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EMJ: from Scopus Q4 to Scopus Q3 in two years?!

Recently the list was published of all mathematical journals included in 2015 Scopus
quartiles Q1 (334 journals), Q2 (318 journals), Q3 (315 journals), and Q4 (285 journals).
Altogether 1252 journals.

With great pleasure we inform our readers that the Eurasian Mathematical Journal was
included in this list, currently the only mathematical journal in the Republic of Kazakhstan
and Central Asia.

It was included in Q4 with the SCImago Journal & Country Rank (SJR) indicator equal
to 0,101, and is somewhere at the bottom of the Q4 list. With this indicator the journal shares
places from 1240 to 1248 in the list of all 2015 Scopus mathematical journals. Nevertheless,
this may be considered to be a good achievement, because Scopus uses information about
journals for the three previous years, i. e. for years 2013-2015, and the EMJ is in Scopus
only from the first quarter of year 2015.

The SJR indicator is calculated by using a sophisticated formula, taking into account
various characteristics of journals and journals publications, in particular the average number
of weighted citations received in the selected year by the documents published in the selected
journal in the three previous years. This formula and related comments can be viewed on
the web-page

http : //www.scimagojr.com/journalrank.php?category = 2601&area = 2600&page =
1&totalsize = 373

(Help/Journals/Understand tables and charts/Detailed description of SJR.)
In order to enter Q3 the SJR indicator should be greater than 0,250. It looks like the

ambitious aim of entering Q3 in year 2017 is nevertheless realistic due to recognized high
level of the EMJ.

We hope that all respected members of the international Editorial Board, reviewers,
authors of our journal, representing more than 35 countries, and future authors will provide
high quality publications in the EMJ which will allow to achieve this aim.

On behalf of the Editorial Board of the EMJ
V.I. Burenkov, E.D. Nursultanov, T.Sh. Kalmenov,
R. Oinarov, M. Otelbaev, T.V. Tararykova, A.M. Temirkhanova



VICTOR IVANOVICH BURENKOV

(to the 75th birthday)

On July 15, 2016 was the 75th birthday of Victor Ivanovich Bu-
renkov, editor-in-chief of the Eurasian Mathematical Journal (together
with V.A. Sadovnichy and M. Otelbaev), director of the S.M. Nikol’skii
Institute of Mathematics, head of the Department of Mathematical
Analysis and Theory of Functions, chairman of Dissertation Coun-
cil at the RUDN University (Moscow), research fellow (part-time) at
the Steklov Institute of Mathematics (Moscow), scientific supervisor
of the Laboratory of Mathematical Analysis at the Russian-Armenian

(Slavonic) University (Yerevan, Armenia), doctor of physical and mathematical sciences
(1983), professor (1986), honorary professor of the L.N. Gumilyov Eurasian National Uni-
versity (Astana, Kazakhstan, 2006), honorary doctor of the Russian-Armenian (Slavonic)
University (Yerevan, Armenia, 2007), honorary member of staff of the University of Padua
(Italy, 2011), honorary distinguished professor of the Cardiff School of Mathematics (UK,
2014), honorary professor of the Aktobe Regional State University (Kazakhstan, 2015).

V.I. Burenkov graduated from the Moscow Institute of Physics and Technology (1963)
and completed his postgraduate studies there in 1966 under supervision of the famous Rus-
sian mathematician academician S.M. Nikol’skii.

He worked at several universities, in particular for more than 10 years at the Moscow
Institute of Electronics, Radio-engineering, and Automation, the RUDN University, and the
Cardiff University. He also worked at the Moscow Institute of Physics and Technology, the
University of Padua, and the L.N. Gumilyov Eurasian National University.

He obtained seminal scientific results in several areas of functional analysis and the theory
of partial differential and integral equations. Some of his results and methods are named
after him: Burenkov’s theorem of composition of absolutely continuous functions, Burenkov’s
theorem on conditional hypoellipticity, Burenkov’s method of mollifiers with variable step,
Burenkov’s method of extending functions, the Burenkov-Lamberti method of transition
operators in the problem of spectral stability of differential operators, the Burenkov-Guliyevs
conditions for boundedness of operators in Morrey-type spaces. On the whole, the results
obtained by V.I. Burenkov have laid the groundwork for new perspective scientific directions
in the theory of functions spaces and its applications to partial differential equations, the
spectral theory in particular.

More than 30 postgraduate students from more than 10 countries gained candidate of
sciences or PhD degrees under his supervision. He has published more than 170 scientific
papers. The lists of his publications can be viewed on the portals MathSciNet and Math-
Net.Ru. His monograph “Sobolev spaces on domains" became a popular text for both experts
in the theory of function spaces and a wide range of mathematicians interested in applying
the theory of Sobolev spaces.

In 2011 the conference “Operators in Morrey-type Spaces and Applications”, dedicated
to his 70th birthday was held at the Ahi Evran University (Kirsehir, Turkey). Proceedings
of that conference were published in the EMJ 3-3 and EMJ 4-1.

The Editorial Board of the Eurasian Mathematical Journal congratulates Victor
Ivanovich Burenkov on the occasion of his 75th birthday and wishes him good health and
new achievements in science and teaching!
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Abstract. Let L0 be a densely defined minimal linear operator in a Hilbert space H. We
prove that if there exists at least one correct extension LS of L0 with the property D(LS) =
D(L∗S), then we can describe all correct extensions L with the property D(L) = D(L∗).
We also prove that if L0 is formally normal and there exists at least one correct normal
extension LN , then we can describe all correct normal extensions L of L0. As an example,
the Cauchy-Riemann operator is considered.

1 Introduction

Let us state some definitions, notation, and terminology.
In a Hilbert space H, we consider a linear operator L with the domain D(L) and range

R(L). By the kernel of the operator L we mean the set

KerL =
{
f ∈ D(L) : Lf = 0

}
.

Definition 1. An operator L is called a restriction of an operator L1, and L1 is called an
extension of an operator L, briefly L ⊂ L1, if:

1) D(L) ⊂ D(L1),
2) Lf = L1f for all f ∈ D(L).

Definition 2. A linear closed operator L0 in a Hilbert space H is called minimal if there
exists a bounded inverse operator L−1

0 on R(L0) and R(L0) 6= H.

Definition 3. A linear closed operator L̂ in a Hilbert space H is called maximal if R(L̂) = H

and Ker L̂ 6= {0}.

Definition 4. A linear closed operator L in a Hilbert space H is called correct if there exists
a bounded inverse operator L−1 defined on all of H.

Definition 5. We say that a correct operator L in a Hilbert space H is a correct extension
of a minimal operator L0 (correct restriction of a maximal operator L̂) if L0 ⊂ L (L ⊂ L̂).
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Definition 6. We say that a correct operator L in a Hilbert space H is a boundary correct
extension of a minimal operator L0 with respect to a maximal operator L̂ if L is simultane-
ously a correct restriction of the maximal operator L̂ and a correct extension of the minimal
operator L0, that is, L0 ⊂ L ⊂ L̂.

At the beginning of the 1950s, Vishik [12] extended the theory of self-adjoint extensions
of von Neumann–Krein symmetric operators to nonsymmetric operators in Hilbert space.

At the beginning of the 1980s, M. Otelbaev and his disciples proved abstract theorems
that allows us to describe all correct extensions of some minimal operator using any single
known correct extension in terms of an inverse operator. Such extensions need not be
restrictions of a maximal operator. Similarly, all possible correct restrictions of some maximal
operator that need not be extensions of a minimal operator were described (see [7]). For
convenience, we present the conclusions of these theorems.

Let L̂ be a maximal linear operator in a Hilbert space H, let L be any known correct
restriction of L̂, and let K be an arbitrary linear bounded (in H) operator satisfying the
following condition:

R(K) ⊂ Ker L̂. (1.1)

Then the operator L−1
K defined by the formula

L−1
K f = L−1f +Kf, (1.2)

describes the inverse operators to all possible correct restrictions LK of L̂, i.e., LK ⊂ L̂.
Let L0 be a minimal operator in a Hilbert space H, let L be any known correct extension

of L0, and let K be a linear bounded operator in H satisfying the conditions
a) R(L0) ⊂ KerK,
b) Ker (L−1 +K) = {0},

then the operator L−1
K defined by formula (2.2) describes the inverse operators to all possible

correct extensions LK of L0.
Let L be any known boundary correct extension of L0, i.e., L0 ⊂ L ⊂ L̂. The existence

of at least one boundary correct extension L was proved by Vishik in [12]. Let K be a linear
bounded (in H) operator satisfying the conditions

a) R(L0) ⊂ KerK,
b) R(K) ⊂ Ker L̂,

then the operator L−1
K defined by formula (2.2) describes the inverse operators to all possible

boundary correct extensions LK of L0.
Self-adjoint and unitary operators are particular cases of normal operators. A bounded

linear operator N in a Hilbert space H is called normal if it commutes with its adjoint:

N∗N = NN∗.

The theory of bounded normal operators is well developed.
Consider an unbounded linear operator A in a Hilbert space H.

Definition 7. A densely defined closed linear operator A in a Hilbert space H is called
formally normal if

D(A) ⊂ D(A∗), ‖Af‖ = ‖A∗f‖ for all f ∈ D(A).
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Definition 8. A formally normal operator A is called normal if

D(A) = D(A∗).

Normal extensions of formally normal operators have been studied by many authors (see
[1], [5], [6], [11]). The problems of the existence of a normal extension and the description
of the domains of normal extensions of a formally normal operator were considered.

Spectral properties of the correct restrictions and extensions were studied by many au-
thors (see [2]–[4], [8], [9]). A class of operators K that provides the Volterra property, the
completeness of root vectors, and the dissipativity of correct restrictions and extensions were
described by the author (see [2]–[4]).

This paper is devoted to the description of correct normal extensions in terms of the
operator K.

2 Coincidence criterion of D(L) and D(L∗)

We consider a densely defined minimal linear operator L0 in a Hilbert space H. Let M0 be
a minimal operator with D(M0) = D(L0) such that the equality (L0u, v) = (u,M0v) holds
for all u, v in D(L0). Then the maximal operator L̂ = M∗

0 is an extension of L0, and the
maximal operator M̂ = L∗0 is an extension of M0. The following statement is true.

Assertion 2.1. If there exists a correct extension LS of the minimal operator L0 with the
property D(LS) = D(L∗S), then the operator LS is a boundary correct extension, i.e., L0 ⊂
LS ⊂ L̂.

Proof. From L0 ⊂ LS it follows that L∗S ⊂ L∗0 = M̂ . From D(LS) = D(L∗S) and the fact that
D(M0) ⊂ D(L∗S) we have

M0 ⊂ L∗S ⊂ M̂.

Then L0 ⊂ LS ⊂ L̂.

Let there be one fixed correct extension LS of L0 such that D(LS) = D(L∗S). Then we
can describe the inverses to all boundary correct extensions L in the following form

u = L−1f = L−1
S f +Kf for all f ∈ H, (2.1)

where K is an arbitrary bounded operator in a Hilbert space H such that

R(K) ⊂ Ker L̂ and R(L0) ⊂ KerK.

Each such operator K defines a boundary correct extension and there do not exist other
boundary correct extensions.

Let us equip D(L̂) with the graph norm ||u||G = (||u||2 + ||L̂u||2)1/2. Since L̂ is a closed
operator, we obtain a Hilbert space with the scalar product

(u, v)G = (u, v) + (L̂u, L̂v) for all u, v ∈ D(L̂).

Let us denote this space by GL̂. The domain D(LS) of the correct restriction LS is a subspace
in GL̂. Therefore, there exists a projection operator of GL̂ on the subspace D(LS). As such
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a projection operator, we take L−1
S L̂. Then ΓLS

= I − L−1
S L̂ of GL̂ is a projection on the

subspace Ker L̂. It is obvious that

Ker ΓLS
= D(LS) and R(ΓLS

) = Ker L̂.

All boundary correct extensions (2.1) can be represented in the form

L−1f = L−1
S f +Kf = L−1

S f +KL̂L−1
S f = (I +KL̂)L−1

S f for all f ∈ H,

where I is the identity operator in H. In virtue of D(L) ⊂ D(L̂), we have

L̂u = f for all f ∈ H, u ∈ D(L)

where
D(L) =

{
u ∈ D(L̂) : (I −KL̂)u ∈ D(LS)

}
.

It is easy to see that the operator K defines the domain of L, since (see [3])

(I −KL̂)D(L) = D(LS), (I +KL̂)D(LS) = D(L), (I −KL̂) = (I +KL̂)−1.

Therefore, all boundary correct extensions L are differed from the fixed boundary correct
extension LS only the domain. The bounded (in GL̂) operator I − KL̂ maps D(L) onto
D(LS) in a one-to-one fashion. Then the domain of L can be defined as follows:

D(L) =
{
u ∈ D(L̂) : ΓLS

(I −KL̂)u = 0
}
.

There exists one more representation of the domain of L

D(L) =
{
u ∈ D(L̂) : ((I −KL̂)u, L∗Sv) = (L̂u, v) for all v from D(L∗S)

}
.

Similarly we can define
ΓL∗S

= I − L∗
−1

S M̂

and
D(L∗) =

{
u ∈ D(M̂) : ΓL∗S

(I −K∗M̂)u = 0
}
.

Now we can formulate the following result.

Theorem 2.2. Let there exist a correct extension LS of the minimal operator L0 with
D(LS) = D(L∗S), then any other correct extension L has the property D(L) = D(L∗) if
and only if L0 ⊂ L ⊂ L̂ and the operator K in the formula (2.1) satisfies the conditions

R(K) ∪R(K∗) ⊂ D(L̂) ∩D(M̂),

and {
ΓLS

(I −KL̂)u = 0,

ΓLS
K∗M̂u = KL̂u, for all u ∈ D(L̂) ∩D(M̂),

(2.2)

where ΓLS
= I − L−1

S L̂ is the projection defined above.
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Proof. Let D(L) = D(L∗). In view of Assertion 2.1, the operators LS and L turn out to be
boundary correct extensions of L0, i.e., L0 ⊂ LS ⊂ L̂ and L0 ⊂ L ⊂ L̂. The inverse to the
arbitrary boundary correct extension L has form (2.1). Then

(L∗)−1g = (L∗S)−1g +K∗g for all g ∈ H.

The condition D(L) = D(L∗) is equivalent to

L−1
S f +Kf = (L∗S)−1g +K∗g, (2.3)

where for each f ∈ H there exists g ∈ H and vice versa, for each g ∈ H there exists f ∈ H
such that equality (2.3) is satisfied. It follows from (2.3) that

R(K∗) ⊂ D(L̂) and R(K) ⊂ D(M̂).

Then we get
R(K) ∪R(K∗) ⊂ D(L̂) ∩D(M̂).

By acting on both sides of equality (2.3) by the operator L̂, we obtain

f = LS(L∗S)−1g + L̂K∗g, for all g ∈ H.

By substituting f in (2.3), we obtain the equality

L−1
S L̂K∗g +KLS(L∗S)−1g +KL̂K∗g = K∗g.

It follows that
(I − L−1

S L̂)K∗g = KL̂((L∗S)−1 +K∗)g.

This means that
(I − L−1

S L̂)K∗g = KL̂(L∗)−1g.

If L∗−1
g is replaced by u, then

(I − L−1
S L̂)K∗M̂u = KL̂u, u ∈ D(L∗).

Since D(L) = D(L∗) we obtain ΓLS
K∗M̂u = KL̂u for all u ∈ D(L). This is equivalent to

condition (2.2).
We now prove the converse of this theorem. Let L0 ⊂ L ⊂ L̂ and the operator K in

formula (2.1) satisfies the conditions R(K) ∪ R(K∗) ⊂ D(L̂) ∩D(M̂), and (2.2). Hence, it
is easy to see that

D(L) ∪D(L∗) ⊂ D(L̂) ∩D(M̂).

Since Lu = f for all u ∈ D(L), we may replace Lu by f in the second equation of condition
(2.2). Then

ΓLS
K∗M̂L−1f = Kf for all f ∈ H.

By acting on both sides of this equality by the projection ΓL∗S
, we obtain

K∗M̂L−1f = (I − (L∗S)−1M̂)Kf for all f ∈ H.
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Note that
K∗L∗SL

−1
S f +K∗M̂Kf + (L∗S)−1M̂Kf = Kf.

By adding the bounded operator L−1
S f to both sides, we get

(L∗S)−1L∗SL
−1
S f +K∗L∗SL

−1
S f +K∗M̂Kf + (L∗S)−1M̂Kf = Kf + L−1

S f.

It follows that

(L∗S)−1(L∗SL
−1
S + M̂K)f +K∗(L∗SL

−1
S + M̂K)f = L−1f for all f ∈ H.

If we denote by
g = L∗SL

−1
S f + M̂Kf for all f ∈ H,

then we have
(L∗)−1g = L−1f for all f ∈ H.

It follows that D(L) ⊂ D(L∗). By acting on both sides of the equations (2.2) by the
projection ΓL∗S

, we get{
ΓL∗S

(I −KL̂)u = 0,

ΓL∗S
KL̂u = K∗M̂u for all u ∈ D(L̂) ∩D(M̂).

By the second equation of this system, we can rewrite this system of equations in the form{
ΓL∗S

(I −K∗M̂)u = 0,

ΓL∗S
KL̂u = K∗M̂u for all u ∈ D(L̂) ∩D(M̂).

The first equation of this system means that u belongs to D(L∗). Then we denote L∗u = g.
Therefore, u = (L∗)−1g for all g from H. Then the second equation of this system has the
form

ΓL∗S
KL̂(L∗)−1g = K∗M̂(L∗)−1g for all g ∈ H.

By acting on both sides of this equality by the projection ΓLS
, we obtain

KL̂(L∗)−1g = (I − (LS)−1L̂)K∗g for all g ∈ H.

Note that
KLS(L∗S)−1g +KL̂K∗g + L−1

S L̂K∗g = K∗g.

By adding the bounded operator (L∗S)−1g to both sides, we get

L−1
S LS(L∗S)−1g +KLS(L∗S)−1g +KL̂K∗g + L−1

S L̂K∗g = K∗g + (L∗S)−1g.

It follows that

L−1
S (LS(L∗S)−1 + L̂K∗)g +K(LS(L∗S)−1 + L̂K∗)g = (L∗)−1g for all g ∈ H.

If we denote by
f = (LS(L∗S)−1 + L̂K∗)g for all g ∈ H,

then we have
L−1f = (L∗)−1g for all g ∈ H.

It follows that D(L∗) ⊂ D(L).
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3 Normality criterion of correct extensions

Let L0 be a formally normal minimal operator in a Hilbert space H. An operator M0 is
the restriction of L∗0 = M̂ to D(L0). Then L̂ = M∗

0 defines the maximal operator such
that L0 ⊂ L̂. Let there be at least one normal correct extension LN of the formally normal
minimal operator L0. In view of Assertion 2.1, we have that L0 ⊂ LN ⊂ L̂, i.e., LN is the
boundary correct extension. Then the inverses to all boundary correct extensions L of L0

have the form
u = L−1f = L−1

N f +Kf for all f ∈ H, (3.1)

where K is an arbitrary bounded operator in a Hilbert space H that R(K) ⊂ Ker L̂ and
R(L0) ⊂ KerK. Then the direct operator L acts as

L̂u = f for all f ∈ H,

on the domain
D(L) =

{
u ∈ D(L̂) : ΓLN

(I −KL̂)u = 0
}
,

where the projection ΓLN
= I − L−1

N L̂ is a bounded operator in the space GL̂. It is known
that

Ker ΓLN
= D(LN) and R(ΓLN

) = Ker L̂.

Theorem 3.1. Let there exist a correct normal extension LN of the formally normal minimal
operator L0 in a Hilbert space H. Then any other correct extension L of L0 is normal if and
only if L0 ⊂ L ⊂ L̂ and operator K in formula (3.1) satisfies the conditions:

R(K) ∪R(K∗) ⊂ D(L̂) ∩D(M̂),{
ΓLN

(I −KL̂)u = 0,

ΓLN
K∗M̂u = KL̂u for all u ∈ D(L̂) ∩D(M̂),

(3.2)

and
L̂K∗ = (M̂K)∗, (3.3)

where ΓLN
= I − L−1

N L̂ is a projection on Ker L̂.

Proof. Let L be a normal correct extension of the formally normal operator L0. In view of
Theorem 2.2, the conditions L0 ⊂ L ⊂ L̂, R(K) ∪R(K∗) ⊂ D(L̂) ∩D(M̂) and (3.2) will be
satisfied. The normality of L−1 follows by the normality of L:

L−1(L∗)−1 = (L∗)−1L−1.

By virtue of (3.1), we obtain

(L−1
N +K)((L∗N)−1 +K∗)f = ((L∗N)−1 +K∗)(L−1

N +K)f for all f ∈ H.

It follows that

L−1
N K∗f +K(L∗N)−1 +KK∗f = (L∗N)−1Kf +K∗L−1

N f +K∗Kf. (3.4)
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By acting on both sides of the equality (3.4) by the operator L̂, we get

K∗f = LN(L∗N)−1Kf + L̂K∗L−1
N f + L̂K∗Kf.

By taking conjugates of both sides of the above equality, we have

Kf = K∗(LN(L∗N)−1)∗f + (L∗N)−1(L̂K∗)∗f +K∗(L̂K∗)∗f for all f ∈ H.

By acting on both sides by the operator M̂ , we obtain

M̂Kf = (L̂K∗)∗f for all f ∈ H.

This is equivalent to
L̂K∗ = (M̂K)∗.

Let us prove the converse. Suppose that the conditions of Theorem 3.1 hold. From the
conditions L0 ⊂ L ⊂ L̂, R(K)∪R(K∗) ⊂ D(L̂)∩D(M̂) and (3.2), in view of Theorem 2.2, we
have that D(L) = D(L∗). Then for all f ∈ H there exists g ∈ H such that L−1f = (L∗)−1g.
It can be rewritten in the form

L−1
N f +Kf = (L∗N)−1g +K∗g. (3.5)

By acting on both sides by the operator M̂ , we get

g = L∗NL
−1
N f + M̂Kf.

By substituting g in (3.5), we have

Kf = (L∗N)−1M̂Kf +K∗L∗NL
−1
N f +K∗M̂Kf for all f ∈ H.

Then
K∗f = (M̂K)∗L−1

N f + (L∗NL
−1
N )∗Kf + (M̂K)∗Kf for all f ∈ H. (3.6)

Let us show that
(L∗NL

−1
N )∗ = LN(L∗N)−1.

It is known that if A is a closed operator, B is bounded in H and AB is densely defined in
H, then

(AB)∗ = B∗A∗,

where the overbar denotes the closure of an operator. Note that

L∗NL
−1
N ⊃ L−1

N L∗N .

Then
(L∗NL

−1
N )∗ = (L∗N)−1LN ⊂ LN(L∗N)−1.

Taking into account the fact that LN(L∗N)−1 is a bounded operator that coincides with
(L∗N)−1LN on the dense set D(LN), we obtain that

LN(L∗N)−1 = (L∗N)−1LN = (L∗NL
−1
N )∗.
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Then, taking into account (3.3), equality (3.6) can be rewritten in the form

K∗f = L̂K∗L−1
N f + LN(L∗N)−1Kf + L̂K∗Kf for all f ∈ H.

By adding (L∗N)−1f to both sides of the last equality, we get

K∗f + (L∗N)−1f = LNL
−1
N (L∗N)−1f + L̂K∗L−1

N f + LN(L∗N)−1Kf + L̂K∗Kf.

It follows that
(L∗)−1f = L(L∗)−1L−1f for all f ∈ H.

Thus
L−1(L∗)−1f = (L∗)−1L−1f for all f ∈ H.

The domain of LS is described as the kernel of the projection ΓLS
= I−L−1

S L̂. Sometimes
there exists another operator TLS

defined on D(L̂) and with the property Ker ΓLS
= KerTLS

.
Between these operators there is the following relationship

TLS
ΓLS

v = TLS
(I − L−1

S L̂)v = TLS
v − TLS

L−1
S L̂v = TLS

v for all v ∈ D(L̂).

If we know TLS
v, then ΓLS

v is uniquely determined as the solution of the homogeneous
equation L̂(ΓLS

v) = 0 with an inhomogeneous condition

TLS
(ΓLS

v) = TLS
v.

Its unique solvability follows by the correctness of the operator LS. Therefore, it is not
necessary to know the explicit form of the operator L−1

S . In the study of differential operators
(see [12]) the operator TLS

is realized in the form of the boundary operator. In such cases
we say that the domain is described in terms of the boundary operator. For example, in the
case of the Dirichlet problem for a differential equation of elliptic type in L2(Ω) the operator
TLS

corresponds to the trace operator on the boundary of Ω, i.e., TLS
u = u |∂Ω. Therefore

it suffices to know the form of the boundary operator TLS
. Thus we obtain the following

Corollary 3.1. Let there exist a correct extension LS of the minimal operator L0 with
D(LS) = D(L∗S), then any other correct extension L has the property D(L) = D(L∗) if and
only if L0 ⊂ L ⊂ L̂, R(K) ∪R(K∗) ⊂ D(L̂) ∩D(M̂) and

TLS
(K∗M̂ −KL̂)u = 0 for all u ∈ D(L), (3.7)

where TLS
is the boundary operator corresponding to the fixed correct extension LS and

D(L) =
{
u ∈ D(L̂) : TLS

(I −KL̂)u = 0
}
.

Remark 1. By virtue of the one-to-one mapping of D(LS) onto D(L) :

v = (I −KL̂)u for all u ∈ D(L), u = (I +KL̂)v for all v ∈ D(LS),

in practice, sometimes it is more convenient to use the following condition that is equivalent
to (3.7):

TLS
(K∗M̂ −KL̂+K∗M̂KL̂)v = 0 for all v ∈ D(LS). (3.8)

It has the practical convenience because D(LS) is a fixed domain.
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Similarly, we can rephrase Theorem 3.1 in the following form

Corollary 3.2. Let there exist a correct normal extension LN of the formally normal minimal
operator L0 in a Hilbert space H. Then any other correct extension L of L0 is normal if and
only if L0 ⊂ L ⊂ L̂, R(K) ∪R(K∗) ⊂ D(L̂) ∩D(M̂),

TLN
(K∗M̂ −KL̂)u = 0 for all u ∈ D(L), (3.9)

and
L̂K∗ = (M̂K)∗, (3.10)

where TLN
is a boundary operator corresponding to the fixed correct extension LN and

D(L) =
{
u ∈ D(L̂) : TLN

(I −KL̂)u = 0
}
,

and K is the operator determining the boundary correct extension L in formula (3.1).

4 Examples

Example 1. We consider the following operator in the Hilbert space L2(0, 1)

L̂y ≡ y′′ + y′ = f, (4.1)

to which corresponds the minimal operator L0 with domain

D(L0) =
{
y ∈ W 2

2 (0, 1) : y(0) = y(1) = y′(0) = y′(1) = 0
}
.

We define the operator M0 as the restriction of M̂ on the set D(L0). Then the action of
the operator M0 has the form

M̂v ≡ v′′ − v′ = g.

We will denote the maximal operators M∗
0 and L∗0 by L̂ and M̂ , respectively. Then we have

L0 ⊂ L̂, M0 ⊂ M̂ and D(L̂) = D(M̂) = W 2
2 (0, 1).

Let the operator LN acts as L̂ with domain

D(LN) =
{
y ∈ D(L̂) : y(0) + y(1) = 0, y′(0) + y′(1) = 0

}
.

We take the operator LN as a fixed correct extensions of L0. Note that D(LN) = D(L∗N)

and L0 ⊂ LN ⊂ L̂, M0 ⊂ L∗N ⊂ M̂ . The inverse operator to LN has the form

y = L−1
N f =

x∫
0

(1− et−x)f(t)dt− 1

2

1∫
0

f(t)dt+
e1−x

1 + e

1∫
0

et−1f(t)dt.

Then ΓLN
is defined as

ΓLN
y =

y(0) + y(1)

2
+

(
1

2
− e1−x

1 + e

)
[y′(0) + y′(1)],
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and ΓL∗N
= I − (L∗N)−1M̂ has the following form

ΓL∗N
v =

v(0) + v(1)

2
+

(
ex

1 + e
− 1

2

)
[v′(0) + v′(1)].

The correct extension L of L0 with the property D(L) = D(L∗) is a boundary correct
extension. Their inverses are described in the following form

y = L−1f = L−1
N f +Kf for all f ∈ L2(0, 1),

where K is a bounded linear operator in L2(0, 1) with the properties

R(K) ⊂ Ker L̂, R(L0) ⊂ KerK.

In our case, such operators are exhausted by the following operators

Kf =

1∫
0

f(t)(a11 + a12e
t)dt+ e−x

1∫
0

f(t)(a21 + a22e
t)dt,

where aij, i, j = 1, 2 are arbitrary complex numbers. Then

K∗f = (a11 + a12e
x)

1∫
0

f(t)dt+ (a21 + a22e
x)

1∫
0

e−tf(t)dt.

It is known that the direct operator L acts as L̂ from (4.1) and the domain has the form

D(L) =
{
y ∈ D(L̂) : ΓLN

(I −KL̂)y = 0
}
.

In view of Corollary 3.1, the domain of L can be defined in another way

D(L) =

{
y ∈ D(L̂) : y(0) + y(1) = (KL̂y)(0) + (KL̂y)(1),

y′(0) + y′(1) =
( d
dx
KL̂y

)
(0) +

( d
dx
KL̂y

)
(1)

}
.

First, we will find the correct extensions L such that D(L) = D(L∗). Taking into account
Remark 1, let the operatorK satisfy condition (3.8). Then we obtain the system of equations:

4(a11 + a11) + 2(e+ 1)
[a21

e
+ a12

]
· A = 0,

−4(a11 − a11)− 2(e+ 1)(a12 − a12)− 2
e+ 1

e
(a21 − a21)

−(e+ 1)2

e
(a22 − a22) +

[
4a12 + 2

e+ 1

e
a22

]
· A = 0,

−1

e
a21 + a12 +

2

e
a12

[
a21(e− 1) + a22

e2 − 1

2

]
= 0,

−1

e
[2a21 + a22(1 + e)]− 2a12 −

e+ 1

e
a22

−4
a12

e

[
a21 + a22

e2 − 1

2

]
− 2

e+ 1

e2
a22

[
a21(e− 1) + a22

e2 − 1

2

]
= 0,
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where
A = 2(e− 1)a11 + (e2 − 1)a12 +

e+ 1

e

[
a21(e− 1) + a22

e2 − 1

2

]
.

Solutions of this system of equations with respect to aij, i, j = 1, 2, define operators K that
guarantees the equality D(L) = D(L∗). They will correspond to the following cases:

I) D(L) =
{
y ∈ D(L̂) : y(0) = 0, y(1) = 0

}
,

II) D(L) =
{
y ∈ D(L̂) : y(0) =

a− i

a+ i
y(1), y′(0) =

a− i

a+ i
y′(1), a ∈ R

}
,

where R is the space of real numbers,

III) D(L) =
{
y ∈ D(L̂) : ay(0) + b̄y(1) = 0, y(1) = by′(0) + ay′(1),

a ∈ R, a 6= 0, b ∈ C, |b|2 = a2
}
,

where C is the space of complex numbers.

We use the criterion given in Theorem 3.1 to find all correct normal extensions L of the
minimal operator L0. It is easy to verify the formal normality of L0 and the normality of
LN . The equality D(L) = D(L∗) is necessary for the normality of L. They correspond to
three cases of I) − III) described above. Now, if the operator K satisfies (3.3), then the
operator L is normal. Condition (3.3) is equivalent to the following

a21 = 0, a12 = 0.

Therefore, the operator K takes the form

Kf = a11

1∫
0

f(t)dt+ a22e
−x

1∫
0

etf(t)dt.

Then operators L which act as L̂ from (4.1) on the domain

D(L) =
{
y ∈ D(L̂) : y(0) =

a− i

a+ i
y(1), y′(0) =

a− i

a+ i
y′(1), a ∈ R

}
,

turn out to be normal correct extensions of the minimal operator L0. Of the three cases
I)− III) only the case II) is suitable.

Example 2. Let us consider in the Hilbert space L2(Ω), where Ω = {(x, y) : 0 < x < 1, 0 <
y < 1}, the minimal operator L0 generated by the Cauchy-Riemann differential operator

L̂u ≡ ∂u

∂x
+ i

∂u

∂y
= f(x, y). (4.2)

Then
D(L0) =

{
u ∈ W 1

2 (Ω) : TL0u = 0
}
,

where TL0 is the boundary operator defined as the trace operator on the boundary of ∂Ω for
functions u ∈ W 1

2 (Ω) .
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The action of M̂ will have the form

M̂v ≡ −∂v
∂x

+ i
∂v

∂y
= g(x, y).

Domains of the operators L̂ and M̂ have the form

D(L̂) =
{
u ∈ L2(Ω) : L̂u ∈ L2(Ω)

}
,

D(M̂) =
{
v ∈ L2(Ω) : M̂v ∈ L2(Ω)

}
,

respectively. If we define the boundary operator TLN
in the following way

TLN
u =

(
u(0, y) + u(1, y)
u(x, 0) + u(x, 1)

)
for all u ∈ D(L̂),

then the operator LN acting as L̂ with the domain

D(LN) =
{
u ∈ D(L̂) : TLN

u = 0
}
,

is a correct extension of L0. It is easy to verify that L0 is formally normal, LN is normal,
and moreover L0 ⊂ L ⊂ L̂.

Let L be a correct extension of the minimal operator L0 generated by Cauchy-Riemann
operator (4.2). We are interested in the normal correct extensions. The following three
properties is necessary for the normality of correct extensions L in L2(Ω):

1)R(K) ⊂ W 1
2 (Ω), where K is from the description (3.1);

2)(Kf)(x+ iy), as the operator K in Example 2 acts from L2(Ω) in KerL̂ = {u ∈ L2(Ω) :
∂u

∂x
+ i

∂u

∂y
= 0};

3) (K∗f)(x− iy), as the operator K∗ acts from L2(Ω) in KerM̂ = {v ∈ L2(Ω) : −∂v
∂x

+

i
∂v

∂y
= 0}. Indeed, it follows by Assertion 2.1 that L0 ⊂ L ⊂ L̂ from it follows that R(L0) ⊂

KerK, this implies, that R(K∗) ⊂ KerM̂ .
The first property follows by

Assertion 4.1. The domain of any normal correct extension L of the minimal operator L0

generated by differential operator (4.2) has the property

D(L) ⊂ W 1
2 (Ω).

Proof. This follows by Theorem 2 of Plesner and Rohlin (see [10]). Now we formulate this
theorem: "For each pair of adjoint normal operators A and A∗ there exists one and only one
pair of self-adjoint operators A1 and A2, satisfying the condition

A = A1 + iA2, A∗ = A1 − iA2,

where the operators A1 and A2 commute".
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From conditions (3.9) and (3.10) we obtain that the operators K for which the correct
boundary extension L will be normal.

It follows by Assertion 4.1 that L−1
N , K, and L−1 are compact operators in L2(Ω). This

implies that the normal correct extension L of L0 is an operator with discrete spectrum.
Hence we have that L has a complete orthonormal system of eigenfunctions.

For clarity, the check of normality by Theorem 3.1 is carried out in the special following
case. Let K will be an integral operator of the form

K1f =

1∫
0

1∫
0

K1(x, y; ξ, η)f(ξ, η)dξdη.

It follows from properties 1) and 2) that

K2f =

1∫
0

1∫
0

K2(x+ iy, ξ + iη)f(ξ, η)dξdη.

From condition (3.3) of Theorem 3.1, we get that

Kf =

1∫
0

1∫
0

K(x− ξ + i(y − η))f(ξ, η)dξdη.

By using condition (3.2) of Theorem 3.1 for the operator K, we obtain all normal correct
extensions. We will not give this condition on the kernel K(x − ξ + i(y − η)), because it is
too cumbersome to write.

To demonstrate the mechanism of checking condition (3.2), we consider the special case
when

K(x− ξ + i(y − η)) = aeiπ(x−ξ+i(y−η)),

where a ∈ C is a complex number of the form a = a1 +ia2. Then condition (3.2) is equivalent
to

2a2 + (a2
1 + a2

2)(e
π − e−π) = 0.

There are two kinds of solutions of this equation:

I. a1 = 0, a2 =
2

e−π − eπ
;

II. a2 =
−1±

√
1− [a1(eπ − e−π)]2

eπ − e−π
, where |a1| ≤

1

eπ − e−π
, a1 6= 0.
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Then in the case II, the correct extension corresponding to the following boundary problem

L̂u ≡ ∂u

∂x
+ i

∂u

∂y
= f(x, y) for all f ∈ L2(Ω),

D(L) =

{
u ∈ W 1

2 (Ω) : u(0, y) + u(1, y) = 0, 0 ≤ y ≤ 1,

u(x, 0) + u(x, 1) = ia(eπ + 1)

1∫
0

eiπ(x−ξ)u(ξ, 1)dξ

− ia(e−π + 1)

1∫
0

eiπ(x−ξ)u(ξ, 0)dξ, 0 ≤ x ≤ 1

}
is normal, where a = a1 + ia2, and in the case I, the correct extension corresponding to the
boundary problem

D(L) =

{
u ∈ W 1

2 (Ω) : u(0, y) + u(1, y) = 0,

u(x, 0) + u(x, 1) = 2

1∫
0

eiπ(x−ξ)u(ξ, 1)dξ

}
,

is normal.
All normal correct extensions L have a compact inverse operator because of D(L) ⊂

W 1
2 (Ω). Therefore, their eigenfunctions create an orthonormal basis in L2(Ω). In the partic-

ular case when
K(x, y; ξ, η) =

2i

e−π − eπ
· eiπ(x−ξ+i(y−η)),

we obtain the orthonormal basis in the following form:

uk,n(x, y) =

{
e2nπiy+iπx, n = 0,±1,±2, . . .
e(2k+1)πix+(2n+1)πiy, k = ±1,±2, . . . , n = 0,±1,±2, . . .

and the corresponding eigenvalues

λk,n =

{
iπ − 2nπ, n = 0,±1,±2, . . .
(2k + 1)πi− (2n+ 1)π, k = ±1,±2, . . . , n = 0,±1,±2, . . . .

Thus, this method allows us to check the normality of an unbounded operator. Prelimi-
nary it is necessary to clarify the question of the existence of at least one normal extension.
For the existence of a normal extension it is required that the minimal operator must be
formally normal.

Remark 2. If in Example 2 the square Ω is replaced by the unit circle, then the minimal
operator L0 will not be formally normal. Thus in this case, there are no normal extensions
of L0 in L2(Ω).

Remark 3. When the minimal operator L0 is symmetric and the fixed operator LN is
self-adjoint then the conditions of Theorem 3.1 are equivalent to K = K∗ and we get all
self-adjoint correct extensions.
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