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Abstract. Families of linear polynomial operators generated by the Riesz kernels
are studied. Sharp ranges of convergence are found in many cases. It is shown that
the approximation error is equivalent to the polynomial K-functional related to the
apropricate power of the Laplace operator, if the family converges.

Introduction

The present paper deals with the approximation properties of the families of linear
polynomial operators defined by

R(α,β)
n;λ (f ;x) = (2n+ 1)−d ·

2n∑
k=0

f(tkn + λ) ·R(α,β)
n (x− tkn − λ) , n ∈ N0 , (2.1)

where

R
(α,β)
0 (h) = 1 , R(α,β)

n (h) =
∑
| k |≤n

(
1− | k |β

nβ

)α
· eikh , n ∈ N , (2.2)

are the Riesz kernels with indices α ≥ 0 and β > 0 in Lp-spaces of 2π-periodic functions
of d variables for 0 < p ≤ +∞. In (2.1) and (2.2) x, k, λ are d-dimensional vectors,
| k | = (k2

1 + . . .+ k2
d)

1/2, kh = k1h1 + . . . kdhd and

tkn =
2πk

2n+ 1
, k ∈ Zd ;

2n∑
k=0

=
2n∑
k1=0

. . .

2n∑
kd=0

.

The corresponding Riesz means which are given by

R(α,β)
n (f ;x) = (2π)−d

∫
Td

f(x+ h) ·R(α,β)
n (h) dh , n ∈ N , (2.3)

2 This research was partially supported by the DFG-project SCHM 969/10-1.
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where Td = [0, 2π)d is the d-dimensional torus, are classical objects of both harmonic
analysis and approximation theory. They were intensively studied by many mathe-
maticians (see, e.g. [2], [9], [17], [20]). In particular, the Riesz means (2.3) converge in
Lp for all 1 ≤ p ≤ +∞ independently on β , provided that α > (d − 1)/2 (see [9]).
For further results and details we refer also to [8] (Chapters 3, 10), [19] (Chapter 7),
an [21] (Chapter 8).

For β = 2 the kernels (2.2) are called the Bochner-Riesz kernels. In this case the
approximative properties of methods (2.1) and (2.3) have been systematically studied
in [16]. In particular, we proved that for α exceeding the critical index (d − 1)/2
the approximation error of the families (2.1) with β = 2 averaged with respect to the
parameter λ is equivalent to the approximation error of the means (2.3) if 1 ≤ p ≤ +∞.
Moreover, family (2.1) converges in Lp(T2d) if and only if p > 2d/(d+2α+1) and in this
case its approximation error in Lp is equivalent to the K-functional K∆ if 1 ≤ p ≤ +∞
and to its polynomial version K̃∆ if 2d(d + 2α + 1) < p ≤ +∞ which are related to
the Laplace operator ∆ and defined as

K∆(f, δ)p = inf
g:∆g ∈Lp

{ ‖ f − g ‖p + δ2 ‖∆g ‖p} , δ ≥ 0, f ∈ Lp , (2.4)

K̃∆(f, δ)p = inf
T ∈T1/δ

{ ‖ f − T ‖p + δ2 ‖∆T ‖p} , δ > 0, f ∈ Lp , (2.5)

respectively, where

Tσ =

{
T (x) =

∑
k∈Zd

ck e
ikx : c−k = ck, | k | ≡ (k2

1 + . . .+ k2
d)

1/2 ≤ σ

}
(2.6)

is the space of all real-valued trigonometric polynomials of (spherical) order σ ≥ 0.
It was shown in [6] that the K-functional given in (2.4) is identical 0 for 0 < p < 1.
Therefore, in this case it can not be used for a characterization of any approximation
process. It follows from the results in [3], [4] and [6] that the quantities given in (2.4)
and (2.5) are equivalent for 1 ≤ p ≤ +∞. However, note that (2.5) makes sense for all
0 < p ≤ +∞. Let us also mention that in the case 1 ≤ p ≤ +∞ the equivalence of
the approximation error of (2.3) with β = 2 and the K-functional given in (2.4) was
proved in [5].

The family (2.1) is a special case of the general construction

L(ϕ)
σ;λ(f ;x) = (2[σ] + 1)−d ·

2[σ]∑
ν=0

f
(
tν[σ] + λ

)
·Wσ(ϕ)

(
x− tν[σ] − λ

)
, (2.7)

where
W0(ϕ)(h) ≡ 1 , Wσ(ϕ)(h) =

∑
k∈Zd

ϕ

(
k

σ

)
eikh , σ > 0 , (2.8)

and the generator of the kernels ϕ(ξ) is a complex-valued continuous function defined
on Rd with compact support contained in the unit ball D1 = {ξ : | ξ | ≤ 1} and
satisfying the conditions ϕ(0) = 1 and ϕ(−ξ) = ϕ(ξ) for each ξ ∈ Rd. Clearly,
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the Riesz kernels are generated by ϕα,β(ξ) =
(
1− | ξ |β

)α
+
, where a+ = max(a, 0).

In contrast to the classical methods of trigonometric approximation as, for instance,
means of type (2.3) the method of approximation by families (2.6) is comparatively
new (see e.g. [12], [13]) and it is relevant for all 0 < p ≤ +∞. Its systematical study
was continued in [1], [14] and further papers.

Recently, some general principles concerning the approximative properties of fam-
ilies given in (2.7) – (2.8) have been established, see e.g. [10], [11]. They enable us to
reduce both the problem of their convergence and their interrelations with smoothness
to the study of the Fourier transform of some functions constructed with the help of
generators of approximation and smoothness (see Section 1 for exact formulations). In
particular, now the results in [16] on convergence of the Bochner-Riesz families (β = 2)
can be easily obtained applying this general approach to the formula for the Fourier
transform of the generator ϕα(ξ) = (1 − | ξ |2)α+ of the Bochner-Riesz kernels (see,
e.g., [18] (Chapter 9, § 2.2, pp. 389-390))

ϕ̂α(x) = π−α Γ(α+ 1) |x |−α−d/2 Jα+d/2(|x |) , (2.9)

where Js(x), s > −1/2, is the Bessel function of order s. In contrast to this case it
seems that there is no explicit formula for the Fourier transform of the generator of
the Riesz kernels (2.2) for arbitrary α and β. For this reason an essential part of our
paper is devoted to the study of ϕ̂α,β(ξ). In particular, we give an explicit and complete
description of the set

Pα,β =
{
p ∈ (0,+∞] : ϕ̂α,β ∈ Lp(Rd)

}
(2.10)

for all admissible parameters α and β. As a consequence some shortcomings concerning
the asymptotic behavior of ϕ̂α,β arising in the relevant literature can be corrected.

The paper is organized as follows. Section 1 is devoted to notation and preliminaries.
We also give formulations of the General Convergence Theorem (GCT) (see [10]) and
the General Equivalence Theorem (GET) (see [11]) which will be applied to families
(2.1) – (2.2) later on. In Section 2 we study the Fourier transform of the generator of
the Riesz kernels ϕα,β. In Section 3 we formulate and prove the main results of this
paper: necessary and sufficient conditions of convergence of the Riesz families in the
case α > (d− 1)/2 and the equivalence of their approximation error to the polynomial
K-functional given by

K̃β(f, δ)p = inf
T ∈T1/δ

{ ‖ f − T ‖p + δβ ‖ (−∆)β/2T ‖p} , δ > 0, f ∈ Lp . (2.11)

1 Definitions, notation and general results on approximation
by families

Lp-spaces. As usual, Lp ≡ Lp(Td), where 0 < p < +∞, Td = [0, 2π)d, is the space of
measurable real-valued functions f which are 2π-periodic with respect to each variable
such that

‖ f ‖p =

 ∫
Td

|f(x)|p dx

1/p

< +∞ .
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C ≡ C(Td) (p = +∞) is the space of real valued 2π-periodic continuous functions
equipped with the Chebyshev norm

‖ f ‖∞ = max
x∈Td

|f(x)| .

For the Lp-spaces of non-periodic functions defined on a measurable set Ω ⊆ Rd we
will use the notation Lp(Ω).

Often we deal with functions in Lp(T2d) which depend on both the main variable
x ∈ Td and the parameter λ ∈ Td. Let us denote by ‖ · ‖p or ‖ · ‖p;x the Lp(Td)-norm
with respect to x. For the Lp(Td)-norm with respect to the parameter λ we use the
symbol ‖ · ‖p;λ. For shortness, Lp stands for the space Lp(T2d) equipped with the
norm

‖ · ‖p = (2π)−d/p ‖ ‖ · ‖p;x ‖p;λ . (1.1)

Analogously, we use the symbol ‖ · ‖∞ for the norm in the space C(T2d). Clearly,
Lp with 0 < p < ∞ and C(Td) can be considered as a subspace of Lp and C(T2d),
respectively, where

‖ f ‖p = ‖ f ‖p , f ∈ Lp (f ∈ C if p = ∞) . (1.2)

by (1.1).

Spaces of trigonometric polynomials. Let σ be a real non-negative number. The
space Tσ of all real-valued trigonometric polynomials of (spherical) order σ is defined
by (2.6). We denote by Tσ, p, where 0 < p ≤ +∞, the space Tσ, if it is equipped with
the Lp-norm and we use the symbol Tσ, p to denote the subspace of Lp which consists
of functions g(x, λ) such that g(x, λ) as a function of x belongs to Tσ for almost all
λ. Clearly, Tσ, p can be considered as a subspace of Tσ, p with identity of the norms.
As we can see, in our notation the line over the index p indicates that we are dealing
with functions of 2d variables.

Families of linear polynomial operators. The family {L(ϕ)
σ;λ} given in (2.7)-(2.8)

can be considered as an operator into the space of functions of 2d variables

Lσ : Lp −→ Tσ, p ⊂ Lp , σ ≥ 0 . (1.3)

Such an interpretation leads to the following natural definition. The family {L(ϕ)
σ;λ} is

called convergent (or converges) in Lp, if for each f ∈ Lp

lim
σ→+∞

‖ f − L(ϕ)
σ;λ(f) ‖p = 0 . (1.4)

The classical means F (ϕ)
σ of type (2.3) generated by the kernels Wσ(ϕ)(h) (see (2.8))

in place of the kernels R(α,β)
n (h) are also of type (1.3). In this case the space Tσ, p

can be replaced in this case by its subspace Tσ, p and in view of (1.2) the concept
of convergence described in (1.4) coincides with the usual Lp-convergence. For more
details concerning general operators of type (1.3) we refer to [10].
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Fourier transform. The Fourier transform and its inverse are given by

ĝ(ξ) =

∫
Rd

g(x) e−ixξ dx , g∨(x) = (2π)−d
∫
Rd

g(ξ) eixξ dξ , g ∈ L1(Rd) .

Relations up to constants. By ′′A . B ′′ we denote the relation A ≤ cB , where
c is a positive constant independent of f ∈ Lp (or f ∈ C) and σ ≥ 0. The symbol
′′ � ′′ indicates equivalence. It means that A . B and B . A simultaneously.

Smoothness. Let α > 0. We denote by Hα the class of complex-valued continuous
functions ψ defined on Rd which are infinitely differentiable on Rd \{0} and satisfy the
conditions ψ(−ξ) = ψ(ξ) for ξ ∈ Rd, ψ(0) = 0, ψ(ξ) 6= 0 for ξ ∈ Rd \ {0}. Moreover
the function ψ is assumed to be homogeneous of order α, that is,

ψ(tξ) = tαψ(ξ) , ξ ∈ Rd , t > 0 .

Any function ψ ∈ Hα determines smoothness in the sense that it generates

• the linear operator of multiplier type

D(ψ) : eiνx −→ ψ(ν) eiνx , ν ∈ Zd , (1.5)

• the scale of spaces of ”smooth” functions

Xp(ψ) = { g ∈ Lp : D(ψ)g ∈ Lp } , 1 ≤ p ≤ +∞ , (1.6)

• the K-functional

Kψ(f, δ)p = inf
g: g ∈Xp(ψ)

{ ‖ f − g ‖p + δα ‖D(ψ)g ‖p} , δ > 0, f ∈ Lp , (1.7)

• and the corresponding polynomial K-functional

K̃ψ(f, δ)p = inf
T ∈T1/δ

{ ‖ f − T ‖p + δα ‖D(ψ)T ‖p} , δ > 0, f ∈ Lp . (1.8)

The classical smoothness concepts as, for instance, classical derivatives, the Laplace
operator, Sobolev spaces and related K-functionals are special cases of this general
constructions. In particular the operator (−∆)β/2 and the polynomial K-functionals
given in (2.11) correspond to ψ(ξ) = | ξ |β. For more details about the general approach
to the concept of smoothness and for further examples we refer to [11].

General Convergence Theorem (GCT). We denote by K the class of generators
of families of type (2.7)-(2.8), that is, the set consisting of complex-valued continuous
functions ϕ defined on Rd having compact support contained in D1 = {ξ : | ξ | ≤ 1}
and satisfying ϕ(0) = 1 and ϕ(−ξ) = ϕ(ξ) for each ξ ∈ Rd. For ϕ ∈ K we put

Pϕ = { p ∈ (0,+∞] : ϕ̂ ∈ Lp(Rd) } . (1.9)
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GCT ( [10]). Let ϕ ∈ K and 1 ∈ Pϕ. Then the family {L(ϕ)
σ;λ} converges in Lp if

and only if p ∈ Pϕ. Moreover, for 1 ≤ p ≤ +∞

‖ f − L(ϕ)
σ;λ(f) ‖p � ‖ f −F (ϕ)

σ (f) ‖p , f ∈ Lp, σ ≥ 0 . (1.10)

This statement enables us to reduce the convergence problem to the study of the
Fourier transform of a generator. In [10] it was applied to the families generated by
the kernels of Fejйr, Valleй-Poussin, Rogosinski and Bochner-Riesz.

General Equivalence Theorem (GET). In [11] conditions with respect to ϕ and ψ
providing the equivalence of the approximation error of the family given in (2.7) - (2.8)
and a corresponding polynomial K-functional (1.8) have been described. Here we give
the formulation of this result.

Henceforth, we write v(·)
(q,η)
≺ w(·) if the Fourier transform of the function

( (ηv)/w ) belongs to Lq(Rd). The notation v(·)
(q,η)
� w(·) indicates equivalence. It

means that v(·)
(q,η)
≺ w(·) and w(·)

(q,η)
≺ v(·) simultaneously. A pair of infinitely

differentiable functions (η, θ) with compact supports is said to be a plane resolution
of unity (on the unit ball D1) if there exists a number ρ, 0 < ρ < 1/2, such that
η(ξ) = 1 for | ξ | ≤ ρ, θ(ξ) = 1 for 2ρ ≤ | ξ | ≤ 1 and η(ξ) + θ(ξ) = 1 for each
ξ ∈ D1.

GET ( [11]). Let 0 < p ≤ +∞, p̃ = min(1, p), ϕ ∈ K, ϕ(ξ) 6= 1 for ξ 6= 0,
ϕ̂ ∈ Lp̃(Rd) and ψ ∈ Hα for some α > 0. If there exist a plane resolution of unity

(η, θ) and a number k ∈ N such that 1− ϕ(·)
(p̃,η)
� ψ(·) and (ϕ(·))k

(p̃,θ)
≺ 1− ϕ(·) then

‖ f − L(ϕ)
σ;λ(f) ‖p � K̃ψ(f, σ−1)p , f ∈ Lp, σ > 0 . (1.11)

In [11] this statement was applied to the study of the approximative behaviour of
by methods generated by some classical kernels. In Section 3 we show that it is also
applicable to the Riesz families (2.1).

2 Fourier transform of the generator of the Riesz kernels

Following our approach we study now the properties of the Fourier transform of the
generators

ϕα, β(ξ) =

{ (
1− | ξ |β

)α
, | ξ | ≤ 1

0 , | ξ | > 1
. (2.1)

of the Riesz kernels and we determine the set Pα,β defined in (2.10). Henceforth, let
us denote by E the set {2k, k ∈ N } of even integers. Unimportant positive constants
independent of x, denoted by c (with subscripts and superscripts) may have different
values in different formulas (but not in the same formula).
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Theorem 2.1. For α ≥ 0, β > 0 we have

Pα,β =


( 2d/(d+ 2α+ 1), +∞ ] , α ≥ 0, β ∈ E

( 2d/(d+ 2α+ 1), +∞ ] , 0 ≤ α < β + (d− 1)/2, β /∈ E

( d/(d+ β), +∞] , α ≥ β + (d− 1)/2, β /∈ E
. (2.2)

Proof. For α = 0 the function ϕα,β coincides with the generator of the Bochner-Riesz
kernels ϕ0. In this case (2.2) directly follows from (2.9) (see also [16]). Henceforth, we
suppose α > 0.

Let ψ, ψ0 and ψ1 be real-valued radial (depending only on r = | ξ | ) infinitely
differentiable function defined on Rd satisfying

ψ(ξ) =

{
1 , ξ ∈ D1

0 , ξ /∈ D5/4

; ψ0(ξ) =

{
1 , ξ ∈ D1/2

0 , ξ /∈ D3/4

; ψ1(ξ) = ψ(ξ)− ψ0(ξ). (2.3)

Here Dr = { ξ : | ξ | ≤ r }. Obviously,

ϕα,β(ξ) = ϕα,β ψ0(ξ) + ϕα,β ψ1(ξ) , ξ ∈ Rd. (2.4)

Step 1. Estimate of ϕ̂α,β ψ0 for β /∈ E.

We put
m ≡ m(d, β) =

[
β−1(d+ 2β + 1)

]
+ 1 . (2.5)

Then we have

βm > k , ( k = [ d/p∗ ] + 1 , p∗ ≡ p∗(d, β) = d/(d+ 2β) ) . (2.6)

In view of

( 1− y )α =
m−1∑
ν=0

(−1)ν [α]ν
ν!

yν + ymg(y) , −1 < y < 1 , (2.7)

where [α]ν = α(α− 1) . . . (α− ν + 1) and g(y) is analytic on (−1, 1), we obtain

ϕα,β ψ0(ξ) =
m−1∑
ν=0

(−1)ν [α]ν
ν!

| ξ |βν ψ0(ξ) + | ξ |βmg(| ξ |β)ψ0(ξ) , ξ ∈ Rd . (2.8)

As it was shown in [15] it holds∣∣∣ (| · |βνψ0(·)
)∧

(x)
∣∣∣ ≤ c1 (1 + |x |)−(d+βν), x ∈ Rd, ν = 1, 2, . . . ,m− 1, (2.9)∣∣∣ (| · |β ψ0(·)

)∧
(x)
∣∣∣ ≥ c2 |x |−(d+β) , x ∈ Ω(ρ, θ, u0) , (2.10)

where

Ω(ρ, θ, u0) =
{
x = ru : r > ρ , u ∈ Sd−1, cos θ ≤ (u, u0) ≤ 1

}
(2.11)
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for some ρ ≥ 1, 0 < θ < π/2 and u0 ∈ Sd−1. Taking into account that ψ0 is infinitely
differentiable and that it has a compact support we get, in particular, the estimate

| ψ̂0(x) | ≤ c ( 1 + |x | )−(d+2β) , ∈ Rd . (2.12)

In a straightforward manner one can easily check that the function | ξ |βmg(| ξ |β) has
continuous (mixed) derivatives up to the order k given in (2.6). By elementary prop-
erties of the Fourier transform in combination with (2.5)-(2.6) we find∣∣∣ (| · |βm g(| · |β)ψ0(·)

)∧
(x)
∣∣∣ ≤ c ( 1 + |x | )−([d+2β]+1) , x ∈ Rd . (2.13)

In view of (2.8) we obtain∣∣∣ ϕ̂α,β ψ0(x)
∣∣∣ ≤ c′ ( 1 + |x | )−(d+β) , x ∈ Rd , (2.14)∣∣∣ ϕ̂α,β ψ0(x)
∣∣∣ ≥ c′′ |x |−(d+β) , x ∈ Ω(ρ ′, θ, u0) (2.15)

by (2.9) - (2.13) for some ρ ′ > ρ.

Step 2. Estimate of ϕ̂α,β ψ0 for β ∈ E.

In the case β ∈ E the behavior of the Fourier transform of the first item in (2.4)
is completely different. Indeed, the function 1 − | ξ |β becomes a polynomial and,
therefore, the function ϕα, β ψ0(ξ) is infinitely differentiable and, in particular, we have∣∣∣ ϕ̂α, β ψ0(x)

∣∣∣ ≤ c ( 1 + |x | )−(α+d/2+3/2) , x ∈ Rd . (2.16)

Step 3. Estimate of ϕ̂α,β ψ1 .

The Fourier transform of the second item in (2.4) can be studied by reduction to the
properties of the generator of the Bochner-Riesz kernels ϕδ(ξ) = ( 1 − | ξ |2)δ+ with
δ > 0. Using (2.9), the asymptotic formula for the Bessel function and the results on
the distribution of its zeros (see, e.g. [18] (Chapter 8)) we obtain the estimates

| ϕ̂δ(x) | ≤ c′ ( 1 + |x | )−(δ+d/2+1/2) , x ∈ R , (2.17)

ϕ̂δ(x) ≥ c(+) |x |−(δ+d/2+1/2) , x ∈ Ω+ , (2.18)

ϕ̂δ(x) ≤ −c(−) |x |−(δ+d/2+1/2) , x ∈ Ω− , (2.19)

| ϕ̂δ(x) | ≥ c′′ |x | −(δ+d/2+1/2) , x ∈ Ω+ ∪ Ω− , (2.20)

where (for the sake of shortness we omit the index δ in our notations, if it does not
affect the concepts)

Ω± =
+∞⋃
k=1

{
x ∈ Rd : a±k ≤ |x | ≤ b±k

}
, (2.21)
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1 ≤ a±k < b±k ≤ a±k+1 ; inf
k

(bk − a±k ) > 0 ; a±k = O(k) , k → +∞ . (2.22)

We shall use the representation

ϕα,β ψ1(ξ) = ϕα(ξ)ψ1(ξ) gα,β( 1− | ξ |2 ) , ξ ∈ Rd , (2.23)

where

gα,β(η) =


(

1− (1− η)β/2

η

)α
, 0 < | η | < 1

(β/2)α , η = 0

. (2.24)

The function gα,β(η) is analytic in (−1, 1). Taylor expansion at η = 0 up to the (s−1)th
term, where

s ≡ s(d, α) = [ d/p0 ] + 2 , p0 ≡ p0(d, α) = 2d/(d+ 2α+ 3) , (2.25)

yields

(β/2)−α (ϕα,β ψ1) (ξ) = ϕα(ξ)ψ1(ξ) +
s−1∑
ν=1

g(α,β)
ν · (ϕα+ν ψ1) (ξ) +

g
(α, β)
s · (ϕα+s ψ1) (ξ)h(ξ) = ϕα(ξ) +

s−1∑
ν=1

g
(α, β)
ν ϕα+ν(ξ)−

s−1∑
ν=0

g(α, β)
ν (ϕα+ν ψ0) (ξ) +

g
(α,β)
s (ϕα+s ψ1) (ξ)h(ξ) ≡ ϕα(ξ) + I(ξ) ,

(2.26)

by (2.23) and (2.4) for ξ ∈ Rd. Here g(α,β)
ν , ν = 1, . . . , s, are appropriate coefficients

and the function h is infinitely differentiable in D
√

2 \ {0}. By (2.17) we get

| ϕ̂α+ν(x) | ≤ c ( 1 + |x | )−(α+ν+d/2+1/2) , x ∈ Rd , ν = 0, 1, . . . , s− 1 . (2.27)

The functions ϕα+ν ψ0 , ν = 0, 1, . . . , s − 1, are infinitely differentiable and they have
a compact support. Hence, in particular,∣∣(ϕα+νψ0)

∧ (x)
∣∣ ≤ c (1 + |x |)−(α+d/2+3/2), x ∈ Rd, ν = 0, 1, . . . , s− 1. (2.28)

In view of (2.25) one can prove by direct calculation that the function ϕα+s ψ1h has
continuous (mixed) derivatives up to the order [d/p0] + 1 . This implies∣∣(ϕα+sψ1 h)

∧ (x)
∣∣ ≤ c(1 + |x|)−([α+d/2+3/2]+1), x ∈ Rd, ν = 0, 1, . . . , s− 1 . (2.29)

By (2.27) for ν 6= 0, (2.28) and (2.29) we find

| Î(x) | ≤ c |x |−(α+d/2+3/2) , |x | ≥ 1 , (2.30)

for the Fourier transform of the remainder I(ξ) in (2.26). Combining (2.26), (2.30)
with (2.17) - (2.20) for δ = α we obtain the estimates∣∣∣ ϕ̂α, β ψ1(x)

∣∣∣ ≤ c′ ( 1 + |x | )−(α+d/2+1/2) , x ∈ Rd , (2.31)
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ϕ̂α, β ψ1(x) ≥ c(+) |x |−(α+d/2+1/2) , x ∈ Ω+ , (2.32)

ϕ̂α, β ψ1(x) ≤ −c(−) |x |−(α+d/2+1/2) , x ∈ Ω− , (2.33)∣∣∣ ϕ̂α, β ψ1(x)
∣∣∣ ≥ c′′ |x | −(α+d/2+1/2) , x ∈ Ω+ ∪ Ω− , (2.34)

where Ω± are of type (2.21)-(2.22).
We have to consider the 4 cases:

1) α > 0, β ∈ E

2) 0 < α < β + (d− 1)/2, β /∈ E

3) α > β + (d− 1)/2, β /∈ E

4) α = β + (d− 1)/2, β /∈ E.

In case 1) we get

| ϕ̂α,β(x) | ≤ c ( 1 + |x | )−(α+d/2+1/2) , x ∈ Rd , (2.35)

by (2.4), (2.16) and (2.31) and

| ϕ̂α,β(x) | ≥
∣∣∣ ϕ̂α, β ψ1(x)

∣∣∣ − ∣∣∣ ϕ̂α,β ψ0(x)
∣∣∣ ≥

≥ |x |−(α+d/2+1/2)
(
c(+) − 2c |x |−1

)
≥

≥ c′ |x |−(α+d/2+1/2) , x ∈ Ω+ , |x | ≥ (4c)/c(+) .

(2.36)

by (2.4), (2.16) and (2.32). In view of (2.21) - (2.22) we obtain

c1

+∞∑
k=k0

b+k∫
a+

k

r−p(α+d/2+1/2)+d−1 dr ≤ ‖ ϕ̂α,β ‖pp ≤ c2

+∞∫
1

r−p(α+d/2+1/2)+d−1 dr (2.37)

by (2.35) and (2.36) for 0 < p < +∞ and some k0 ∈ N. This implies
Pα,β = ( 2d/(d+ 2α+ 1),+∞ ].

In case 2) the right-hand side of (2.14) can be estimated by the right-hand side of
(2.31). By (2.4), (2.14), (2.31) we find

| ϕ̂α,β(x) | ≤ c ( 1 + |x | )−(α+d/2+1/2) , x ∈ Rd , (2.38)

and by (2.4), (2.14) and (2.32) the estimates

| ϕ̂α,β(x) | ≥
∣∣∣ ϕ̂α,β ψ1(x)

∣∣∣ − ∣∣∣ ϕ̂α,β ψ0(x)
∣∣∣ ≥

≥ |x |−(α+d/2+1/2)
(
c(+) − 2c′ |x |−δ

)
≥

≥ c |x |−(α+d/2+1/2) , x ∈ Ω+ , |x | ≥ ( (4c′)/c(+) )1/δ ,

(2.39)
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where
δ = (d+ β)− (α+ d/2 + 1/2) > 0. (2.40)

Applying the argument in (2.37) it follows that Pα,β = ( 2d/(d + 2α + 1),+∞ ] by
(2.38) and (2.39).

In case 3) the first item in (2.4) is dominating and now the right-hand side of (2.31)
can be estimated by the right-hand side of (2.14). By (2.4), (2.14), (2.31) we derive

| ϕ̂α,β(x) | ≤ c ( 1 + |x | )−(d+β) , x ∈ Rd , (2.41)

and by (2.4), (2.15) and (2.31) we arrive at

| ϕ̂α,β(x) | ≥
∣∣∣ ϕ̂α,β ψ0(x)

∣∣∣ − ∣∣∣ ϕ̂α,β ψ1(x)
∣∣∣ ≥

≥ |x |−(d+β)
(
c′′ − 2c′ |x |−| δ |

)
≥ c |x |−(d+β) ,

x ∈ Ω(ρ ′, θ, u0) , |x | ≥ ( (4c′)/c′′ )1/| δ | ,

(2.42)

where δ given in (2.40) is now negative. Applying the argument in (2.37) with d + β
in place of α + d/2 + 1/2 and Ω(ρ ′, θ, u0) of type (2.11) in place of Ω+ we obtain
Pα,β = ( d/(d+ β),+∞ ] by (2.41) and (2.42).

In case 4) we have d+ β = α+ d/2 + 1/2 and the right-hand sides of all estimates
we applied are equivalent to each other. Now the lower estimate can be obtained by the
observation that in view of (2.15) the Fourier transform of the first item in (2.4) does
not change its sign in a certain connected unbounded domain, but in view of (2.32)
and (2.33) the second item does. Similarly to cases 2) and 3) we get

| ϕ̂α,β(x) | ≤ c ( 1 + |x | )−(d+β) , x ∈ Rd (2.43)

by (2.4), (2.14), (2.31). By (2.15) the Fourier transform of ϕα, β ψ0 does not change
its sign in the domain Ω ≡ Ω(ρ ′, θ, u0). If it is positive we obtain

ϕ̂α,β(x) = ϕ̂α,β ψ0(x) + ϕ̂α, β ψ1(x) ≥

≥ ( c′′ + c(+) ) |x |−(d+β) , x ∈ Ω ∩ Ω+

applying (2.4), (2.15) and (2.32). Otherwise, we use (2.4), (2.15) and (2.33) to find

ϕ̂α,β(x) = ϕ̂α,β ψ0 + ϕ̂α,β ψ1 ≤

≤ −( c′′ + c(−) ) |x |−(d+β) , x ∈ Ω ∩ Ω− .

In both cases
| ϕ̂α,β(x) | ≥ c |x |−(d+β) , x ∈ Ω ∩ Ω′ , (2.44)

where Ω′ is Ω+ or Ω−. Applying the standard argument (see (2.37)) we obtain
Pα,β = ( d/(d+ β),+∞ ] by (2.43) and (2.44). The proof is complete. �
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We give some remarks. As it was mentioned in Introduction, the convergence of
Riesz means (2.3) in Lp with 1 ≤ p ≤ +∞ for α > (d − 1)/2 and the equivalent
statement on the membership of ϕ̂α,β in L1 for such α can be found in ( [9]). A
widespread mistake is connected with this result. For example, in [17] (where [9] (p.
215) was quoted) one derives these statements (which themselves are correct) from the
estimate

| ϕ̂α,β(x) | ≤ c ( 1 + |x | )−(α+d/2+1/2) , x ∈ Rd , (2.45)
which was quoted to hold for all α, β > 0. However, estimate (2.45) is not valid for
α > β+(d−1)/2 by (2.42). For this reason some statements as, for instance, Remark 13
in [17] devoted to the case 0 < p < 1 contain incorrect conjectures. Another example.
Apparently, with a reference to the same work [9] by J. Peetre it was incorrectly stated
in [7] that the Fourier transform of the function ( 1 − | ξ | )α+ in the one-dimensional
case should behave like |x |−(α+1) if |x | → +∞. However, note that this is true only
if 0 < α ≤ 1. Fortunately, the author dealt mainly with the case 1 ≤ p ≤ +∞, where,
as it was mentioned above, estimate (2.45) always leads to correct conclusions.

3 Approximation properties of families generated by Riesz ker-
nels

Applying the general principles given in Section 1 in combination with the results of
Section 2 we obtain the results on the convergence and the approximation quality of
families (2.1) generated by the Riesz kernels given in (2.2).

Theorem 3.1. Let 0 < p ≤ +∞, α > (d − 1)/2 and β > 0. Then the family
{R(α,β)

n;λ } converges in Lp if and only if p ∈ Pα,β given in (2.2).

Proof. The condition α > (d − 1)/2 implies 1 ∈ Pα,β. Now the statement
immediately follows from the GCT and Theorem 2.1. �

Theorem 3.2. Let α > (d− 1)/2, β > 0. It holds for p ∈ Pα,β that

‖ f −R(α,β)
n;λ (f) ‖p � K̃β(f, (n+ 1)−1)p , f ∈ Lp , n ∈ N0 , (3.1)

where K̃β(f, δ)p is given in (2.11).

Proof. Henceforth, we put ϕ(ξ) = ϕα,β(ξ), ψ(ξ) = | ξ |β. Clearly, ϕ ∈ K, ϕ(ξ) 6= 1
for ξ 6= 0, ϕ̂ ∈ Lp̃(Rd) (p̃ = (1, p)) for p ∈ Pα,β and ψ ∈ Hβ. Let (η, θ) be a plane
resolution of unity.

Applying (2.7) with m+ 1 instead of m, where m is given in (2.5), we get

(ϕη)(ξ) = η(ξ)− α| ξ |βη(ξ) +
m∑
ν=2

(−1)ν [α]ν
ν!

| ξ |βνη(ξ) +

| ξ |β(m+1)h(| ξ |β) η(ξ) , ξ ∈ Rd ,

(3.2)
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where h(y) is analytic on (−1, 1). By (3.2)

((1− ϕ)/ψ)η(ξ) = αη(ξ) +
m−1∑
ν=1

(−1)ν [α]ν+1

(ν + 1)!
| ξ |βνη(ξ)−

| ξ |βmh(| ξ |β) η(ξ) , ξ ∈ Rd .

(3.3)

For β /∈ E similarly to (2.14) it follows from (3.3) that

| (((1− ϕ)/ψ)η)∧(x) | ≤ c ( 1 + |x | )−(d+β) , x ∈ Rd . (3.4)

This relation is also valid for β ∈ E, because the function ((1−ϕ)/ψ)η being extended
to 0 by continuity is infinitely differentiable. By (2.2) the condition p ∈ Pα,β always

implies p > d/(d+ β). Now applying (3.4) we obtain 1− ϕ(·)
(p̃,η)
≺ ψ(·) for such p. In

order to prove the inverse relation we note that the function

G(y) =

{ y

1− (1− y)α
, 0 < | y | < 1

α−1 , y = 0

is analytic on (−1, 1). Using its expansion at the point 0 we get for ξ ∈ Rd

(ψ/(1− ϕ))η(ξ) = α−1η(ξ) +
m−1∑
ν=1

cν | ξ |βνη(ξ) + | ξ |βmh1(| ξ |β) η(ξ) , (3.5)

where cν ≡ cν(α, β) are appropriate coefficients and h1(y) is analytic on (−1, 1). Ap-

plying the argument above for (3.5) in place of (3.3) we obtain ψ(·)
(p̃,η)
≺ 1−ϕ(·). Thus,

we have the equivalence 1− ϕ(·)
(p̃,η)
� ψ(·).

As it was shown in [16] (see relations (5.19) and (5.21)), the function

gk(y) =
(1− y2)αk+

1− (1− y2)α+
, y 6= 0 ,

where k ∈ N, has the property that

lim
y→1

g
(s)
k (y) = 0 , 1 ≤ s ≤ k − 1 .

Using this fact and taking into account that g(y) = | y |β/2 is infinitely differentiable
for y 6= 0 one can easily check in a straightforward manner that for the function

Gk(y) = gk
(
| y |β/2

)
, y 6= 0 , (3.6)

the relations
lim
y→1

G
(s)
k (y) = 0 , 1 ≤ s ≤ k − 1 , (3.7)



On families of linear polynomial operators generated by Riesz kernels 137

also hold. By (3.6), (3.7) the function

Gk(| ξ |) θ(ξ) =
ϕk(ξ)

1− ϕ(ξ)
θ(ξ) (3.8)

has continuous (mixed) derivatives up to the order k − 1. Hence, by choosing relevant
k one can guarantee that its Fourier transform will belong to Lp̃(Rd) and the condition

(ϕ(·))k
(p̃,θ)
≺ 1 − ϕ(·) will be valid. Now Theorem 3.2 immediately follows from the

GET. �
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