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EMJ: from Scopus Q4 to Scopus Q3 in two years?!

Recently the list was published of all mathematical journals included in 2015 Scopus
quartiles Q1 (334 journals), Q2 (318 journals), Q3 (315 journals), and Q4 (285 journals).
Altogether 1252 journals.

With great pleasure we inform our readers that the Eurasian Mathematical Journal was
included in this list, currently the only mathematical journal in the Republic of Kazakhstan
and Central Asia.

It was included in Q4 with the SCImago Journal & Country Rank (SJR) indicator equal
to 0,101, and is somewhere at the bottom of the Q4 list. With this indicator the journal shares
places from 1240 to 1248 in the list of all 2015 Scopus mathematical journals. Nevertheless,
this may be considered to be a good achievement, because Scopus uses information about
journals for the three previous years, i. e. for years 2013-2015, and the EMJ is in Scopus
only from the first quarter of year 2015.

The SJR indicator is calculated by using a sophisticated formula, taking into account
various characteristics of journals and journals publications, in particular the average number
of weighted citations received in the selected year by the documents published in the selected
journal in the three previous years. This formula and related comments can be viewed on
the web-page

http : //www.scimagojr.com/journalrank.php?category = 2601&area = 2600&page =
1&totalsize = 373

(Help/Journals/Understand tables and charts/Detailed description of SJR.)
In order to enter Q3 the SJR indicator should be greater than 0,250. It looks like the

ambitious aim of entering Q3 in year 2017 is nevertheless realistic due to recognized high
level of the EMJ.

We hope that all respected members of the international Editorial Board, reviewers,
authors of our journal, representing more than 35 countries, and future authors will provide
high quality publications in the EMJ which will allow to achieve this aim.

On behalf of the Editorial Board of the EMJ
V.I. Burenkov, E.D. Nursultanov, T.Sh. Kalmenov,
R. Oinarov, M. Otelbaev, T.V. Tararykova, A.M. Temirkhanova



VICTOR IVANOVICH BURENKOV

(to the 75th birthday)

On July 15, 2016 was the 75th birthday of Victor Ivanovich Bu-
renkov, editor-in-chief of the Eurasian Mathematical Journal (together
with V.A. Sadovnichy and M. Otelbaev), director of the S.M. Nikol’skii
Institute of Mathematics, head of the Department of Mathematical
Analysis and Theory of Functions, chairman of Dissertation Coun-
cil at the RUDN University (Moscow), research fellow (part-time) at
the Steklov Institute of Mathematics (Moscow), scientific supervisor
of the Laboratory of Mathematical Analysis at the Russian-Armenian

(Slavonic) University (Yerevan, Armenia), doctor of physical and mathematical sciences
(1983), professor (1986), honorary professor of the L.N. Gumilyov Eurasian National Uni-
versity (Astana, Kazakhstan, 2006), honorary doctor of the Russian-Armenian (Slavonic)
University (Yerevan, Armenia, 2007), honorary member of staff of the University of Padua
(Italy, 2011), honorary distinguished professor of the Cardiff School of Mathematics (UK,
2014), honorary professor of the Aktobe Regional State University (Kazakhstan, 2015).

V.I. Burenkov graduated from the Moscow Institute of Physics and Technology (1963)
and completed his postgraduate studies there in 1966 under supervision of the famous Rus-
sian mathematician academician S.M. Nikol’skii.

He worked at several universities, in particular for more than 10 years at the Moscow
Institute of Electronics, Radio-engineering, and Automation, the RUDN University, and the
Cardiff University. He also worked at the Moscow Institute of Physics and Technology, the
University of Padua, and the L.N. Gumilyov Eurasian National University.

He obtained seminal scientific results in several areas of functional analysis and the theory
of partial differential and integral equations. Some of his results and methods are named
after him: Burenkov’s theorem of composition of absolutely continuous functions, Burenkov’s
theorem on conditional hypoellipticity, Burenkov’s method of mollifiers with variable step,
Burenkov’s method of extending functions, the Burenkov-Lamberti method of transition
operators in the problem of spectral stability of differential operators, the Burenkov-Guliyevs
conditions for boundedness of operators in Morrey-type spaces. On the whole, the results
obtained by V.I. Burenkov have laid the groundwork for new perspective scientific directions
in the theory of functions spaces and its applications to partial differential equations, the
spectral theory in particular.

More than 30 postgraduate students from more than 10 countries gained candidate of
sciences or PhD degrees under his supervision. He has published more than 170 scientific
papers. The lists of his publications can be viewed on the portals MathSciNet and Math-
Net.Ru. His monograph “Sobolev spaces on domains" became a popular text for both experts
in the theory of function spaces and a wide range of mathematicians interested in applying
the theory of Sobolev spaces.

In 2011 the conference “Operators in Morrey-type Spaces and Applications”, dedicated
to his 70th birthday was held at the Ahi Evran University (Kirsehir, Turkey). Proceedings
of that conference were published in the EMJ 3-3 and EMJ 4-1.

The Editorial Board of the Eurasian Mathematical Journal congratulates Victor
Ivanovich Burenkov on the occasion of his 75th birthday and wishes him good health and
new achievements in science and teaching!
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ORDER OF THE ORTHOPROJECTION WIDTHS
OF THE ANISOTROPIC NIKOL’SKII–BESOV CLASSES
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Abstract. In this paper we estimate the order of the orthoprojection widths of the
anisotropic Nikol’skii–Besov classes in the anisotropic Lorentz space.

1 Introduction

Let {ui(x)}M
i=1 be an orthonormal system of functions in L2(Tn) and V be a normed spaces.

For each f ∈ V we consider the approximations
∑M

i=1(f, ui)ui(x) that is the orthogonal
projections of the function f onto the subspace of L2(Tn) generated by the system {ui(x)}M

i=1.
If a functional class F ⊂ V , then the quantity

d⊥M(F, V ) = inf
{ui(x)}M

i=1

sup
f∈F

∥∥∥∥∥f(·)−
M∑
i=1

(f, ui)ui(·)

∥∥∥∥∥
V

(1.1)

is called the orthoprojection width of this class in the space V . The width d⊥M(F, V ) was
introduced by V.N. Temlyakov (see [13]).

Simultaneously we shall investigate the quantities dB
M(F, V ), also considered by

V.N. Temlyakov (see [13]) which are defined in the following way

dB
M(F, V ) = inf

G∈LM (B)V

sup
f∈F∩D(G)

‖f(·)−Gf(·)‖V . (1.2)

Here LM(B)V is the set of all linear operators satisfying the following conditions:
a) the domains D(G) of these operators contain all trigonometric polynomials, and their

ranges contained in a subspace of the space V of dimension M ;
b) there exists B ≥ 1 such that for all vectors k = (k1, . . . , kn) the following inequality∥∥Gei(k,x)

∥∥
L2(Tn)

≤ B

is satisfied.
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It is easy to verify that
dB

M(F, V ) ≤ d⊥M(F, V ). (1.3)

Consequently, estimates below for dB
M(F, V ) are also estimates below for d⊥M(F, V ) and

conversely estimates above for d⊥M(F, V ) are estimates above dB
M(F, V ). We shall use this

fact in the proofs of statements below.
If V = Lq(Tn) and F is one of the isotropic classes W r

p,α(Tn), Hr
p(Tn) or Br

p,θ(Tn) widths
(2.1) and (2.2) were investigated in the works by V.N. Temlyakov [13, 15], E.M. Galeev [8, 9],
A.V. Andrianov and V.N. Temlyakov [3], A.S. Romanyuk [11, 12].

If V = Lqθ(Tn) is the anisotropic Lorentz space and F is one of the anisotropic classes
Hr

pθ(Tn) or Brτ
pθ(Tn) these widths is some particular cases were investigated by G.A. Akishev

[2].
In this paper we strengthen G.A. Akishev’s result [2].

2 Main result

Theorem 2.1. Let 0 < α = (α1, . . . , αn) < ∞, 1 < p = (p1, . . . , pn) < q = (q1, . . . , qn) <
∞, 1 ≤ θ = (θ1, . . . , θn), τ = (τ1, . . . , τn), r = (r1, . . . , rn) ≤ ∞, αj0−1/pj0+1/qj0 = min{αj−
1/pj +1/qj : j = 1, . . . , n} > 0, D = {j = 1, . . . , n : αj − 1/pj + 1/qj = αj0 − 1/pj0 + 1/qj0},
j1 = min{j : j ∈ D} and qj = qj0, θj ≤ τj for all j ∈ D. Then

d⊥M(Bατ
pr (Tn), Lqθ(Tn)) � dB

M(Bατ
pr (Tn), Lqθ(Tn)) �

�M−(αj0
−1/pj0

+1/qj0) (logM)(|D|−1)(αj0
−1/pj0

+1/qj0
)+

∑
j∈D\{j1}

(1/θj−1/τj) , (2.1)

where |D| is the number of elements in the set D.

Note that in paper [2] G.A. Akishev considers the case α1 = . . . = αν < αν+1 ≤ . . . ≤ αn,
p1 = . . . = pn = p, q1 = . . . = qn = q, and correspondigly |D| = ν.

First, we formulate definitions and auxiliary statements. Then the proof of the theorem
will be given.

Let f(x) = f(x1, . . . , xn) be a measurable function on Tn = [0, 2π)n. We denote by
f ∗(t) = f ∗1,...,∗n(t1, . . . , tn) the function obtained from f(x) = f(x1, . . . , xn) by applying the
non-increasing rearrangement successively with respect to each of the variables x1, . . . , xn

(the other variables are assumed to be fixed).
Let the multi-indices p = (p1, . . . , pn) and r = (r1, . . . , rn) be such that if 1 ≤ pj < ∞,

then 1 ≤ rj ≤ ∞ and, if pj = ∞, then rj = ∞, j = 1, . . . , n. The anisotropic Lorentz space
Lpr(Tn) (see A.P. Blozinsky [7], E.D. Nursultanov [10]) is the set of functions measurable
on Tn for which the quantity

‖f‖Lpr(Tn) =

(∫ 2π

0

. . .

(∫ 2π

0

(
t
1/p1

1 . . . t1/pn
n f ∗1,...,∗n(t1, . . . , tn)

)r1 dt1
t1

)r2/r1

. . .
dtn
tn

)1/rn

is finite.

If r = ∞, the expression
(∫ 2π

0

(G(s))r ds

s

)1/r

is meant as esssup0≤s<2π G(s).
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For a function f ∈ Lpr(Tn) we write

∆s(f,x) =
∑

k∈ρ(s)

ak(f)ei(k,x),

where {ak(f)}k∈Zn are the Fourier coefficients of f with respect to the multiple trigonometric
system, (k,x) =

∑n
j=1 kjxj is the scalar product, ρ(s) = {k = (k1, . . . , kn) ∈ Zn : [2si−1] ≤

|ki| < 2si , i = 1, . . . , n}.
Let 0 < α = (α1, . . . , αn) <∞ and 1 ≤ q = (q1, . . . , qn) ≤ ∞. The anisotropic Nikol’skii–

Besov class Bαθ
pr(Tn) (see G.A. Akishev [1], K.A. Bekmaganbetov and E.D. Nursultanov [5])

is the set of functions f in Lpr(Tn) for which the

‖f‖Bαθ
pr (Tn) =

∥∥∥{2(α,s)‖∆s(f)‖Lpr(Tn)

}
s∈Zn

+

∥∥∥
lθ
≤ 1,

where ‖ · ‖lθ stands for the norm of the discrete space with mixed metric lθ.
Let γ = (γ1, . . . , γn), s = (s1, . . . , sn), where γj > 0, sj ∈ Z+ for all j = 1, . . . , n and

Q(γ,N) =
⋃

(s,γ)≤N

ρ(s), TQ(γ,N) =

t(x) =
∑

k∈Q(γ,N)

bke
i(k,x)

 .

The set Q(γ,N) is called the stepped cross of order N corresponding to γ.
Let Eγ,N(f)Lpr(Tn) be the best approximation of f by polynomials in TQ(γ,N) in the metric

of the anisotropic Lorentz space Lpr(Tn) and

Eγ,N

(
Bατ

pr (Tn)
)

Lqθ(Tn)
= sup

‖f‖Bατ
pr

(Tn)≤1

Eγ,N(f)Lqθ(Tn)

is the order of approximation of the anisotropic Nikol’skii–Besov classes in the metric of the
anisotropic Lorentz space.

Lemma 2.1 ([4]). Let 0 < α = (α1, . . . , αn) < ∞, 1 < p = (p1, . . . , pn) < q =
(q1, . . . , qn) < ∞, 1 ≤ θ = (θ1, . . . , θn), τ = (τ1, . . . , τn), r = (r1, . . . , rn) ≤ ∞,
αj0 + 1/qj0 − 1/pj0 = min{αj + 1/qj − 1/pj : j = 1, . . . , n} and αj0 + 1

qj0
− 1

pj0
> 0,

γj = (αj + 1/qj − 1/pj)/(αj0 + 1/qj0 − 1/pj0), 1 ≤ γ′j ≤ γj, j = 1, . . . , n.
Then

Eγ′,N

(
Bατ

pr (Tn)
)

Lqθ(Tn)
� 2

−
(

αj0
+ 1

qj0
− 1

pj0

)
N
N

∑
j∈A\{j1}

(
1
θj
− 1

τj

)
+ ,

where A = {j = 1, . . . , n : γ′j = γj}, j1 = min{j : j ∈ A} and (a)+ = max(a, 0).

Lemma 2.2 ([6], particular case of Theorem 1). Let 1 < q = (q1, . . . , qn) <∞, 1 ≤ θ =
(θ1, . . . , θn) ≤ ∞ and ζ = max{1/(qjγj) : j = 1, . . . , n}, B = {j = 1, . . . , n : 1/(qjγj) = ζ},
j1 = min{j : j ∈ B}.

Then for any trigonometric polynomial t ∈ TQ(γ,N) the following inequality holds

‖t‖L∞(Tn) ≤ C2ζNN
∑

j∈B\{j1}
1/θ′j‖t‖Lqθ(Tn).
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Lemma 2.3 ([14], Lemma 3.3.1). Let A be a linear operator defined on the set of all
trigonometric polynomials such that

A
(
ei(k,x)

)
=

M∑
m=1

ak
mψm(x),

for arbitrary k ∈ Zn, where ak
m are given numbers and {ψm(x)}M

m=1 is a given system such
that ‖ψm‖L2(Tn) ≤ 1, m = 1, . . . ,M . Then

min
x∈Tn

ReA(t(· − y))(x)
∣∣∣
y=x

≤

(
M

M∑
m=1

∑
k

∣∣ak
mt̂(k)

∣∣2)1/2

for any trigonometric polynomial t(x) =
∑
k

t̂(k)ei(k,x).

Note that

A(t(· − y))(x)|y=x =
∑
k

t̂(k)e−i(k,x)

M∑
m=1

ak
mψm(x).

Proof of Theorem 1. First, let us prove the upper estimate.
Let γj = (αj − 1/pj + 1/qj)/(αj0 − 1/pj0 + 1/qj0), j = 1, . . . , n.
Let us choose a number N ∈ N such that M � 2NN |D|−1. Suppose γ′j = 1 for j ∈ D,

and when j /∈ D we consider numbers γ′j, satisfying the following property 1 < γ′j < γj.
Then for the step cross Q(γ′, N) we get |Q(γ′, N)| � M . According to the definition of the
orthoprojection width and Lemma 2.1, we get

d⊥M(Bατ
pr (Tn), Lqθ(Tn)) ≤ Eγ′,N

(
Bατ

pr (Tn)
)

Lqθ(Tn)
� 2−(αj0

−1/pj0
+1/qj0)NN

∑
j∈D\{j1}

(1/θj−1/τj).

(2.2)
Since M � 2NN |D|−1, then

2−(αj0
−1/pj0

+1/qj0)NN
∑

j∈D\{j1}
(1/θj−1/τj)

�M−(αj0
−1/pj0

+1/qj0) (logM)(|D|−1)(αj0
−1/pj0

+1/qj0
)+

∑
j∈D\{j1}

(1/θj−1/τj) .

Therefore, from (2.2) the upper estimate in (2.1) follows.
Now, let us prove the lower estimate. Suppose s0 = (s0

1, . . . , s
0
n), where s0

j = sj for j ∈ D
and s0

j = 0 for j /∈ D, s̃ = (sj1 , . . . , sj|D|), γ̃ = (γj1 , . . . , γj|D|), here ji ∈ D, i = 1, . . . , |D| and
j1 < . . . < j|D|.

Let us consider the trigonometric polynomial

t(x) = N−
∑

j∈D\{j1}
1/τj

∑
(γ′,s0)=N

2−
∑n

j=1(αj+1−1/pj)s
0
j

∑
k∈ρ(s0)

ei(k,x).

According to estimates of the one-dimensional Bernoulli kernels, we obtain

t(0) = N−
∑

j∈D\{j1}
1/τj

∑
(γ′,s0)=N

2−
∑n

j=1(αj+1−1/pj)s
0
j

∑
k∈ρ(s0)

1
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� N−
∑

j∈D\{j1}
1/τj

∑
(γ′,s0)=N

2−
∑n

j=1(αj+1−1/pj)s
0
j · 2

∑n
j=1 s0

j

= N−
∑

j∈D\{j1}
1/τj

∑
(γ′,s0)=N

2−
∑

j∈D(αj−1/pj)s
0
j

= N−
∑

j∈D\{j1}
1/τj

∑
(1̃,̃s)=N

2−
∑

j∈D(αj−1/pj)sj

= N−
∑

j∈D\{j1}
1/τj

∑
(1̃,̃s)=N

2−(αj0
−1/pj0

)(1̃,̃s)

� N−
∑

j∈D\{j1}
1/τj · 2−(αj0

−1/pj0
)NN |D|−1 = 2−(αj0

−1/pj0
)NN

∑
j∈D\{j1}

1/τ ′j . (2.3)

Given an operator G ∈ LM(B)Lqθ(Tn), let us consider the operator

A = (Sγ′,N − Sγ′,N−1)G,

where Sγ,N is the operator of the partial sum of Fourier series corresponding to the stepped
cross Q(γ,N) and N will be choosen later. Then A ∈ LM(B)Lqθ(Tn) and the range of the
operator A is a subspace AM of the space TQ(γ′,N) with dim(AM) = M̄ ≤ M . By the
construction of the polynomial t and the fact that the partial sum Sγ′,N is bounded in
Lqθ(Tn) for any trigonometric polynomial t ∈ TQ(γ′,N), then we have

‖t− At‖Lqθ(Tn) = ‖ (Sγ′,N − Sγ′,N−1) (t−Gt)‖Lqθ(Tn) ≤ C1‖t−Gt‖Lqθ(Tn). (2.4)

Let {ψm(x)}M̄
m=1 be an orthonormal basis in AM and

A
(
ei(k,x)

)
=

M̄∑
m=1

ak
mψm(x).

Then (
M̄∑

m=1

∣∣ak
m

∣∣2)1/2

≤ B,

and for any trigonometric polynomial t ∈ TQ(γ′,N), by Parseval’s equality and Lemma 2.3,
we get

min
x∈Tn

ReA (t(· − y)) (x)
∣∣∣
y=x

≤

(
M̄

M̄∑
m=1

∑
k

∣∣ak
mt̂(k)

∣∣2)1/2

=

(
M̄
∑
k

|t̂(k)|2
M̄∑

m=1

∣∣ak
m

∣∣2)1/2

≤ B

(
M
∑
k

|t̂(k)|2
)1/2

= BN−
∑

j∈D\{j1}
1/τj

M ∑
(γ′,s0)=N

2−
∑n

j=1 2(αj+1−1/pj)s
0
j

∑
k∈ρ(s0)

1

1/2
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� N−
∑

j∈D\{j1}
1/τj

M ∑
(γ′,s0)=N

2−
∑n

j=1 2(αj+1−1/pj)s
0
j · 2

∑n
j=1 s0

j

1/2

= BN−
∑

j∈D\{j1}
1/τj

M ∑
(γ′,s0)=N

2−
∑n

j=1(2(αj−1/pj)+1)s0
j

1/2

= BN−
∑

j∈D\{j1}
1/τj

M ∑
(1̃,̃s)=N

2−
∑

j∈D(2(αj−1/pj)+1)sj

1/2

= BN−
∑

j∈D\{j1}
1/τj

M ∑
(1̃,̃s)=N

2−(2(αj0
−1/pj0)+1)(1̃,̃s)

1/2

� BM1/2N−
∑

j∈D\{j1}
1/τj
(
2−(2(αj0

−1/pj0
)+1)NN |D|−1

)1/2

= 2−(αj0
−1/pj0

)NN
∑

j∈D\{j1}
1/τ ′j

(
B2M

2NN |D|−1

)1/2

. (2.5)

Further, from (2.3) and (2.5) we obtain

t(0)− min
x∈Tn

ReA (t(· − y)) (x)
∣∣∣
y=x

≥

≥ 2−(αj0
−1/pj0

)NN
∑

j∈D\{j1}
1/τ ′j

(
C2 − C3B

(
M

2NN |D|−1

)1/2
)
, (2.6)

where C2 is the constant in the lower estimate in (2.3), and C3 is the constant in the upper
estimate in (2.5).

Let us choose N such that(
C2 − C3B

(
M

2NN |D|−1

)1/2
)
≥ C4 > 0.

Then from (2.6) we obtain

C42
−(αj0

−1/pj0
)NN

∑
j∈D\{j1}

1/τ ′j ≤ t(0)− min
x∈Tn

ReA (t(· − y)) (x)
∣∣∣
y=x

= t(0)− min
x∈Tn

Re

(∑
k

t̂(k)e−i(k,x)

M∑
m=1

ak
mψm(x)

)

= t(0)−Re

(∑
k

t̂(k)e−i(k,x0)

M∑
m=1

ak
mψm(x0)

)

= Re

(
t(0)−

∑
k

t̂(k)e−i(k,x0)

M∑
m=1

ak
mψm(x0)

)
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≤

∣∣∣∣∣t(0)−
∑
k

t̂(k)e−i(k,x0)

M∑
m=1

ak
mψm(x0)

∣∣∣∣∣
≤ sup

y

∣∣∣∣∣t(x0 − y)−
∑
k

t̂(k)e−i(k,y)

M∑
m=1

ak
mψm(x0)

∣∣∣∣∣
= sup

y
|t(x0 − y)− A (t(· − y)) (x0)|

≤ sup
y
‖t(x− y)− A (t(· − y)) (x)‖L∞(Tn)

and consequently there exists y0 such that

‖t(x− y0)− A (t(· − y0)) (x)‖L∞(Tn) ≥
C4

2
2−(αj0

−1/pj0
)NN

∑
j∈D\{j1}

1/τ ′j

= C52
−(αj0

−1/pj0
)NN

∑
j∈D\{j1}

1/τ ′j

Now, let ϕ(x) = t(x− y0), then

‖ϕ(x)− Aϕ(x)‖L∞(Tn) ≥ C52
−(αj0

−1/pj0
)NN

∑
j∈D\{j1}

1/τ ′j .

Hence by Lemma 2.2, we get

‖ϕ(x)− Aϕ(x)‖Lqθ(Tn) ≥ C62
−N/qj0N−

∑
j∈D\{j1}

1/θ′j ‖ϕ(x)− Aϕ(x)‖L∞(Tn)

≥ C72
−(αj0

−1/pj0
+1/qj0)NN

∑
j∈D\{j1}

(1/θj−1/τj)

�M−(αj0
−1/pj0

+1/qj0) (logM)(|D|−1)(αj0
−1/pj0

+1/qj0
)+

∑
j∈D\{j1}

(1/θj−1/τj) . (2.7)

Taking into account that the function f = C8ϕ with some constant C8, which does not
depended on N , belongs to class Bατ

pr (Tn), and by (2.4) and (2.7), we obtain

sup
f∈Bατ

pr (Tn)

‖f −Gf‖Lqθ(Tn) ≥ C8 ‖ϕ−Gϕ‖Lqθ(Tn) ≥ C9 ‖ϕ(x)− Aϕ(x)‖Lqθ(Tn)

≥ C10M
−(αj0

−1/pj0
+1/qj0) (logM)(|D|−1)(αj0

−1/pj0
+1/qj0

)+
∑

j∈D\{j1}
(1/θj−1/τj) .

According to arbitrariness of an operator G ∈ LM(B)Lqθ(Tn), we have the lower estimate in
(2.1). �

Remark 1. By Lemma 2.1 it follows that the upper estimate of d⊥M(Bατ
pr (Tn), Lqθ(Tn))

holds without the additional condition qj = qj0 for j ∈ D.
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