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TYNYSBEK SHARIPOVICH KAL’MENOV

(to the 70th birthday)

On May 5, 2016 was the 70th birthday of Tynysbek Sharipovich
Kal’menov, member of the Editorial Board of the Eurasian Math-
ematical Journal, general director of the Institute of Mathematics
and Mathematical Modeling of the Ministry of Education and Sci-
ence of the Republic of Kazakhstan, laureate of the Lenin Komsomol
Prize of the Kazakh SSR (1978), doctor of physical and mathemat-
ical sciences (1983), professor (1986), honoured worker of science
and technology of the Republic of Kazakhstan (1996), academician
of the National Academy of Sciences (2003), laureate of the State
Prize in the field of science and technology (2013).

T.Sh. Kal’menov was born in the South-Kazakhstan region of
the Kazakh SSR. He graduated from the Novosibirsk State University (1969) and completed
his postgraduate studies there in 1972.

He obtained seminal scientific results in the theory of partial differential equations and
in the spectral theory of differential operators.

For the Lavrentiev-Bitsadze equation T.Sh. Kal’menov proved the criterion of strong
solvability of the Tricomi problem in the Lp-spaces. He described all well-posed boundary
value problems for the wave equation and equations of mixed type within the framework of
the general theory of boundary value problems.

He solved the problem of existence of an eigenvalue of the Tricomi problem for the
Lavrentiev-Bitsadze equation and the general Gellerstedt equation on the basis of the new
extremum principle formulated by him.

T.Sh. Kal’menov proved the completeness of root vectors of main types of Bitsadze-
Samarskii problems for a general elliptic operator. Green’s function of the Dirichlet problem
for the polyharmonic equation was constructed. He established that the spectrum of general
differential operators, generated by regular boundary conditions, is either an empty or an
infinite set. The boundary conditions characterizing the volume Newton potential were
found. A new criterion of well-posedness of the mixed Cauchy problem for the Poisson
equation was found.

On the whole, the results obtained by T.Sh. Kal’menov have laid the groundwork for
new perspective scientific directions in the theory of boundary value problems for hyperbolic
equations, equations of the mixed type, as well as in the spectral theory.

More than 50 candidate of sciences and 9 doctor of sciences dissertations have been
defended under his supervision. He has published more than 120 scientific papers. The list
of his basic publications can be viewed on the web-page

https : //scholar.google.com/citations?user = Zay4fxkAAAAJ&hl = ru&authuser = 1

The Editorial Board of the Eurasian Mathematical Journal congratulates Tynysbek
Sharipovich Kal’menov on the occasion of his 70th birthday and wishes him good health
and new creative achievements!
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Abstract. In this paper we prove sufficent conditions on a map f from the real line to
itself in order that the composite map f ◦ g belongs to a Sobolev Morrey space of real
valued functions on a domain of the n-dimensional space for all functions g in such a space.
Then we prove sufficient conditions on f in order that the composition operator Tf defined
by Tf [g] ≡ f ◦ g for all functions g in the Sobolev Morrey space is continuous, Lipschitz
continuous and differentiable in the Sobolev Morrey space. We confine the attention to
Sobolev Morrey spaces of order up to one.

1 Introduction

In this paper we consider the composition operator in Sobolev Morrey spaces of the first
order. Let Ω be a bounded open subset of Rn with the cone property. Let W 1,λ

p (Ω) be the
Sobolev space of all functions with derivatives up to order 1 in the Morrey space Mλ

p (Ω)
with exponents λ ∈ [0, n/p], p ∈ [1,+∞].

Let Ω1 be a bounded open subset of R. Let W 1,λ
p (Ω,Ω1) denote the set of functions of

W 1,λ
p (Ω) which map Ω to Ω1.
Let C0,1(Ω̄1) denote the space of all Lipschitz continuous functions from Ω̄1 to R. Let r

be a natural number. Let Cr(Ω̄1) denote the space of all r times continuously differentiable
functions from Ω̄1 to R.

Then we prove the following results.

(j) We prove that if f ∈ C0,1(Ω̄1) and if g ∈ W 1,λ
p (Ω) has values in Ω1, then the composite

function f ◦ g belongs to W 1,λ
p (Ω) and the norm of f ◦ g can be estimated in terms of

the norms of f and of g. We note that in the case λ = 0, which corresponds to the
classical Sobolev space such a result is well known (see Marcus and Mizel [13]).

(jj) We exploit an abstract scheme of [11] and prove that if 1 + λ > n/p, then the compo-
sition map T from Cr+1(Ω̄1)×W 1,λ

p (Ω,Ω1) which takes a pair (f, g) to the composite
function f ◦ g is r-times continuously Fréchet differentiable. We note that in the case
λ = 0 the result of the present paper improves a corresponding result of Valent [16] for
the case r = 1.
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(jjj) We prove that if f ∈ C1,1
loc (R) and if 1+λ > n/p, then the map which takes g to f ◦g is

Lipschitz continuous on bounded subsets of W 1,λ
p (Ω). For a related result in the Besov

space setting, we refer to the paper [2] of Bourdaud and the second named author.

We believe that our sufficient conditions on f of (j), (jj), (jjj) are optimal, just as they
have been shown to be optimal in the frame of Sobolev spaces, which corresponds to case
λ = 0 (see Appell and Zabreiko [1, Ch. 9], Runst and Sickel [15, Ch. 5], Bourdaud and the
second named author [2].)

The composition operator has been considered by several authors. For extensive refer-
ences, we refer to the monographs of Appell and Zabreiko [1, Ch. 9], of Runst and Sickel
[15], of Dudley and Norvaisa [7], and to the recent survey paper Bourdaud and Sickel [3]. In
particular, the continuity, the Lipschitz continuity and the higher order differentiability of
f ◦ g as a function of both f and g has long been investigated.

2 Composition operator in Morrey spaces

Throughout the paper, n is a nonzero natural number. Let Bn(x, r) be the open ball in Rn

of radius r > 0 and with center at the point x ∈ Rn.

Definition 1. Let Ω be a Lebesgue measurable subset of Rn. Let p ∈]0,+∞], λ ∈ [0, n
p
].

Let
wλ(ρ) =

{
ρ−λ, ρ ∈]0, 1],

1, ρ ≥ 1.

We denote byMλ
p (Ω) the space of all (equivalence classes of) real-valued measurable functions

g on Ω for which

‖g‖Mλ
p (Ω) = sup

(x,r)∈Ω×]0,∞[

wλ(r)‖g‖Lp(B(x,r)∩Ω) <∞.

In the above definition and in the sequel, we set n
p
≡ 0 if p = +∞. We note that

Mλ
p (Ω) ⊂ Lp(Ω), where we retain the standard notation of Lp(Ω) for the space of all real-

valued p-summable measurable functions on Ω.

Lemma 2.1. Let Ω be an open subset of Rn of finite measure. Let Ω1 be a Borel subset of R.
Let p ∈ [1,+∞]. Let λ ∈

[
0, n

p

]
. Let g ∈Mλ

p (Ω) be such that g(x) ∈ Ω1 for almost all x ∈ Ω.
Let f be a Borel measurable function from Ω1 to R. Assume that there exist a, b ∈]0,+∞[
such that

|f(ξ)| ≤ a|ξ|+ b, ∀ ξ ∈ Ω1. (2.1)

Then f ◦ g ∈Mλ
p (Ω) and

‖f ◦ g‖Mλ
p (Ω) ≤ a‖g‖Mλ

p (Ω) + b‖1‖Mλ
p (Ω) . (2.2)

Proof. Since 1 ∈Mλ
p (Ω), we have

‖f ◦ g‖Mλ
p (Ω) ≤ ‖a|g|+ b‖Mλ

p (Ω) ≤ a‖g‖Mλ
p (Ω) + b‖1‖Mλ

p (Ω).

�
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Remark 1. Let Ω, Ω1 be as in Lemma 2.1. First we note that for a Lipschitz continuous
map f from Ω1 to R with the Lipschitz constant Lip(f) and for a measurable function g
such that g(x) ∈ Ω1 for almost all x ∈ Ω the following inequality

|f(g(x))| ≤ Lip(f)|g(x)|+ Lip(f)|y|+ |f(y)| (2.3)

holds for almost all x ∈ Ω and for all y ∈ Ω1.
Moreover, if f is a Lipschitz continuous function on Ω1 and if y ∈ Ω1, condition (2.1) is

satisfied with a = Lip(f), b = Lip(f)|y|+ |f(y)|. Hence, Lemma 2.1 implies that

‖f ◦ g‖Mλ
p (Ω) ≤ Lip(f)‖g‖Mλ

p (Ω) + ‖1‖Mλ
p (Ω)(Lip(f)|y|+ |f(y)|), ∀ y ∈ Ω1. (2.4)

Corollary 2.1. Let the assumptions of Lemma 2.1 be satisfied. If also 0 ∈ Ω1 and f is a
real-valued Lipschitz continuous function on Ω1, then

‖f ◦ g‖Mλ
p (Ω) ≤ Lip(f)‖g‖Mλ

p (Ω) + |f(0)| ·‖1‖Mλ
p (Ω).

Corollary 2.2. Let the assumptions of Lemma 2.1 be satisfied. If also 0 ∈ Ω1, f(0) = 0
and f is a real-valued Lipschitz continuous function on Ω1, then

‖f ◦ g‖Mλ
p (Ω) ≤ Lip(f)‖g‖Mλ

p (Ω).

For each Borel measurable function f from R to R and measurable function g from Ω to
R we set

Tf [g] ≡ f ◦ g .

Then we have the following.

Corollary 2.3. Let Ω be a bounded open subset of Rn, p ∈ [1,+∞], λ ∈
[
0, n

p

]
. Let f be a

locally Lipschitz continuous function from R to itself. Then

Tf [M
λ
p (Ω) ∩ L∞(Ω)] ⊆Mλ

p (Ω) ∩ L∞(Ω).

(Note that in general Mλ
p (Ω) * L∞(Ω)).

Proof. Let g ∈Mλ
p (Ω)∩L∞(Ω). We set Ω1 =

[
−‖g‖L∞(Ω), ‖g‖L∞(Ω)

]
. Since Ω1 is a bounded

interval and f is Lipschitz continuous on Ω1, Corollary 2.1 implies that

‖f ◦ g‖Mλ
p (Ω) < +∞.

We also have
‖f ◦ g‖L∞(Ω) ≤ ‖f‖L∞(Ω1) < +∞.

Hence, f ◦ g ∈Mλ
p (Ω) ∩ L∞(Ω). �
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3 Composition operator in Sobolev Morrey spaces

Definition 2. Let Ω ⊂ Rn be an open set. Let p ∈ [1,+∞] and λ ∈
[
0, n

p

]
. Then we define

the Sobolev space of order 1 built on the Morrey space Mλ
p (Ω), as the set

W 1,λ
p (Ω) ≡

{
g ∈Mλ

p (Ω) : Djg ∈Mλ
p (Ω), ∀ j ∈ {1, . . . , n}

}
,

where Djg is the distributional derivative of g with respect to the j-th variable. Then we set

‖g‖W 1,λ
p (Ω) = ‖g‖Mλ

p (Ω) +
n∑
j=1

‖Djg‖Mλ
p (Ω), ∀ g ∈ W 1,λ

p (Ω).

In particular, W 0,λ
p (Ω) = Mλ

p (Ω) and W 1,0
p (Ω) = W 1

p (Ω), where W 1
p (Ω) denotes the

classical Sobolev space with the exponents 1, p in Ω. Obviously, W 1,λ
p (Ω) ⊂ W 1

p (Ω).
Next we try to understand whether the Lipschitz continuity of a function f of a real

variable is enough to ensure that Tf [W 1,λ
p (Ω)] ⊆ W 1,λ

p (Ω) under suitable conditions on the
exponents. To do so, we face the problem of taking the distributional derivatives of the
composite function f ◦ g, and we expect that

Dj(f ◦ g) = (f ′ ◦ g)Djg, ∀ j ∈ {1, . . . , n}.

However, it is not clear what f ′ ◦ g should mean. Indeed, f ′ is defined only up to the set
of measure zero Nf of points where f is not differentiable and g←(Nf ) may have a positive
measure, and even fill the whole of Ω, and f ′(g(x)) makes no sense when x ∈ g←(Nf ).
Classically, one circumvents such a difficulty by introducing a result of de la Vallée-Poussin
which states that both Dj(f ◦g) and Djg vanish almost everywhere on g←(Nf ). Accordingly,
it suffices to define (f ′ ◦ g)(x) when x ∈ Ω \ g←(Nf ), and to replace (f ′ ◦ g)(x) by 0 in
g←(Nf ). We find convenient to introduce a symbol for the function which equals (f ′ ◦ g)(x)
when x ∈ Ω \ g←(Nf ) and 0 elsewhere. Then we introduce the following.

Definition 3. Let Ω be an open subset of Rn. Let Ω1 be a Borel subset of R. Let g be a
measurable function from Ω to R. Let the set Ng ≡ {x ∈ Ω: g(x) /∈ Ω1} have measure zero.

Let H be a Borel subset of Ω1. Let h be a Borel measurable function from Ω1 \H to R.
Let h◦̃g be the function from Ω to R defined by

h◦̃g ≡
{

0, if x ∈ g←(H) ∪Ng,
h(g(x)), if x ∈ Ω \ (g←(H) ∪Ng).

(3.1)

By definition, the function h◦̃g is measurable. Next we note that the following holds.

Lemma 3.1. Let Ω, Ω1, h, H be as in Definition 3. Let g, g1 be measurable functions from
Ω to R such that g(x), g1(x) ∈ Ω1 for almost all x ∈ Ω. If g(x) = g1(x) for almost all x ∈ Ω,
then (h◦̃g)(x) = (h◦̃g1)(x) for almost all x ∈ Ω.

Proof. Let N be a measurable subset of measure zero of Ω such that g(x) = g1(x) and
g(x), g1(x) ∈ Ω1 for all x ∈ Ω \ N . Since N has measure zero, it suffices to show that
(h◦̃g)(x) = (h◦̃g1)(x) for all x ∈ Ω \N .
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If x ∈ (Ω\N)∩g←(H), then g1(x) = g(x) ∈ H and x ∈ (Ω\N)∩g←1 (H), and accordingly
(h◦̃g1)(x) = 0 = (h◦̃g)(x). If instead x ∈ (Ω \ N) ∩ (Ω \ g←(H)), then g1(x) = g(x) /∈ H
and accordingly x ∈ (Ω \N)∩ (Ω \ g←1 (H)) and (h◦̃g1)(x) = h(g1(x)) = h(g(x)) = (h◦̃g)(x).
Hence, (h◦̃g1)(x) = (h◦̃g)(x) for all x ∈ Ω \N . � By the previous Lemma, it makes sense
to introduce the following.

Definition 4. Let Ω, Ω1, h, H be as in Definition 3. IfG is an equivalence class of measurable
functions g from Ω to R such that g(x) ∈ Ω1 for almost all x ∈ Ω, then we define h◦̃G to
be the equivalence class of measurable functions from Ω to R which are equal to h◦̃g almost
everywhere for at least a g ∈ G.

If Ω be an open subset of Rn. We say that (an equivalence class of functions) g of Lloc
1 (Ω)

vanishes on a subset A of Ω provided that g̃(x) = 0 for almost all x ∈ A, for at least a
representative g̃ of g (and thus for all representatives of g).

Remark 2. Let g1, g2 be measurable locally summable functions from Ω to R. Let g1 = g2

almost everywhere in Ω. If A is a subset of R, then the symmetric difference g←1 (A)4g←2 (A)
has measure zero. Indeed, g←1 (A)4g←2 (A) ⊆ {x ∈ Ω: g1(x) 6= g2(x)}.

Then we have the following n-dimensional form of the result of de la Vallée-Poussin [6].
For a proof, we refer to Marcus and Mizel [12, p. 298].

Theorem 3.1 ([6]). Let Ω be an open subset of Rn. Let g ∈ W 1,loc
1 (Ω). If N is a subset of

R of measure zero, then (D1g, . . . , Dng) = 0 on g̃←(N) for any representative g̃ of g.

Here we note that the equalities D1g = 0, . . . , Dng = 0 on g̃←(N) have to be understood
in the sense of Definition 4.

Next we introduce the following form of the chain rule (see Marcus and Mizel [12, p.
300]).

Lemma 3.2 ([12]). Let Ω be an open subset of Rn. Let Ω1 be an interval of R. Let f be
Lipschitz continuous function from Ω1 to R. Let

W 1,loc
1 (Ω,Ω1)

≡ {g ∈ W 1,loc
1 (Ω) : g̃(x) ∈ Ω1 for almost all x ∈ Ω for all representatives g̃ of g}.

Let Nf be the subset of Ω1 such that Ω1\Nf is the set of points of Ω1 where f is differentiable.
Let g ∈ W 1,loc

1 (Ω,Ω1). Let f ′◦̃g be defined as in Definition 4 (with h = f ′, H = Nf). Then
the chain rule

Dj(f ◦ g) = (f ′◦̃g)Djg, (3.2)

holds in the sense of distributions in Ω for all j ∈ {1, . . . , n}.

We note that the set Nf of Lemma 3.2 is a Borel subset of Ω1 (of measure zero) and that
f ′ is a Borel measurable function on Ω1 \Nf , and that accordingly it makes sense to apply
Definition 4 to f ′◦̃g (cf. Federer [8, p. 211].)

Then we have the following statement, which can be verified by exploiting the definition
of the norm in a Morrey space.
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Theorem 3.2. Let Ω be an open subset of Rn. Let p ∈ [1,+∞]. Let λ ∈ [0, n
p
]. Then the

pointwise multiplication is bilinear and continuous from Mλ
p (Ω)× L∞(Ω) to Mλ

p (Ω) and

‖uv‖Mλ
p (Ω) ≤ ‖u‖Mλ

p (Ω)‖v‖L∞(Ω) ∀(u, v) ∈Mλ
p (Ω)× L∞(Ω) .

Next we recall the following Sobolev-Morrey Embedding Theorem, which is a combination
of results obtained by S.L. Sobolev and C. Morrey. See also Campanato [5, Theorem II.2,
p. 75].

Theorem 3.3. Let p ∈ [1,+∞[, λ ∈
[
0, n

p

]
. Let Ω be a bounded open subset of Rn which

satisfies the cone property. Let 1 + λ > n
p
. Then W 1,λ

p (Ω) is continuously imbedded into
L∞(Ω).

Next we introduce an elementary multiplication lemma which extends to Sobolev Morrey
spaces on domains a well known result for classical Sobolev spaces. Multiplication theorems
in classical Sobolev spaces are well known and we mention Zolesio [18], Valent [16], Runst
and Sickel [15]. For Sobolev Morrey spaces in Rn, we cite the contribution of Yuan, Sickel
and Yang [17, Theorem 6.3, p. 156].

Lemma 3.3. Let Ω be a bounded open subset of Rn which satisfies the cone property. Let
p ∈ [1,+∞]. Let λ ∈

[
0, n

p

]
,

1 + λ >
n

p
. (3.3)

Then the pointwise product from W 1,λ
p (Ω)×W 1,λ

p (Ω) to W 1,λ
p (Ω) is bilinear and continuous.

Proof. We want to prove that if u, v ∈ W 1,λ
p (Ω), then uv ∈ W 1,λ

p (Ω). To do so, we observe
that

(uv)xj
= uxj

v + uvxj
,

uxj
∈Mλ

p (Ω), vxj
∈Mλ

p (Ω) ,

for all j ∈ {1, . . . , n}. Since 1+λ > n
p
, Theorem 3.3 implies that W 1,λ

p (Ω) is continuously em-
bedded into L∞(Ω). Then by Theorem 3.2 the pointwise product is bilinear and continuous
from Mλ

p (Ω) × L∞(Ω) to Mλ
p (Ω) and from L∞(Ω) ×Mλ

p (Ω) to Mλ
p (Ω). Thus, uv ∈ Mλ

p (Ω)
and

uxj
v ∈Mλ

p (Ω), uvxj
∈Mλ

p (Ω),

and accordingly (uv)xj
∈Mλ

p (Ω) for all j ∈ {1, . . . , n}. Hence, the statement holds true. �
Next we introduce the following sufficient condition for Sobolev Morrey spaces of order

one.

Lemma 3.4. Let Ω be a bounded open subset of Rn which satisfies the cone property. Let Ω1

be an interval of R. Let p ∈ [1,+∞]. Let λ ∈
[
0, n

p

]
. Let f be Lipschitz continuous function

from Ω1 to R. Let

W 1,λ
p (Ω,Ω1)

≡ {g ∈ W 1,λ
p (Ω) : g̃(x) ∈ Ω1 for almost all x ∈ Ω for all representatives g̃ of g}.
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Then
Tf [W

1,λ
p (Ω,Ω1)] ⊆ W 1,λ

p (Ω).

Let Nf be the subset of Ω1 such that Ω1\Nf is the set of points of Ω1 where f is differentiable.
Let g ∈ W 1,λ

p (Ω,Ω1). Let f ′◦̃g be defined as in Definition 4 (with h = f ′, H = Nf). Then
f ′◦̃g ∈ L∞(Ω) and the chain rule formula (3.2) holds in the sense of distributions in Ω for
all j ∈ {1, . . . , n}. Moreover,

‖f ◦ g‖W 1,λ
p (Ω) ≤ {(Lip(f)|y|+ |f(y)|) + Lip(f)}(‖g‖W 1,λ

p (Ω) + ‖1‖Mλ
p (Ω)), (3.4)

for all g ∈ W 1,λ
p (Ω,Ω1) and for all y ∈ Ω1.

Proof. By Remark 1, we know that inequality (2.4) holds for all g ∈ W 1,λ
p (Ω,Ω1) ⊆ Mλ

p (Ω)
and for all y ∈ Ω1.

Now let g ∈ W 1,λ
p (Ω,Ω1). Let g̃ be a representative of g. Let Ng̃ be a subset of measure

0 of Ω such that
g̃(x) ∈ Ω1, ∀x ∈ Ω \Ng̃.

If x ∈ Ω \ (Ng̃ ∪ g̃←(Nf )), then

|f ′(g̃(x))| =
∣∣∣∣ lim
η→g̃(x)

f(g̃(x))− f(η)

g̃(x)− η

∣∣∣∣ ≤ Lip(f).

Since f ′◦̃g̃ = 0 for all x ∈ Ng̃ ∪ g̃←(Nf ), we conclude that

|(f ′◦̃g̃)(x)| ≤ Lip(f) a.e. in Ω.

and accordingly that f ′◦̃g ∈ L∞(Ω) and that ‖f ′◦̃g‖L∞(Ω) ≤ Lip(f) < +∞. Then by the
multiplication Theorem 3.2 and by the membership of Djg in Mλ

p (Ω), we have (f ′◦̃g)Djg ∈
Mλ

p (Ω) and
‖(f ′◦̃g)Djg‖Mλ

p (Ω) ≤ Lip(f)‖Djg‖Mλ
p (Ω) (3.5)

for all j ∈ {1, . . . , n}. Thus the right hand side of equality (3.2) belongs to Mλ
p (Ω) for all

g ∈ W 1,λ
p (Ω).

By formula (3.2) for the chain rule, inequalities (2.4), (3.5) imply that

‖f ◦ g‖W 1,λ
p (Ω) (3.6)

= ‖f ◦ g‖Mλ
p (Ω) +

n∑
j=1

‖(f ′◦̃g)Djg‖Mλ
p (Ω)

≤ Lip(f)‖g‖Mλ
p (Ω) + ‖1‖Mλ

p (Ω)(Lip(f)|y|+ |f(y)|) +
n∑
j=1

Lip(f)‖Djg‖Mλ
p (Ω)

≤ {(Lip(f)|y|+ |f(y)|) + Lip(f)}(‖g‖W 1,λ
p (Ω) + ‖1‖Mλ

p (Ω)),

for all g ∈ W 1,λ
p (Ω) and y ∈ Ω1, and thus inequality (3.4) holds true. �

Corollary 3.1. Let Ω be a bounded open subset of Rn which satisfies the cone property. Let
p ∈ [1,+∞], λ ∈

[
0, n

p

]
. Let f be a function from R to itself. Then the following statements

hold.
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(i) If 1 + λ > n
p

and if f is locally Lipschitz continuous, then Tf [W
1,λ
p (Ω)] ⊆ W 1,λ

p (Ω).

(ii) If 1 + λ ≤ n
p

and if f is Lipschitz continuous, then Tf [W
1,λ
p (Ω)] ⊆ W 1,λ

p (Ω).

Proof. We first consider statement (i). The Sobolev Embedding Theorem 3.3 implies that
W 1,λ
p (Ω) is continuously embedded into L∞(Ω). Thus if g ∈ W 1,λ

p (Ω), there exists a bounded
interval Ω1 of R such that g(x) ∈ Ω1 for almost all x ∈ Ω. Since f

∣∣
Ω1

is Lipschitz continuous,
Lemma 3.4 implies that f ◦ g ∈ W 1,λ

p (Ω).
Statement (ii) is an immediate consequence of Lemma 3.4 with Ω1 = R. �
If Ω1 is a bounded interval of R, then C0,1(Ω̄1) denotes the Banach space of all real valued

Lipschitz continuous functions from Ω̄1 to R with the norm

‖h‖C0,1(Ω̄1) ≡ sup
Ω̄1

|h|+ Lip (h), ∀h ∈ C0,1(Ω̄1) .

Then we summarize in the following statement some facts we need in the sequel in the case
1 + λ > n

p
and which are immediate consequences of Lemma 3.3 and Lemma 3.4.

Corollary 3.2. Let p ∈ [1,+∞], λ ∈
[
0, n

p

]
, 1 + λ > n

p
. Let Ω be a bounded open subset

of Rn which satisfies the cone property. Let Ω1 be a bounded open interval of R. Then the
following statements hold.

(i) W 1,λ
p (Ω) is a Banach algebra.

(ii) If (f, g) ∈ C0,1(Ω̄1) ×W 1,λ
p (Ω,Ω1), then f ◦ g ∈ W 1,λ

p (Ω). Moreover, there exists an
increasing function ψ from [0,+∞[ to itself such that

‖f ◦ g‖W 1,λ
p (Ω) ≤ ‖f‖C0,1(Ω̄1)ψ(‖g‖W 1,λ

p (Ω)) (3.7)

for all (f, g) ∈ C0,1(Ω̄1)×W 1,λ
p (Ω,Ω1).

4 Continuity of the composition operator in Sobolev Morrey spaces

Corollary 3.2 shows that if 1 + λ > n
p
, then the composition T maps C0,1(Ω̄1)×W 1,λ

p (Ω,Ω1)

to W 1,λ
p (Ω). Now we want to understand for which f ’s the composition operator Tf is

continuous in W 1,λ
p (Ω,Ω1). By following [10], [11], the idea is that if f is a polynomial,

then Tf is continuous in W 1,λ
p (Ω). Indeed, for 1 + λ > n

p
, the space W 1,λ

p (Ω) is a Banach
algebra. Then we exploit inequality (3.7) to show that if f is a limit of polynomials, then
Tf is continuous. Actually, such a scheme can be applied in a somewhat abstract general
setting, which we now introduce. Let X be a commutative Banach algebra with unity. Let
N denote the set natural numbers including 0. Let m ∈ N\{0}. In the applications of the
present paper, we are interested in the specific case m = 1, but here we present a more
general case, which can be applied to analyze vector valued functions with components in
Sobolev Morrey spaces.
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We first note that if p belongs to the space P(Rm) of polynomials in m real variables with
real coefficients, then it makes perfectly sense to compose p with some x ≡ (x1, . . . , xm) ∈
Xm. Namely, if p is defined by the equality

p(ξ1, . . . , ξm) ≡
∑

|η|≤deg p, η∈Nm

aηξ
η1
1 . . . ξηm

m , with aη ∈ R, (ξ1, . . . , ξm) ∈ Rm, (4.1)

then we set

τp[x] ≡
∑

|η|≤deg p, η∈Nm

aηx
η1
1 . . . xηm

m , ∀x ≡ (x1, . . . , xm) ∈ Xm, (4.2)

where the product of the xj’s is that of X , and where we understand that x0 is the unit
element of X , for all x ∈ X . Next we state the following result of [11, Theorem 3.1].

Theorem 4.1 ([11]). Let m ∈ N \ {0}. Let ‖ · ‖Y be a norm on P(Rm). Let Y be the
completion of P(Rm) with respect to the norm ‖ · ‖Y . Let X be a real commutative Banach
algebra with unity. Let X̃ be a real Banach space. Assume that there exists a linear contin-
uous and injective map J of X into X̃ . Let A be a subset of Xm. Assume that there exists
an increasing function ψ of [0,+∞) to itself such that

‖J [p(x1, . . . , xm)]‖X̃ ≤ ‖p‖Y ψ (‖(x1, . . . , xm)‖Xm) , (4.3)

for all (p, (x1, . . . , xm)) ∈ P(Rm)×A. Then there exists a unique map Ã from Y ×A to X̃
such that the following two conditions hold.

(i) Ã[p, x] = J [p(x)], for all (p, x) ∈ P(Rm)×A.

(ii) For all fixed x ≡ (x1, . . . , xm) ∈ A, the map y 7−→ Ã[y, x] is continuous from Y to X̃ .

Furthermore, the map Ã[·, x] of (ii) is linear, and Ã is continuous from Y ×A to X̃ , and
if y ∈ Y, y = limj→∞ pj in Y, pj ∈ P(Rm), x ≡ (x1, . . . , xm) ∈ A, then

(iii) Ã[y, x] = limj→∞ J [pj(x)] in X̃ ;

(iv) ‖Ã[y, x]‖X̃ ≤ ‖y‖Y ψ (‖x‖Xm).

We shall call Ã[y, x] the ‘abstract’ composition of y and x.

We now turn to apply the above theorem to the case of Sobolev Morrey spaces. To do
so, we need the following.

Lemma 4.1. Let Ω1 be a nonempty bounded open interval of R. Then the Banach space
C1(Ω̄1) with the norm

‖f‖C1(Ω̄1) = sup
Ω̄1

|f |+ sup
Ω̄1

|f ′|, ∀f ∈ C1(Ω̄1) ,

is a completion of the space (P(R), ‖ · ‖C0,1(Ω̄1)).
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Proof. We first note that

sup
Ω̄1

|f ′| = Lip(f), ∀ f ∈ C1(Ω̄1).

Then we have

‖f‖C1(Ω̄1) = sup |f |Ω̄1
+ sup

Ω̄1

|f ′| = sup |f |Ω̄1
+ Lip(f) = ‖f‖C0,1(Ω̄1) (4.4)

for all f ∈ C1(Ω̄1). Hence,

‖f‖C0,1(Ω̄1) = ‖f‖C1(Ω̄1), ∀ p ∈ P(R).

Since C1(Ω̄1) is a Banach space and the restriction map from P(R) to C1(Ω̄1) which takes p ∈
P(R) to p

∣∣
Ω̄1

is a linear isometry from (P(R), ‖ · ‖C1(Ω̄1)) to
(
{p
∣∣
Ω̄1

: p ∈ P(R)}, ‖ · ‖C1(Ω̄1)

)
,

it suffices to show that {p
∣∣
Ω̄1

: p ∈ P(R)} is dense in C1(Ω̄1). However, such a density is
a well known consequence of the Weierstrass Approximation Theorem (cf. e.g. Rohlin and
Fuchs [14, p. 185].) �

Then by applying Theorem 4.1, we obtain the following.

Theorem 4.2. Let p ∈ [1,+∞], λ ∈
[
0, n

p

]
, 1 + λ > n

p
. Let Ω be a bounded open subset

of Rn which satisfies the cone property. Let Ω1 be a bounded open interval of R. Then the
composition operator T is continuous from C1(Ω̄1)×W 1,λ

p (Ω,Ω1) to W 1,λ
p (Ω).

Proof. We set ‖·‖Y = ‖·‖C0,1(Ω̄1), X = X̃ = W 1,λ
p (Ω), A = W 1,λ

p (Ω,Ω1), m = 1. Then we take
J to be the identity map. As we have shown, C1(Ω̄1) is a completion of (P(R), ‖ · ‖C0,1(Ω̄1)).
By Corollary 3.2, W 1,λ

p (Ω) is a Banach algebra and there exists a function ψ as in (3.7).
Then by Theorem 4.1, there exists a unique map Ã from C1(Ω̄1)×W 1,λ

p (Ω,Ω1) to W 1,λ
p (Ω)

such that the following two conditions hold

(i) Ã[p, g] = τp[g] for all (p, g) ∈ P(R)×A.

(ii) For each fixed g ∈ W 1,λ
p (Ω,Ω1), the map from C1(Ω̄1) to W 1,λ

p (Ω) which takes f to
f ◦ g is continuous.

Moreover, Ã is continuous. Clearly, T satisfies (i), and inequality (3.7) implies that T satisfies
(ii). Hence, we must necessarily have

Ã[f, g] = T [f, g], ∀(f, g) ∈ C1(Ω̄1)×W 1,λ
p (Ω,Ω1).

As a consequence, T is continuous on C1(Ω̄1)×W 1,λ
p (Ω,Ω1). �

5 Lipschitz continuity of the composition operator in Sobolev Mor-
rey spaces

Next we prove a Lipschitz continuity statement for the composition operator by exploiting
an argument of Bourdaud and the second named author [2].
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Theorem 5.1. Let p ∈ [1,+∞], λ ∈
[
0, n

p

]
, 1 + λ > n

p
. Let Ω be a bounded open subset of

Rn which satisfies the cone property. If f ∈ C1,1
loc (R), then Tf maps W 1,λ

p (Ω) to itself and is
Lipschitz continuous on the bounded subsets of W 1,λ

p (Ω).

Proof. Let B be a bounded subset of W 1,λ
p (Ω). Since W 1,λ

p (Ω) is continuously embedded into
L∞(Ω), the set B is a bounded subset of L∞(Ω) and there exists a closed interval B of R
such that [

−‖g‖L∞(Ω), ‖g‖L∞(Ω)

]
⊆ B, ∀ g ∈ B.

Now let g1, g2 ∈ B. Since f is continuously differentiable, we can write

(f ◦ g2)(x)− (f ◦ g1)(x)

=

1∫
0

f ′[g1(x) + t(g2(x)− g1(x))](g2(x)− g1(x))dt, ∀x ∈ Ω.

Next we fix x ∈ Ω, r ∈]0,+∞[. By the Minkowski inequality for integrals, we have

wλ(r)‖f ◦ g2 − f ◦ g1‖Lp(Ω∩Bn(x,r))

≤
1∫

0

wλ(r)‖f ′[g1(·) + t(g2(·)− g1(·))](g2(·)− g1(·))‖Lp(Ω∩Bn(x,r)) dt

≤
1∫

0

wλ(r) sup
B
|f ′| ‖g2 − g1‖Lp(Ω∩Bn(x,r)) dt

≤ sup
B
|f ′| ‖g2 − g1‖Mλ

p (Ω).

Hence,
‖f ◦ g2 − f ◦ g1‖Mλ

p (Ω) ≤ sup
B
|f ′| ‖g2 − g1‖Mλ

p (Ω). (5.1)

Next we fix j ∈ {1, . . . , n} and we try to estimate

‖Dj {f ◦ g2 − f ◦ g1}‖Mλ
p (Ω) (5.2)

= ‖f ′(g2)Dj g2 − f ′(g1)Dj g1}‖Mλ
p (Ω)

≤ ‖f ′ ◦ g2 − f ′ ◦ g1‖L∞(Ω) ‖Dj g2‖Mλ
p (Ω)

+‖f ′ ◦ g1‖L∞(Ω) ‖Dj g2 −Dj g1‖Mλ
p (Ω)

≤ Lip(f ′
∣∣
B
)‖g2 − g1‖L∞(Ω) sup

g∈B
‖g‖W 1,λ

p (Ω) + sup
B
|f ′| ‖g2 − g1‖W 1,λ

p (Ω)

≤
{

Lip(f ′
∣∣
B
)‖I‖L(W 1,λ

p (Ω),L∞(Ω)) sup
g∈B

‖g‖W 1,λ
p (Ω) + sup

B
|f ′|
}
‖g2 − g1‖W 1,λ

p (Ω),

where L(W 1,λ
p (Ω), L∞(Ω)) denotes the Banach space of all linear and continuous maps from

W 1,λ
p (Ω) to L∞(Ω) and I denotes the inclusion map of W 1,λ

p (Ω) into L∞(Ω). Indeed, Nf ′ = ∅
and f ′◦̃g1 = f ′ ◦ g1, f ′◦̃g2 = f ′ ◦ g2.
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By inequalities (5.1) and (5.2), we conclude that

‖f ◦ g2 − f ◦ g1‖W 1,λ
p (Ω)

≤
{

(1 + n) sup
B
|f ′|+ nLip(f ′

∣∣
B
)‖I‖L(W 1,λ

p (Ω),L∞(Ω)) sup
g∈B

‖g‖W 1,λ
p (Ω)

}
‖g2 − g1‖W 1,λ

p (Ω).

�

6 Differentiability properties of the composition operator in
Sobolev Morrey spaces

Next we turn to the question of differentiability, and by following [11], we note that the
following holds.

Lemma 6.1 ([11]). Let m ∈ N \ {0}. Let X be a commutative real Banach algebra with the
unity 1X . Let P(Rm) be the set of real polynomials in m real variables. Let p ∈ P(Rm) be
defined by

p(η) ≡
∑

|γ|≤deg p

aγη
γ1
1 . . . ηγm

m , ∀ η ≡ (η1, . . . , ηm) ∈ Rm.

The map τp of Xm to X defined by setting

τp[x1, . . . , xm] ≡
∑

|γ|≤deg p

aγx
γ1
1 . . . xγm

m , ∀ (x1, . . . , xm) ∈ Xm,

with the understanding that x0 ≡ 1X , for all x ∈ X , is of class Cr(Xm,X ), for all r ∈
N ∪ {∞}. Furthermore, the differential of τp [·] at x] ≡ (x]1, . . . , x

]
m) is delivered by the map

Xm 3 (h1, . . . , hm) 7→
m∑
i=1

τ ∂p
∂xi

[x]]hi ∈ X .

Once more, we plan to proceed by approximation and show that Tf is of class Cr if f is
a limit of polynomials with an appropriate norm. As we shall see, it turns out that a right
choice for the norm is the following

‖p‖Yr =
∑

|γ|≤r, γ∈Nm

‖Dγp‖Y , ∀p ∈ P(Rm). (6.1)

Then we define Yr to be the completion of the space (P(Rm), ‖ · ‖Yr). As is well known, Yr
is unique up to a linear isometry, and we always choose Yr ⊆ Y . Then we have the following
obvious

Remark 3. If r, s ∈ N, s ≤ r, then

Yr ⊆ Ys, ‖y‖Ys ≤ ‖y‖Yr , ∀ y ∈ Yr.

Now we have the following (cf. [11, Theorem 2.4]).



62 N. Kydyrmina, M. Lanza de Cristoforis

Theorem 6.1 ([11]). Let m ∈ N \ {0}, r, s ∈ N, γ ∈ Nm, r − |γ| = s. Let ‖ · ‖Y be a
norm on P(Rm), and let ‖ · ‖Yr be the norm defined in (6.1), and let Yr be the completion of
(P(Rm), ‖ · ‖Yr). Then there exists one and only one linear and continuous operator of Yr to
Ys which coincides with the ordinary partial derivation of multi index γ on the elements of
P(Rm). By abuse of notation, we shall denote such operator by Dγ, just as the usual partial
derivative of multi index γ. We have

Dγy = lim
j→∞

Dγpj in Ys, whenever lim
j→∞

pj = y in Yr, (6.2)

and
‖y‖Yr =

∑
|γ|≤r, γ∈Nm

‖Dγy‖Y , ∀ y ∈ Yr .

Then we state the following result of [11, Theorem 4.1].

Theorem 6.2 ([11]). Let r,m ∈ N\{0}. Let ‖ · ‖Y be a norm on P(Rm). Let Yr be the
completion of P(Rm) with respect to the norm ‖ · ‖Yr defined in (6.1). Let X be a real
commutative Banach algebra with unity. Let X̃ be a real Banach space. Assume that there
exists a linear continuous and injective map J of X into X̃ . Let (·) ∗ (·) be a continuous
and bilinear map of X̃ × X to X̃ . Let ∗ satisfy the following condition:

J [x1] ∗ x2 = J [x1, x2], ∀x1, x2 ∈ X . (6.3)

Let A be an open subset of Xm. Assume that there exists an increasing function ψ of [0,+∞)
to itself satisfying condition (4.3), for all (p, x) ∈ P(Rm) × A. Then the restriction of the
map Ã of Theorem 4.1 to Yr × A is of class Cr from Yr × A to X̃ . (Note that Yr ⊆ Y0,
and that Y0 equals the space Y defined in Theorem 4.1.) Furthermore, the differential of Ã
at each (y#, x#) ∈ Yr ×A is given by

(v, w) 7−→ Ã[v, x#] +
m∑
l=1

Ã[Dly
#, x#] ∗ wl,

for all (v, w) ≡ (v, (w1, . . . , wm)) ∈ Yr ×Xm. (For the definition of Dly
#, see Theorem 6.1)

Now that we have introduced the above result on the r times differentiability of Ã, we
introduce a formula for the differentials dsÃ of order s = 1, . . . , r of Ã of [11, p. 932]. In
order to write the formulas in a coincise way, we put a hat ˆ over a term which we wish to
suppress. So for example, ξ1 · · · ξ̂j · · · ξs denotes

∏
l=1,...,s
l 6=j

ξl.

Proposition 6.1 ([11]). Let all the assumptions of Theorem 6.2 hold. Let r, s ∈ N, 1 ≤
s ≤ r. The differential of order s of Ã at (y#, x#) ∈ Yr ×A, which can be identified with an
element of L(s)(Yr ×Xm, X̃ ), is given by the formula

dsÃ[y#, x#]((v[1], w[1]), . . . (v[s], w[s])) (6.4)

=
s∑
j=1

m∑
l1,...,l̂j ,...,ls=1

{
Ã[Dls · · · D̂lj · · ·Dl1v[j], x

#]
}
∗
(
ws,ls · · · ŵj,lj · · ·w1,l1

)
+

m∑
l1,...,ls=1

{
Ã[Dls · · ·Dl1y

#, x#]
}
∗ (ws,ls · · ·w1,l1) ,
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for all (v[j], w[j] ≡ (wj,1, . . . , wj,m)) ∈ Yr × Xm, j = 1, . . . , s. In (6.4), the symbols l1, . . . , ls
denote summation indices ranging from 1 to m.

Next we return to applications to Sobolev Morrey spaces. For an open nonempty interval
Ω1 of R and r ∈ N, we denote by Cr(Ω1) the space of real valued r-times continuously
differentiable functions in Ω1 with the norm

‖f‖Cr(Ω1) =
r∑
j=0

sup
Ω1

∣∣∣∣ djdtj f
∣∣∣∣ , ∀f ∈ Cr(Ω1) .

Then we prove the following.

Lemma 6.2. Let r ∈ N\{0}. Let Ω1 be a nonempty bounded interval of R. Then Cr+1(Ω1)
is a completion of the space (P(R, ‖ · ‖Yr), where

‖p‖Yr ≡
r∑
l=0

∥∥∥∥ dldtl p
∥∥∥∥
C0,1(Ω1)

, ∀ p ∈ P(R).

If f ∈ Cr+1(Ω1) and if {pj}j∈N is a sequence of P(R) which converges to f in the ‖·‖Yr-norm
and if l ∈ {0, . . . , r}, then

dl

dtl
f = lim

j→∞

dl

dtl
pj, (6.5)

in Cr−l+1(Ω1).

Proof. As we have already pointed out, we have

‖f‖C0,1(Ω1) = ‖f‖C1(Ω1), ∀ f ∈ C1(Ω1) ,

(see (4.4).) Hence,

‖p‖Yr =
r∑
l=0

(∥∥∥∥ dldtl p
∥∥∥∥
C0(Ω1)

+

∥∥∥∥ dl+1

dtl+1
p

∥∥∥∥
C0(Ω1)

)
, ∀ p ∈ P(R),

and
‖p‖Cr+1(Ω1) ≤ ‖p‖Yr ≤ 2‖p‖Cr+1(Ω1), ∀ p ∈ P(R).

Hence, the norm ‖ · ‖Yr is equivalent to the norm ‖ · ‖Cr+1(Ω1) on P(R). Since Cr+1(Ω1) is
a Banach space and the restriction map which takes p in P(R) to p

∣∣
Ω1

in Cr+1(Ω1) is linear

isometry of (P(R), ‖ · ‖Cr+1(Ω1)) onto
(
{p
∣∣
Ω1

: p ∈ P(R)}, ‖ · ‖Cr+1(Ω1)

)
, it suffices to show

that for each f ∈ Cr+1(Ω1), there exists a sequence of polynomials {pj}j∈N in P(R) such
that

f = lim
j→∞

pj
∣∣
Ω1

in Cr+1(Ω1),

i.e., {p
∣∣
Ω1

: p ∈ P(R)} is dense in Cr+1(Ω1). However, such a density is a well known conse-
quence of the Weierstrass Approximation Theorem (cf. e.g. Rohlin and Fuchs [14, p. 185].)
�
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Remark 4. Under the assumptions of the previous lemma, the operator Dγ defined by (6.2)
coincides with the ordinary Dγ-differentiation in Cr+1(Ω̄1).

Lemma 6.3. Let p ∈ [1,+∞], λ ∈
[
0, n

p

]
, 1 + λ > n

p
. Let Ω be a bounded open subset of Rn

satisfying the cone property. Let Ω1 be a bounded open interval of R. Then the set

W̃ 1,λ
p (Ω,Ω1)

≡
{
g ∈ W 1,λ

p (Ω) : g̃(Ω) ⊆ Ω1, where g̃ is the only continuous representatives of g
}

is open in W 1,λ
p (Ω).

Proof. Under our assumptions on p and λ, the space W 1,λ
p (Ω) is continuously imbedded into

C0(Ω). Let g0 ∈ W̃ 1,λ
p (Ω,Ω1). By definition of W̃ 1,λ

p (Ω,Ω1) the distance d of g̃0(Ω) to R \Ω1

is nonzero. Then if we choose g ∈ W 1,λ
p (Ω) such that

‖g − g0‖W 1,λ
p (Ω) <

d

‖I‖L(W 1,λ
p (Ω),L∞(Ω)) + 1

we have g ∈ W̃ 1,λ
p (Ω,Ω1). Hence, W̃ 1,λ

p (Ω,Ω1) is open in W 1,λ
p (Ω). �

Theorem 6.3. Let p ∈ [1,+∞], λ ∈
[
0, n

p

]
, 1 + λ > n

p
, r ∈ N \ {0}. Let Ω be a bounded

open subset of Rn which satisfies the cone property. Let Ω1 be a bounded open interval of R.
Then the composition operator T from Cr+1(Ω̄1)× W̃ 1,λ

p (Ω,Ω1) to W 1,λ
p (Ω) defined by

T [f, g] ≡ f ◦ g, ∀ (f, g) ∈ Cr+1(Ω̄1)× W̃ 1,λ
p (Ω,Ω1)

is of class Cr. If (f0, g0) ∈ Cr+1(Ω̄1)× W̃ 1,λ
p (Ω,Ω1), then the first order differential of T at

(f0, g0) is given by the formula

dT [f0, g0](v, w) = v ◦ g0 + f ′(g0)w

for all (v, w) ∈ Cr+1(Ω̄1)×W 1,λ
p (Ω).

If s ∈ {1, . . . , r}, then the s-th order differential of T at (f0, g0) is given by the formula

dsT [f0, g0][(v[1], w[1]), . . . , (v[s], w[s])]

=
s∑
j=1

ds−1v[j]

dts−1
◦ g0w[1] . . . ŵ[j] . . . w[s] +

dsf0

dts
◦ g0w[1] . . . w[s],

for all (v[1], w[1]), . . . , (v[s], w[s]) ∈ Cr+1(Ω̄1)×W 1,λ
p (Ω).

Proof. We set ‖ · ‖Y = ‖ · ‖C0,1(Ω̄1), X = X̃ = W 1,λ
p (Ω), A = W̃ 1,λ

p (Ω,Ω1), m = 1. Then we
take J to be the identity map. As we have shown, Cr+1(Ω̄1) is a completion of (P(R), ‖·‖Yr)
and thus we can take Yr = Cr+1(Ω̄1). By Corollary 3.2, W 1,λ

p (Ω) is a Banach algebra and
there exists a function ψ as in (3.7). By Lemma 6.3, the set A = W̃ 1,λ

p (Ω,Ω1) is open in
W 1,λ
p (Ω). As we have already proved in the proof of Theorem 4.2, the abstract composition

Ã of Theorem 4.1 coincides with T . Then we can invoke Proposition 6.1 and Theorem 6.2
and conclude that T is of class Cr from Yr ×A = Cr+1(Ω̄1)× W̃ 1,λ

p (Ω,Ω1) to W 1,λ
p (Ω) and

that the formulas for the differentials hold. �
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