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TYNYSBEK SHARIPOVICH KAL’MENOV

(to the 70th birthday)

On May 5, 2016 was the 70th birthday of Tynysbek Sharipovich
Kal’menov, member of the Editorial Board of the Eurasian Math-
ematical Journal, general director of the Institute of Mathematics
and Mathematical Modeling of the Ministry of Education and Sci-
ence of the Republic of Kazakhstan, laureate of the Lenin Komsomol
Prize of the Kazakh SSR (1978), doctor of physical and mathemat-
ical sciences (1983), professor (1986), honoured worker of science
and technology of the Republic of Kazakhstan (1996), academician
of the National Academy of Sciences (2003), laureate of the State
Prize in the field of science and technology (2013).

T.Sh. Kal’menov was born in the South-Kazakhstan region of
the Kazakh SSR. He graduated from the Novosibirsk State University (1969) and completed
his postgraduate studies there in 1972.

He obtained seminal scientific results in the theory of partial differential equations and
in the spectral theory of differential operators.

For the Lavrentiev-Bitsadze equation T.Sh. Kal’menov proved the criterion of strong
solvability of the Tricomi problem in the Lp-spaces. He described all well-posed boundary
value problems for the wave equation and equations of mixed type within the framework of
the general theory of boundary value problems.

He solved the problem of existence of an eigenvalue of the Tricomi problem for the
Lavrentiev-Bitsadze equation and the general Gellerstedt equation on the basis of the new
extremum principle formulated by him.

T.Sh. Kal’menov proved the completeness of root vectors of main types of Bitsadze-
Samarskii problems for a general elliptic operator. Green’s function of the Dirichlet problem
for the polyharmonic equation was constructed. He established that the spectrum of general
differential operators, generated by regular boundary conditions, is either an empty or an
infinite set. The boundary conditions characterizing the volume Newton potential were
found. A new criterion of well-posedness of the mixed Cauchy problem for the Poisson
equation was found.

On the whole, the results obtained by T.Sh. Kal’menov have laid the groundwork for
new perspective scientific directions in the theory of boundary value problems for hyperbolic
equations, equations of the mixed type, as well as in the spectral theory.

More than 50 candidate of sciences and 9 doctor of sciences dissertations have been
defended under his supervision. He has published more than 120 scientific papers. The list
of his basic publications can be viewed on the web-page

https : //scholar.google.com/citations?user = Zay4fxkAAAAJ&hl = ru&authuser = 1

The Editorial Board of the Eurasian Mathematical Journal congratulates Tynysbek
Sharipovich Kal’menov on the occasion of his 70th birthday and wishes him good health
and new creative achievements!
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Abstract. We study a class of time-dependent linear second-order integro-differential equa-
tions with the evolution equation approach. These equations arise naturally in the study of
viscoelasticity. Existence theorems for strong solutions for three classes of complete integro-
differential second-order equations are obtained.

1 Introduction

The purpose of this paper is to study the Cauchy problem for the abstract linear Volterra
second-order integro-differential equation

d2u

dt2
= A(t)

du

dt
+B(t)u+

∫ t

0

G(t, s)u(s) ds+ f(t), u(0) = u0, u′(0) = u1 (1.1)

in a Banach space E or in a Hilbert space H. Such Cauchy problems arise naturally in the
study of viscoelasticity (see [7], [12] and the references given there).

Operators A(t) and B(t) are compared by their domains of definition. We consider
such equations which have a unique so-called main operator; it has the narrowest domain
of definition compared with the other operators. Our purpose is to study three types of
equations.

This paper consists of Introduction, Sections 2 and 3. Introduction contains a brief
summary of the theory of evolutionary equations. In Section 2 we prove Theorem 2.1 on
strong solvability of the Cauchy problem for the abstract linear Volterra first-order integro-
differential equation (2.1). Such equations were studied, for example, in [6], [1], [5]. In [11]
problem (2.1) was studied under the assumption that the operator coefficient A(t) is a
generator of a holomorphic semigroup at any fixed time. Our Theorem 2.1 in Section 2 is
quite close to the one which follows from [6].

We mention also monograph [14] where Cauchy problems are investigated for integro-
differential and functional equations.

Section 3 is devoted to the study of Cauchy problem (1.1). Our method is based on
the following simple idea. We reduce the second-order integro-differential equation to the
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first-order one and then apply Theorem 2.1. This method is similar to the one which is used
in [9].

Now we introduce some notations and terminology. Let E be a Banach space and let
L(E) denote the Banach space of all bounded linear operators acting in E.

The notation A ∈ J (M,ω) (M > 1, ω ∈ R) means that the operator A is a generator of
a strongly continuous (one-parameter) semigroup (or C0-semigroup) U(t) (t > 0) of bounded
linear operators on a Banach space E. The family U(t) satisfies the following inequality:
‖U(t)‖L(E) 6 Meωt for all t > 0.

Let A(t) be a generator of C0-semigroup in E for all t ∈ [0, T ]. The following definition
and the theorems are in agreement with [13].

Definition 1 (see [13], p. 93). A family of linear operators A(t) is called stable on [0, T ]
if there exist real numbers M > 1 and ω ∈ R such that∥∥∥ ∏

k=n↘1

(
A(tk)− λ

)−1
∥∥∥
L(E)

≡
∥∥∥(A(tn)− λ

)−1 · · ·
(
A(t1)− λ

)−1
∥∥∥
L(E)

6
M

(λ− ω)n

for all λ > ω, n ∈ N, and 0 6 t1 6 t2 6 . . . 6 tn 6 T .

Remark 1. If A(t) ∈ J (1, ω) for each t ∈ [0, T ] then the family A(t) is clearly stable with
the stability constants M = 1 and ω.

Theorem 1.1 (see [13], p. 94). Assume that A(t) is stable with the stability constants M
and ω. If B(t) ∈ L(E) for each t ∈ [0, T ] and ‖B(t)‖L(E) 6 K < +∞, then A(t) +B(t) is
stable with the stability constants M and ω +MK.

Theorem 1.2 (see [13], p. 102). Suppose that A(t) is stable, its domain D(A(t)) ≡ D is
independent of t and A(t)u for each u ∈ D is strongly continuously differentiable on [0, T ].
Then there exists a unique function U(t, s) ∈ L(E) such that

1) The operator U(t, s) is strongly continuous in t, s, U(s, s) = I and
‖U(t, s)‖L(E) 6 Meω(t−s) (t > s);

2) U(t, s) = U(t, r)U(r, s) (s 6 r 6 t);
3) U(t, s) maps D into D (U(t, s)D ⊂ D), U(t, s)u for each u ∈ D is strongly continuously

differentiable in t, s and

∂

∂t
U(t, s)u = A(t)U(t, s)u,

∂

∂s
U(t, s)u = −U(t, s)A(s)u.

Both sides of these equations are strongly continuous on 0 6 s 6 t 6 T .

Remark 2. If there exists an inverse operator A−1(t) ∈ L(E) for each t ∈ [0, T ] then the
operator V (t, s) := A(t)U(t, s)A−1(s) is bounded and strongly continuous on 0 6 s 6 t 6 T .
This can be easily seen from Property 3 of Theorem 1.2, [10, p. 220, Lemma 1.5], and the
representation V (t, s) =

(
A(t)U(t, s)A−1(0)

)(
A(0)A−1(s)

)
.

Let us consider the initial-value problem

du

dt
= A(t)u+ f(t), u(0) = u0 (1.2)

in a Banach space E. For a fixed t ∈ [0, T ], A(t) is assumed to be a closed operator. The
domain D(A(t)) ≡ D is independent of t and is dense in E.
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Definition 2. We say that a function u is a strong solution to Cauchy problem (1.2) on
the interval [0, T ] if u(t) ∈ D for all t ∈ [0, T ], Au ∈ C([0, T ];E), u ∈ C1([0, T ];E), and u(t)
satisfies (1.2) for all t ∈ [0, T ].

Theorem 1.3 (see [13], p. 105). Let the assumptions of Theorem 1.2 be satisfied. Then
for any u0 ∈ D and f ∈ C1([0, T ];E) Cauchy problem (1.2) has a unique strong solution.
This solution has the following form

u(t) = U(t, 0)u0 +

∫ t

0

U(t, s)f(s) ds, t ∈ [0, T ].

Remark 3. For simplicity of the following notation we write A ∈ SCn
D([0, T ];E) (D ⊂ E,

n ∈ N ∪ {0}) if Au ∈ Cn([0, T ];E) for each u ∈ D. Note that if A ∈ SCE([0, T ];E)
then the Banach-Steinhaus Theorem implies that A(t) ∈ L(E) for all t ∈ [0, T ] and
supt∈[0,T ] ‖A(t)‖L(E) < +∞.

2 First-order integro-differential equation in a Banach space

Let us consider the Cauchy problem for the abstract integro-differential equation

dz

dt
= A(t)z +

∫ t

0

G(t, s)z(s) ds+ f(t), z(0) = z0. (2.1)

For a fixed t ∈ [0, T ], A(t) is assumed to be a closed operator. The domain D(A(t)) ≡ D is
independent of t and is dense in a Banach space E . Let us also make the assumption that
D ⊂ D(G(t, s)) for all t, s ∈ T∆ := {0 6 s 6 t 6 T}.
Theorem 2.1. Let C be a closed operator such that D(C) = D, C−1 ∈ L(E). Let the following
conditions be satisfied:

1) D(A(t)) = D, A(t) ∈ SC1
D([0, T ]; E) and is stable on [0, T ];

2) G(t, s)C−1,
(
G(t, s)C−1

)′
t
∈ SCE(T∆; E).

Then for any z0 ∈ D and f ∈ C1([0, T ]; E) Cauchy problem (2.1) has a unique strong
solution.

Proof. Our proof starts with the observation that one may suppose that A−1(t) ∈ L(E) for
all t ∈ [0, T ]. Otherwise we carry out the substitution z(t) = eatv(t) (a > ω) in (2.1). The
function v satisfies the Cauchy problem

dv

dt
=
(
A(t)− a

)
v +

∫ t

0

e−a(t−s)G(t, s)v(s) ds+ e−atf(t), v(0) = z0,

where
(
A(t)− a

)−1 ∈ L(E) for all t ∈ [0, T ].
Let us suppose that Cauchy problem (2.1) has a strong solution z(t). It follows that

z(t) = U(t, 0)z0 +

∫ t

0

U(t, s)

[∫ s

0

G(s, τ)z(τ) dτ + f(s)

]
ds

= z0(t) +

∫ t

0

[∫ t

τ

U(t, s)G0(s, τ)Cz(τ) ds
]
dτ, (2.2)

z0(t) := U(t, 0)z0+

∫ t

0

U(t, s)f(s) ds, G0(s, τ) := G(s, τ)C−1. (2.3)
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We transform the inner integral in (2.2). By the assumption, z(τ) ∈ D = D(C). It follows
that there exists the partial derivative (see Theorem 1.2, Property 3)

∂

∂s

[
− U(t, s)A−1(s)G0(s, τ)Cz(τ)

]
= U(t, s)G0(s, τ)Cz(τ)+

+ U(t, s)A−1(s)
[
A′(s)A−1(s)G0(s, τ)Cz(τ)−

∂

∂s
G0(s, τ)Cz(τ)

]
, (2.4)

which is strongly continuous in s on [τ, t]. Here we use the fact that if A(s)z for each z ∈ D
is strongly continuously differentiable in s and A−1(s) ∈ L(E) for all s, then the operator
A′(s)A−1(s) is strongly continuous in s (see [10, p. 220, Lemma 1.5]).

Define V(t, s) := A(t)U(t, s)A−1(s). Integrating (2.4) with respect to s leads to∫ t

τ

U(t, s)G(s, τ)z(τ) ds ≡
∫ t

τ

U(t, s)G0(s, τ)Cz(τ) ds

= A−1(t)
{
− G0(t, τ)Cz(τ) + V(t, τ)G0(τ, τ)Cz(τ)

−
∫ t

τ

V(t, s)
[
A′(s)A−1(s)G0(s, τ)Cz(τ)−

∂

∂s
G0(s, τ)Cz(τ)

]
ds
}
. (2.5)

From (2.2) and (2.5) we conclude that

z(t) = z0(t) +

∫ t

0

A−1(t)R(t, τ)Cz(τ) dτ, (2.6)

R(t, τ) := −G0(t, τ) + V(t, τ)G0(τ, τ)−

−
∫ t

τ

V(t, s)
[
A′(s)A−1(s)G0(s, τ)−

∂

∂s
G0(s, τ)

]
· ds. (2.7)

Here z0 (see (2.3)) is a strong solution to Cauchy problem (2.1) without integral term.
Therefore z0 ∈ C1([0, T ]; E), Az0 ∈ C([0, T ]; E) (see Theorem 1.3). By the assumptions of
this theorem and Remark 2, the operator R(t, s) is strongly continuous on T∆.

From the above it follows that a strong solution to Cauchy problem (2.1) is a solution of
Volterra integral equation (2.6). Let us show that equation (2.6) has a unique solution and
this solution is a strong solution to Cauchy problem (2.1).

We define E(C) to be D(C) endowed with the norm ‖z‖E(C) := ‖Cz‖. We conclude
from (2.7) and [10, p 220, Lemma 1.5] that the function

A−1(t)R(t, s)Cz = C−1
(
CA−1(0)

)(
A(0)A−1(t)

)
R(t, s)Cz

for each z ∈ E(C) is strongly continuous in t, s ∈ T∆. Therefore equation (2.6) is a Volterra
integral equation in the Banach space E(C) and its kernel is strongly continuous.

From Az0 ∈ C([0, T ]; E) we see that z0 ∈ C([0, T ]; E(C)). Hence equation (2.6) has a
unique solution z ∈ C([0, T ]; E(C) = D). Let us show that the function z is a unique strong
solution to Cauchy problem (2.1).

By (2.6), z ∈ C([0, T ]; E(C) = D), and A(t)z0(t) = z′0(t)− f(t) we obtain

A(t)z(t) = z′0(t)− f(t) +

∫ t

0

R(t, τ)Cz(τ) dτ ∈ C([0, T ]; E).
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From R(t, t) ≡ 0, (2.6), and z0 ∈ C1([0, T ]; E) we have

z′(t) = z′0(t) +

∫ t

0

(
R(t, τ) + G0(t, τ)

)
Cz(τ) dτ ∈ C([0, T ]; E).

From the above and (2.3) it follows that the function z is a unique strong solution to
Cauchy problem (2.1). �

Remark 4. If A(t) ≡ A is a generator of a holomorphic semigroup, then it suffices to
assume that f ∈ Cα([0, T ];E) (0 < α 6 1). This notation means that there exists a real
number K > 0 such that

‖f(t)− f(s)‖E 6 K|t− s|α ∀ 0 6 s, t 6 T.

In this case we need to use [4, p. 130, Theorem 1.4] instead of Theorem 1.3.

3 Second-order integro-differential equation

In this section we study complete second-order integro-differential equation (1.1) in a Banach
space or in a Hilbert space. We suppose that this equation has a unique so-called main
operator; it has the narrowest domain compared with the other operators.

3.1 Second-order integro-differential equation in a Banach space.
The main operator acts on a function

Let us consider the Cauchy problem for the integro-differential equation

d2u

dt2
= A(t)

du

dt
+B(t)u+

∫ t

0

G(t, s)u(s) ds+ f(t), u(0) = u0, u′(0) = u1, (3.1)

where B(t) := B2
0(t) +Q0(t). For a fixed t ∈ [0, T ], B0(t) is assumed to be a closed operator.

The domainD(B0(t)) ≡ D is independent of t and is dense in a Banach space E, A(t) ∈ L(E).
The operators Q0(t) and G(t, s) are relatively bounded with respect to the operators B0(t)
and B2

0(t).

Definition 3. We say that a function u is a strong solution to Cauchy problem (3.1)
on the interval [0, T ] if u ∈ C2([0, T ];E), u(t) ∈ D(B2

0(t)), u′(t) ∈ D for all t ∈ [0, T ], B2
0u,

B0u
′ ∈ C([0, T ];E), and u(t) satisfies (3.1) for all t ∈ [0, T ].

Theorem 3.1. Let the following conditions be satisfied:
1) D(B0(t)) = D, ±B0(t) ∈ SC1

D([0, T ];E) and are stable on [0, T ] with the stability con-
stants M±, ω±;

2) Q0B
−1
1 , A, B′1B

−1
1 ∈ SCE([0, T ];E) ∩ SC1

D([0, T ];E), where λ0 > ω+ and
B1(t) := B0(t)− λ0;

3) G(t, s)B−1
1 (s)B−1

1 (0),
(
G(t, s)B−1

1 (s)B−1
1 (0)

)′
t
∈ SCE(T∆;E).

Then for any u0 ∈ D(B2
0(0)), u1 ∈ D, and f ∈ C1([0, T ];E) Cauchy problem (3.1) has a

unique strong solution.
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Proof. Step 1. Fix λ0 > ω+ and rewrite the operator B(t) in the following way

B(t) = B2
0(t) +Q0(t) =

(
B1(t) + 2λ0I + λ2

0B
−1
1 (t) +Q0(t)B

−1
1 (t)

)
B1(t)

=:
(
B1(t) +Q1(t)

)
B1(t), B1(t) := B0(t)− λ0, (3.2)

where B−1
1 (t) ∈ L(E) for all t ∈ [0, T ], Q1 ∈ SCE([0, T ];E) ∩ SC1

D([0, T ];E).
Let us suppose that Cauchy problem (3.1) has a strong solution u (see Definition 3). Set

v(t) := u′(t), w(t) := B1(t)u(t). Definition 3 and the assumptions of the theorem imply that
v, w ∈ C1([0, T ];E). From (3.1), (3.2) we conclude that the functions v and w satisfy the
system of equations

dv

dt
= A(t)v +B1(t)w +Q1(t)w +

∫ t

0

G(t, s)B−1
1 (s)w(s) ds+ f(t),

dw

dt
= B1(t)v +B′1(t)B

−1
1 (t)w, v(0) = u1, w(0) = B1(0)u

0.

(3.3)

We rewrite system of equations (3.3) as the following Cauchy problem

dz

dt
= B(t)z +Q(t)z +

∫ t

0

G(t, s)z(s) ds+ F(t), z(0) = z0 (3.4)

in the Banach space E := E × E = {z = (v;w)τ | v, w ∈ E} (the symbol τ means the trans-
position operation). The following notation is used in (3.4):

B(t) :=

(
0 B1(t)

B1(t) 0

)
, D(B(t)) = D ×D, D(B(t)) = E ,

Q(t) :=

(
A(t) Q1(t)

0 B′1(t)B
−1
1 (t)

)
, Q(t) ∈ L(E),

G(t, s) :=

(
0 G(t, s)B−1

1 (s)
0 0

)
, D(G(t, s)) = E ×D ⊃ D(B(t)),

F(t) := (f(t); 0)τ , z0 := (u1;B1(0)u
0)τ .

The proof of the theorem is based on applying Theorem 2.1 to Cauchy problem (3.4).
Step 2. Let us prove that the family of operators B(t) is stable on [0, T ]. Note first that

the following factorization of the operator B(t) takes place:

B(t) = T ·
(
B1(t) 0

0 −B1(t)

)
· T −1, T :=

1√
2

(
I I
I −I

)
= T −1. (3.5)

From factorization (3.5) we see that the densely defined operator B(t) is closed and∥∥∥ ∏
k=n↘1

(
B(tk)− λ

)−1
∥∥∥
L(E)

=
∥∥∥T · diag

( ∏
k=n↘1

(
B1(tk)− λ

)−1
,
∏

k=n↘1

(
−B1(tk)− λ

)−1
)
· T −1

∥∥∥
L(E)

6 ‖T ‖2
L(E) max

{∥∥∥ ∏
k=n↘1

(
B0(tk)− (λ+ λ0)

)−1
∥∥∥
L(E)

,
∥∥∥ ∏
k=n↘1

(
−B0(tk)− (λ− λ0)

)−1
∥∥∥
L(E)

}
6 ‖T ‖2

L(E) max
{ M+

(λ+ λ0 − ω+)n
,

M−
(λ− λ0 − ω−)n

}
6
‖T ‖2

L(E) max
{
M+,M−

}
(λ− ω0)n



Abstract linear Volterra second-order integro-differential equations 81

for all λ > ω0 := max{ω+ − λ0, ω− + λ0}, n ∈ N, and 0 6 t1 6 t2 6 . . . 6 tn 6 T . Hence B(t)
is stable on [0, T ] (see Definition 1).

Step 3. The assumptions of the theorem imply that Q(t) ∈ L(E), ‖Q(t)‖L(E) 6 K < +∞
for all t ∈ [0, T ], where K > 0 is independent of t. By Theorem 1.1, the family of operators
B(t) +Q(t) is stable on [0, T ]. Moreover, it follows that B +Q ∈ SC1

D×D([0, T ]; E).
Let C := diag

(
B1(0), B1(0)

)
, D(C) = D ×D, then C−1 ∈ L(E). The assumptions of the

theorem imply that G(t, s)C−1,
(
G(t, s)C−1

)′
t
∈ SCE(T∆; E).

The assumptions on the initial conditions and the function f imply also that

z0 = (u1;B1(0)u0)τ ∈ D ×D = D(B(t) +Q(t)), F(t) = (f(t); 0)τ ∈ C1([0, T ]; E).

By Theorem 2.1, Cauchy problem (3.4) has a unique strong solution. In other
words, there exists a function z such that z ∈ C1([0, T ]; E), z(t) ∈ D ×D for all t ∈ [0, T ],
(B +Q)z ∈ C([0, T ]; E), and z(t) satisfies (3.4) for all t ∈ [0, T ].

Step 4. Let z(t) = (v(t);w(t))τ be the unique strong solution to Cauchy problem (3.4).
Define u(t) := B−1

1 (t)w(t).
From w(t) ∈ D for all t ∈ [0, T ], B1w ∈ C([0, T ];E) it follows that u(t) ∈ D(B2

1(t)) for
all t ∈ [0, T ], B2

1u ∈ C([0, T ];E).
The second equation in system (3.3) implies that

u′(t) = −B−1
1 (t)B′1(t)B

−1
1 (t)w(t) +B−1

1 (t)w′(t) =

=B−1
1 (t)

(
−B′1(t)B

−1
1 (t)w(t) + w′(t)

)
= v(t) ∈ C1([0, T ];E).

Hence u ∈ C2([0, T ];E) and u′(t) ∈ D for all t ∈ [0, T ], B1u
′ ∈ C([0, T ];E).

The first equation in system (3.3) and (3.2) imply that

u′′(t) = v′(t) = A(t)u′(t) +
(
B1(t) +Q1(t)

)
B1(t)u(t) +

∫ t

0

G(t, s)u(s) ds+ f(t)

= A(t)
du

dt
+
(
B2

0(t) +Q0(t)
)
u+

∫ t

0

G(t, s)u(s) ds+ f(t),

i.e. the function u satisfies equation (3.1). It is easily seen that the function u satisfies also
the initial conditions in (3.1). By Definition 3, the function u is a strong solution to Cauchy
problem (3.1). �

3.2 Second-order integro-differential equation in a Hilbert space.
The main operator acts on a function

Let us consider the Cauchy problem for the integro-differential equation

d2u

dt2
= A(t)

du

dt
+B(t)u+

∫ t

0

G(t, s)u(s) ds+ f(t), u(0) = u0, u′(0) = u1, (3.6)

where B(t) := B2
0(t) +Q0(t). For a fixed t ∈ [0, T ], B0(t) is assumed to be a closed operator.

The domain D(B0(t)) ≡ D is independent of t and is dense in a Hilbert space H. The
operators Q0(t), A(t), and G(t, s) are relatively bounded with respect to the operators B0(t)
and B2

0(t).
Function u is a strong solution to Cauchy problem (3.6) if it satisfies Definition 3.
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Theorem 3.2. Let the following conditions be satisfied:
1) D(B0(t)) = D, ±B0(t) ∈ J (1, ω±) for all t ∈ [0, T ], B0 ∈ SC1

D([0, T ];H);
2) Q0B

−1
1 , B′1B

−1
1 ∈ SCH([0, T ];H) ∩ SC1

D([0, T ];H), where λ0 > ω+ and
B1(t) := B0(t)− λ0;

3) A(t) ∈ J (1, ωA) for all t ∈ [0, T ], A ∈ SC1
D([0, T ];H);

4) G(t, s)B−1
1 (s)B−1

1 (0),
(
G(t, s)B−1

1 (s)B−1
1 (0)

)′
t
∈ SCH(T∆;H).

Assume that the operators A(t) and B0(t) satisfy one of the following conditions:
5a) ∃ b > 0 : ‖A(t)u‖H 6 ‖B0(t)u‖H + b‖u‖H ∀u ∈ D, t ∈ [0, T ];
5b) A(t)B−1

1 (t) ∈ S∞(H);
5c) B0(t) = −B∗0(t), B−1

0 (t) ∈ L(H) for all t ∈ [0, T ], A(t)B−1
0 (t) ∈ L(H).

Then for any u0 ∈ D(B2
0(0)), u1 ∈ D, and f ∈ C1([0, T ];H) Cauchy problem (3.6) has a

unique strong solution.

Proof. Step 1. Let us suppose that Cauchy problem (3.6) has a strong solution u (see
Definition 3). Set v(t) := u′(t), w(t) := B1(t)u(t). Definition 3 and the assumptions of the
theorem imply that v, w ∈ C1([0, T ];E).As in the proof of Theorem 3.1, equation (3.6) and
formulae (3.2) give that the functions v and w satisfy system of equations (3.3) (we set
λ0 = 0 in (3.2) in the case 5c).

Let us consider the cases 5a и 5b. Rewrite system (3.3) as a Cauchy problem

dz

dt
= B(t)z +A(t)z +Q(t)z +

∫ t

0

G(t, s)z(s) ds+ F(t), z(0) = z0 (3.7)

in the Hilbert space H := H ⊕H = {z = (v;w)τ | v, w ∈ H}.
The following notation is used in (3.7):

B(t) :=

(
0 B1(t)

B1(t) 0

)
, D(B(t)) = D ⊕D, D(B(t)) = H,

A(t) :=

(
A(t) 0

0 0

)
, D(A(t)) = D(A(t))⊕H ⊃ D(B(t)), D(A(t)) = H,

Q(t) :=

(
0 Q1(t)
0 B′1(t)B

−1
1 (t)

)
, Q(t) ∈ L(H),

G(t, s) :=

(
0 G(t, s)B−1

1 (s)
0 0

)
, D(G(t, s)) = H ⊕D ⊃ D(B(t)),

F(t) := (f(t); 0)τ , z0 := (u1;B1(0)u
0)τ .

The proof of the theorem is based on applying Theorem 2.1 to Cauchy problem (3.7).
Step 2. Let us prove that

B(t) ∈ J (1, ω0), ω0 := max{ω+ − λ0, ω− + λ0}, A(t) ∈ J (1,max{0, ωA}) (3.8)

for all t ∈ [0, T ].
From factorization (3.5), T = T −1 = T ∗, ‖T ‖L(H) = 1 we see that the densely defined

operator B(t) is closed and∥∥(B(t)− λ
)−1∥∥

L(H)
=
∥∥T · diag

((
B1(t)− λ

)−1
,
(
−B1(t)− λ

)−1
)
· T −1

∥∥
L(H)

6 max
{

(λ+ λ0 − ω+)−1, (λ− λ0 − ω−)−1
}

6 (λ− ω0)
−1
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for all λ > ω0 and t ∈ [0, T ]. Hence B(t) ∈ J (1, ω0) for all t ∈ [0, T ].
Also the densely defined operator A(t) is closed and

∥∥(A(t)− λ
)−1∥∥

L(H)
=
∥∥diag

((
A(t)− λ

)−1
, λ−1I

)∥∥
L(H)

6 max
{

(λ− ωA)−1, λ−1
}

6 (λ−max{0, ωA})−1

for all λ > max{0, ωA}, t ∈ [0, T ]. Hence A(t) ∈ J (1,max{0, ωA}) for all t ∈ [0, T ].
Step 3. From (3.8) we conclude that B(t)− ω0, A(t)−max{0, ωA} ∈ J (1, 0). Let us

consider the case 5a. For each z = (v;w)τ ∈ D(B(t)) = D ⊕D we have

‖(A(t)−max{0, ωA})z‖H 6 ‖A(t)v‖H + max{0, ωA}‖z‖H
6 ‖B0(t)v‖H + b‖v‖H + max{0, ωA}‖z‖H

6 ‖B1(t)v‖H + (b+ |λ0|)‖v‖H + max{0, ωA}‖z‖H
6 ‖B(t)z‖H + (b+ |λ0|+ max{0, ωA})‖z‖H

6 ‖(B(t)− ω0)z‖H + (b+ |λ0|+ |ω0|+ max{0, ωA})‖z‖H

for all t ∈ [0, T ]. Hence the closure (B(t)− ω0) + (A(t)−max{0, ωA}) is a generator of a
contractive C0-semigroup (see [4, p. 65, Theorem 6.2]).

Let us prove that the operator (B(t)− ω0) + (A(t)−max{0, ωA}) with the domain
D ⊕D is closed. It is sufficient to show that the operator B(t) +A(t) with the domain
D ⊕D is closed. From 5a we obtain A(t)B−1

1 (t) ∈ L(H) for all t ∈ [0, T ]. Hence

B(t) +A(t) =

(
A(t)B−1

1 (t) −I
I 0

)(
B1(t) 0

0 −B1(t)

)
, (3.9)(

A(t)B−1
1 (t) −I
I 0

)−1

=

(
0 I
−I A(t)B−1

1 (t)

)
∈ L(H).

From this it follows that the operator B(t) +A(t) with the domain D ⊕D is closed for all
t ∈ [0, T ]. Hence B(t) +A(t) ∈ J (1, ω0 + max{0, ωA}). Remark 1 implies that the family of
operators B(t) +A(t) is stable on [0, T ].

The assumptions of the theorem imply that Q(t) ∈ L(H), ‖Q(t)‖L(H) 6 K < +∞ for all
t ∈ [0, T ]. By Theorem 1.1, the family of operators B(t) +A(t) +Q(t) is stable on [0, T ].
Moreover, it follows that B +A+Q ∈ SC1

D⊕D([0, T ];H).
Let C := diag

(
B1(0), B1(0)

)
, D(C) = D ⊕D, then C−1 ∈ L(H). The assumptions of the

theorem imply that G(t, s)C−1,
(
G(t, s)C−1

)′
t
∈ SCH(T∆;H).

The assumptions on the initial conditions and the function f imply also that

z0 = (u1;B1(0)u0)τ ∈ D ⊕D = D(B(t) +A(t) +Q(t)), F(t) = (f(t); 0)τ ∈ C1([0, T ];H).

By Theorem 2.1, Cauchy problem (3.7) has a unique strong solution. In other
words, there exists a function z such that z ∈ C1([0, T ];H), z(t) ∈ D ⊕D for all t ∈ [0, T ],(
B +A+Q

)
z ∈ C([0, T ];H), and z(t) satisfies (3.7) for all t ∈ [0, T ].

Analysis similar to that in the proof of Theorem 3.1 (Step 4) completes the proof of
Theorem 3.2 in the case 5a.
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Step 4. Let us consider the case 5b. From [3, p. 179, Lemma 2.16] it follows that the
relative bound of the operator A(t), with respect to the operator B1(t), is equal to 0. This
means that for any fix ε > 0 there exists a constant bε > 0 such that

‖A(t)u‖H 6 ε‖B1(t)u‖H + bε‖u‖H
for all u ∈ D and t ∈ [0, T ].

Hence for each z = (v;w)τ ∈ D(B(t)) = D ⊕D we have

‖(A(t)−max{0, ωA})z‖H 6 ‖A(t)v‖H + max{0, ωA}‖z‖H
6 ε‖B1(t)v‖H + bε‖v‖H + max{0, ωA}‖z‖H 6 ε‖B(t)z‖H + (bε + max{0, ωA})‖z‖H

6 ε‖(B(t)− ω0)z‖H + (bε + ε|ω0|+ max{0, ωA})‖z‖H
for all t ∈ [0, T ].

Because we can choose ε < 1, from the above it follows that (B(t) − ω0) + (A(t) −
max{0, ωA}) is a generator of a contractive C0-semigroup (see [3, p. 173, Theorem 2.7]).
Hence B(t) +A(t) ∈ J (1, ω0 + max{0, ωA}). Remark 1 implies that the family of operators
B(t) +A(t) is stable on [0, T ].

The rest of the proof in the case 5b runs as in Step 3.
Step 5. Let us consider the case 5c. Rewrite system (3.3) as a Cauchy problem

dz

dt
= C(t)z +Q(t)z +

∫ t

0

G(t, s)z(s) ds+ F(t), z(0) = z0

in the Hilbert space H, where we use the notations

C(t) :=

(
A(t) B0(t)
B0(t) 0

)
, D(C(t)) = D ⊕D, D(C(t)) = H,

Q(t) :=

(
0 Q0(t)B

−1
0 (t)

0 B′0(t)B
−1
0 (t)

)
, Q(t) ∈ L(H),

G(t, s) :=

(
0 G(t, s)B−1

1 (s)
0 0

)
, D(G(t, s)) = H ⊕D ⊃ D(C(t)),

F(t) := (f(t); 0)τ , z0 := (u1;B0(0)u
0)τ .

If we show that C(t) ∈ J (1,max{0, ωA}) for all t ∈ [0, T ] then the rest of the proof will
run as in Step 3. Let us prove this fact.

From (3.9) (under the condition λ0 = 0) it follows that densely defined operator C(t) is
closed. For each z = (v;w)τ ∈ D(C(t)) = D ⊕D we have

Re
(
C(t)z, z

)
H = Re

(
A(t)v, v

)
H

6 ωA‖v‖2
H 6 max{0, ωA}‖z‖2

H

for all t ∈ [0, T ]. Hence C(t)−max{0, ωA} is dissipative. To prove the operator
C(t)−max{0, ωA} is maximal dissipative we need to show that C(t) has a resolvent for
some λ > max{0, ωA} and for all t ∈ [0, T ].

Let λ > max{0, ωA}. We have

‖
(
I + λB−1

0 (t)(A(t)− λ)B−1
0 (t)

)
w1‖H‖w1‖H

> Re
((
I + λB−1

0 (t)(A(t)− λ)B−1
0 (t)

)
w1, w1

)
H

= ‖w1‖2
H − λRe

((
A(t)B−1

0 (t)w1, B
−1
0 (t)w1

)
H

+ λ2‖B−1
0 (t)w1‖2

H

> ‖w1‖2
H + λ(λ− ωA)‖B−1

0 (t)w1‖2
H > ‖w1‖2

H ,
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‖
(
I + λB−1

0 (t)(A(t)− λ)B−1
0 (t)

)∗
w2‖H‖w2‖H

> Re
((
I + λB−1

0 (t)(A(t)− λ)B−1
0 (t)

)∗
w2, w2

)
H

= ‖w2‖2
H + λRe

((
(A(t)− λ)B−1

0 (t)
)∗(

B−1
0 (t)

)∗
w2, w2

)
H

= ‖w2‖2
H − λRe

(
B−1

0 (t)w2, (A(t)− λ)B−1
0 (t)w2

)
H

= ‖w2‖2
H − λRe

((
A(t)B−1

0 (t)w2, B
−1
0 (t)w2

)
H

+ λ2‖B−1
0 (t)w2‖2

H

> ‖w2‖2
H + λ(λ− ωA)‖B−1

0 (t)w2‖2
H > ‖w2‖2

H

for all w1, w2 ∈ H and t ∈ [0, T ]. Here we used the property (B−1
0 (t))∗ = (B∗0(t))

−1 (see [8,
p. 214, Theorem 5.30]). From the above it follows that there exists an operator

R(t) :=
(
I + λB−1

0 (t)(A(t)− λ)B−1
0 (t)

)−1 ∈ L(H)

for all t ∈ [0, T ].
Let λ > max{0, ωA} and t ∈ [0, T ]. Define

Nλ(t) :=

(
λB−1

0 (t)R(t)B−1
0 (t) B−1

0 (t)R(t)
R(t)B−1

0 (t) −R(t)B−1
0 (t)(A(t)− λ)B−1

0 (t)

)
∈ L(H).

Let us show that R(t)D ⊂ D. Let w1 ∈ D and R(t)w1 = w2. Then w1 = R−1(t)w2 =
w2 + λB−1

0 (t)(A(t)− λ)B−1
0 (t)w2. Hence w2 = w1 − λB−1

0 (t)(A(t)− λ)B−1
0 (t)w2 ∈ D. From

the above it follows that Nλ(t)(D ⊕D) ⊂ (D ⊕D).
Direct calculations show that(

C(t)− λ
)
Nλ(t)z = z ∀ z = (v;w)τ ∈ H = H ⊕H,

Nλ(t)
(
C(t)− λ

)
z = z ∀ z = (v;w)τ ∈ D(C(t)) = D ⊕D.

Consequently, C(t) has a resolvent
(
C(t)− λ

)−1
= Nλ(t) for all λ > max{0, ωA} and

t ∈ [0, T ]. Hence C(t) ∈ J (1,max{0, ωA}) for all t ∈ [0, T ]. �

3.3 Second-order integro-differential equation in a Banach space.
The main operator acts on the derivative of a function

Let us consider the Cauchy problem for the integro-differential equation

d2u

dt2
= A(t)

du

dt
+B(t)u+

∫ t

0

G(t, s)u(s) ds+ f(t), u(0) = u0, u′(0) = u1 (3.10)

in a Banach space E. For a fixed t ∈ [0, T ], A(t) is assumed to be a closed operator. The
domain D(A(t)) ≡ D is independent of t and is dense in E. The operators B(t) and G(t, s)
are relatively bounded with respect to the operator A(t).

Definition 4. We say that a function u is a strong solution to Cauchy problem (3.10)
on the interval [0, T ] if u ∈ C2([0, T ];E), u(t) ∈ D(B(t)), u′(t) ∈ D for all t ∈ [0, T ], Bu,
Au′ ∈ C([0, T ];E), and u(t) satisfies (3.10) for all t ∈ [0, T ].
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Theorem 3.3. Let the following conditions be satisfied:
1) D(A(t)) = D, A(t) ∈ SC1

D([0, T ];E) and is stable on [0, T ] with the constants MA and
ωA;

2) BA−1
0 (0) ∈ SC1

E([0, T ];E), where λ0 > ωA and A0(t) := A(t)− λ0 ;
3) G(t, s)A−1

0 (0),
(
G(t, s)A−1

0 (0)
)′
t
∈ SCE(T∆;E).

Then for any u0, u1 ∈ D, and f ∈ C1([0, T ];E) Cauchy problem (3.10) has a unique strong
solution.

Proof. Step 1. Let us suppose that Cauchy problem (3.10) has a strong solution u (see
Definition 4). Set v(t) := u′(t), w(t) := A0(0)u(t). Definition 4 and the assumptions of the
theorem imply that v, w ∈ C1([0, T ];E). From (3.10) we conclude that the functions v and
w satisfy the system of equations

dv

dt
= A0(t)v + λ0v +B(t)A−1

0 (0)w +

∫ t

0

G(t, s)A−1
0 (0)w(s) ds+ f(t),

dw

dt
= A0(0)v, v(0) = u1, w(0) = A0(0)u

0.

(3.11)

We rewrite system of equations (3.11) as the following Cauchy problem

dz

dt
= A(t)z +Q(t)z +

∫ t

0

G(t, s)z(s) ds+ F(t), z(0) = z0 (3.12)

in the Banach space E := E × E = {z = (v;w)τ | v, w ∈ E}. The following notation is used
in (3.12):

A(t) :=

(
A0(t) 0
A0(0) 0

)
, D(A(t)) = D × E, D(A(t)) = E ,

Q(t) :=

(
λ0 B(t)A−1

0 (0)
0 0

)
, Q(t) ∈ L(E),

G(t, s) :=

(
0 G(t, s)A−1

0 (0)
0 0

)
, G(t, s) ∈ L(E),

F(t) := (f(t); 0)τ , z0 := (u1;A0(0)u
0)τ .

The proof of the theorem is based on applying Theorem 2.1 to Cauchy problem (3.12).
Step 2. Let us proof that the family of operators A(t) is stable on [0, T ]. Note that the

following factorization of the operator A(t) takes place:

A(t) = N (t) ·
(
A0(t) 0

0 0

)
· N−1(t), N (t) :=

(
I 0

A0(0)A
−1
0 (t) I

)
∈ L(E). (3.13)

Factorization (3.13) and direct calculations show that∏
k=n↘1

(
A(tk)− λ

)−1
= N (tn) ·

(
Rλ 0
Sλ (−1)nλ−n

)
· N−1(t1), (3.14)

Rλ :=
∏

k=n↘1

(
A0(tk)− λ

)−1
, Sλ :=

n∑
l=2

(−1)n−l

λn−l+1
Cl

∏
k=l−1↘1

(
A0(tk)− λ

)−1
,

Cl := A0(0)A−1
0 (tl)− A0(0)A

−1
0 (tl−1) (l = 2, n)
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for all 0 6 t1 6 t2 6 . . . 6 tn 6 T .
By the assumption, A0(t)u for each u ∈ D is strongly continuously differentiable on [0, T ].

Moreover, it follows that A−1
0 (t) ∈ L(E) for all t ∈ [0, T ]. Consequently (see [10, p. 220,

Lemma 1.5]), A0(s)A
−1
0 (t) is norm-continuous in t, s on T∆. Moreover, there exist constants

L, L0 > 0 such that

‖A0(0)A−1
0 (t)− A0(0)A

−1
0 (s)‖L(E) 6 L|t− s| ∀ t, s ∈ [0, T ],

‖A0(0)A−1
0 (t)‖L(E) 6 L0 ∀ t ∈ [0, T ].

(3.15)

Note that the family of operators A0(t) is stable on [0, T ] with the stability constants
MA and ωA − λ0. From this and (3.15) we obtain

‖N (t)‖L(E), ‖N−1(t)‖L(E) 6 max{
√

1 + 2L2
0,
√

2} ∀ t ∈ [0, T ],

‖Rλ‖L(E) =
∥∥ ∏
k=n↘1

(
A0(tk)− λ

)−1∥∥
L(E)

6
MA

(λ− (ωA − λ0))n
∀ λ > 0 (λ0 > ωA),

‖Sλ‖L(E) =
∥∥ n∑
l=2

(−1)n−l

λn−l+1
Cl

∏
k=l−1↘1

(
A0(tk)− λ

)−1∥∥
L(E)

6
n∑
l=2

L(tl − tl−1)MA

λn−l+1(λ− (ωA − λ0))l−1
6
LMA

λn

n∑
l=2

(tl − tl−1) 6
LMAT

λn
∀ λ > 0.

From this and (3.14) it follows that∥∥ ∏
k=n↘1

(
A(tk)− λ

)−1∥∥
L(E)

6 max{1 + 2L2
0, 2} ·max

{√
‖Rλ‖2

L(E) + 2‖Sλ‖2
L(E),

√
2λ−n

}
6 max{1 + 2L2

0, 2} ·max
{√ M2

A

(λ− (ωA − λ0))2n
+

2L2M2
AT

2

λ2n
,

√
2

λn

}
6

max{1 + 2L2
0, 2} ·max

{
MA

√
1 + 2L2T 2,

√
2
}

λn

for all λ > 0, n ∈ N, and 0 6 t1 6 t2 6 . . . 6 tn 6 T . Hence the family of operators A(t) is
stable on [0, T ] (see Definition 1).

Step 3. The assumptions of the theorem imply that Q(t) ∈ L(E), ‖Q(t)‖L(E) 6 K < +∞
for all t ∈ [0, T ]. By Theorem 1.1 the family of operators A(t) +Q(t) is stable on [0, T ].
Moreover, it follows that A+Q ∈ SC1

D×E([0, T ]; E).
Let C := diag

(
A0(0), I

)
, D(C) = D × E, then C−1 ∈ L(E). The assumptions of the theo-

rem imply that G(t, s)C−1,
(
G(t, s)C−1

)′
t
∈ SCE(T∆; E).

The assumptions on the initial conditions and the function f imply that

z0 = (u1;A0(0)u0)τ ∈ D × E = D(A(t) +Q(t)), F(t) = (f(t); 0)τ ∈ C1([0, T ]; E).

By Theorem 2.1, Cauchy problem (3.12) has a unique strong solution. In other
words, there exists a function z such that z ∈ C1([0, T ]; E), z(t) ∈ D × E for all t ∈ [0, T ],(
A+Q

)
z ∈ C([0, T ]; E), and z(t) satisfies (3.12) for all t ∈ [0, T ].
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Step 4. Let z(t) = (v(t);w(t))τ be the unique strong solution of Cauchy problem (3.12).
Define u(t) := A−1

0 (0)w(t).
From w ∈ C([0, T ];E) it follows that u(t) ∈ D = D(A0(t)) ⊂ D(B(t)) for all t ∈ [0, T ],

Bu = BA−1
0 (0)w ∈ C([0, T ];E).

The second equation in system (3.11) implies that

u′(t) = A−1
0 (t)w′(t) = v(t) ∈ C1([0, T ];E).

Hence u ∈ C2([0, T ];E) and u′(t) ∈ D for all t ∈ [0, T ], Au′ =
(
A0 + λ0

)
u′ ∈ C([0, T ];E).

The first equation in system (3.11) implies that

u′′(t) = v′(t) = A(t)u′(t) +B(t)u(t) +

∫ t

0

G(t, s)u(s) ds+ f(t),

i.e. the function u satisfies equation (3.10). It can be easily seen that the function u satisfies
also the initial condition in (3.10). By Definition 4, the function u is a strong solution to
Cauchy problem (3.10). �

3.4 Second-order integro-differential equation in a Banach space.
Parabolic case

Let us consider the Cauchy problem for the integro-differential equation

d2u

dt2
= A

du

dt
+B2

0u+

∫ t

0

G(t, s)u(s) ds+ f(t), u(0) = u0, u′(0) = u1 (3.16)

in a Banach space E. A is assumed to be a closed and densely defined operator,
D(A) ⊂ D(B0), A−1, B−1

0 ∈ L(E). The operator G(t, s) is relatively bounded with respect
to the operator B0.

Definition 5. We say that a function u is a strong solution to Cauchy problem (3.16) on
the interval [0, T ] if u ∈ C2([0, T ];E), u(t) ∈ D(B2

0), u′(t) ∈ D(A) for all t ∈ [0, T ], B2
0u,

Au′ ∈ C([0, T ];E), and u(t) satisfies (3.16) for all t ∈ [0, T ].

Assume that the operator A−1B0 is closable and C := A−1B0 ∈ L(E). Let us consider
the Cauchy problem

d2u

dt2
= A

(du
dt

+ CB0u
)

+

∫ t

0

G(t, s)u(s) ds+ f(t), u(0) = u0, u′(0) = u1. (3.17)

Definition 6. We say that a function u is a strong solution to Cauchy problem (3.17) on
the interval [0, T ] if u ∈ C2([0, T ];E), u(t), u′(t) ∈ D(B0), u′(t) + CB0u(t) ∈ D(A) for all
t ∈ [0, T ], B0u, B0u

′, A
(
u′ + CB0u

)
∈ C([0, T ];E), and u(t) satisfies (3.17) for all t ∈ [0, T ].

Remark 5. If the function u is a strong solution to Cauchy problem (3.16) (see Definition 5),
then u is a strong solution to Cauchy problem (3.17) (see Definition 6). The inverse is not
true.

However, if u is a strong solution to Cauchy problem (3.17) and u(t) ∈ D(B2
0) for all

t ∈ [0, T ], B2
0u ∈ C([0, T ];E), then u′(t) ∈ D(A), Au′ ∈ C([0, T ];E), and u is a strong solu-

tion to Cauchy problem (3.16).
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Theorem 3.4. Let the following conditions be satisfied:
1) A, B0 are closed operators, A−1, B−1

0 ∈ L(E);
2) B0A

−1, C = A−1B0 ∈ S∞(E);
3) A,−B0C are generators of holomorphic semigroups;
4) G(t, s)B−1

0 ,
(
G(t, s)B−1

0

)′
t
∈ SCE(T∆;E).

Then for any u0, u1 ∈ D(B0), u1 + CB0u
0 ∈ D(A) (in particular u0 ∈ D(B2

0),
u1 ∈ D(A)), and f ∈ Cα([0, T ];E) (0 < α 6 1) (see Remark 4) Cauchy problem (3.17) has
a unique strong solution.

Proof. Step 1. Let us suppose that Cauchy problem (3.17) has a strong solution u (see
Definition 6). Set v(t) := u′(t), w(t) := B0u(t). Definition 6 implies that v, w ∈ C1([0, T ];E).
From (3.17) we conclude that the functions v and w satisfy the system of equations

dv

dt
= A(v + Cw) +

∫ t

0

G(t, s)B−1
0 w(s) ds+ f(t),

dw

dt
= B0v, v(0) = u1, w(0) = B0u

0.

(3.18)

We rewrite system of equations (3.18) as the following Cauchy problem

dz

dt
= Az +

∫ t

0

G(t, s)z(s) ds+ F(t), z(0) = z0 (3.19)

in the Banach space E := E × E = {z = (v;w)τ | v, w ∈ E}. The following notation is used
in (3.19):

Az :=

(
A(v + Cw)

B0v

)
, D(A) := {z = (v;w)τ | v ∈ D(B0), v + Cw ∈ D(A)},

G(t, s) :=

(
0 G(t, s)B−1

0

0 0

)
, G(t, s) ∈ L(E), F(t) := (f(t); 0)τ , z0 := (u1;B0u

0)τ .

Step 2. Let us first show that A is a densely defined and closed operator. Set

A0 := diag
(
A,−B0C

)
, D(A0) = D(A)×D(−B0C). (3.20)

By the assumption, A, −B0C are the generators of holomorphic semigroups in E. Hence
A0 is a generator of a holomorphic semigroup in E . Consequently, A0 is a densely defined
and closed operator.

Define

B := (I + S1)A0(I + S2), S1 :=

(
0 0

B0A
−1 0

)
, S2 :=

(
0 C
0 0

)
. (3.21)

Since A0 is a densely defined operator and (I + S2)
−1 = (I − S2) ∈ L(E), the operator

B is densely defined. Since (I + S1), (I + S1)
−1 = (I − S1) ∈ L(E) and the operator A0 is

closed, the operator B with the domain

D(B) = {z = (v;w)τ | (I + S2)z ∈ D(A0)} = {v + Cw ∈ D(A), w ∈ D(−B0C)} =

= {v + Cw ∈ D(A) ⊂ D(B0), Cw ∈ D(B0)} = {v ∈ D(B0), v + Cw ∈ D(A)} = D(A)
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is closed. It is easy to check also that Bz = Az for all z ∈ D(B) = D(A).
From the above it follows that the operator A is densely defined, closed and has the

Schur-Frobenius form: A = (I + S1)A0(I + S2).
Step 3. Taking into account (3.20), (3.21) we carry out the substitution

x(t) := (I + S2)z(t) in (3.19). The function x satisfies the Cauchy problem

dx

dt
= (I + S2)(I + S1)A0x+

∫ t

0

(I + S2)G(t, s)(I − S2)x(s) ds+ (I + S2)F(t),

x(0) = (I + S2)z
0. (3.22)

The assumptions of the theorem imply that (I + S2)(I + S1)A0 =: (I + S)A0, where
S ∈ S∞(E). From [3] (see [3, p. 180, Corollary 2.17], see also [2]) we conclude that
(I + S2)(I + S1)A0 is a generator of a holomorphic semigroup in E .

The assumptions on the initial conditions imply that z0 = (u1;B0u
0)τ ∈ D(A). Hence

x(0) = (I + S2)z
0 ∈ D(A0).

By the assumption f ∈ Cα([0, T ];E) (0 < α 6 1). From this and the inequality

‖(I + S2)F(t)− (I + S2)F(s))‖E 6 ‖I + S2‖L(E)‖f(t)− f(s)‖E, 0 6 s, t 6 T,

it follows that (I + S2)F ∈ Cα([0, T ]; E) (0 < α 6 1).
By Theorem 2.1 (see Remark 4), Cauchy problem (3.22) has a unique strong solution.

In other words, there exists a function x such that x ∈ C1([0, T ]; E), x(t) ∈ D(A0) for all
t ∈ [0, T ], A0x ∈ C([0, T ]; E), and x(t) satisfies (3.22) for all t ∈ [0, T ].

Hence Cauchy problem (3.19) has a unique strong solution. In other words, there exists
a function z such that z ∈ C1([0, T ]; E), z(t) ∈ D(A) for all t ∈ [0, T ], Az ∈ C([0, T ]; E), and
z(t) satisfies (3.19) for all t ∈ [0, T ].

Step 4. Let z(t) = (v(t);w(t))τ be the unique strong solution of Cauchy problem (3.19).
Then we have

v(t) ∈ C1([0, T ];E), v(t) ∈ D(B0), B0v(t) ∈ C([0, T ];E),

w(t) ∈ C1([0, T ];E), v(t) + Cw(t) ∈ D(A), A(v(t) + Cw(t)) ∈ C([0, T ];E).
(3.23)

Define u(t) := B−1
0 w(t). From the above it follows that u(t) ∈ D(B0), B0u =

w ∈ C([0, T ];E). From (3.18) it follows that u′(t) = B−1
0 w′(t) = v(t). From (3.23)

we obtain u ∈ C2([0, T ];E), u′(t) ∈ D(B0), u
′(t) + CB0u(t) ∈ D(A) for all t ∈ [0, T ],

B0u
′, A(u′ + CB0u) ∈ C([0, T ];E). The first equation in (3.18) implies

u′′(t) = v′(t) = A
(
u′(t) + CB0

)
u(t) +

∫ t

0

G(t, s)u(s) ds+ f(t),

i.e. the function u satisfies equation (3.17). It is easily seen that the function u satisfies also
the initial condition in (3.17). By Definition 6, the function u is a strong solution to Cauchy
problem (3.17). �
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