

Remark 13. Notice that (∀U ∈ Op(X))(∀j ∈ J)(∀ε > 0)(∀σU ∈ ΓU(p))

T loc(U, σU , ε, j) =
⋃
y∈U

BEy ,j,ε(σU(y))

where for all γ ∈ Ey

BEy ,j,ε(γ) +
{
β ∈ Ey | νy

j (β − γ) < ε
}
.

Corollary 7.1 (Neighbourhood’s filter Iτ
α ). Let P + 〈〈E, τ〉 , p,X,N〉 be a bundle of

Ω−spaces

1. if P is locally full ∀α ∈ E and ∀l ∈ Kloc the set Bloc
l (α) is a basis of a filter moreover

FE
Bloc

l (α) = Iτ
α;

2. if P is full or locally full over a completely regular space then ∀α ∈ E and ∀l ∈ K the
set Bl(α) is a basis of a filter moreover

FE
Bl(α) = Iτ

α.

Here Iτ
α is the neighbourhood’s filter of α in the topological space 〈E, τ〉.

Proof. Statement (1) follows by applying [10, §1.5.(vii)], while statement (2) follows by
statement (1) and the fact that for all U ∈ Op(X) and σ ∈ Γ(p) we have σ � U ∈ ΓU(p).

In what follows let E + {〈Ex,Nx〉}x∈X be a nice family of Hlcs with Nx + {νx
j }j∈J for all

x ∈ X. Let E satisfy FM(3∗)− FM(4) with respect to E.

Definition 17. Set{
KE +

∏
(x,v)∈EKE

(x,v)

KE
(x,v) + {(U, f) |U ∈ Op(X), f ∈ E |x ∈ U, f(x) = v} .

Moreover ∀(x, v) ∈ E(E) and ∀l ∈ KE define

BEl ((x, v)) = {TE(V, l2((x, v)), ε, j) | ε > 0, j ∈ J, V ∈ Op(X), x ∈ V ⊆ l1((x, v))} . (7.2)
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Corollary 7.2 (Neighbourhood’s filter Iτ(E,E)
(x,v) ). Then V(E, E) is a full bundle of

Ω−spaces and ∀(x, v) ∈ E(E)

F
E(E)

BEl ((x,v))
= Iτ(E,E)

(x,v) .

Proof. By Theorem 5.9. of [10] E and Γ(p1) are canonically isomorphic as linear spaces, so
V(E, E) is full by FM(3∗). The statement hence follows by statement (2) of Corollary 7.1.

The following corollaries provide conditions under which the topologies over two bundle
spaces are equal.

Corollary 7.3. Let 〈〈E, τk〉 , pk, X,Nk〉 be a full bundle of Ω−spaces or a locally full bundle
over a completely regular space X, for k = 1, 2. If p1 = p2 and Γ(p1) = Γ(p2) then τ1 = τ2.

Proof. By statement (2) of Corollary 7.1.

Corollary 7.4. Let P2 + 〈〈E, τ2〉 , p2, X,N2〉 be a bundle of Ω−spaces such that πE = p2.
Thus if the following conditions are satisfied

1. X is compact,

2. E and Γ(p2) are canonically isomorphic as linear spaces,

then τ(E, E) = τ2.

Proof. By Theorem 5.9. of [10] E and Γ(πE) are canonically isomorphic as linear spaces if X
is compact, so Γ(πE) = Γ(p2). Moreover FM(3∗) and the shown fact that E and Γ(πE) are
canonically isomorphic ensure that V(E, E) is a full bundle, thus it is so P2 by the equality
Γ(πE) = Γ(p2). Hence the statement follows by Corollary 7.3.
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