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TYNYSBEK SHARIPOVICH KAL'MENOV
(to the 70th birthday)

On May 5, 2016 was the 70th birthday of Tynysbek Sharipovich
Kal’'menov, member of the Editorial Board of the Eurasian Math-
ematical Journal, general director of the Institute of Mathematics
and Mathematical Modeling of the Ministry of Education and Sci-
ence of the Republic of Kazakhstan, laureate of the Lenin Komsomol
Prize of the Kazakh SSR (1978), doctor of physical and mathemat-
ical sciences (1983), professor (1986), honoured worker of science
and technology of the Republic of Kazakhstan (1996), academician
of the National Academy of Sciences (2003), laureate of the State
Prize in the field of science and technology (2013).

T.Sh. Kal’'menov was born in the South-Kazakhstan region of
the Kazakh SSR. He graduated from the Novosibirsk State University (1969) and completed
his postgraduate studies there in 1972.

He obtained seminal scientific results in the theory of partial differential equations and
in the spectral theory of differential operators.

For the Lavrentiev-Bitsadze equation T.Sh. Kal’'menov proved the criterion of strong
solvability of the Tricomi problem in the L,-spaces. He described all well-posed boundary
value problems for the wave equation and equations of mixed type within the framework of
the general theory of boundary value problems.

He solved the problem of existence of an eigenvalue of the Tricomi problem for the
Lavrentiev-Bitsadze equation and the general Gellerstedt equation on the basis of the new
extremum principle formulated by him.

T.Sh. Kal’'menov proved the completeness of root vectors of main types of Bitsadze-
Samarskii problems for a general elliptic operator. Green’s function of the Dirichlet problem
for the polyharmonic equation was constructed. He established that the spectrum of general
differential operators, generated by regular boundary conditions, is either an empty or an
infinite set. The boundary conditions characterizing the volume Newton potential were
found. A new criterion of well-posedness of the mixed Cauchy problem for the Poisson
equation was found.

On the whole, the results obtained by T.Sh. Kal’'menov have laid the groundwork for
new perspective scientific directions in the theory of boundary value problems for hyperbolic
equations, equations of the mixed type, as well as in the spectral theory.

More than 50 candidate of sciences and 9 doctor of sciences dissertations have been
defended under his supervision. He has published more than 120 scientific papers. The list
of his basic publications can be viewed on the web-page

https : | /scholar.google.com/citations?user = ZaydfrkAAAAJ&Rl = ru&authuser = 1

The Editorial Board of the Furasian Mathematical Journal congratulates Tynysbek
Sharipovich Kal'menov on the occasion of his 70th birthday and wishes him good health
and new creative achievements!
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Abstract. Representation of the Green’s function of the classical Neumann problem for
the Poisson equation in the unit ball of arbitrary dimension is given. In constructing this
function we use the representation of the fundamental solution of the Laplace equation in the
form of a series. It is shown that Green’s function can be represented in terms of elementary
functions and its explicit form can be written out. An explicit form of the Neumann kernel
was constructed for n = 4 and n = 5.

1 Introduction

The Dirichlet problem for the Poisson equation

-y —u
2
= Ox;

—Au(z) = () = f(x), x€D; wu=¢p, x€ID, (1.1)

in the domain D C R", n > 2 with the regular boundary 0D is a classic and well-investigated
problem. The solution of problem (1.1) exists, is unique and is represented by Green’s
function Gp (z,y) in the form (see [1], p. 277):

0Gp

oD 8ny

u(@) = [ Golen)f )y~ (@.9)¢ (1) S, (1.2
D
Here and in the sequel a% is the derivative in the direction of the outer normal to dD.
In the case of the unit ball D = {x € R" : |z| < 1} is a unit ball, the Green’s function of
the Dirichlet problem can be constructed by reflection method and has the form:

1 y
Gp x,y:—{e x—y —5(xy——)}, 1.3
@) = ele=n) == (ol - 4 (13)
where w, = 22 /T (") is the area of the unit sphere in R", and & (z — y) is the fundamental
solution of the Laplace equation:

_ln’x_y’7 77,:2;
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Along with the Dirichlet problem, the Neumann problem for the Poisson equation is
classic and well-investigated:

—Au(x) = Y 8—2u(ac)—f(x) z € D; @—@/J x € 0D (1.5)
_]:18%2 B ’ oon '

It is well known that the solution of Neumann problem (1.5) is not unique, however it is
unique up to a constant summand. The fulfillment of the following condition

/D Fds+ [ v, =0 (16)

is necessary and sufficient for the existence of a solution to this problem.

If a solution to problem (1.5) exists then this solution can be represented in the integral
form by means of Green’s function of the Neumann problem Gy (z,y) by the formula similar
to representation (1.2) (see.[1], p. 280):

u(x) = / Gy (z,y) f (y)dy +/ Gn (z,y) 9 (y) dS, + Const. (1.7)
D oD

In the mathematical literature, it is recognized that finding of Green’s function of the
Neumann problem requires a rather complicated construction [2], [3], [4], [5].

Green’s function of Neumann problem (1.5) is understood as a function (see [2], p. 286)
having the representation

ey + g @), (18)

GN (xay) - w

where g(z,y) is a harmonic function in the domain D. Also the boundary condition:

0G N
on,

1
(x,y) = —w—,y € 0D, (1.9)

must be held.

If such Green’s function Gy (x,y) exists then from (1.6) and (1.9) it easily follows that
function (1.7) satisfies all the conditions of problem (1.5).

Various construction methods of Green’s function of the Dirichlet problem (1.1) exist.
Green’s function was constructed in the explicit form for many types of the domain D.
But for the Neumann problem (1.5) in the multidimensional spaces the construction of the
Green’s function is an open problem. Here we have only samples for the simplest domains -
halfspaces, quarters of the space, a semicircle etc. For such domains, the Neumann problem is
an outer boundary value problem and therefore is well-posed without fulfilment of solvability
conditions of the form (1.6).

For the unit ball in R” Green’s function of the Neumann problem has been constructed
in the explicit form only for the cases n =2 and n = 3:

1
G (.9) = 5 |~ tule =3l - n

Y
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1| 1 1
Gy(z,y) = + —1In
A |l =l oy -

1—(z,y)+

Yy
“"”'y"mH =3 (110)

where (z,y) = x1y1 + ... + x,Yy, is the scalar product of the vectors z and y in R".

Note that the interest to the construction of Green’s functions of classical problems in
the explicit form was lately renewed. Green’s functions of the classical biharmonic problems
in the two-dimensional disc were constructed by means of Green’s harmonic functions of
classical problems in [6]. Similar results for the class of nonhomogeneous biharmonic and
triharmonic functions in a sector were obtained in |7], [8]. Green’s function of the Dirichlet
problem for the polyharmonic equation in a multidimensional ball was constructed in the
explicit form in [9], [10]. We also note that work [11] is devoted to the construction of Green’s
function of the Robin problem in the explicit form for a circle.

In the present paper we the give the representation of Green’s function of the Neumann
problem for unit ball of arbitrary dimension in the explicit form (in terms of elementary
functions). It is shown that function can be represented in terms of elementary functions
and its explicit form can be written out in particular cases.

2 Main results

Theorem. For Green’s function of Neumann problem (1.5) we have the following represen-

tation o {g(x_y) ( ] — |y|)+€1 (z, y)} + Const, (2.1)

n

e (zy) = /01 [m —9)e (sx iyl — %) _ 1} ? (2.2)

Sketch of the proof.

By using the expansion of the function (1 — 2nt + n?)”" in a power series in 7, we easily
prove
Lemma 1. For fundamental solution (1.4) of the Laplace operator, we have the representa-
tion

where

[e.9]

h
1 ]a:\k b (i) X (4)
—y) = E E H — | H, < 2.3
€ (J,’ y) e o2k +m — 2 |y|kz+n—2 p k |9:,| | | |ZE| |y| ( )

where H,gi) (1) is a complete system of homogeneous harmonic polynomials of degree k
having the property of orthonormality (12|, and hy is the number of these polynomials:
hi =[2k+n—2)(k+n—3)!]/[k(n—2)].

Proof. We will search Green’s function Gy (z,y) in form (1.8). We apply the method used
(see [2], p. 348), for constructing Green’s function of the Neumann three-dimensional prob-
lem. We search the function g (z,y) in the form

Zbkm i Zfﬂ (Z)m (L), (2.4

|y
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where b are the unknown coefficients. This function satisfies boundary condition (1.9),
where e(x — y) is defined by (2.3), if:

1 n—2
b, = k>1.
F k2 T k@krn—2)" "

Green’s function (2.1) is defined up to an arbitrary constant. Therefore we can arbitrarily
choose the coefficient by. We choose the coefficient by = 1/ (n — 2) for uniformity of further
calculations.

Substituting the found coefficients in (2.4), we get

00 hi
|377’k|3/|]C (i)(ﬂt) (i)(y)
zy)=Y — L NTHO(Z ) O (L)
9(z9) ;zmn—z; E\Tel) TR \yl

[e.9]

hy
(n—2) |$| |?J|k (i) W (Y
E : H, H, = '
" k(2k+n—2) Z |x| g1 (z,y) + g2 (z,y)

=1 |y|

The first sum gives the function ¢, (x,y) = ¢ ( ly| — |i> And for the second sum, using
the equality + = fol sk=lds k > 1, we get

P sF " [yl . @[T oW 1 | ds
salewy) =(n=2) [ o o 2 1 (g ) 1 ()~ e |
0 k=1 i=1 Yy

hence, taking into account representation (2.3), we obtain (2.2). Il
Thus, the construction of Green function of the Neumann problem is re-
duced to the calculation of the integral in the right-hand side of (2.2).  Since

\/ 1—2(z,y)s+ |z*|y|* s2, the problem of constructing Green’s functions

sz lyl =
for n 2 3 is reduced to the calculation of integrals of the form fo st (R (s)T — 1) ds,

where R (s) =1—2(x,y) s+ |z|*|y|* s°. Integrals of this type can be calculated in terms of
elementary functions using the formulas in [13].

Corollary 1. Green’s function Gy (z,y) of Neumann problem (1.5) in the unit ball for
n > 3 can always be represented as a finite sum of elementary functions.

3 Concluding remarks

We demonstrate now formula (2.1) works for special cases. By direct calculation for n = 4,
we have

(z.1) n1¢|a:|2|y|2—<x7y>2_ln
wa:\ 1y — (@)’ 1= @y)

, (3.1)
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and for n = 5, we obtain:

Y 2P lyl* = @)
a1 (@y) = 2—<x,y>2<1x|y|—y/ly\l +(’y)>

-1

Y
ety = 2| 1= o - 2 | (32
In conclusion we note that the solution of Neumann problem (1.5) for the Laplace equa-

tion (f = 0) is represented in the form:

u(z) = wi [ N @y)v s,

where N (z,y) is the Neumann kernel found with the help of Green’s function by the formula
N (z,y) = w,Gn (z,y), x € D,y € ID.

The method of constructing the explicit form of the function N (x,y) for the multidi-
mensional unit sphere was considered in the paper of A.V. Bitsadze [5]. It was shown that
the Neumann kernel could be expressed in elementary functions. The explicit form of the
Neumann kernel at n = 4 was given.

From (2.1) and (3.1) for |y| = 1, we obtain

N(zy) =z -y —Inz—y[+ (@9 o o= 9"
r,y)=|lr—y|l " —In|lz—vy an
1—(1},@})

jof* = (2,9)"

This equality coincides with formula (21) in [5]. To demonstrate the effectiveness of
Corollary 1, we present the formula for the Neumann kernel N (z,y) for n = 5 obtained
from (2.1) and (3.2) for |y| = 1:

2 1 1
N =g Tl
(.ﬁU,y) ‘iL"Q B (Z’,y)
—In|l— — .
+|x|2—($,y)2< (@0 *“’y)) wlt e =l
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