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EMJ: from Scopus Q4 to Scopus Q3 in two years?!

Recently the list was published of all mathematical journals included in 2015 Scopus
quartiles Q1 (334 journals), Q2 (318 journals), Q3 (315 journals), and Q4 (285 journals).
Altogether 1252 journals.

With great pleasure we inform our readers that the Eurasian Mathematical Journal was
included in this list, currently the only mathematical journal in the Republic of Kazakhstan
and Central Asia.

It was included in Q4 with the SCImago Journal & Country Rank (SJR) indicator equal
to 0,101, and is somewhere at the bottom of the Q4 list. With this indicator the journal shares
places from 1240 to 1248 in the list of all 2015 Scopus mathematical journals. Nevertheless,
this may be considered to be a good achievement, because Scopus uses information about
journals for the three previous years, i. e. for years 2013-2015, and the EMJ is in Scopus
only from the first quarter of year 2015.

The SJR indicator is calculated by using a sophisticated formula, taking into account
various characteristics of journals and journals publications, in particular the average number
of weighted citations received in the selected year by the documents published in the selected
journal in the three previous years. This formula and related comments can be viewed on
the web-page

http : | Jwww.scimagojr.com/journalrank.php?category = 2601&area = 2600&page =
1&totalgize = 373

(Help/Journals/Understand tables and charts/Detailed description of SJR.)

In order to enter Q3 the SJR indicator should be greater than 0,250. It looks like the
ambitious aim of entering Q3 in year 2017 is nevertheless realistic due to recognized high
level of the EMJ.

We hope that all respected members of the international Editorial Board, reviewers,
authors of our journal, representing more than 35 countries, and future authors will provide
high quality publications in the EMJ which will allow to achieve this aim.

On behalf of the Editorial Board of the EMJ
V.I. Burenkov, E.D. Nursultanov, T.Sh. Kalmenov,
R. Oinarov, M. Otelbaev, T.V. Tararykova, A.M. Temirkhanova



VICTOR IVANOVICH BURENKOV
(to the 75th birthday)

On July 15, 2016 was the 75th birthday of Victor Ivanovich Bu-

renkov, editor-in-chief of the Eurasian Mathematical Journal (together

& & with V.A. Sadovnichy and M. Otelbaev), director of the S.M. Nikol’skii

~ Institute of Mathematics, head of the Department of Mathematical

‘? . Analysis and Theory of Functions, chairman of Dissertation Coun-

) cil at the RUDN University (Moscow), research fellow (part-time) at

the Steklov Institute of Mathematics (Moscow), scientific supervisor

of the Laboratory of Mathematical Analysis at the Russian-Armenian

(Slavonic) University (Yerevan, Armenia), doctor of physical and mathematical sciences

(1983), professor (1986), honorary professor of the L.N. Gumilyov Eurasian National Uni-

versity (Astana, Kazakhstan, 2006), honorary doctor of the Russian-Armenian (Slavonic)

University (Yerevan, Armenia, 2007), honorary member of staff of the University of Padua

(Italy, 2011), honorary distinguished professor of the Cardiff School of Mathematics (UK,
2014), honorary professor of the Aktobe Regional State University (Kazakhstan, 2015).

V.I. Burenkov graduated from the Moscow Institute of Physics and Technology (1963)
and completed his postgraduate studies there in 1966 under supervision of the famous Rus-
sian mathematician academician S.M. Nikol’skii.

He worked at several universities, in particular for more than 10 years at the Moscow
Institute of Electronics, Radio-engineering, and Automation, the RUDN University, and the
Cardiff University. He also worked at the Moscow Institute of Physics and Technology, the
University of Padua, and the L.N. Gumilyov Eurasian National University.

He obtained seminal scientific results in several areas of functional analysis and the theory
of partial differential and integral equations. Some of his results and methods are named
after him: Burenkov’s theorem of composition of absolutely continuous functions, Burenkov’s
theorem on conditional hypoellipticity, Burenkov’s method of mollifiers with variable step,
Burenkov’s method of extending functions, the Burenkov-Lamberti method of transition
operators in the problem of spectral stability of differential operators, the Burenkov-Guliyevs
conditions for boundedness of operators in Morrey-type spaces. On the whole, the results
obtained by V.I. Burenkov have laid the groundwork for new perspective scientific directions
in the theory of functions spaces and its applications to partial differential equations, the
spectral theory in particular.

More than 30 postgraduate students from more than 10 countries gained candidate of
sciences or PhD degrees under his supervision. He has published more than 170 scientific
papers. The lists of his publications can be viewed on the portals MathSciNet and Math-
Net.Ru. His monograph “Sobolev spaces on domains" became a popular text for both experts
in the theory of function spaces and a wide range of mathematicians interested in applying
the theory of Sobolev spaces.

In 2011 the conference “Operators in Morrey-type Spaces and Applications”, dedicated
to his 70th birthday was held at the Ahi Evran University (Kirsehir, Turkey). Proceedings
of that conference were published in the EMJ 3-3 and EMJ 4-1.

The Editorial Board of the Eurasian Mathematical Journal congratulates Victor
Ivanovich Burenkov on the occasion of his 75th birthday and wishes him good health and
new achievements in science and teaching!
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A SHAPE-TOPOLOGICAL CONTROL OF VARIATIONAL INEQUALITIES
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Abstract. A shape-topological control of singularly perturbed variational inequalities is
considered in the abstract framework for state-constrained optimization problems. Aiming
at asymptotic analysis, singular perturbation theory is applied to the geometry-dependent
objective function and results in a shape-topological derivative. This concept is illustrated
analytically in a one-dimensional example problem which is controlled by an inhomogeneity
posed in a domain with moving boundary.

1 Introduction

The paper aims at a shape-topological control of geometry-dependent variational inequalities.
We consider a class of objective functions J : & +— R which act on two geometric objects
[' and w. In particular, we look how a perturbation of the topology of w will influence the
shape derivative of J(I',w) with respect to I'. Our example of a shape-topological control
problem will refer to w as an inhomogeneity in the given domain, and to I' as a moving
boundary of this domain.

From a mathematical viewpoint, the principal difficulty is that I" and w enter the objective
J through a state problem which is typically expressed by partial differential equations
(PDEs). Moreover, we generalize the state problem to a variational inequality subject to
unilateral constraints on I'. Therefore, to get explicit formulae, we rely on asymptotic
modeling of small w. We obtain a shape-topological derivative of the objective function, and
we prove its semi-analytic expression with the help of Green type functions.

For the classical methods of the shape optimization we refer to [1, 5, 22, 24|, for the
topology optimization to |2, 3, 6, 16], and to [4, 7, 20] for the asymptotic theory. Our mo-
tivation comes from the crack problems in fracture mechanics, see e.g. [21], aimed either to
arrest or amplify a moving crack. The control is realized by posing a trial inhomogeneity
in a test medium. By this, we assume nonlinear crack models subject to contact condi-
tions resulting in variational inequalities, see [9, 14]. The asymptotic methods of regular
perturbations suitable for nonlinear crack problems are discussed in [8, 12, 15|, and singular
perturbations of cracks in [10, 11]. In [17] we investigated a nonlinear crack with respect to
the shape-topological control by inhomogeneity in two dimensions.
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In the present work, in Section 2 we state a mathematical concept of a shape-topological
control for singularly perturbed variational inequalities, and we illustrate it with a one-
dimensional example problem in Section 3.

2 Concept of a shape-topological control

Our construction can be outlined in the context of shape-topological differentiability, see
[13, 18, 19], as follows.

For a Hilbert space H and its dual space H*, we deal with variational inequalities of the
following type:

find u’ — g € K such that (Au’,v —u’) >0 forallv—g € K, (2.1)

where g € H is given, the admissible set K C H is convex and closed, and A: H — H* is a
linear pseudo-monotone operator such that the assumption

u® — u® weakly in H as ¢ \, 0" and liH\liEf<Au€, u’ —uf) >0
e\J0

implies that the following condition holds

(Au®, v — u®) > limsup(Au®,v — ) forall v — g € K.
e\ot+

For the theory of variational inequalities (2.1) with pseudo-monotone operators A and its
solvability see [23]. In particular, if A is strongly monotone operator such that

Avt) > >0 forve H v+#0 (2.2)

[l

then the Lions—Stampacchia theorem provides the unique solution to (2.1).
We consider a singularly perturbed variational inequality: find u® — g € K such that

(Acu®,v—ufy >0 forallv—yge K, (2.3)

where the perturbation A, = A + eF. of the operator A of (2.1) with a linear bounded
operator F. : H — H* is such that ¢||F.|| = O(e) and A. is a strongly monotone operator
uniformly in ¢ which means that

(Acv,v) >a>0 forve H v#0ande € (0,e). (2.4)

[[o]]?

Our consequent consideration aims at shape-topological control by means of the state-
constrained optimization: find the geometry variables (w,I") from a feasible set & such that

ini J(u@h) bject to H(u“") = min II(v).
m(glg)%%m (u'“*))  subject to II(u'“"")) UTE;IEHK (v) (2.5)

In (2.5) the functional IT : H +— R such that

I(v) := (3A4.0,v)
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associates the strain energy (SE) of the state problem. Since II is coercive by (2.4), then
variational inequality (2.3) implies the first order necessary and sufficient optimality condi-
tion for the minimization of IT over v — g € K. The parameter ¢ € R, entering (2.3) serves
for variation of the geometry, we will specify this setting in examples below.

The main difficulty of the state-constrained optimization is that the geometry variables
enter (2.5) in a fully implicit way. Therefore, the problem of finding its optimality condition
is open. Further we rely on asymptotic models as ¢ \, 0" that needs expansion of the
solution u® of state problem (2.3) stated below.

Theorem 2.1. For the solutions u’ and u® of variational inequalities (2.1) and (2.3), the
following properties of a corrector ¢ € H

u’ +€¢° — g € K, (2.6)
ut —eg —g €K, 7)
(A, + Fu® — R.,v) =0 forallve H, (2.8)
with a residual R, € H* such that
el|Re[| = O(f(e)), (2.9)

imply the asymptotic representation in H as &\, 0% of the form
[u® = u® — e¢[| = O(f(¢))- (2.10)

Proof. Indeed, plugging the test functions v = u® —¢° in (2.1) due to (2.7) and v = u® + &¢°
in (2.3) due to (2.6), after summation of the inequality

(Acuf — (Ae — eF)u’, u® —u’® — e¢°) <0
and equality (2.8) with v = u® — u® — £¢¢ multiplied by —¢, that is
(—eA.q — eFu’ + eRe,uf —u’ — £G°) = 0,
we get
(Ac(uf —u® — eG°) + eRe,uf — u’ — G°) < 0.

Applying here the Cauchy—Schwarz inequality together with (2.4) and (2.9) implies (2.10).
O]

We emphasize that €G° satisfying (2.10) is not unique but defined up to o(f(¢))-terms.
A typical example of the corrector ¢¢ is ¢ (f) implying a boundary layer in homogenization
theory. Moreover, the asymptotic behavior f(e) of the residual in (2.10) maybe different. In
the subsequent example f(¢) = %2, see Theorem 3.1.

In the following section we illustrate our construction analytically for a one-dimensional
problem which obeys exact solution. In order to find a representative ¢°, in Section 3.1 we
will realize sufficient conditions (2.6)—(2.9). As an alternative to the uniform asymptotic
expansion (2.10), in Section 3.2, developing variational technique based on Green functions,
we obtain a local asymptotic expansion in the near-field, and this expansion is unique.
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3 Example problem in an inhomogeneous domain

For two variable parameters ¢,t € R, we start with the description of geometry.

We define a disconnected set joining two segments x € (0,¢) U (e,7 + t) such that 0 <
ro<r<ry,ro—r<t<ry—r,and 0 < e < gy < ry. One geometric parameter ¢ associates
the size of inhomogeneity w. = (0,¢) in the domain, and the other geometric parameter t
defines the position of the moving boundary 'y, = {z : z = r + t}.

The inhomogeneity is represented with the help of the characteristic function such that
X‘(;O’E)(x) = ¢ for x < ¢, otherwise X‘(;O’E)(x) = 1 for x > ¢, where § € R, stands for a given
stiffness parameter. Its two limit cases correspond to the hole as § N\, 0 and to the rigid
inclusion as § " +o00.

For a fixed g € R, the space of functions is given by

Hy:={ue H(0,r+1t): u(0) =0},
the admissible set is represented by the inequality constraint
Ky:={ueH;: ulr+t)+g>0}

hence v — g € K, implies v(r +t) > 0 and v(0) = g, and variational inequality (2.3) takes
the specific form:

find u*" — g € K, such that

e (3.1)
/0 X(O’E)(u(s’t))’(v —uEY dr >0 forallv—ge K,

Here and in what follows we mark the dependence of the solution on these two geometry
variables ¢ and t.
Variational inequality (3.1) implies the boundary value problem:

—(uEN)"(z) =0 for x € (0,e)U (g, + 1), (3.
u=)(0) = g, (3.

uE)(et) —uE(e™) =0, (=) (et) =6 - (uEY) (e7) =0, (3.
wEDN (44 >0, (WY (r4+1t) >0, (3.
(@) (r + 1) - a0 (r + 1) = 0, (3.

W W w w w
S Ul W N
= D D =

where u&%) (™) and u®!) (¢T) are the limit values from below and above, respectively. It is
derived from (3.1) in the standard way by applying integration by parts for all v — g € K;
that

r+t
- / Xfo.oy (W) (0 = uD) da + (DY (r + 1) (0(r + ) — ulD (r + 1))
0

. ((u(s,t)>/(6+) _ 6(u(6’t))’(5_)) . (v(s) _ u(e,t)(g)) > 0.

We construct the solution to (3.2)—(3.6) explicitly. Indeed, for an arbitrary c., € R
relations (3.2)—(3.4) can be solved by

W (2) = g + g, (uED) =252 v € (0,¢)
uC(@) = g+ cen(r+e558), W) =cey ,ze(er+1)
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implying the piecewise-linear continuous function
W (z) = g+ cepy (v + 52 minfe, 2}). (3.7)
With (3.7) complementarity condition (3.6) takes the form
ey (9 + cepy(r +t+15%)) =0.

Hence, due to (3.5), the nonnegative constant c(. ;) can be found uniquely:

Ceq) = max{0, —g(r +1t+ 17}55)_1}. (3.8)

As e\, 07, from (3.7) and (3.8) we have the reference state
u®)(z) = g+ cop, (3.9)
o = max{0,—g(r+¢)7}, (3.10)

which solves the reference variational inequality corresponding to (2.1):

find u(%" — g € K, such that

it 3.11
/ (u(ovt))/(v — u(o’t)), d,flf Z 0 for aﬂ v—4g S Kt- ( )
0

Alluding to the asymptotic expansion in Theorem 3.1 below, we need to consider a layer
near the interface point = €. It is obtained after mapping (0,¢) — (0,1),x +— ey by solving
the auxiliary transmission problem:

find w € H'(R,) such that

/Ooo Xtonyw' ()v' (y) dy = (1 = 8)v(1) for all v € H'(R,). (3.12)

Using integration by parts, variational equation (3.12) implies the boundary value problem:

—w"(y) =0 forye (0,1)U(1,00),
w(x) =0 asz /oo,
w(l™)—w(17)=0, w{AT)—-0-w'(1")=—-(1-9),

where w(17) and w(11) are the limiting values from below and above, respectively. The
unique solution of this problem is given by the piecewise linear continuous function

w(y) = 52 min{0,y — 1}. (3.13)
After stretching the coordinates y = £ in (3.13), we get the boundary layer
ew(%) = L min{0,z — e}, [ew(¥)| = O(Y?) in HY(R,), (3.14)

where the square root asymptotic order is due to the seminorm estimate

\//Ooo(aw(f)’fda: = \//05(1765)2@ = 0(v53).

In this case we justify asymptotic formula (2.10) as follows.
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Theorem 3.1. The solutions u®) and u®) of variational inequalities (3.1) and (3.11)
admit the following residual estimate as € \, 0T :

w®Y = ) 42D L O(e¥?) in HY(0,r +1) (3.15)
with the principal asymptotic term defined in Hy by

e(x) == (W®0Y (0) - [rw(®) + 5551 — ;5)]. (3.16)

Proof. Indeed, for sufficiently small € we have (r + t)(r +t + %¢)~! > 0, hence from (3.8)
it follows that

-1 -
C( t) — (]‘ + 6(7’+t) ) ' ma’X{07 —g(’/’ + t) 1}7
and together with (3.10) this results in the expansion

Cen) = Co) (1 = 5p75¢ + O(€)?). (3.17)

4

Substituting (3.17), (3.14), and (3.9) in (3.7) we get

u©(z) = u®D () — o7 + ciog (1 — (s(lr;ft)s) [z + 50 + ew(E)] + O(e?)

and derive iteratively the following uniform estimates:
W0 (2) = w0 (2) + O(H),

uC(z) = ul® (2) + (W0 (0

)-eu(®) +0(e),
uEO(z) = u0(z) + (@O (0) - [ew(2) + £ (1

=] +0(E),

where we have used c(y = (u(®")(0). The latter equality enforces (3.15) with notation
(3.16), thus completing the proof. O

We remark that £ (z) in Theorem 3.1 satisfies relations (2.6)—(2.9) in Theorem 2.1
with f(¢) = %2, which can be checked straightforwardly.

3.1 Uniform asymptotic expansion in the problem

We discuss examples for various objectives J (u( ) subject to the optimal state u(&"). State-
constrained optimization problem (2.5) takes the specific form:

ini J(u®?)  subject to MI(uEY) = 11
cociiinimum (=) subj (W) = min TI{v), (3.1)

and the strain energy (SE) functional II : H; — R is

)=} [ oo (@) da (3.2)

Variational inequality (3.1) implies the first order optimality condition for the constrained
minimization of Il over v — g € K.
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It is important to comment that, for a fixed e € (0,e(), variations of the parameter
t € (ro — r,m1 — r) describe regular perturbations of the moving boundary of the domain
(0,e) U (e,r + t), thus shape variation. In contrast, the limiting procedure £ \, 07 implies
diminishing of the inhomogeneity w. = (0,¢), and, hence, the topology change from the
disconnected set to the 1-connected set (0,7 + t).

First, we control the optimal value function Jsg = II of strain energy (3.2) with respect
to the topology change as ¢ N\, 07. Relying on small e, we substitute the optimal state
u(®! with its asymptotic model (3.15) and (3.16), thus calculating the approximation of the
optimal value function

H(u(g’t)) = H(u(o’t) + co,) [5w(§) + 817;5(1 — i)} + 0(63/2))

r+t
r+t

z 1-6 2
=5 /0 Xioe) (W) + cop[ew'(2) = 575]) " dz + O(E™?)
_ C%O,t) 65 1 2¢(1-9) 1-42 d T 1 2¢(1-9) d (33)
BERA (1- 3(r+1) +45) da + (1- §(r+t)) | +o(e)

€
2
_ C((;,t) (T + t— 6(15—6)) + 0(5)’
C2

M(u®V) = 280 (r 4 ¢),

due to (3.9), (3.14), and (3.2). From (3.3) it follows that the function (0,eq9) — R, € —
[I(u®Y) is differentiable at ¢ = 0 with the topological derivative

1-5 -
AT omg =~y Uz = —TI(ul) (3.4)
Secondly, we control the objective function Jsgrr = —%H of the strain energy release

rate, which implies shape variation and associates a Griffith’s functional used in fracture
mechanics.

To calculate —%H from (3.2), we apply the constitutive formula proven in [6]. Indeed,
let a cut-off function n be such that n(z) = 0 as ¢ < € and n(z) = 1 as ¢ > ¢ + 3,
with some f such that ¢ + 3 < ry. For small s € (rg —r —t,r; —r — t), the translation
O, : (0,7 +1)— (0,7 +t+s), z=x + sn(z) yields the representation of IT(u&*+) as

N[ =

r+t+s r+t ert+s) /19
| Moo (@t e = 4 [\ (S 1k s
’ r+t ’
— H(u(s,t+s) o®,) — g/ X?o,s)((u(e’t+s) o (I)s>,)27]/ dz + ofs).
0

Since u&t%) o d, — g € K,, we infer ul**t) o &, — u&Y strongly in H, as s — 0, and
conclude, see [6] for details, with the asymptotic expansion

r+t
H(U(E’H_S)) _ H(u(a,t)) . %/ X?O,e)((u(87t)>,)277/ dx + O(S). (35)
0

From (3.5) the explicit formula of the shape derivative follows directly:

r+t
€ € € 2
Jsprr(u©Y) 1= = GI(uY) = %/ Xo.o) (u)) ' da. (3.6)
0
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We observe that Jsprr depends on u&?, but not on €4 in expansion (3.15). The latter
fact is in accordance with the assertion in |18, 19].

For the shape-topological control, now we insert (3.15) in (3.6), which implies the asymp-
totic model

Jsprr (u®) + cog [ew(®) + 52 (1 - 27)] + O(E")
r+t
T 2
:%A Voo (W) + o [o0/(2) = S581) " do + O(¥2)
2 e+08 )
% = ‘e =) 3.7
- %/ ( 266((7"1+t)))77, dx +o(e) = -5 (1 - 25((:+t))) +o(¢) (3.7)
3

= JSERR(U(O’t)) — & C%O,t)é(lr;—ft) + 0(6),
2

Jserr(u®?) = C“;”” :

In particular, (3.7) follows formula for the shape-topological derivative

it Jsern (W) om0 = —Clo 57 (3.8)
Moreover, in view of definition (3.6), it implies the mixed second derivative _WH( )]0
which is symmetric: 6‘228t1'[(u(5’t)) le=0 = 8‘325H(u(5’t)) |e=0. Thus, we have proved the following.

Theorem 3.2. For the solutions u*Y and u'® of variational inequalities (3.1) and (3.11),

there exists the shape-topological derivative

2
it Toonn () emo = — 2T = =571 .-
= —¢2 1-4
(Ovt) (5(7’+t) :

(3.9)

3.2 Local asymptotic expansion in the problem

We recall that Theorem 3.2 is derived based on the uniform asymptotic formula (3.15) which,
however, is not unique. Representation (3.15) which is uniform over domain matches the
near-field (the boundary layer near inhomogeneity) and the far-field (extendable to infinity)
asymptotic representations, which both are unique. This is the reason of our alternative
approach to the shape-topological control. Since in one dimension the far-field is trivial
(zero), here we employ only the near-field.

In the near-field of the moving boundary point z = r-+t, any solution u* of homogeneous
equation (3.2) can be written as a linear function

wE (2) = uC (r + 1) + (WEDY (r+t) - [z — (r +t)] for z > €. (3.1)

The factor in front of the principal term @ — (r 4+ ¢) in (3.1) is called stress intensity factor
(SIF) in crack mechanics. We associate it with the objective

JSIF(u(E’t)) = (u(g’t))’(r +1) = Cle)s (3.2)

and we aim at proper formula for its calculation without knowledge of the analytic solution
(3.7) and (3.8) from Section 3.1.
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For this reason, we construct the Green function (; (called the weight function in crack
mechanics) obeying the bounded singularity (;(r +¢) # 0 and {/(r +t) # 0 at the moving
boundary point x = r + ¢t and solving the homogeneous problem:

—(/(z) =0 forze (0,r+1), (3.3)
G(0) = 0. (3.4)

All solutions of (3.3) and (3.4) are given by straight lines cr and defined up to arbitrary
factor a # 0. If we set the normalization condition

r+t
1= [ (@) = G0 G+ (3.5)

due to (3.3) and (3.4), then the unique az satisfying (3.5) is

Glx) = o2 (3.6)

Using (3.2)—(3.4) and (3.3)-(3.4), the second Green formula yields

/0 s t)C//} dr = [[( (E»t))’(g)]]Ct(€) + gg(())

+ (=Y (r 4+ 1) - Ct(r—i-t)—u(”)(r—l—t) G(r+1),

(3.7)

where [(uED) (g)] = (uED) (e*) — (uED)Y (¢7) is the jump. Multiplying (3.7) either by
(u)) (r +1t) or u® (r 4t) and using complementarity conditions (3.5), (3.6), we derive the
representations

OV ) = max{0. Gl 4 DIV - oGO0)) 69
w0 (r +t) = max{0, 7o (—[(W®V) (€)]G(e) + 9¢(0)) }, (3.9)

where we have used normalization (3.5) to get (3.8). In comparison with the explicit formula
(3.8) of ¢(cp), expressions (3.8) and (3.9) are implicit ones. We plug in (3.8) expansion (3.15)
and infer the asymptotic model

Cey = (@) (r + 1) = max{0, ¢{(r + 1) (—g¢/(0)
+ (@) (0)[w' (1)]G(e) + G(e)O(e)) -

Moreover, we apply to (3.10) the local representation (;(z) = (j(0)x following from (3.3)
and (3.4), hence (;(g) = ¢;(0) e. In this way we have proved the following.

(3.10)

Theorem 3.3. For the solutions u™) and u*? of variational inequalities (3.1) and (3.11),

the following asymptotic representation of SIF holds:

Jstr (u™Y) = cey = max{0, (/(r + )¢(0) (—g + (@) (0)[w' (D] + O()) },

3.11
Jerr (@) = cop = max{0, —g¢;(r + ¢)¢;(0) }. (3.11)
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We note that the max-function in (3.11) is, generally, nondifferentiable with respect
to € when g = 0. Nevertheless, further we need the square of the max-function which is
differentiable with respect to its argument. Indeed, the square of (3.11) constitutes the
form:

Cleny = oy + 2600 (@) (0)[w (1)]G(r + 1)G(0) + O(?). (3.12)

As the corollary of Theorem 3.3 we restate the asymptotic result on shape-topological
control of Jsgrr and Jsg from Section 3.1.
Inserting the exact solution (3.7) in (3.6), we get

Jserr(uY) = = G1I(u™Y) = 3. (3.13)

With the help of (3.12), from (3.13) we immediately obtain the shape-topological derivative

— e (u)]e=o as

2 Jsprn(u®)|—o = 0 () (0) [’ (DG (r + H)E(0). (3.14)

In order to validate (3.14), after substitution of the exact analytic expressions (3.9), (3.14),
and (3. ) of solutions u®), w, and ¢, respectively, this results in —JSERR(U(E’t))IEZO =

C%o " 6(7" - t) thus coinciding with expression (3.9) derived in Theorem 3.2.

Similarly, substituting (3.7) in II(u®?) given in (3.2), straightforward calculation pro-
vides equivalent expression of SE-optimal value function

Japl) = TH0) = 3+ 0+ 155

Z[ 32 +econ(u® )()[[w()]]CQ(TH) (0) + O] (r +t + 5%)
- (Ot)<]‘_ ((r—l—t) )T+t+_€> % <T+t _5)+O( )

where we have used here the expansion (3.12) of SIF C%a,t)‘ Thus, we arrive again at formula
(3.3).

4 Discussion

In [17] this technique of a shape-topological control is extended to the nonlinear problem
of crack—defect interaction in two dimensions, where no analytic solutions but only varia-
tional formulations are available. The semi-analytic expressions are proved for the shape-
topological derivatives of JS21F and Jsggrr.
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