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TYNYSBEK SHARIPOVICH KAL’MENOV

(to the 70th birthday)

On May 5, 2016 was the 70th birthday of Tynysbek Sharipovich
Kal’menov, member of the Editorial Board of the Eurasian Math-
ematical Journal, general director of the Institute of Mathematics
and Mathematical Modeling of the Ministry of Education and Sci-
ence of the Republic of Kazakhstan, laureate of the Lenin Komsomol
Prize of the Kazakh SSR (1978), doctor of physical and mathemat-
ical sciences (1983), professor (1986), honoured worker of science
and technology of the Republic of Kazakhstan (1996), academician
of the National Academy of Sciences (2003), laureate of the State
Prize in the field of science and technology (2013).

T.Sh. Kal’menov was born in the South-Kazakhstan region of
the Kazakh SSR. He graduated from the Novosibirsk State University (1969) and completed
his postgraduate studies there in 1972.

He obtained seminal scientific results in the theory of partial differential equations and
in the spectral theory of differential operators.

For the Lavrentiev-Bitsadze equation T.Sh. Kal’menov proved the criterion of strong
solvability of the Tricomi problem in the Lp-spaces. He described all well-posed boundary
value problems for the wave equation and equations of mixed type within the framework of
the general theory of boundary value problems.

He solved the problem of existence of an eigenvalue of the Tricomi problem for the
Lavrentiev-Bitsadze equation and the general Gellerstedt equation on the basis of the new
extremum principle formulated by him.

T.Sh. Kal’menov proved the completeness of root vectors of main types of Bitsadze-
Samarskii problems for a general elliptic operator. Green’s function of the Dirichlet problem
for the polyharmonic equation was constructed. He established that the spectrum of general
differential operators, generated by regular boundary conditions, is either an empty or an
infinite set. The boundary conditions characterizing the volume Newton potential were
found. A new criterion of well-posedness of the mixed Cauchy problem for the Poisson
equation was found.

On the whole, the results obtained by T.Sh. Kal’menov have laid the groundwork for
new perspective scientific directions in the theory of boundary value problems for hyperbolic
equations, equations of the mixed type, as well as in the spectral theory.

More than 50 candidate of sciences and 9 doctor of sciences dissertations have been
defended under his supervision. He has published more than 120 scientific papers. The list
of his basic publications can be viewed on the web-page

https : //scholar.google.com/citations?user = Zay4fxkAAAAJ&hl = ru&authuser = 1

The Editorial Board of the Eurasian Mathematical Journal congratulates Tynysbek
Sharipovich Kal’menov on the occasion of his 70th birthday and wishes him good health
and new creative achievements!
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Abstract. We prove that ℵ0–categorical non-1-transitive weakly circularly minimal theories
of convexity rank 1 are almost binary.

1 Introduction

Let M = 〈M,=, <〉 be a linear ordering. If we connect two endpoints of a linearly ordered
set M (possibly, these are −∞ and +∞) then we obtain a circular ordering.

More formally, a circular ordering is described by a ternary relation K that satisfies the
following conditions:

(co1) ∀x∀y∀z(K(x, y, z) → K(y, z, x));
(co2) ∀x∀y∀z(K(x, y, z) ∧K(y, x, z) ⇔ x = y ∨ y = z ∨ z = x);
(co3) ∀x∀y∀z(K(x, y, z) → ∀t[K(x, y, t) ∨K(t, y, z)]);
(co4) ∀x∀y∀z(K(x, y, z) ∨K(y, x, z)).
The following observation relates linear orders and circular orders.

Proposition 1.1. [4] (i) If 〈M,≤〉 is a linear ordering and K is the ternary relation derived
from ≤ by the rule

K(x, y, z) :⇔ (x ≤ y ≤ z) ∨ (z ≤ x ≤ y) ∨ (y ≤ z ≤ x)

then K is a circular order relation on M .
(ii) If 〈N,K〉 is a circular ordering and a ∈ N then the relation ≤a defined on M :=

N \ {a} by the rule
y ≤a z :⇔ K(a, y, z)

is a linear order. Furthermore, if we extend this linear order to one, denoted by ≤′, on N ,
specifying that a ≤′ b for all b ∈ M , then the derived circular order relation is the original
circular order K.

The present work is concerned with the notion of weak circular minimality introduced
and originally deeply studied in [5]. A weakly circularly minimal structure is a circularly
ordered structure M = 〈M ; =, K3, . . .〉 such that any definable (with parameters) subset
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of M is a finite union of convex sets in M . Convexity rank of a formula with one free
variable was introduced in [6]. In particular, a theory has convexity rank 1 if there is no
definable (with parameters) equivalence relation with infinitely many infinite convex classes.
Obviously, any o-minimal theory has convexity rank 1. Recall that a complete theory T is
binary if every formula is equivalent to a boolean combination of formulas with at most two
free variables. A. Pillay and C. Steinhorn completely described ℵ0–categorical o-minimal
theories [11]. Their description implies binarity of these theories. In the work [7] ℵ0–
categorical weakly o-minimal binary theories of convexity rank 1 were described, and in the
work [8] the binarity of ℵ0–categorical weakly o-minimal theories of convexity rank 1 has
been established. Observe that since a circular ordering is determined by a ternary relation
there is no binary weakly circularly minimal structure. We say that a weakly circularly
minimal theory T is almost binary if any formula is equivalent to a boolean combination of
formulas with at most two free variables and the formula K(x, y, z) (expressing the relation
of circular ordering). We say that a complete theory T is 1-transitive if for any M |= T every
element of M satisfies the same type over ∅. In this paper we prove the almost binarity of
ℵ0–categorical non-1-transitive weakly circularly minimal theories of convexity rank 1.

First, we recall necessary definitions and some preliminary results.

Proposition 1.2. [5] Let M = 〈M,K, . . .〉 be a weakly circularly minimal structure, and let
b be an arbitrary element of M . Define the relation ≤b on M \ {b} and ≤′b on M as in Fact
1.1.

(i) Let Mb be the structure with domain M \ {b}, the order ≤b, and a relation symbol
for each b-definable relation of M on a power of M \ {b}. Then Mb is a weakly o-minimal
structure.

(ii) Let M̂b be the structure with domain M , the order ≤′b, and a relation symbol for each
b-definable relation of M on powers of M . Then M̂b is also weakly o-minimal.

Proposition 1.3. [5] Let M be a weakly circularly minimal structure, φ(x) be an arbitrary
∅-definable formula. Then for any a ∈ M φ(M) is a finite union of {a}-definable convex
sets.

Notation 1. (1) K0(x, y, z) := K(x, y, z) ∧ x 6= y ∧ y 6= z ∧ z 6= x.
(2) K(u1, . . . , un) denotes the formula saying that all subtriples of the tuple 〈u1, . . ., un〉

(in increasing order) satisfy K; likewise with K0 in place of K.
(3) Let A,B,C be pairwise disjoint convex subsets of a circularly ordered structure M .

We write K(A,B,C) if for any a, b, c ∈M whenever a ∈ A, b ∈ B, c ∈ C we have K(a, b, c).
We extend this notation in the natural way, writing for example K0(A, b, C,D).

For an arbitrary complete 1-type p we denote by p(M) the set of realisations of the
type p in M . By <lex we denote the relation of lexicographic ordering. For an arbitrary
tuple b̄ = 〈b1, b2, . . . , bn〉 of length n by b̄n−i we denote the tuple 〈b1, b2, . . . , bi〉 for every
1 ≤ i ≤ n− 1.

Definition 1. [5] Let M be a circularly ordered structure.
(i) Let p ∈ S1(∅). We say that p is m-convex if for any elementary extension N of M

p(N) is the disjoint union of m maximal convex sets (which are called the convex components
of p(N)). We say that p is convex if p is 1-convex. Otherwise, we say that p is non-convex.

(ii) We say that M is m-convex if every type p ∈ S1(∅) is m-convex, and we say that
Th(M) is m-convex if this holds for all N ≡M .
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Theorem 1.1. [5] Let M be a weakly circularly minimal structure. Then there is m < ω
such that M is m-convex.

As a corollary we obtain, in particular, that if M is a weakly circularly minimal structure
and p ∈ S1(∅) then p(M) is a finite union of convex sets.

Let p ∈ S1(∅) and F (x, y) be an ∅-definable formula such that F (M, b) is convex infinite
co-infinite for each b ∈ p(M), F (M, b) ⊂ p(M). Let F l(y) be the formula saying that y is a
left endpoint of F (M, y):

∃z1∃z2[K0(z1, y, z2) ∧ ∀t1(K(z1, t1, y) ∧ t1 6= y → ¬F (t1, y))∧

∧∀t2(K(y, t2, z2) ∧ t2 6= y → F (t2, y))]

We say that F (x, y) is p-stable convex-to-right if for every b ∈ p(M)

M |= ∀x[F (x, b) → F l(b) ∧ ∀z(K(b, z, x) → F (z, b))]

and there is a ∈ p(M) such that ¬F (a, b) and K0(b,M, a) ⊆ p(M).
Let F1(x, y), F2(x, y) be arbitrary p-stable convex-to-right formulas. We say that F2(x, y)

is bigger than F1(x, y) if there is a ∈ p(M) with F1(M,a) ⊂ F2(M,a). This gives a total
ordering on the (finite) set of all p-stable convex-to-right formulas F (x, y) (viewed up to
equivalence modulo Th(M)). We write f(y) := rendF (M, y), meaning that f(y) ia a right
endpoint of F (M, y) which lies in the definable completion M of M . Then f is a function
which maps p(M) into M . Analogously we can consider p-stable convex-to-left formulas and
write f(y) := lendF (M, y), meaning that f(y) is a left endpoint of F (M, y) which lies also
in general in the definable completion M of M .

Let F (x, y) be a p-stable convex-to-right formula. Slightly adapting the definition in [2],
we say that F (x, y) is equivalence-generating if for any α, β ∈ p(M) such that M |= F (β, α)
the following holds:

M |= ∀x(K(β, x, α) ∧ x 6= α→ [F (x, α) ↔ F (x, β)])

Lemma 1.1. [1] Let M be an ℵ0–categorical weakly circularly minimal structure, p ∈ S1(∅) be
non-algebraic, F (x, y) be a p-stable convex-to-right formula which is equivalence-generating.
Then there is an ∅-definable equivalence relation partitioning p(M) into infinitely many in-
finite convex classes.

Theorem 1.2. [1] Let M be an ℵ0–categorical m-convex weakly circularly minimal structure,
m > 1, p ∈ S1(∅) be non-algebraic. Then any p-stable convex-to-right formula is equivalence-
generating.

Let f be a unary function to M with Dom(f) = I ⊆ M , where I is an open convex set.
We say f is monotonic-to-right (left) on I if it preserves (reverses) the relation K0, i.e. for
any a, b, c ∈ I such that K0(a, b, c) we have K0(f(a), f(b), f(c)) (K0(f(c), f(b), f(a))).

Proposition 1.4. Let M be an ℵ0–categorical non-1-transitive weakly circularly minimal
structure of convexity rank 1, p ∈ S1(∅) be non-algebraic. Then any function f the domain
of which contains p(M) is strictly monotonic or constant on p(M).
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Definition 2. [3] Let M be a weakly o-minimal structure, A ⊆ M , M be |A|+–saturated,
p1, p2 ∈ S1(A) be non-algebraic. We say p1 is not weakly orthogonal to p2 (p1 6⊥w p2) if there
are an A-definable formula H(x, y), α ∈ p1(M) and β1, β2 ∈ p2(M) such that β1 ∈ H(α,M)
and β2 6∈ H(α,M).

We extend the last definition on weakly circularly minimal structures.

Lemma 1.2. ([3], Corollary 34) The relation 6⊥w is an equivalence relation on S1(A).

It is not difficult to see that the last assertion is also true in the case of weakly circularly
minimal structures.

2 The main theorem

Theorem 2.1. Any ℵ0–categorical non-1-transitive weakly circularly minimal theory of con-
vexity rank 1 is almost binary.

First we introduce necessary definitions and prove a series of assertions that will be
culminated in the proof of Theorem 2.1.

Let M be a non-1-transitive weakly circularly minimal structure. Then M is m-convex
for some m ≥ 1. In case m = 1 it is not difficult to see that there is an ∅-definable linear
order regarding of which M is a weakly o-minimal structure. Therefore further we consider
the case m > 1. Also observe that if M is m-convex for some m > 1, M is non-1-transitive.

Let p1, p2, . . . , ps ∈ S1(∅) be non-algebraic, U1, U2, . . . , Us be convex components of the
types p1, p2, . . . , ps respectively. We say that a family of convex components {U1, . . . , Us} is
weakly orthogonal over ∅ if every s-tuple 〈a1, . . . , as〉 ∈ U1 × . . .× Us satisfies the same type
over ∅. We say that a family of convex components {U1, . . . , Us} is orthogonal over ∅ if for
any sequence (n1, n2, . . . , ns) ∈ ωs every (n1 + n2 + . . . + ns)–tuple 〈a1

1, a
2
1, . . . , a

n1
1 ; . . .; a1

2,
a2

2, . . . , a
n2
2 ; . . . ; a1

s, a
2
s, . . . , a

ns
s 〉 ∈ (U1)

n1 × (U2)
n2 × . . . × (Us)

ns with K0(a
1
1, a

2
1, . . . , a

n1
1 ; . . .;

a1
2, a2

2, . . . , a
n2
2 ; . . .; a1

s, a
2
s, . . . , a

ns
s ) satisfies the same type over ∅.

Proposition 2.1. [9] Let T be an ℵ0-categorical m-convex weakly circularly minimal theory
of convexity rank 1, m > 1, p1, p2, . . . , ps ∈ S1(∅) be non-algebraic, U1, U2, . . . , Us be convex
components of the types p1, p2, . . . , ps respectively. Suppose that {U1, U2, . . . , Us} is weakly
orthogonal over ∅. Then it is orthogonal over ∅.

Proposition 2.2. [9] Let T be an ℵ0-categorical m-convex weakly circularly minimal theory
of convexity rank 1, m > 1, p1, p2, . . . , ps ∈ S1(∅) be non-algebraic, U1, U2, . . . , Us be convex
components of the types p1, p2, . . . , ps respectively. Suppose that {U1, U2, . . ., Us} is pairwise
weakly orthogonal over ∅. Then {U1, U2, . . . , Us} is weakly orthogonal over ∅.

Let p1, p2 ∈ S1(∅) be non-algebraic, {U1, U2} be convex components of types p1 and p2

respectively. We say that an ∅–definable formula φ(x, y) is a (U1, U2)–splitting formula if
there is a ∈ U1 such that φ(a,M) ⊂ U2, φ(a,M) convex and lendφ(a, M) = lendU2.

Lemma 2.1. Let M be an ℵ0-categorical m-convex weakly circularly minimal structure,
m > 1, p1, p2 ∈ S1(∅) be non-algebraic, U1, U2 be convex components of the types p1 and p2

respectively. Suppose that {U1, U2} is not weakly orthogonal over ∅. Then there is at least
one (U1, U2)–splitting formula.
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Proof. Since {U1, U2} is not weakly orthogonal over ∅, there are a1, a
′
1 ∈ U1, a2, a

′
2 ∈ U2 such

that tp(〈a1, a2〉/∅) 6= tp(〈a′1, a′2〉/∅). Consequently, there is an ∅-definable formula R(x, y)
such that

M |= R(a1, a2) ∧ ¬R(a′1, a
′
2).

Note that there exists a′′2 ∈ U2 such that M |= ¬R(a1, a
′′
2). If this is not true then let

A(x, y) be an ∅-definable formula isolating tp(〈a1, a2〉/∅). Then M |= θ(a1), where

θ(a1) := ∀y[A(a1, y) → R(a1, y)]

Since tp(a1/∅) = tp(a′1/∅), we have: M |= θ(a′1), contradicting our assumption. Thus, we
have:

M |= R(a1, a2) ∧ ¬R(a1, a
′′
2).

Without loss of generality, suppose that K0(a1, a2, a
′′
2). By the weak circular minimality

R(a1,M) is a finite union of {a1}-definable convex sets, and let R0(a1, x) define a convex set
containing {a2}. Then the formula

φ(x, y) := Up1(x) ∧ Up2(y) ∧ ∃t[R0(x, t) ∧K(x, y, t)]

is a (U1, U2)–splitting formula. �

Let φ1(x, y), φ2(x, y) be (U1, U2)–splitting formulas. We say that φ1(x, y) less than
φ2(x, y) if there is a ∈ U1 such that φ1(a,M) ⊂ φ2(a,M). Obviously the set of all (U1, U2)–
splitting formulas is linearly ordered.

Lemma 2.2. Let T be an ℵ0–categorical m-convex weakly circularly minimal theory of con-
vexity rank 1, M |= T , A ⊆M , A be finite, A 6= ∅, p1, p2 ∈ S1(A) be non-algebraic, p1 6⊥w p2.
Then

1. If there exists a ∈ p1(M) such that dcl(A ∪ {a}) ∩ p2(M) = ∅ then there is a unique
(p1, p2)–splitting formula.

2. If there exists a ∈ p1(M) such that dcl(A ∪ {a}) ∩ p2(M) 6= ∅ then there are exactly
two (p1, p2)–splitting formulas φ1(x, y), φ2(x, y) so that φ1(x, y) is less than φ2(x, y) and
|φ2(a,M) \ φ1(a,M)| = 1 for any a ∈ p1(M).

Proof. Take an arbitrary element a ∈ A and consider the structure M̂a. By Proposition 1.2
M̂a is a weakly o-minimal structure. The further proof is analogous to the proof of Lemma
6 in [8]. �

Lemma 2.3. Let T be an ℵ0–categorical m-convex weakly circularly minimal theory of con-
vexity rank 1, p1, p2 ∈ S1(∅) be non-algebraic, U1, U2 be convex components of the types p1

and p2 respectively. Suppose that {U1, U2} is not weakly orthogonal over ∅. Then
1. If there is a ∈ U1 such that dcl({a}) ∩ U2 = ∅ then there exists a unique (U1, U2)–

splitting formula.
2. If there is a ∈ U1 such that dcl({a}) ∩ U2 6= ∅ then there are exactly two (U1, U2)–

splitting formulas φ1(x, y), φ2(x, y) so that φ1(x, y) is less than φ2(x, y) and |φ2(a,M) \
φ1(a,M)| = 1 for any a ∈ U1.
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Proof. 1. Suppose that dcl({a}) ∩ U2 = ∅ for some a ∈ U1. Assume the contrary: there are at
least two (U1, U2)-splitting formulas φ1(x, y) and φ2(x, y), and let for definiteness φ1(x, y) is
less than φ2(x, y). Obviously, |φ2(a, M) \ φ1(a,M)| > 1. Indeed if |φ2(a,M)\φ1(a,M)| = 1
then there is b ∈ U2 such that b ∈ φ2(a,M) \ φ1(a,M) and b ∈ dcl({a}), contradicting our
assumption. Since {U1, U2} is not weakly orthogonal over ∅, there are a ∈ U1, b1, b2 ∈ U2

such that
M |= φ1(a, b1) ∧ ¬φ1(a, b2) ∧ φ2(a, b2).

Without loss of generality, we assume that K0(a, b1, b2) and K(b1,M, b2) ⊂ U2. Then
consider the following formula:

F (x, b2) := ∃t[Up1(t) ∧ ¬φ1(t, b2) ∧ φ2(t, b2) ∧ φ2(t, x) ∧K(b2, x, t) ∧ Up2(x)]

It is not difficult to see that F (x, y) is a p2-stable convex-to-right formula, contradicting
that T has the convexity rank 1.

2. Let b ∈ dcl({a}) ∩ U2 for some a ∈ U1. Then there is an ∅–definable formula θ(x, y)
such that

M |= θ(a, b) ∧ ∃!yθ(a, y).

Consider the following formulas:

φ1(a, y) := ∃t[θ(a, t) ∧K(a, y, t) ∧ y 6= t ∧ Up2(y)]

φ2(a, y) := ∃t[θ(a, t) ∧K(a, y, t) ∧ Up2(y)]

Obviously, φ1(x, y), φ2(x, y) are (U1, U2)–splitting formulas and φ2(a,M) \ φ1(a, M) =
{b}. By analogy with Point 1 one can prove that there is no other (U1, U2)–splitting formulas.
�

Lemma 2.4. Let T be an ℵ0–categorical m-convex weakly circularly minimal theory of conve-
xity rank 1, p1, p2, p3 ∈ S1(∅) be non-algebraic, U1, U2, U3 be convex components of the types
p1, p2 and p3 respectively. Suppose that {U1, U2} and {U2, U3} are not weakly orthogonal
over ∅. Then for any a, a′ ∈ U1, b, b′ ∈ U2, c, c′ ∈ U3 such that tp(〈a, b〉/∅) = tp(〈a′, b′〉/∅),
tp(〈a, c〉/∅) = tp(〈a′, c′〉/∅), tp(〈b, c〉/∅) = tp(〈b′, c′〉/∅) we have tp(〈a, b, c〉/∅) = tp(〈a′, b′,
c′〉/∅).

Proof. Assume the contrary: there exist a, a′ ∈ U1, b, b′ ∈ U2, c, c′ ∈ U3 satisfying the
hypotheses of the lemma and there is an ∅–definable formula R(x, y, z) so that

M |= R(a, b, c) ∧ ¬R(a′, b′, c′).

Without loss of generality, we assume that K0(U1, U2, U3). Note that the elements a, b
and c are pairwise algebraically independent over ∅. Indeed, if for example b ∈ dcl({a}) then
there is an ∅–definable formula θ(x, y) so that

M |= θ(a, b) ∧ ∃!yθ(a, y).

Consider the following formula: R′(x, z) := ∀y[θ(x, y) → R(x, y, z)]. Then

M |= R′(a, c) ∧ ¬R′(a′, c′),
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contradicting the hypothesis tp(〈a, c〉/∅) = tp(〈a′, c′〉/∅).
Let A(x, y) and B(x, y) be ∅–definable formulas isolating tp(〈a, c〉/∅) and tp(〈b, c〉/∅)

respectively. Then there is c′′ ∈ U3 such that

M |= A(a, c′′) ∧B(b, c′′) ∧ ¬R(a, b, c′′)

If this is not true then M |= D(a, b), where

D(a, b) := ∀y[U3(y, a) ∧ A(a, y) ∧B(b, y) → R(a, b, y)]

Here U3(y, a) is an {a}-definable formula determining the set U3 (a convex component of
any non-algebraic 1-type which is not ∅-definable is {a}-definable for any a ∈M). But then
M |= D(a′, b′), contradicting our assumption. Thus, we have:

M |= R(a, b, c) ∧ ¬R(a, b, c′′).

Transforming if necessary we can assume that R(a, b,M) is convex, R(a, b,M) ⊂ U3 and
lendR(a, b,M) = lendU3.

Let φ13(x, y) be a (U1, U3)–splitting formula, φ23(x, y) be a (U2, U3)–splitting formula.
Then either φ13(a, M) ⊆ φ23(b,M) or φ23(b,M) ⊂ φ13(a,M). If φ13(a,M) = φ23(b,M)
then by strict monotonicity of f(x) := rendφ23(x,M) on p2(M) we have that b ∈ dcl({a}),
contradicting our supposition. If |φ23(b,M) \ φ13(a,M)| = 1 or |φ13(a,M) \ φ23(b,M)| = 1
then we also can see that b ∈ dcl({a}).

Suppose that φ13(a,M) ⊂ φ23(b,M). Then |φ23(b,M) \ φ13(a,M)| > 1. Since
tp(〈a, c〉/∅) = tp(〈a, c′′〉/∅), we have either c, c′′ ∈ φ13(a,M) or c, c′′ ∈ ¬φ13(a,M). Without
loss of generality, suppose the first. Let p′1 := tp(a/{b}), p′3 := tp(c/{b}). Obviously, p′1 6⊥w p′3
and R(x, b, z), φ13(x, z) are (p′1, p

′
3)–splitting formulas and |φ13(a,M) \R(a, b,M)| > 1, con-

tradicting Lemma 2.2. The case φ23(b,M) ⊂ φ13(a,M) is considered analogously. �

Lemma 2.5. Let T be an ℵ0–categorical m-convex weakly circularly minimal theory of con-
vexity rank 1, M |= T , A ⊆M , A be finite, A 6= ∅, p1, p2, p3 ∈ S1(A) be non-algebraic. Then
for any a, a′ ∈ p1(M), b, b′ ∈ p2(M), c, c′ ∈ p3(M) such that tp(〈a, b〉/A) = tp(〈a′, b′〉/A),
tp(〈a, c〉/A) = tp(〈a′, c′〉/A), tp(〈b, c〉/A) = tp(〈b′, c′〉/A) we have tp(〈a, b, c〉/A) = tp(〈a′, b′,
c′〉/A).

Proof. Take an arbitrary element a ∈ A and consider the structure M̂a. By Proposition 1.2
M̂a is a weakly o-minimal structure. The further proof is analogous to the proof of Lemma
8 in [8]. �

Lemma 2.6. Let T be an ℵ0–categorical m-convex weakly circularly minimal theory of con-
vexity rank 1, p1, p2, p3 ∈ S1(∅) be non-algebraic, U1, U2, U3 be convex components of the
types p1, p2 and p3 respectively. Then for any a, a′ ∈ U1, b, b′ ∈ U2, c, c′ ∈ U3 such that
tp(〈a, b〉/∅) = tp(〈a′, b′〉/∅), tp(〈a, c〉/∅) = tp(〈a′, c′〉/∅), tp(〈b, c〉/∅) = tp(〈b′, c′〉/∅) we have
tp(〈a, b, c〉/∅) = tp(〈a′, b′, c′〉/∅).

Proof. Without loss of generality, we assume that K0(U1, U2, U3). If U1, U2 and U3 are
pairwise weakly orthogonal over ∅ then the conclusion of the lemma follows from Proposition
2.2. If the convex components U1, U2 and U3 are not pairwise weakly orthogonal over ∅ then
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it follows by Lemma 2.4. Therefore suppose that {U1, U2} is weakly orthogonal over ∅, but
{U2, U3} is not weakly orthogonal over ∅. Then {U1, U3} is weakly orthogonal over ∅, since
if not we obtain that {U1, U2} is not weakly orthogonal over ∅.

Assume that the conclusion of the lemma does not hold and consequently there are
a, a′ ∈ U1, b, b′ ∈ U2, c, c′ ∈ U3 satisfying the hypotheses of the lemma and there is an
∅–definable formula R(x, y, z) such that

M |= R(a, b, c) ∧ ¬R(a′, b′, c′).

By analogy with Lemma 2.4 we can see that a, b and c are pairwise algebraically in-
dependent over ∅. Let A(x, y) and B(y, z) isolate tp(〈a, c〉/∅) and tp(〈b, c〉/∅) respectively.
Note that there is c′′ ∈ U3 such that

M |= A(a, c′′) ∧B(b, c′′) ∧ ¬R(a, b, c′′).

If this is not true then M |= θ(a, b), where

θ(a, b) := ∀y[U3(y, a) ∧ A(a, y) ∧B(b, y) → R(a, b, y)]

Here the formula U3(y, a) determines the set U3. Since tp(〈a, b〉/∅) = tp(〈a′, b′〉/∅), M |=
θ(a′, b′), contradicting our assumption. Thus, we have:

M |= R(a, b, c) ∧ ¬R(a, b, c′′).

Without loss of generality, suppose that K0(a, b, c, c
′′). Transforming if necessary, we

can assume that R(a, b,M) is convex, R(a, b,M) ⊂ U3 and lendR(a, b,M) = lendU3. Let
p′2 := tp(b/{a}), p′3 := tp(c/{a}). Then p′2(M) = U2, p′3(M) = U3 and consequently R(a, y, z)
is a (p′2, p

′
3)–splitting formula.

Since {U2, U3} is not weakly orthogonal over ∅, there is a (U2, U3)–splitting formula
φ23(x, y). Obviously, it is also a (p′2, p

′
3)–splitting formula.

Since tp(〈b, c〉/∅) = tp(〈b, c′′〉/∅) we have that either c, c′′ ∈ φ23(b,M) or c, c′′ ∈
¬φ23(b,M). Without loss of generality, suppose the first. Then R(a, b,M) ⊂ φ23(b,M)
and |φ23(b,M) \R(a, b,M)| > 1, contradicting Lemma 2.2.

The case when {U1, U2} is not weakly orthogonal over ∅ and {U2, U3} is weakly orthogonal
over ∅ is considered analogously. �

Lemma 2.7. Let T be an ℵ0–categorical m-convex weakly circularly minimal theory of conve-
xity rank 1, p1, p2 ∈ S1(∅) be non-algebraic, U1, U2 be convex components of the types p1 and
p2 respectively. Suppose that {U1, U2} is not weakly orthogonal over ∅. Then for any a, a′ ∈
U1, 〈b1, b2〉, 〈b′1, b′2〉 ∈ [U2]

2 such that K0(a, b1, b2), K0(a
′, b′1, b

′
2), tp(〈a, b1〉/∅) = tp(〈a′, b′1〉/∅),

tp(〈a, b2〉/∅) = tp(〈a′, b′2〉/∅) we have tp(〈a, b1, b2〉/∅) = tp(〈a′, b′1, b′2〉/∅).

Proof. Assume the contrary: there is an ∅–definable formula R(x, y, z) such that M |=
R(a, b1, b2) ∧ ¬R(a′, b′1, b

′
2) for some a, a′ ∈ U1, 〈b1, b2〉, 〈b′1, b′2〉 ∈ [U2]

2 with K0(a, b1, b2),
K0(a

′, b′1, b
′
2), tp(〈a, b1〉/∅) = tp(〈a′, b′1〉/∅) and tp(〈a, b2〉/∅) = tp(〈a′, b′2〉/∅).

First note that if b1 ∈ dcl({a}) then b2 6∈ dcl({a}). Indeed, if b1, b2 ∈ dcl({a}) then
we can show that b2 ∈ dcl({b1}), and consequently we can prove that dcl({b1}) is infinite,
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contradicting the ℵ0–categoricity of T . Suppose that b1 ∈ dcl({a}). Then there is an ∅–
definable formula θ(x, y) such that

M |= θ(a, b1) ∧ ∃!yθ(a, y).

Consider the following formula:

R′(x, z) := ∀y[θ(x, y) → R(x, y, z)]

According to our assumption we obtain that

M |= R′(a, b2) ∧ ¬R′(a′, b′2),

contradicting the hypothesis that tp(〈a, b2〉/∅) = tp(〈a′, b′2〉/∅). Thus, we can assume that
b1, b2 6∈ dcl({a}).

Let A2(x, y) be an ∅–definable formula isolating tp(〈a, b2〉/∅). Then there is b′′2 ∈ U2 such
that

M |= K0(a, b1, b
′′
2) ∧ A2(a, b

′′
2) ∧ ¬R(a, b1, b

′′
2)

If it is not true then M |= θ(a, b1), where

θ(a, b1) := ∀y[K0(a, b1, y) ∧ A2(a, y) → R(a, b1, y)]

Since tp(〈a, b1〉/∅) = tp(〈a′, b′1〉/∅), we have M |= θ(a′, b′1), contradicting our assumption.
Thus, we have:

M |= R(a, b1, b2) ∧ ¬R(a, b1, b
′′
2).

Case 1. tp(〈a, b1〉/∅) = tp(〈a, b2〉/∅).
Let p′2(y) := {A2(a, y)}. Then p′2 determines a type over {a}, since A2(a,M) is 1-

indiscernible over {a}. Without loss of generality, suppose that K0(a, b1, b2, b
′′
2). By weak

circular minimality R(a, b1,M) is a finite union of {a, b1}–definable convex sets, and let
R0(a, b1, z) determines the convex set containing {b2}. Then consider the following formula:

H(a, b1, z) := K(a, b1, z) ∧ U2(a, b1) ∧ U2(a, z) ∧ ∃t[R0(a, b1, t) ∧K(a, b1, z, t)]

It is not difficult to see that H(a, y, z) is a p′2–stable formula, contradicting that T has
the convexity rank 1.

Case 2. tp(〈a, b1〉/∅) 6= tp(〈a, b2〉/∅).
Since {U1, U2} is not weakly orthogonal over ∅ and b1 6∈ dcl({a}), there is a (U1, U2)–

splitting formula φ(x, y) such that φ(a,M) is 1-indiscernible over {a} and

M |= φ(a, b1) ∧ ¬φ(a, b2).

Since b2 6∈ dcl({a}) and µ(x) := rendφ(x,M) is strictly monotonic on p1(M), there is
a1 ∈ U1 such that

M |= K0(a, a1, b1) ∧ φ(a1, b1) ∧ ¬φ(a1, b2)

Consider the following functions: fa(y) := rendR(a, y,M), gb1(x) := rendR(x, b1, M).
Further we can conduct reasons in the weakly o-minimal structure M̂a, and therefore the

further proof repeats the proof of Lemma 9 in [8]. �
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Lemma 2.8. Let T be an ℵ0–categorical m-convex weakly circularly minimal theory of conve-
xity rank 1, p1, p2 ∈ S1(∅) be non-algebraic, U1, U2 be convex components of the types p1 and
p2 respectively. Suppose that {U1, U2} is not weakly orthogonal over ∅. Then for any n1, n2 <
ω and any tuples ā = 〈a1, a2, . . . , an1〉, ā′ = 〈a′1, a′2, . . . , a′n1

〉 ∈ [U1]
n1, b̄ = 〈b1, b2, . . . , bn2〉,

b̄′ = 〈b′1, b′2, . . . , b′n2
〉 ∈ [U2]

n2 such that K0(a1, a2, . . . , an1), K0(a
′
1, a
′
2, . . . , a

′
n1

), K0(b1, b2, . . .,
bn2), K0(b

′
1, b
′
2, . . . , b

′
n2

) and for any i, j : 1 ≤ i ≤ n1, 1 ≤ j ≤ n2 tp(〈ai, bj〉/∅) = tp(〈a′i, b′j〉/∅)
we have tp(〈ā, b̄〉/∅) = tp(〈ā′, b̄′〉/∅).

Proof. We prove by induction on (n1, n2) ≥lex (1, 1). Step (1, 1) is trivial. Step (1, 2) has been
established in Lemma 2.7. Suppose that the lemma has been established for all (k1, k2) with
(1, 2) ≤lex (k1, k2) <lex (n1, n2). Prove the lemma for case (n1, n2). Assume the contrary:
there are an ∅–definable formula R(x̄, ȳ) and tuples ā, ā′ ∈ [p1(M)]n1 , b̄, b̄′ ∈ [p2(M)]n2

satisfying the hypotheses of the lemma so that

M |= R(ā, b̄) ∧ ¬R(ā′, b̄′).

By analogy with the proof of Lemma 2.7 we can see that there is b′′n2
∈ U2 such that

K0(b1, . . . , bn2−1, b
′′
n2

), tp(〈ai, bn2〉/∅) = tp(〈ai, b′′n2
〉/∅), 1 ≤ i ≤ n1 и

M |= R(ā, b̄n2−1, bn2) ∧ ¬R(ā, b̄n2−1, b
′′
n2

)

Let B := {ān1−1, b̄n2−2}. Then obviously B 6= ∅, and we can further conduct reasons in
the weakly o-minimal structure M̂b1 , whereas the further proof repeats the proof of Lemma
10 in [8]. �

Proof of Theorem 2.1. By the ℵ0–categoricity there are only finitely many non-algebraic 1-
types over ∅. Let {U1, U2, . . . , Us} be a complete list of convex components of non-algebraic
1-types of S1(∅). Prove by induction on s ≥ 2 that for any n1, n2, . . ., ns < ω, for any
ān1 , ā′n1

∈ [U1]
n1 , ān2 , ā′n2

∈ [U2]
n2 , . . ., āns , ā′ns

∈ [Us]
ns , such that for any i1, i2, j, k :

1 ≤ i1 < i2 ≤ s, 1 ≤ j ≤ ni1 , 1 ≤ k ≤ ni2 tp(〈ajni1
, akni2

〉/∅) = tp(〈(ajni1
)′, (akni2

)′〉/∅), we have

tp(〈ān1 , ān2 , . . . , āns〉/∅) = tp(〈ā′n1
, ā′n2

, . . . , ā′ns
〉/∅) (∗)

Step s = 2. If {U1, U2} is weakly orthogonal over ∅ then by Proposition 2.1 {U1, U2} is
orthogonal over ∅, i.e. (∗) holds. If {U1, U2} is not weakly orthogonal over ∅ then (∗) follows
by Lemma 2.8.

Step s = 3. Case n1 = 1, n2 = 1, n3 = 1 has been established in Lemma 2.6. Suppose that
(∗) has been established for all (k1, k2, k3) with (1, 1, 1) ≤lex (k1, k2, k3) <lex (n1, n2, n3) and
prove it for (n1, n2, n3). Assume the contrary: there are ān1 , ā′n1

∈ [U1]
n1 , ān2 , ā′n2

∈ [U2]
n2 ,

ān3 , ā′n3
∈ [U3]

n3 such that for any i1, i2, j, k : 1 ≤ i1 < i2 ≤ 3, 1 ≤ j ≤ ni1 , 1 ≤ k ≤ ni2
tp(〈ajni1

, akni2
〉/∅) = tp(〈(ajni1

)′, (akni2
)′〉/∅) and there is an ∅–definable formula R(x̄n1 , x̄n2 , x̄n3)

so that
M |= R(ān1 , ān2 , ān3) ∧ ¬R(ā′n1

, ā′n2
, ā′ns

)

Then we can see that there exists (an3
n3

)′′ ∈ U3 such that K0(ān1 , ān2 , ān3−1, (a
n3
n3

)′′),
tp(〈ajni

, an3
n3
〉/∅) = tp(〈ajni

, (an3
n3

)′′〉/∅) for any 1 ≤ i ≤ 2 and 1 ≤ j ≤ ni and

M |= ¬R(ān1 , ān2 , ān3−1, (a
n3
n3

)′′).
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Obviously, ni > 1 for some i ≤ 3. Without loss of generality, suppose that n3 > 1. Let
A := {ān1−1, ān2−1, ān3−1}. Then A 6= ∅, and considering the types p′1 := tp(an1

n1
/A), p′2 :=

tp(an2
n2
/A), p′3 := tp(an3

n3
/A), we have a contradiction with Lemma 2.5.

Suppose that (∗) has been established for all k with 3 ≤ k < s. Prove it for s. We further
conduct reasons in the weakly o-minimal structure M̂a for an arbitrary a ∈ {a1

n1
, . . . , an1

n1
} ⊆

U1, whereas the further proof repeats the proof of Theorem 2 in [8]. �
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