Eurasian Mathematical Journal

2016, Volume 7, Number 3

Founded in 2010 by
the L.N. Gumilyov Eurasian National University
in cooperation with
the M.V. Lomonosov Moscow State University
the Peoples' Friendship University of Russia
the University of Padua

Supported by the ISAAC (International Society for Analysis, its Applications and Computation) and by the Kazakhstan Mathematical Society

Published by the L.N. Gumilyov Eurasian National University Astana, Kazakhstan

EURASIAN MATHEMATICAL JOURNAL

Editorial Board

Editors-in-Chief

V.I. Burenkov, M. Otelbaev, V.A. Sadovnichy

Editors

Sh.A. Alimov (Uzbekistan), H. Begehr (Germany), T. Bekjan (China), O.V. Besov (Russia), N.A. Bokayev (Kazakhstan), A.A. Borubaev (Kyrgyzstan), G. Bourdaud (France), A. Caetano (Portugal), M. Carro (Spain), A.D.R. Choudary (Pakistan), V.N. Chubarikov (Russia), A.S. Dzumadildaev (Kazakhstan), V.M. Filippov (Russia), H. Ghazaryan (Armenia), M.L. Goldman (Russia), V. Goldshtein (Israel), V. Guliyev (Azerbaijan), D.D. Haroske (Germany), A. Hasanoglu (Turkey), M. Huxley (Great Britain), M. Imanaliev (Kyrgyzstan), P. Jain (India), T.Sh. Kalmenov (Kazakhstan), B.E. Kangyzhin (Kazakhstan), K.K. Kenzhibaev (Kazakhstan), S.N. Kharin (Kazakhstan), E. Kissin (Great Britain), V. Kokilashvili (Georgia), V.I. Korzyuk (Belarus), A. Kufner (Czech Republic), L.K. Kussainova (Kazakhstan), P.D. Lamberti (Italy), M. Lanza de Cristoforis (Italy), V.G. Maz'ya (Sweden), E.D. Nursultanov (Kazakhstan), R. Oinarov (Kazakhstan), K.N. Ospanov (Kazakhstan), I.N. Parasidis (Greece), J. Pečarić (Croatia), S.A. Plaksa (Ukraine), L.-E. Persson (Sweden), E.L. Presman (Russia), M.A. Ragusa (Italy), M.D. Ramazanov (Russia), M. Reissig (Germany), M. Ruzhansky (Great Britain), S. Sagitov (Sweden), T.O. Shaposhnikova (Sweden), A.A. Shkalikov (Russia), V.A. Skvortsov (Poland), G. Sinnamon (Canada), E.S. Smailov (Kazakhstan), V.D. Stepanov (Russia), Ya.T. Sultanaev (Russia), I.A. Taimanov (Russia), T.V. Tararykova (Great Britain), J.A. Tussupov (Kazakhstan), U.U. Umirbaev (Kazakhstan), Z.D. Usmanov (Tajikistan), N. Vasilevski (Mexico), Dachun Yang (China), B.T. Zhumagulov (Kazakhstan)

Managing Editor

A.M. Temirkhanova

Aims and Scope

The Eurasian Mathematical Journal (EMJ) publishes carefully selected original research papers in all areas of mathematics written by mathematicians, principally from Europe and Asia. However papers by mathematicians from other continents are also welcome.

From time to time the EMJ publishes survey papers.

The EMJ publishes 4 issues in a year.

The language of the paper must be English only.

The contents of EMJ are indexed in Scopus, Web of Science (ESCI), Mathematical Reviews, MathSciNet, Zentralblatt Math (ZMATH), Referativnyi Zhurnal – Matematika, Math-Net.Ru.

The EMJ is included in the list of journals recommended by the Committee for Control of Education and Science (Ministry of Education and Science of the Republic of Kazakhstan) and in the list of journals recommended by the Higher Attestation Commission (Ministry of Education and Science of the Russian Federation).

Information for the Authors

<u>Submission.</u> Manuscripts should be written in LaTeX and should be submitted electronically in DVI, PostScript or PDF format to the EMJ Editorial Office via e-mail (eurasianmj@yandex.kz).

When the paper is accepted, the authors will be asked to send the tex-file of the paper to the Editorial Office.

The author who submitted an article for publication will be considered as a corresponding author. Authors may nominate a member of the Editorial Board whom they consider appropriate for the article. However, assignment to that particular editor is not guaranteed.

Copyright. When the paper is accepted, the copyright is automatically transferred to the EMJ. Manuscripts are accepted for review on the understanding that the same work has not been already published (except in the form of an abstract), that it is not under consideration for publication elsewhere, and that it has been approved by all authors.

<u>Title page</u>. The title page should start with the title of the paper and authors' names (no degrees). It should contain the <u>Keywords</u> (no more than 10), the <u>Subject Classification</u> (AMS Mathematics Subject Classification (2010) with primary (and secondary) subject classification codes), and the <u>Abstract</u> (no more than 150 words with minimal use of mathematical symbols).

<u>Figures</u>. Figures should be prepared in a digital form which is suitable for direct reproduction.

<u>References</u>. Bibliographical references should be listed alphabetically at the end of the article. The authors should consult the Mathematical Reviews for the standard abbreviations of journals' names.

<u>Authors' data.</u> The authors' affiliations, addresses and e-mail addresses should be placed after the References.

<u>Proofs.</u> The authors will receive proofs only once. The late return of proofs may result in the paper being published in a later issue.

Offprints. The authors will receive offprints in electronic form.

Publication Ethics and Publication Malpractice

For information on Ethics in publishing and Ethical guidelines for journal publication see $http://www.elsevier.com/publishingethics \ and \ http://www.elsevier.com/journal-authors/ethics.$

Submission of an article to the EMJ implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see http://www.elsevier.com/postingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. In particular, translations into English of papers already published in another language are not accepted.

No other forms of scientific misconduct are allowed, such as plagiarism, falsification, fraudulent data, incorrect interpretation of other works, incorrect citations, etc. The EMJ follows the Code of Conduct of the Committee on Publication Ethics (COPE), and follows the COPE Flowcharts for Resolving Cases of Suspected Misconduct (http://publicationethics.org/files/u2/New_Code.pdf). To verify originality, your article may be checked by the originality detection service CrossCheck http://www.elsevier.com/editors/plagdetect.

The authors are obliged to participate in peer review process and be ready to provide corrections, clarifications, retractions and apologies when needed. All authors of a paper should have significantly contributed to the research.

The reviewers should provide objective judgments and should point out relevant published works which are not yet cited. Reviewed articles should be treated confidentially. The reviewers will be chosen in such a way that there is no conflict of interests with respect to the research, the authors and/or the research funders.

The editors have complete responsibility and authority to reject or accept a paper, and they will only accept a paper when reasonably certain. They will preserve anonymity of reviewers and promote publication of corrections, clarifications, retractions and apologies when needed. The acceptance of a paper automatically implies the copyright transfer to the EMJ.

The Editorial Board of the EMJ will monitor and safeguard publishing ethics.

Web-page

The web-page of EMJ is www.emj.enu.kz. One can enter the web-page by typing Eurasian Mathematical Journal in any search engine (Google, Yandex, etc.). The archive of the web-page contains all papers published in EMJ (free access).

Subscription

For Institutions

- US\$ 200 (or equivalent) for one volume (4 issues)
- US\$ 60 (or equivalent) for one issue

For Individuals

- US\$ 160 (or equivalent) for one volume (4 issues)
- US\$ 50 (or equivalent) for one issue.

The price includes handling and postage.

The Subscription Form for subscribers can be obtained by e-mail:

eurasianmj@yandex.kz

The Eurasian Mathematical Journal (EMJ) The Editorial Office

The L.N. Gumilyov Eurasian National University

Building no. 3 Room 306a

Tel.: +7-7172-709500 extension 33312

13 Kazhymukan St 010008 Astana Kazakhstan

EMJ: from Scopus Q4 to Scopus Q3 in two years?!

Recently the list was published of all mathematical journals included in 2015 Scopus quartiles Q1 (334 journals), Q2 (318 journals), Q3 (315 journals), and Q4 (285 journals). Altogether 1252 journals.

With great pleasure we inform our readers that the Eurasian Mathematical Journal was included in this list, currently the only mathematical journal in the Republic of Kazakhstan and Central Asia.

It was included in Q4 with the SCImago Journal & Country Rank (SJR) indicator equal to 0,101, and is somewhere at the bottom of the Q4 list. With this indicator the journal shares places from 1240 to 1248 in the list of all 2015 Scopus mathematical journals. Nevertheless, this may be considered to be a good achievement, because Scopus uses information about journals for the three previous years, i. e. for years 2013-2015, and the EMJ is in Scopus only from the first quarter of year 2015.

The SJR indicator is calculated by using a sophisticated formula, taking into account various characteristics of journals and journals publications, in particular the average number of weighted citations received in the selected year by the documents published in the selected journal in the three previous years. This formula and related comments can be viewed on the web-page

 $http://www.scimagojr.com/journalrank.php?category = 2601\&area = 2600\&page = 1\&total_size = 373$

(Help/Journals/Understand tables and charts/Detailed description of SJR.)

In order to enter Q3 the SJR indicator should be greater than 0,250. It looks like the ambitious aim of entering Q3 in year 2017 is nevertheless realistic due to recognized high level of the EMJ.

We hope that all respected members of the international Editorial Board, reviewers, authors of our journal, representing more than 35 countries, and future authors will provide high quality publications in the EMJ which will allow to achieve this aim.

On behalf of the Editorial Board of the EMJ

V.I. Burenkov, E.D. Nursultanov, T.Sh. Kalmenov,

R. Oinarov, M. Otelbaev, T.V. Tararykova, A.M. Temirkhanova

VICTOR IVANOVICH BURENKOV

(to the 75th birthday)

On July 15, 2016 was the 75th birthday of Victor Ivanovich Burenkov, editor-in-chief of the Eurasian Mathematical Journal (together with V.A. Sadovnichy and M. Otelbaev), director of the S.M. Nikol'skii Institute of Mathematics, head of the Department of Mathematical Analysis and Theory of Functions, chairman of Dissertation Council at the RUDN University (Moscow), research fellow (part-time) at the Steklov Institute of Mathematics (Moscow), scientific supervisor of the Laboratory of Mathematical Analysis at the Russian-Armenian

(Slavonic) University (Yerevan, Armenia), doctor of physical and mathematical sciences (1983), professor (1986), honorary professor of the L.N. Gumilyov Eurasian National University (Astana, Kazakhstan, 2006), honorary doctor of the Russian-Armenian (Slavonic) University (Yerevan, Armenia, 2007), honorary member of staff of the University of Padua (Italy, 2011), honorary distinguished professor of the Cardiff School of Mathematics (UK, 2014), honorary professor of the Aktobe Regional State University (Kazakhstan, 2015).

V.I. Burenkov graduated from the Moscow Institute of Physics and Technology (1963) and completed his postgraduate studies there in 1966 under supervision of the famous Russian mathematician academician S.M. Nikol'skii.

He worked at several universities, in particular for more than 10 years at the Moscow Institute of Electronics, Radio-engineering, and Automation, the RUDN University, and the Cardiff University. He also worked at the Moscow Institute of Physics and Technology, the University of Padua, and the L.N. Gumilyov Eurasian National University.

He obtained seminal scientific results in several areas of functional analysis and the theory of partial differential and integral equations. Some of his results and methods are named after him: Burenkov's theorem of composition of absolutely continuous functions, Burenkov's theorem on conditional hypoellipticity, Burenkov's method of mollifiers with variable step, Burenkov's method of extending functions, the Burenkov-Lamberti method of transition operators in the problem of spectral stability of differential operators, the Burenkov-Guliyevs conditions for boundedness of operators in Morrey-type spaces. On the whole, the results obtained by V.I. Burenkov have laid the groundwork for new perspective scientific directions in the theory of functions spaces and its applications to partial differential equations, the spectral theory in particular.

More than 30 postgraduate students from more than 10 countries gained candidate of sciences or PhD degrees under his supervision. He has published more than 170 scientific papers. The lists of his publications can be viewed on the portals MathSciNet and MathNet.Ru. His monograph "Sobolev spaces on domains" became a popular text for both experts in the theory of function spaces and a wide range of mathematicians interested in applying the theory of Sobolev spaces.

In 2011 the conference "Operators in Morrey-type Spaces and Applications", dedicated to his 70th birthday was held at the Ahi Evran University (Kirsehir, Turkey). Proceedings of that conference were published in the EMJ 3-3 and EMJ 4-1.

The Editorial Board of the Eurasian Mathematical Journal congratulates Victor Ivanovich Burenkov on the occasion of his 75th birthday and wishes him good health and new achievements in science and teaching!

EURASIAN MATHEMATICAL JOURNAL

ISSN 2077-9879 Volume 7, Number 3 (2016), 41 – 52

A SHAPE-TOPOLOGICAL CONTROL OF VARIATIONAL INEQUALITIES

V.A. Kovtunenko, G. Leugering

Communicated by P.D. Lamberti

Key words: shape-topological control, state-constrained optimization, variational inequality, singular perturbation, inhomogeneity, shape-topological derivative.

AMS Mathematics Subject Classification: 35B25, 49J40, 49Q10, 74G70.

Abstract. A shape-topological control of singularly perturbed variational inequalities is considered in the abstract framework for state-constrained optimization problems. Aiming at asymptotic analysis, singular perturbation theory is applied to the geometry-dependent objective function and results in a shape-topological derivative. This concept is illustrated analytically in a one-dimensional example problem which is controlled by an inhomogeneity posed in a domain with moving boundary.

1 Introduction

The paper aims at a shape-topological control of geometry-dependent variational inequalities. We consider a class of objective functions $J: \mathfrak{G} \mapsto \mathbb{R}$ which act on two geometric objects Γ and ω . In particular, we look how a perturbation of the topology of ω will influence the shape derivative of $J(\Gamma, \omega)$ with respect to Γ . Our example of a shape-topological control problem will refer to ω as an inhomogeneity in the given domain, and to Γ as a moving boundary of this domain.

From a mathematical viewpoint, the principal difficulty is that Γ and ω enter the objective J through a state problem which is typically expressed by partial differential equations (PDEs). Moreover, we generalize the state problem to a variational inequality subject to unilateral constraints on Γ . Therefore, to get explicit formulae, we rely on asymptotic modeling of small ω . We obtain a shape-topological derivative of the objective function, and we prove its semi-analytic expression with the help of Green type functions.

For the classical methods of the shape optimization we refer to [1, 5, 22, 24], for the topology optimization to [2, 3, 6, 16], and to [4, 7, 20] for the asymptotic theory. Our motivation comes from the crack problems in fracture mechanics, see e.g. [21], aimed either to arrest or amplify a moving crack. The control is realized by posing a trial inhomogeneity in a test medium. By this, we assume nonlinear crack models subject to contact conditions resulting in variational inequalities, see [9, 14]. The asymptotic methods of regular perturbations suitable for nonlinear crack problems are discussed in [8, 12, 15], and singular perturbations of cracks in [10, 11]. In [17] we investigated a nonlinear crack with respect to the shape-topological control by inhomogeneity in two dimensions.

In the present work, in Section 2 we state a mathematical concept of a shape-topological control for singularly perturbed variational inequalities, and we illustrate it with a one-dimensional example problem in Section 3.

2 Concept of a shape-topological control

Our construction can be outlined in the context of shape-topological differentiability, see [13, 18, 19], as follows.

For a Hilbert space H and its dual space H^* , we deal with variational inequalities of the following type:

find
$$u^0 - g \in K$$
 such that $\langle Au^0, v - u^0 \rangle \ge 0$ for all $v - g \in K$, (2.1)

where $g \in H$ is given, the admissible set $K \subset H$ is convex and closed, and $A : H \mapsto H^*$ is a linear pseudo-monotone operator such that the assumption

$$u^{\varepsilon} \rightharpoonup u^{0}$$
 weakly in H as $\varepsilon \searrow 0^{+}$ and $\liminf_{\varepsilon \searrow 0^{+}} \langle Au^{\varepsilon}, u^{0} - u^{\varepsilon} \rangle \geq 0$

implies that the following condition holds

$$\langle Au^0, v - u^0 \rangle \ge \limsup_{\varepsilon \searrow 0^+} \langle Au^{\varepsilon}, v - u^{\varepsilon} \rangle$$
 for all $v - g \in K$.

For the theory of variational inequalities (2.1) with pseudo-monotone operators A and its solvability see [23]. In particular, if A is strongly monotone operator such that

$$\frac{\langle Av, v \rangle}{\|v\|^2} \ge \alpha > 0 \quad \text{for } v \in H, \ v \ne 0$$
 (2.2)

then the Lions-Stampacchia theorem provides the unique solution to (2.1).

We consider a singularly perturbed variational inequality: find $u^{\varepsilon} - g \in K$ such that

$$\langle A_{\varepsilon}u^{\varepsilon}, v - u^{\varepsilon} \rangle \ge 0 \quad \text{for all } v - g \in K,$$
 (2.3)

where the perturbation $A_{\varepsilon} = A + \varepsilon F_{\varepsilon}$ of the operator A of (2.1) with a linear bounded operator $F_{\varepsilon} : H \mapsto H^{\star}$ is such that $\varepsilon ||F_{\varepsilon}|| = O(\varepsilon)$ and A_{ε} is a strongly monotone operator uniformly in ε which means that

$$\frac{\langle A_{\varepsilon}v,v\rangle}{\|v\|^2} \ge \alpha > 0 \quad \text{for } v \in H, \ v \ne 0 \text{ and } \varepsilon \in (0,\varepsilon_0).$$
 (2.4)

Our consequent consideration aims at shape-topological control by means of the state-constrained optimization: find the geometry variables (ω, Γ) from a feasible set \mathfrak{G} such that

$$\underset{(\omega,\Gamma)\in\mathfrak{G}}{\operatorname{minimum}} J(u^{(\omega,\Gamma)}) \quad \text{subject to } \Pi(u^{(\omega,\Gamma)}) = \underset{v-g\in K}{\min} \Pi(v). \tag{2.5}$$

In (2.5) the functional $\Pi: H \mapsto \mathbb{R}$ such that

$$\Pi(v) := \langle \frac{1}{2} A_{\varepsilon} v, v \rangle$$

associates the strain energy (SE) of the state problem. Since Π is coercive by (2.4), then variational inequality (2.3) implies the first order necessary and sufficient optimality condition for the minimization of Π over $v - g \in K$. The parameter $\varepsilon \in \mathbb{R}_+$ entering (2.3) serves for variation of the geometry, we will specify this setting in examples below.

The main difficulty of the state-constrained optimization is that the geometry variables enter (2.5) in a fully implicit way. Therefore, the problem of finding its optimality condition is open. Further we rely on asymptotic models as $\varepsilon \searrow 0^+$ that needs expansion of the solution u^{ε} of state problem (2.3) stated below.

Theorem 2.1. For the solutions u^0 and u^{ε} of variational inequalities (2.1) and (2.3), the following properties of a corrector $\tilde{q}^{\varepsilon} \in H$

$$u^0 + \epsilon \tilde{q}^\varepsilon - g \in K, \tag{2.6}$$

$$u^{\varepsilon} - \varepsilon \tilde{q}^{\varepsilon} - g \in K, \tag{2.7}$$

$$\langle A_{\varepsilon}\tilde{q}^{\varepsilon} + F_{\varepsilon}u^{0} - R_{\varepsilon}, v \rangle = 0 \quad \text{for all } v \in H,$$
 (2.8)

with a residual $R_{\varepsilon} \in H^*$ such that

$$\varepsilon ||R_{\varepsilon}|| = \mathcal{O}(f(\varepsilon)), \tag{2.9}$$

imply the asymptotic representation in H as $\varepsilon \setminus 0^+$ of the form

$$||u^{\varepsilon} - u^{0} - \varepsilon \tilde{q}^{\varepsilon}|| = O(f(\varepsilon)). \tag{2.10}$$

Proof. Indeed, plugging the test functions $v = u^{\varepsilon} - \varepsilon \tilde{q}^{\varepsilon}$ in (2.1) due to (2.7) and $v = u^{0} + \varepsilon \tilde{q}^{\varepsilon}$ in (2.3) due to (2.6), after summation of the inequality

$$\langle A_{\varepsilon}u^{\varepsilon} - (A_{\varepsilon} - \varepsilon F_{\varepsilon})u^{0}, u^{\varepsilon} - u^{0} - \varepsilon \tilde{q}^{\varepsilon} \rangle \leq 0$$

and equality (2.8) with $v = u^{\varepsilon} - u^{0} - \varepsilon \tilde{q}^{\varepsilon}$ multiplied by $-\varepsilon$, that is

$$\langle -\varepsilon A_{\varepsilon} \tilde{q}^{\varepsilon} - \varepsilon F_{\varepsilon} u^{0} + \varepsilon R_{\varepsilon}, u^{\varepsilon} - u^{0} - \varepsilon \tilde{q}^{\varepsilon} \rangle = 0,$$

we get

$$\langle A_{\varepsilon}(u^{\varepsilon} - u^{0} - \varepsilon \tilde{q}^{\varepsilon}) + \varepsilon R_{\varepsilon}, u^{\varepsilon} - u^{0} - \varepsilon \tilde{q}^{\varepsilon} \rangle \le 0.$$

Applying here the Cauchy–Schwarz inequality together with (2.4) and (2.9) implies (2.10).

We emphasize that $\varepsilon \tilde{q}^{\varepsilon}$ satisfying (2.10) is not unique but defined up to $o(f(\varepsilon))$ -terms. A typical example of the corrector \tilde{q}^{ε} is $\tilde{q}(\frac{x}{\varepsilon})$ implying a boundary layer in homogenization theory. Moreover, the asymptotic behavior $f(\varepsilon)$ of the residual in (2.10) maybe different. In the subsequent example $f(\varepsilon) = \varepsilon^{3/2}$, see Theorem 3.1.

In the following section we illustrate our construction analytically for a one-dimensional problem which obeys exact solution. In order to find a representative \tilde{q}^{ε} , in Section 3.1 we will realize sufficient conditions (2.6)–(2.9). As an alternative to the uniform asymptotic expansion (2.10), in Section 3.2, developing variational technique based on Green functions, we obtain a local asymptotic expansion in the near-field, and this expansion is unique.

3 Example problem in an inhomogeneous domain

For two variable parameters $\varepsilon, t \in \mathbb{R}_+$, we start with the description of geometry.

We define a disconnected set joining two segments $x \in (0, \varepsilon) \cup (\varepsilon, r + t)$ such that $0 < r < r_1, r_0 - r < t < r_1 - r$, and $0 < \varepsilon < \varepsilon_0 < r_0$. One geometric parameter ε associates the size of inhomogeneity $\omega_{\varepsilon} = (0, \varepsilon)$ in the domain, and the other geometric parameter t defines the position of the moving boundary $\Gamma_t = \{x : x = r + t\}$.

The inhomogeneity is represented with the help of the characteristic function such that $\chi_{(0,\varepsilon)}^{\delta}(x) = \delta$ for $x < \varepsilon$, otherwise $\chi_{(0,\varepsilon)}^{\delta}(x) = 1$ for $x > \varepsilon$, where $\delta \in \mathbb{R}_+$ stands for a given stiffness parameter. Its two limit cases correspond to the hole as $\delta \searrow 0^+$ and to the rigid inclusion as $\delta \nearrow +\infty$.

For a fixed $g \in \mathbb{R}$, the space of functions is given by

$$H_t := \{ u \in H^1(0, r+t) : u(0) = 0 \},$$

the admissible set is represented by the inequality constraint

$$K_t := \{ u \in H_t : u(r+t) + g \ge 0 \},$$

hence $v - g \in K_t$ implies $v(r + t) \ge 0$ and v(0) = g, and variational inequality (2.3) takes the specific form:

find
$$u^{(\varepsilon,t)} - g \in K_t$$
 such that
$$\int_0^{r+t} \chi_{(0,\varepsilon)}^{\delta}(u^{(\varepsilon,t)})'(v - u^{(\varepsilon,t)})' dx \ge 0 \quad \text{for all } v - g \in K_t.$$
(3.1)

Here and in what follows we mark the dependence of the solution on these two geometry variables ε and t.

Variational inequality (3.1) implies the boundary value problem:

$$-(u^{(\varepsilon,t)})''(x) = 0 \quad \text{for } x \in (0,\varepsilon) \cup (\varepsilon,r+t), \tag{3.2}$$

$$u^{(\varepsilon,t)}(0) = g, (3.3)$$

$$u^{(\varepsilon,t)}(\varepsilon^+) - u^{(\varepsilon,t)}(\varepsilon^-) = 0, \ (u^{(\varepsilon,t)})'(\varepsilon^+) - \delta \cdot (u^{(\varepsilon,t)})'(\varepsilon^-) = 0, \tag{3.4}$$

$$u^{(\varepsilon,t)}(r+t) \ge 0, \quad (u^{(\varepsilon,t)})'(r+t) \ge 0,$$
 (3.5)

$$(u^{(\varepsilon,t)})'(r+t) \cdot u^{(\varepsilon,t)}(r+t) = 0, \tag{3.6}$$

where $u^{(\varepsilon,t)}(\varepsilon^-)$ and $u^{(\varepsilon,t)}(\varepsilon^+)$ are the limit values from below and above, respectively. It is derived from (3.1) in the standard way by applying integration by parts for all $v-g \in K_t$ that

$$-\int_{0}^{r+t} \chi_{(0,\varepsilon)}^{\delta}(u^{(\varepsilon,t)})''(v-u^{(\varepsilon,t)}) dx + (u^{(\varepsilon,t)})'(r+t) (v(r+t)-u^{(\varepsilon,t)}(r+t))$$
$$-\left((u^{(\varepsilon,t)})'(\varepsilon^{+}) - \delta (u^{(\varepsilon,t)})'(\varepsilon^{-})\right) \cdot \left(v(\varepsilon) - u^{(\varepsilon,t)}(\varepsilon)\right) \ge 0.$$

We construct the solution to (3.2)–(3.6) explicitly. Indeed, for an arbitrary $c_{(\varepsilon,t)} \in \mathbb{R}$ relations (3.2)–(3.4) can be solved by

$$\begin{cases} u^{(\varepsilon,t)}(x) = g + \frac{c_{(\varepsilon,t)}}{\delta}x, & (u^{(\varepsilon,t)})' = \frac{c_{(\varepsilon,t)}}{\delta} , x \in (0,\varepsilon) \\ u^{(\varepsilon,t)}(x) = g + c_{(\varepsilon,t)}\left(x + \varepsilon \frac{1-\delta}{\delta}\right), & (u^{(\varepsilon,t)})' = c_{(\varepsilon,t)} , x \in (\varepsilon,r+t) \end{cases}$$

implying the piecewise-linear continuous function

$$u^{(\varepsilon,t)}(x) = g + c_{(\varepsilon,t)}\left(x + \frac{1-\delta}{\delta}\min\{\varepsilon, x\}\right). \tag{3.7}$$

With (3.7) complementarity condition (3.6) takes the form

$$c_{(\varepsilon,t)} \cdot \left(g + c_{(\varepsilon,t)}(r + t + \frac{1-\delta}{\delta}\varepsilon)\right) = 0.$$

Hence, due to (3.5), the nonnegative constant $c_{(\varepsilon,t)}$ can be found uniquely:

$$c_{(\varepsilon,t)} = \max\left\{0, -g\left(r + t + \frac{1-\delta}{\delta}\varepsilon\right)^{-1}\right\}. \tag{3.8}$$

As $\varepsilon \setminus 0^+$, from (3.7) and (3.8) we have the reference state

$$u^{(0,t)}(x) = g + c_{(0,t)}x, (3.9)$$

$$c_{(0,t)} = \max\{0, -g(r+t)^{-1}\},\tag{3.10}$$

which solves the reference variational inequality corresponding to (2.1):

find
$$u^{(0,t)} - g \in K_t$$
 such that

$$\int_0^{r+t} (u^{(0,t)})'(v-u^{(0,t)})' dx \ge 0 \quad \text{for all } v-g \in K_t.$$
(3.11)

Alluding to the asymptotic expansion in Theorem 3.1 below, we need to consider a layer near the interface point $x = \varepsilon$. It is obtained after mapping $(0, \varepsilon) \mapsto (0, 1), x \mapsto \varepsilon y$ by solving the auxiliary transmission problem:

find
$$w \in H^1(\mathbb{R}_+)$$
 such that

$$\int_0^\infty \chi_{(0,1)}^{\delta} w'(y) v'(y) \, dy = (1 - \delta) v(1) \quad \text{for all } v \in H^1(\mathbb{R}_+).$$
 (3.12)

Using integration by parts, variational equation (3.12) implies the boundary value problem:

$$-w''(y) = 0 \quad \text{for } y \in (0,1) \cup (1,\infty),$$

$$w(x) \to 0 \quad \text{as } x \nearrow \infty,$$

$$w(1^+) - w(1^-) = 0, \quad w'(1^+) - \delta \cdot w'(1^-) = -(1 - \delta),$$

where $w(1^-)$ and $w(1^+)$ are the limiting values from below and above, respectively. The unique solution of this problem is given by the piecewise linear continuous function

$$w(y) = \frac{1-\delta}{\delta} \min\{0, y - 1\}. \tag{3.13}$$

After stretching the coordinates $y = \frac{x}{\varepsilon}$ in (3.13), we get the boundary layer

$$\varepsilon w(\frac{x}{\varepsilon}) = \frac{1-\delta}{\delta} \min\{0, x - \varepsilon\}, \quad \|\varepsilon w(\frac{x}{\varepsilon})\| = O(\varepsilon^{1/2}) \quad \text{in } H^1(\mathbb{R}_+),$$
 (3.14)

where the square root asymptotic order is due to the seminorm estimate

$$\sqrt{\int_0^\infty \left(\varepsilon w(\frac{x}{\varepsilon})'\right)^2 dx} = \sqrt{\int_0^\varepsilon \left(\frac{1-\delta}{\delta}\right)^2 dx} = O(\sqrt{\varepsilon}).$$

In this case we justify asymptotic formula (2.10) as follows.

Theorem 3.1. The solutions $u^{(\varepsilon,t)}$ and $u^{(0,t)}$ of variational inequalities (3.1) and (3.11) admit the following residual estimate as $\varepsilon \searrow 0^+$:

$$u^{(\varepsilon,t)} = u^{(0,t)} + \varepsilon \tilde{q}^{(\varepsilon,t)} + \mathcal{O}(\varepsilon^{3/2}) \quad in \ H^1(0,r+t)$$
(3.15)

with the principal asymptotic term defined in H_t by

$$\varepsilon \tilde{q}^{(\varepsilon,t)}(x) := (u^{(0,t)})'(0) \cdot \left[\varepsilon w(\frac{x}{\varepsilon}) + \varepsilon \frac{1-\delta}{\delta} (1 - \frac{x}{r+t})\right]. \tag{3.16}$$

Proof. Indeed, for sufficiently small ε we have $(r+t)(r+t+\frac{1-\delta}{\delta}\varepsilon)^{-1}>0$, hence from (3.8) it follows that

$$c_{(\varepsilon,t)} = \left(1 + \frac{1-\delta}{\delta(r+t)}\varepsilon\right)^{-1} \cdot \max\left\{0, -g(r+t)^{-1}\right\},\,$$

and together with (3.10) this results in the expansion

$$c_{(\varepsilon,t)} = c_{(0,t)} \left(1 - \frac{1-\delta}{\delta(r+t)} \varepsilon + \mathcal{O}(\varepsilon)^2 \right). \tag{3.17}$$

Substituting (3.17), (3.14), and (3.9) in (3.7) we get

$$u^{(\varepsilon,t)}(x) = u^{(0,t)}(x) - c_{(0,t)}x + c_{(0,t)}\left(1 - \frac{1-\delta}{\delta(r+t)}\varepsilon\right)\left[x + \frac{1-\delta}{\delta}\varepsilon + \varepsilon w(\frac{x}{\varepsilon})\right] + O(\varepsilon^2)$$

and derive iteratively the following uniform estimates:

$$u^{(\varepsilon,t)}(x) = u^{(0,t)}(x) + \mathcal{O}(\varepsilon^{1/2}),$$

$$u^{(\varepsilon,t)}(x) = u^{(0,t)}(x) + (u^{(0,t)})'(0) \cdot \varepsilon w(\frac{x}{\varepsilon}) + \mathcal{O}(\varepsilon),$$

$$u^{(\varepsilon,t)}(x) = u^{(0,t)}(x) + (u^{(0,t)})'(0) \cdot \left[\varepsilon w(\frac{x}{\varepsilon}) + \varepsilon \frac{1-\delta}{\delta}(1 - \frac{x}{r+t})\right] + \mathcal{O}(\varepsilon^{3/2}),$$

where we have used $c_{(0,t)} = (u^{(0,t)})'(0)$. The latter equality enforces (3.15) with notation (3.16), thus completing the proof.

We remark that $\varepsilon \tilde{q}^{(\varepsilon,t)}(x)$ in Theorem 3.1 satisfies relations (2.6)–(2.9) in Theorem 2.1 with $f(\varepsilon) = \varepsilon^{3/2}$, which can be checked straightforwardly.

3.1 Uniform asymptotic expansion in the problem

We discuss examples for various objectives $J(u^{(\varepsilon,t)})$ subject to the optimal state $u^{(\varepsilon,t)}$. State-constrained optimization problem (2.5) takes the specific form:

$$\underset{(\varepsilon,t)\in(0,\varepsilon_0)\times(r_0-r,r_1-r)}{\text{minimum}} J(u^{(\varepsilon,t)}) \quad \text{subject to } \Pi(u^{(\varepsilon,t)}) = \underset{v-g\in K_t}{\text{min}} \Pi(v), \tag{3.1}$$

and the strain energy (SE) functional $\Pi: H_t \mapsto \mathbb{R}$ is

$$\Pi(v) := \frac{1}{2} \int_0^{r+t} \chi_{(0,\varepsilon)}^{\delta}(v'(x))^2 dx.$$
 (3.2)

Variational inequality (3.1) implies the first order optimality condition for the constrained minimization of Π over $v - g \in K_t$.

It is important to comment that, for a fixed $\varepsilon \in (0, \varepsilon_0)$, variations of the parameter $t \in (r_0 - r, r_1 - r)$ describe regular perturbations of the moving boundary of the domain $(0, \varepsilon) \cup (\varepsilon, r + t)$, thus shape variation. In contrast, the limiting procedure $\varepsilon \setminus 0^+$ implies diminishing of the inhomogeneity $\omega_{\varepsilon} = (0, \varepsilon)$, and, hence, the topology change from the disconnected set to the 1-connected set (0, r + t).

First, we control the optimal value function $J_{\text{SE}} = \Pi$ of strain energy (3.2) with respect to the topology change as $\varepsilon \searrow 0^+$. Relying on small ε , we substitute the optimal state $u^{(\varepsilon,t)}$ with its asymptotic model (3.15) and (3.16), thus calculating the approximation of the optimal value function

$$\Pi(u^{(\varepsilon,t)}) = \Pi\left(u^{(0,t)} + c_{(0,t)}\left[\varepsilon w(\frac{x}{\varepsilon}) + \varepsilon \frac{1-\delta}{\delta}(1 - \frac{x}{r+t})\right] + \mathcal{O}(\varepsilon^{3/2})\right)
= \frac{1}{2} \int_{0}^{r+t} \chi_{(0,\varepsilon)}^{\delta}\left((u^{(0,t)})' + c_{(0,t)}\left[\varepsilon w'(\frac{x}{\varepsilon}) - \frac{\varepsilon(1-\delta)}{\delta(r+t)}\right]\right)^{2} dx + \mathcal{O}(\varepsilon^{3/2})
= \frac{c_{(0,t)}^{2}}{2} \left[\int_{0}^{\varepsilon} \delta\left(1 - \frac{2\varepsilon(1-\delta)}{\delta(r+t)} + \frac{1-\delta^{2}}{\delta^{2}}\right) dx + \int_{\varepsilon}^{r+t} \left(1 - \frac{2\varepsilon(1-\delta)}{\delta(r+t)}\right) dx \right] + \mathcal{O}(\varepsilon)
= \frac{c_{(0,t)}^{2}}{2} (r + t - \frac{\varepsilon(1-\delta)}{\delta}) + \mathcal{O}(\varepsilon),
\Pi(u^{(0,t)}) = \frac{c_{(0,t)}^{2}}{2} (r + t),$$
(3.3)

due to (3.9), (3.14), and (3.2). From (3.3) it follows that the function $(0, \varepsilon_0) \mapsto \mathbb{R}, \ \varepsilon \mapsto \Pi(u^{(\varepsilon,t)})$ is differentiable at $\varepsilon = 0$ with the topological derivative

$$\frac{d}{d\varepsilon} \Pi(u^{(\varepsilon,t)})|_{\varepsilon=0} = -c_{(0,t)}^2 \frac{(1-\delta)}{2\delta} = -\Pi(u^{(0,t)}) \frac{1-\delta}{\delta(r+t)}.$$
 (3.4)

Secondly, we control the objective function $J_{SERR} = -\frac{d}{dt}\Pi$ of the strain energy release rate, which implies shape variation and associates a Griffith's functional used in fracture mechanics.

To calculate $-\frac{d}{dt}\Pi$ from (3.2), we apply the constitutive formula proven in [6]. Indeed, let a cut-off function η be such that $\eta(x) = 0$ as $x < \varepsilon$ and $\eta(x) = 1$ as $x > \varepsilon + \beta$, with some β such that $\varepsilon + \beta < r_0$. For small $s \in (r_0 - r - t, r_1 - r - t)$, the translation $\Phi_s: (0, r + t) \mapsto (0, r + t + s), z = x + s\eta(x)$ yields the representation of $\Pi(u^{(\varepsilon, t+s)})$ as

$$\frac{1}{2} \int_{0}^{r+t+s} \chi_{(0,\varepsilon)}^{\delta} \left((u^{(\varepsilon,t+s)})_{z}' \right)^{2} dz = \frac{1}{2} \int_{0}^{r+t} \chi_{(0,\varepsilon)}^{\delta} \left(\frac{(u^{(\varepsilon,t+s)} \circ \Phi_{s})_{x}'}{1+s\eta'} \right)^{2} (1+s\eta') dx
= \Pi(u^{(\varepsilon,t+s)} \circ \Phi_{s}) - \frac{s}{2} \int_{0}^{r+t} \chi_{(0,\varepsilon)}^{\delta} \left((u^{(\varepsilon,t+s)} \circ \Phi_{s})' \right)^{2} \eta' dx + o(s).$$

Since $u^{(\varepsilon,t+s)} \circ \Phi_s - g \in K_t$, we infer $u^{(\varepsilon,t+s)} \circ \Phi_s \to u^{(\varepsilon,t)}$ strongly in H_t as $s \to 0$, and conclude, see [6] for details, with the asymptotic expansion

$$\Pi(u^{(\varepsilon,t+s)}) = \Pi(u^{(\varepsilon,t)}) - \frac{s}{2} \int_0^{r+t} \chi_{(0,\varepsilon)}^{\delta} \left((u^{(\varepsilon,t)})' \right)^2 \eta' \, dx + o(s). \tag{3.5}$$

From (3.5) the explicit formula of the shape derivative follows directly:

$$J_{\text{SERR}}(u^{(\varepsilon,t)}) := -\frac{d}{dt}\Pi(u^{(\varepsilon,t)}) = \frac{1}{2} \int_0^{r+t} \chi_{(0,\varepsilon)}^{\delta} \left((u^{(\varepsilon,t)})' \right)^2 \eta' \, dx. \tag{3.6}$$

We observe that J_{SERR} depends on $u^{(\varepsilon,t)}$, but not on $\varepsilon \tilde{q}^{(\varepsilon,t)}$ in expansion (3.15). The latter fact is in accordance with the assertion in [18, 19].

For the shape-topological control, now we insert (3.15) in (3.6), which implies the asymptotic model

$$J_{\text{SERR}}\left(u^{(0,t)} + c_{(0,t)}\left[\varepsilon w\left(\frac{x}{\varepsilon}\right) + \varepsilon \frac{1-\delta}{\delta}\left(1 - \frac{x}{r+t}\right)\right] + \mathcal{O}(\varepsilon^{3/2})\right)$$

$$= \frac{1}{2} \int_{0}^{r+t} \chi_{(0,\varepsilon)}^{\delta}\left(\left(u^{(0,t)}\right)' + c_{(0,t)}\left[\varepsilon w'\left(\frac{x}{\varepsilon}\right) - \frac{\varepsilon(1-\delta)}{\delta(r+t)}\right]\right)^{2} \eta' \, dx + \mathcal{O}(\varepsilon^{3/2})$$

$$= \frac{c_{(0,t)}^{2}}{2} \int_{\varepsilon}^{\varepsilon+\beta} \left(1 - \frac{2\varepsilon(1-\delta)}{\delta(r+t)}\right) \eta' \, dx + \mathcal{O}(\varepsilon) = \frac{c_{(0,t)}^{2}}{2} \left(1 - \frac{2\varepsilon(1-\delta)}{\delta(r+t)}\right) + \mathcal{O}(\varepsilon)$$

$$= J_{\text{SERR}}(u^{(0,t)}) - \varepsilon c_{(0,t)}^{2} \frac{1-\delta}{\delta(r+t)} + \mathcal{O}(\varepsilon),$$

$$J_{\text{SERR}}(u^{(0,t)}) = \frac{c_{(0,t)}^{2}}{2}.$$

$$(3.7)$$

In particular, (3.7) follows formula for the shape-topological derivative

$$\frac{d}{d\varepsilon} J_{\text{SERR}}(u^{(\varepsilon,t)})|_{\varepsilon=0} = -c_{(0,t)}^2 \frac{1-\delta}{\delta(r+t)}.$$
(3.8)

Moreover, in view of definition (3.6), it implies the mixed second derivative $-\frac{\partial^2}{\partial \varepsilon \partial t} \Pi(u^{(\varepsilon,t)})|_{\varepsilon=0}$ which is symmetric: $\frac{\partial^2}{\partial \varepsilon \partial t} \Pi(u^{(\varepsilon,t)})|_{\varepsilon=0} = \frac{\partial^2}{\partial t \partial \varepsilon} \Pi(u^{(\varepsilon,t)})|_{\varepsilon=0}$. Thus, we have proved the following.

Theorem 3.2. For the solutions $u^{(\varepsilon,t)}$ and $u^{(0,t)}$ of variational inequalities (3.1) and (3.11), there exists the shape-topological derivative

$$\frac{d}{d\varepsilon} J_{\text{SERR}}(u^{(\varepsilon,t)})|_{\varepsilon=0} = -\frac{\partial^2}{\partial\varepsilon\,\partial t} \Pi(u^{(\varepsilon,t)})|_{\varepsilon=0} = -\frac{\partial^2}{\partial t\,\partial\varepsilon} \Pi(u^{(\varepsilon,t)})|_{\varepsilon=0}
= -c_{(0,t)}^2 \frac{1-\delta}{\delta(r+t)}.$$
(3.9)

3.2 Local asymptotic expansion in the problem

We recall that Theorem 3.2 is derived based on the uniform asymptotic formula (3.15) which, however, is not unique. Representation (3.15) which is uniform over domain matches the near-field (the boundary layer near inhomogeneity) and the far-field (extendable to infinity) asymptotic representations, which both are unique. This is the reason of our alternative approach to the shape-topological control. Since in one dimension the far-field is trivial (zero), here we employ only the near-field.

In the near-field of the moving boundary point x = r + t, any solution $u^{(\varepsilon,t)}$ of homogeneous equation (3.2) can be written as a linear function

$$u^{(\varepsilon,t)}(x) = u^{(\varepsilon,t)}(r+t) + (u^{(\varepsilon,t)})'(r+t) \cdot [x - (r+t)] \text{ for } x > \varepsilon.$$
(3.1)

The factor in front of the principal term x - (r + t) in (3.1) is called stress intensity factor (SIF) in crack mechanics. We associate it with the objective

$$J_{\text{SIF}}(u^{(\varepsilon,t)}) = (u^{(\varepsilon,t)})'(r+t) =: c_{(\varepsilon,t)}, \tag{3.2}$$

and we aim at proper formula for its calculation without knowledge of the analytic solution (3.7) and (3.8) from Section 3.1.

For this reason, we construct the Green function ζ_t (called the weight function in crack mechanics) obeying the bounded singularity $\zeta_t(r+t) \neq 0$ and $\zeta'_t(r+t) \neq 0$ at the moving boundary point x = r + t and solving the homogeneous problem:

$$-\zeta_t''(x) = 0 \quad \text{for } x \in (0, r+t), \tag{3.3}$$

$$\zeta_t(0) = 0. \tag{3.4}$$

All solutions of (3.3) and (3.4) are given by straight lines αx and defined up to arbitrary factor $\alpha \neq 0$. If we set the normalization condition

$$1 = \int_0^{r+t} (\zeta_t'(x))^2 dx = \zeta_t'(r+t) \cdot \zeta_t(r+t)$$
 (3.5)

due to (3.3) and (3.4), then the unique αx satisfying (3.5) is

$$\zeta_t(x) = \frac{x}{\sqrt{r+t}}. (3.6)$$

Using (3.2)–(3.4) and (3.3)-(3.4), the second Green formula yields

$$0 = \int_0^{r+t} \left[(u^{(\varepsilon,t)})'' \zeta_t - u^{(\varepsilon,t)} \zeta_t'' \right] dx = -\left[(u^{(\varepsilon,t)})'(\varepsilon) \right] \zeta_t(\varepsilon) + g \zeta_t'(0)$$

$$+ (u^{(\varepsilon,t)})'(r+t) \cdot \zeta_t(r+t) - u^{(\varepsilon,t)}(r+t) \cdot \zeta_t'(r+t),$$

$$(3.7)$$

where $[(u^{(\varepsilon,t)})'(\varepsilon)] := (u^{(\varepsilon,t)})'(\varepsilon^+) - (u^{(\varepsilon,t)})'(\varepsilon^-)$ is the jump. Multiplying (3.7) either by $(u^{(\varepsilon,t)})'(r+t)$ or $u^{(\varepsilon,t)}(r+t)$ and using complementarity conditions (3.5), (3.6), we derive the representations

$$(u^{(\varepsilon,t)})'(r+t) = \max\{0, \zeta_t'(r+t)(\llbracket (u^{(\varepsilon,t)})'(\varepsilon) \rrbracket \zeta_t(\varepsilon) - g\zeta_t'(0))\}, \tag{3.8}$$

$$u^{(\varepsilon,t)}(r+t) = \max \left\{ 0, \frac{1}{\zeta_t'(r+t)} \left(- [(u^{(\varepsilon,t)})'(\varepsilon)] \zeta_t(\varepsilon) + g\zeta_t'(0) \right) \right\}, \tag{3.9}$$

where we have used normalization (3.5) to get (3.8). In comparison with the explicit formula (3.8) of $c_{(\varepsilon,t)}$, expressions (3.8) and (3.9) are implicit ones. We plug in (3.8) expansion (3.15) and infer the asymptotic model

$$c_{(\varepsilon,t)} := (u^{(\varepsilon,t)})'(r+t) = \max\{0, \zeta_t'(r+t)(-g\zeta_t'(0) + (u^{(0,t)})'(0)\llbracket w'(1) \rrbracket \zeta_t(\varepsilon) + \zeta_t(\varepsilon)O(\varepsilon)\}\}.$$

$$(3.10)$$

Moreover, we apply to (3.10) the local representation $\zeta_t(x) = \zeta_t'(0) x$ following from (3.3) and (3.4), hence $\zeta_t(\varepsilon) = \zeta_t'(0) \varepsilon$. In this way we have proved the following.

Theorem 3.3. For the solutions $u^{(\varepsilon,t)}$ and $u^{(0,t)}$ of variational inequalities (3.1) and (3.11), the following asymptotic representation of SIF holds:

$$J_{\text{SIF}}(u^{(\varepsilon,t)}) = c_{(\varepsilon,t)} = \max\{0, \zeta_t'(r+t)\zeta_t'(0)(-g+\varepsilon(u^{(0,t)})'(0)[w'(1)] + O(\varepsilon^2))\},$$

$$J_{\text{SIF}}(u^{(0,t)}) = c_{(0,t)} = \max\{0, -g\zeta_t'(r+t)\zeta_t'(0)\}.$$
(3.11)

We note that the max-function in (3.11) is, generally, nondifferentiable with respect to ε when g=0. Nevertheless, further we need the square of the max-function which is differentiable with respect to its argument. Indeed, the square of (3.11) constitutes the form:

$$c_{(\varepsilon,t)}^2 = c_{(0,t)}^2 + 2\varepsilon c_{(0,t)}(u^{(0,t)})'(0) \llbracket w'(1) \rrbracket \zeta_t'(r+t) \zeta_t'(0) + \mathcal{O}(\varepsilon^2).$$
(3.12)

As the corollary of Theorem 3.3 we restate the asymptotic result on shape-topological control of $J_{\rm SERR}$ and $J_{\rm SE}$ from Section 3.1.

Inserting the exact solution (3.7) in (3.6), we get

$$J_{\text{SERR}}(u^{(\varepsilon,t)}) = -\frac{d}{dt}\Pi(u^{(\varepsilon,t)}) = \frac{1}{2}c_{(\varepsilon,t)}^2. \tag{3.13}$$

With the help of (3.12), from (3.13) we immediately obtain the shape-topological derivative $-\frac{\partial^2}{\partial \varepsilon \partial t} \Pi(u^{(\varepsilon,t)})|_{\varepsilon=0}$ as

$$\frac{d}{d\varepsilon} J_{\text{SERR}}(u^{(\varepsilon,t)})|_{\varepsilon=0} = c_{(0,t)}(u^{(0,t)})'(0) [w'(1)] \zeta_t'(r+t) \zeta_t'(0). \tag{3.14}$$

In order to validate (3.14), after substitution of the exact analytic expressions (3.9), (3.14), and (3.6) of solutions $u^{(0,t)}$, w, and ζ_t , respectively, this results in $\frac{d}{d\varepsilon}J_{\rm SERR}(u^{(\varepsilon,t)})|_{\varepsilon=0} = -c_{(0,t)}^2 \frac{1-\delta}{\delta(r+t)}$ thus coinciding with expression (3.9) derived in Theorem 3.2.

Similarly, substituting (3.7) in $\Pi(u^{(\varepsilon,t)})$ given in (3.2), straightforward calculation provides equivalent expression of SE-optimal value function

$$\begin{split} J_{\text{SE}}(u^{(\varepsilon,t)}) &= \Pi(u^{(\varepsilon,t)}) = \frac{1}{2} c_{(\varepsilon,t)}^2 (r+t+\frac{1-\delta}{\delta}\varepsilon) \\ &= \left[\frac{c_{(0,t)}^2}{2} + \varepsilon c_{(0,t)} (u^{(0,t)})'(0) [w'(1)] \zeta_t'(r+t) \zeta_t'(0) + \mathcal{O}(\varepsilon^2) \right] (r+t+\frac{1-\delta}{\delta}\varepsilon) \\ &= \frac{c_{(0,t)}^2}{2} \left(1 - \frac{2(1-\delta)}{\delta(r+t)} + \mathcal{O}(\varepsilon^2) \right) (r+t+\frac{1-\delta}{\delta}\varepsilon) = \frac{c_{(0,t)}^2}{2} (r+t-\frac{1-\delta}{\delta}\varepsilon) + \mathcal{O}(\varepsilon^2), \end{split}$$

where we have used here the expansion (3.12) of SIF $c_{(\varepsilon,t)}^2$. Thus, we arrive again at formula (3.3).

4 Discussion

In [17] this technique of a shape-topological control is extended to the nonlinear problem of crack—defect interaction in two dimensions, where no analytic solutions but only variational formulations are available. The semi-analytic expressions are proved for the shape-topological derivatives of $J_{\rm SIF}^2$ and $J_{\rm SERR}$.

Acknowledgments

V.A. Kovtunenko is supported by the Austrian Science Fund (FWF) project P26147-N26 "Object identification problems: numerical analysis", he thanks the Austrian Academy of Sciences (OeAW) and and OeAD Scientific & Technological Cooperation WTZ CZ 01/2016. G. Leugering is supported by DFG EC 315 "Engineering of Advanced Materials".

References

- [1] G. Allaire, F. Jouve, A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194 (2004), 363–393.
- [2] H. Ammari, P. Garapon, F. Jouve, H. Kang, M. Lim, S. Yu, A new optimal control approach for the reconstruction of extended inclusions. SIAM J. Control Optim. 51 (2013), 1372–1394.
- [3] S. Amstutz, T. Takahashi, B. Vexler, Topological sensitivity analysis for time-dependent problems. ESAIM: COCV 14 (2008), 427–455.
- [4] G. Barbatis, V.I. Burenkov, P.D. Lamberti, Stability estimates for resolvents, eigenvalues, and eigenfunctions of elliptic operators on variable domains. In: Around the Research of Vladimir Maz'ya II (A. Laptev, editor), Springer, New York (2010), 23–60.
- [5] P. Fulmanski, A. Laurain, J.-F. Scheid, J. Sokolowski, A level set method in shape and topology optimization for variational inequalities. Int. J. Appl. Math. Comput. Sci. 17 (2007), 413–430.
- [6] M. Hintermüller, V.A. Kovtunenko, From shape variation to topology changes in constrained minimization: a velocity method based concept. Optim. Methods Softw. 26 (2011), 513–532.
- [7] A.M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems. AMS, 1992.
- [8] H. Itou, A. M. Khludnev, E.M. Rudoy, A. Tani, Asymptotic behaviour at a tip of a rigid line inclusion in linearized elasticity. Z. Angew. Math. Mech. 92 (2012), 716–730.
- [9] A.M. Khludnev, V.A. Kovtunenko, *Analysis of cracks in solids*. WIT-Press, Southampton, Boston 2000.
- [10] A.M. Khludnev, V.A. Kovtunenko, A. Tani, Evolution of a crack with kink and non-penetration. J. Math. Soc. Japan 60 (2008), 4, 1219–1253.
- [11] A.M. Khludnev, V.A. Kovtunenko, A. Tani, On the topological derivative due to kink of a crack with non-penetration. Anti-plane model. J. Math. Pures Appl. 94 (2010), 571–596.
- [12] A. Khludnev, G. Leugering, On elastic bodies with thin rigid inclusions and cracks. Math. Methods Appl. Sci. 33 (2010), 1955–1967.
- [13] A. Khludnev, G. Leugering, M. Specovius-Neugebauer, Optimal control of inclusion and crack shapes in elastic bodies. J. Optim. Theory Appl. 155 (2012), 54–78.
- [14] A.M. Khludnev, J. Sokolowski, The Griffith's formula and the Rice-Cherepanov integral for crack problems with unilateral conditions in nonsmooth domains. European J. Appl. Math. 10 (1999), 379– 394.
- [15] V.A. Kovtunenko, K. Kunisch, *Problem of crack perturbation based on level sets and velocities*. Z. angew. Math. Mech. 87 (2007), 809–830.
- [16] V.A. Kovtunenko, K. Kunisch, High precision identification of an object: optimality conditions based concept of imaging. SIAM J.Control Optim. 52 (2014), 773–796.
- [17] V.A. Kovtunenko, G. Leugering, A shape-topological control problem for nonlinear crack defect interaction: the anti-plane variational model. SIAM J.Control Optim. 54 (2016), 1329–1351.
- [18] G. Leugering, J. Sokolowski, A. Zochowski, Shape-topological differentiability of energy functionals for unilateral problems in domains with cracks and applications. In: Optimization with PDE constraints; ESF Networking Program 'OPTPDE' (R. Hoppe, editor) (2014), 203–221.

- [19] G. Leugering, J. Sokolowski, A. Zochowski, Control of crack propagation by shape-topological optimization. Discrete and Continuous Dynamical Systems Series A (DCDS-A) 35 (2015), 2625–2657.
- [20] V.G. Maz'ya, S.A. Nazarov, B.A. Plamenevski, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains. Birkhäuser, Basel, 2000.
- [21] G. Mishuris, G. Kuhn, Comparative study of an interface crack for different wedge-interface models. Arch. Appl. Mech. 71 (2001), 764–780.
- [22] Zh.O. Oralbekova, K.T. Iskakov, A.L. Karchevsky, Existence of the residual functional derivative with respect to a coordinate of gap point of medium. Appl. Comput. Math. 12 (2013), 222–233.
- [23] N. Ovcharova, J. Gwinner, From solvability and approximation of variational inequalities to solution of nondifferentiable optimization problems in contact mechanics. Optimization 64 (2015), 1683–1702.
- [24] J. Sokolowski, J.-P. Zolesio, Introduction to shape optimization. Shape sensitivity analysis. Springer-Verlag, Berlin, 1992.

Victor Anatolievich Kovtunenko
Institute for Mathematics and Scientific Computing
Karl-Franzens University of Graz, NAWI Graz
Heinrichstr.36, 8010 Graz, Austria
and
Lavrent'ev Institute of Hydrodynamics
630090 Novosibirsk, Russia
E-mail: victor.kovtunenko@uni-graz.at

Günter Leugering Applied Mathematics 2 Friedrich-Alexander University of Erlangen-Nürnberg Cauerstr.11, 91058 Erlangen, Germany E-mail: leugering@math.fau.de

Received: 14.03.2016