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TYNYSBEK SHARIPOVICH KAL’MENOV

(to the 70th birthday)

On May 5, 2016 was the 70th birthday of Tynysbek Sharipovich
Kal’menov, member of the Editorial Board of the Eurasian Math-
ematical Journal, general director of the Institute of Mathematics
and Mathematical Modeling of the Ministry of Education and Sci-
ence of the Republic of Kazakhstan, laureate of the Lenin Komsomol
Prize of the Kazakh SSR (1978), doctor of physical and mathemat-
ical sciences (1983), professor (1986), honoured worker of science
and technology of the Republic of Kazakhstan (1996), academician
of the National Academy of Sciences (2003), laureate of the State
Prize in the field of science and technology (2013).

T.Sh. Kal’menov was born in the South-Kazakhstan region of
the Kazakh SSR. He graduated from the Novosibirsk State University (1969) and completed
his postgraduate studies there in 1972.

He obtained seminal scientific results in the theory of partial differential equations and
in the spectral theory of differential operators.

For the Lavrentiev-Bitsadze equation T.Sh. Kal’menov proved the criterion of strong
solvability of the Tricomi problem in the Lp-spaces. He described all well-posed boundary
value problems for the wave equation and equations of mixed type within the framework of
the general theory of boundary value problems.

He solved the problem of existence of an eigenvalue of the Tricomi problem for the
Lavrentiev-Bitsadze equation and the general Gellerstedt equation on the basis of the new
extremum principle formulated by him.

T.Sh. Kal’menov proved the completeness of root vectors of main types of Bitsadze-
Samarskii problems for a general elliptic operator. Green’s function of the Dirichlet problem
for the polyharmonic equation was constructed. He established that the spectrum of general
differential operators, generated by regular boundary conditions, is either an empty or an
infinite set. The boundary conditions characterizing the volume Newton potential were
found. A new criterion of well-posedness of the mixed Cauchy problem for the Poisson
equation was found.

On the whole, the results obtained by T.Sh. Kal’menov have laid the groundwork for
new perspective scientific directions in the theory of boundary value problems for hyperbolic
equations, equations of the mixed type, as well as in the spectral theory.

More than 50 candidate of sciences and 9 doctor of sciences dissertations have been
defended under his supervision. He has published more than 120 scientific papers. The list
of his basic publications can be viewed on the web-page

https : //scholar.google.com/citations?user = Zay4fxkAAAAJ&hl = ru&authuser = 1

The Editorial Board of the Eurasian Mathematical Journal congratulates Tynysbek
Sharipovich Kal’menov on the occasion of his 70th birthday and wishes him good health
and new creative achievements!
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Abstract. In this paper we obtain a special integral representation of functions with a
set of multi-indices and use it to prove embedding theorems for multianisotropic spaces in
three-dimensional case.

1 Introduction

The embedding theorems for multianisotropic spaces in two-dimensional case can be found
in [4]. In this paper we prove embedding theorems for the Sobolev multianisotropic spaces
in three-dimensional space when the completely regular polyhedron has one anisotropicity
vertex. The obtained results generalize embedding theorems for isotropic and anisotropic
spaces in [1-3, 5-9] (for an overview of the history of the problem and related results see
[2]), and in the case of anisotropic spaces coincide with known theorems, although a method
of integral representation of functions is applied, which is based on the usage of special
multianisotropic kernels.

2 Multianisotropic kernels and their properties

Let R3 be the three-dimensional space, Z3
+ the set of all three-dimensional multi-indices, i.e.

α = (α1, α2, α3) ∈ Z3
+, if α1, α2, α3 are non-negative integers. For ξ, η ∈ R3, α ∈ Z3

+, t > 0
let |α| = α1 + α2 + α3, ξ

α = ξα1
1 ξα2

2 ξα3
3 , tη = (tη1 , tη2 , tη3) , Dk = 1

i
∂
∂xk

, k = 1, 2, 3, and let
Dα = Dα1

1 Dα2
2 Dα3

3 be the weak derivative of order α.

For a set of multi-indices let N be the smallest convex polyhedron containing it. N is
said to be completely regular if

a) it has vertices at the origin and further vertices on each coordinate axis
b) all components of the outer normals of all two-dimensional non-coordinate faces are

positive. For a completely regular polyhedron N in R3 let N2
i (i = 1, ...,M) be the two-

dimensional non-coordinate faces. Let µi(i = 1, . . .,M) be the outer normal of the face N2
i ,
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such that the equation of that face is (α;µi) = 1; (i = 1, ...,M). We study the case when the
vertices of N are multi-index: α1 = (l1, 0, 0) , α2 = (0, l2, 0) , α3 = (0, 0, l3) , α

4 = (α1, α2, α3).
Denote by µi (i = 1, 2, 3) the outer normal of N2

i , which is the face N2
1 passing through

all the vertices with the exception of αi (i=1,2,3), i.e. µ1 is the outer normal of the face
passing through the vertices {α2;α3;α4}, and so on.

For θ > 0 and positive integer k denote

P (θ, ξ) = (θξl11 )
2k

+ (θξl22 )
2k

+ (θξl33 )
2k

+ (θξα1
1 ξα2

2 ξα3
3 )2k, (2.1)

G0 (ξ; θ) = e−
P (θ,ξ)

, (2.2)

G1,j (ξ, θ) = 2k(θξα
j

)
2k−1

e−
P (θ,ξ)

, j = 1, 2, 3, 4. (2.3)

It is obvious that for any value of θ > 0 G0, G1,j∈S, (j = 1, 2, 3, 4), where S = S (Rn) is
the Schwartz space of rapidly decreasing functions.

Let Ĝ0(t, θ), Ĝ1,j(t, θ) (j = 1, 2, 3, 4) be the corresponding Fourier transform of G0,
G1,j (j = 1, 2, 3, 4).

Note that Ĝ0 , Ĝ1,j ∈ S, (j = 1, 2, 3, 4), because the Fourier transform is an automor-
phism on S.

Suppose that the inequality α1 < α2 < α3 < l3 holds for α = α4 = (α1, α2, α3). Consider
the intersection of planes N2

1

⋂
N2

2, i.e. the line passing through the points α3 = (0; 0; l3) and
α4 = (α1, α2, α3). The parametric equation of that line is x =α1t; y = α2t; z = l3−t (l3 − α3).
Let β = (β1, β2, 0) be the point of intersection of that line with the XOY plane. Note that
β1 = α1l3

l3−α3
, β2 = α2l3

l3−α3
, β ∈ N2

1

⋂
N2

2 (i.e. (β;µ1) = 1; (β;µ2) = 1), also β1 < β2 which
follows from α1 < α2.

Consider the point γ = (γ1, 0, 0), such that γ ∈ N2
1. Let N be an even number, such that

all components of multi-indices Nα,Nβ,Nγ are even. (A)
Such N exists, because all components of α, β, γ are rational. Let us prove the following

lemma (an analogue of Lemma 2.1 in [4]).

Lemma 2.1. Let α4 = (α1, α2, α3) ∈ Z3
+, α1 < α2 < α3 and θ ∈ (0; 1). Then for any multi-

index m = (m1,m2,m3) and for any even N satisfying (A) there exist constants Ci, (i =
0, 1, 2), such that

|DmĜ1,j (t, θ) | ≤
θ
− max

i=1,2,3
(|µi|+(m,µi)) (

C0(lnθ)
2 + C1 |lnθ|+ C2

)
1 + θ−N(tNα1

1 tNα2
2 tNα3

3 + tNβ1

1 tNβ2

2 + tNγ11 )
. (2.4)

An analogous inequality is true for Ĝ0 (t, θ).

Proof. As in the proof of Lemma 2.1 in [4], for any multi-indexm = (m1,m2,m3) we estimate
the following integral:

I =

∫ ∞
0

∫ ∞
0

∫ ∞
0

ξm1
1 ξm2

2 ξm3
3 e−P (θ,ξ)dξ1dξ2dξ3.

Consider αi

mi+1
(i = 1, 2, 3). Let i0 be an index, such that max

i=1,2,3

αi

mi+1
=

αi0

mi0
+1

. There are

3 possible cases:
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1. The maximum is obtained only at one index i0 , i.e. αi

mi+1
<

αi0

mi0
+1

i 6= i0, i = 1, 2, 3.

2. The maximum is obtained at two indices (e.g. i0 = 2 Рё i0 = 3), i.e. α1

m1+1
<

α3

m3+1
, α2

m2+1
= α3

m3+1

3. All the ratios are equal, i.e. α1

m1+1
= α2

m2+1
= α3

m3+1
.

Consider the first case. Let i0 = 3. Note that it suffices to estimate the integral only on
the closed upper half-space. By substituting ξ = θ−µ

3
η in I, we have

I = θ−(|µ3|+(m,µ3))
∫ ∞

0

∫ ∞
0

∫ ∞
0

ηm1
1 ηm2

2 ηm3
3 e−η

2kl1
1 e−η

2kl2
2 e−η

2kα1
1 η

2kα2
2 η

2kα3
3 dη1dη2dη3

= θ−(|µ3|+(m,µ3))
∫ +∞

0

e
−
(
η1

α1
α3 η2

α2
α3 η3

)2kα3

(η1

α1
α3 η2

α2
α3 η3)

m3

d
(
η1

α1
α3 η2

α2
α3 η3

)

·
∫ ∞

0

η
m1−α1

α3
m3−α1

α3
1 e−η

2kl1
1 dη1

∫ ∞
0

η
m2−α2

α3
m3−α2

α3
2 e−η

2kl2
2 dη2

= Cθ−(|µ3|+(m,µ3)) = Cθ
− max

i=1,2,3
(|µi|+(m,µi))

. (2.5)

The last relation follows from the convergence of the three integrals and from inequalities
m1− α1

α3
m3− α1

α3
> −1,m2− α2

α3
m3− α2

α3
> −1, which are in turn inferred from α1

α3
< m1+1

m3+1
, α2

α3
<

m2+1
m3+1

.
Consider the second case. We have α1

α3
< m1+1

m3+1
, α2

α3
= m2+1

m3+1
and thus α1

α2
< m1+1

m2+1

The polyhedron N is completely regular, thus α1

l1
+ α2

l2
+ α3

l3
> 1 and µ3

3 < µ2
3. We can

split I into 8 integrals:

I =

∫ θ−µ3
1

0

dξ1

∫ θ−µ3
2

0

dξ2

∫ θ−µ3
3

0

. . . dξ3 +

∫ θ−µ3
1

0

dξ1

∫ θ−µ3
2

0

dξ2

∫ ∞
θ−µ3

3

. . . dξ3

+

∫ θ−µ3
1

0

dξ1

∫ ∞
θ−µ3

2

dξ2

∫ θ−µ3
3

0

. . . dξ3+

∫ ∞
θ−µ3

1

dξ1

∫ θ−µ3
2

0

dξ2

∫ θ−µ3
3

0

. . . dξ3

+

∫ θ−µ3
1

0

dξ1

∫ ∞
θ−µ3

2

dξ2

∫ ∞
θ−µ3

3

. . . dξ3 +

∫ ∞
θ−µ3

1

dξ1

∫ ∞
θ−µ3

2

dξ2

∫ θ−µ3
3

0

. . . dξ3

+

∫ ∞
θ−µ3

1

dξ1

∫ θ−µ3
2

0

dξ2

∫ ∞
θ−µ3

3

. . . dξ3 +

∫ ∞
θ−µ3

1

dξ1

∫ ∞
θ−µ3

2

dξ2

∫ ∞
θ−µ3

3

. . . dξ3 = I1 + · · ·+ I8.

We will estimate each integral separately. The substitution ξ = θ−µ
3
η in I1 yields I1 ≤

Cθ−(|µ3|+(m,µ3)).
By substituting ξ = θ−µ

2
η in I2, we get

I2 ≤ Cθ−(|µ2|+(m,µ2))
∫ ∞

0

dη1

∫ ∞
0

dη2

∫ ∞
θ−µ3

3

ηm1
1 ηm2

2 ηm3
3 e−η

2kl1
1 e−η

2kl3
3 e−η

2kα1
1 η

2kα2
2 η

2kα3
3 dη3
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= Cθ−(|µ2|+(m,µ2))
∫ ∞

0

η
m1−α1

α2
m2−α1

α2
1 e−η

2kl1
1 dη1

∫ ∞
θ−µ3

3+µ2
3

e−η
2kl3
3

η3

dη3

·
∫ ∞

0

(
η

α1
α2
1 η2η

α3
α2
3

)m2

e
−
(
η

α1
α2
1 η2η

α3
α2
3

)2kα2

d(η
α1
α2
1 η2η

α3
α2
3 ) ≤ θ−(|µ2|+(m,µ2)) (C1 |lnθ|+ C2) .

The first integral converges, because α1

α3
< m1+1

m3+1
. By substituting t = η

α1
α2
1 η2η

α3
α2
3 , it follows

that the third integral is convergent. The second integral can be estimated via (C1|lnθ|+ C2).
By substituting ξ = θ−µ3η in I3, we get

I3 = θ−(|µ3|+(m,µ3))
∫ 1

0

dη1

∫ ∞
0

dη2

∫ 1

0

(ηm1
1 ηm2

2 ηm3
3 e−η

2kl1
1 e−η

2kl2
2 e−η

2kα1
1 η

2kα2
2 η

2kα3
3 )dη3

≤ Cθ−(|µ3|+(m,µ3)).

We substitute ξ = θ−µ3η in I4 and estimate it similarly to I3.
By substituting ξ = θ−µ

3
η in I5, we get

I5 ≤ Cθ−(|µ3|+(m,µ3))
∫ 1

0

η
m1−α1

α3
m2−α1

α3
1 e−η

2kl1
1 dη1

∫ ∞
1

e−η2
2kl2

η2

dη2

∫ ∞
0

tm3e−t
2kα3dt

≤ Cθ−(|µ3|+(m,µ3)).

By substituting ξ = θ−µ
2
η in I6, we get

I6 ≤ Cθ−(|µ2|+(m,µ2))
∫ ∞

0

η
m1−α1

α2
m2−α1

α2
1 e−η

2kl1
1 dη1

∫ ∞
1

e−η3
2kl3

η3

dη3

∫ ∞
0

tm2e−t
2kα2dt

≤ θ−(|µ2|+(m,µ2)) (C1 |lnθ|+ C2) .

By substituting ξ = θ−µ
3
η in I7, we get

I7 ≤ Cθ−(|µ3|+(m,µ3))
∫ 1

0

η
m1−α1

α3
m2−α1

α3
1 e−η

2kl1
1 dη1

∫ ∞
1

e−η2
2kl2

η2

dη2

∫ ∞
0

tm3e−t
2kα3dt

≤ Cθ−(|µ3|+(m,µ3)).

Finally, by substituting ξ = θ−µ
3
η in I8, we get

I8 ≤ Cθ−(|µ3|+(m,µ3)).

As a result, if α1

α3
< m1+1

m3+1
, α2

α3
= m2+1

m3+1
then for some constants C1, C2 the following

inequality holds:

I ≤ θ
− max

i=1,2,3
(|µi|+(m,µi))

(C1 |lnθ|+ C2). (2.6)

Consider the third case, i.e. α1

α3
= m1+1

m3+1
, α2

α3
= m1+1

m3+1
, thus α2

α3
= m2+1

m3+1
.
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Let
µ0
i = min

j=1,2,3
µji .

Then µ0
1 = µ1

1, µ0
2 = µ2

2, µ0
3 = µ3

3. As in the first case, we split I into 8 integrals by
µ0

1, µ0
2 , µ0

3. We consider each integral separately. By substituting ξ = θ−µ
3
η in I1, we get

I1 ≤ Cθ−(|µ3|+(m,µ3)).

By substituting ξ = θ−µ
2
η in I2, we get

I2 ≤ Cθ−(|µ2|+(m,µ2))
∫ ∞

0

ηm1
1 e−η1

2kl1dη1

∫ 1

0

ηm2
1 e−η1

2kα1η22kα2η32kα3dη2

∫ ∞
0

ηm3
3 e−η3

2kl3dη3

≤ Cθ−(|µ2|+(m,µ2)).

By substituting ξ = θ−µ
3
η in I3 and I4 and estimating them similarly to I2, an analogous

estimate can be obtained.
By substituting ξ = θ−µ

1
η in I5, we get

I5 ≤ Cθ−(|µ1|+(m,µ1))
∫ 1

0

dη1

∫ ∞
0

dη2

∫ ∞
0

e−η2
2kl2e−η3

2kl3e−η1
2kα1η22kα2η32kα3ηm1

1 ηm2
2 ηm3

3 dη3

≤ Cθ−(|µ1|+(m,µ1)).

Similarly, we make the substitutions ξ = θ−µ
2
η and ξ = θ−µ

3
η in I6 and I7, respectively.

Let us estimate I8. By substituting ξ = θ−µ
3
η, we get

I8 ≤ Cθ−(|µ3|+(m,µ3))
∫ ∞
θ−µ0

1+µ3
1

e−η1
2kl1

η1

dη1

∫ ∞
θ−µ0

2+µ3
2

e−η2
2kl2

η2

dη2

∫ ∞
1

tm3e2kα3dt

≤
(
C0(lnθ)

2 + C1 |lnθ|+ C2

)
θ−(|µ3|+(m,µ3)).

Finally, we get that in the third case there exist constants C0, C1, C2, such that

I ≤ (C0(lnθ)
2 + C1 |lnθ|+ C2) θ

max
i=1,2,3

|µi|+(m,µi)
. (2.7)

Using inequalities (2.5), (2.6) and (2.7), we proceed with the proof of Lemma 2.1. Let
us estimate Ĝ1,j(t, θ) , j = 1, 2, 3, 4. For any multi-index m = (m1,m2,m3)

DmĜ1,j (t, θ) =
1

(2π)
3
2

∫
R3

ξm1
1 ξm2

2 ξm3
3 e−i(t,ξ)2k(θξα

j

)
2k−1

e−P (θ,ξ)dξ1dξ2dξ3. (2.8)

Consider the vertex α = (α1, α2, α3) of N, and the multi-index (m1+α
j
1,m2+α

j
2, m3+α

j
3).

Suppose that:
αi
αr

6= mi + αji + 1

mr + αjr + 1
, i, r = 1, 2, 3. (2.9)

Let i0 be the index, for which the following relation holds:

max
i=1,2,3

αi

mi + αji + 1
=

αi0
mi0 + αji0 + 1

.
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Then let us substitute ξ = θ−µ
i0η in integral (2.8).

According to (2.9), αi

mi+α
j
i +1

<
αi0

mi0
+αj

i0
+1

i 6= i0. Considering 1− l1µ
i0
1 ≥ 0, 0 < θ < 1

|DmĜ1,j (t, θ) | ≤ Cθ−(|µi0 |+(m,µi0 )). (2.10)

In the second case, i.e. when there is one equality in (2.9), (2.6) is obtained for
|DmĜ1,j (t, θ) |. In the third case, i.e. when there are only equalities in (2.9), (2.7) is
obtained for |DmĜ1,j (t, θ) |.

Let us estimate tNα1
1 tNα2

2 tNα3
3 DmĜ1,j (t, θ). Using the properties of the Fourier transform

we have
θ−N tNα1

1 tNα2
2 tNα3

3 DmĜ1,j (t, θ)

=
θ−N

(2π)
3
2

∫
R3

DNα1
ξ1

DNα2
ξ2

DNα3
ξ3

e−i(t,ξ)ξm1
1 ξm2

2 ξm3
3 2k(θξα

j

)
2k−1

e−P (θ,ξ)dξ1dξ2dξ3.

Integration by parts makes it suffice to estimate the integral

θ−N
∫ ∞

0

∫ ∞
0

∫ ∞
0

DNα1
ξ1

DNα2
ξ2

DNα3
ξ3

(ξm1
1 ξm2

2 ξm3
3 (θξα

j

)
2k−1

e−P (θ,ξ))dξ1dξ2dξ3.

As in [4], we apply the following formula for the derivative of Φ(ξ)e−P (θ,ξ) of order Nα,

where Φ(ξ) = ξm1
1 ξm2

2 ξm3
3

(
θξα

j
)2k−1

θ−N
∑

β+γ=Nα

C
|β|
|Nα|

∫ ∞
0

∫ ∞
0

∫ ∞
0

Dβ
ξ (ξ

m1
1 ξm2

2 ξm3
3 (θξα

j

)
2k−1

·

·
∑

σ1+···+σ|γ|=γ

e−P (θ,ξ)

|γ|∏
j=1

Dσj

ξ P (θ, ξ)dξ1dξ2dξ3,

(2.11)

where the product is taken over all σj, satisfying |σj| > 0 .
Suppose that the substitution ξ = θ−µ

i
η is made in (2.11) for some i (i = 1, 2, 3), then,

considering the equalities (αN, µi) = N (i = 1, 2, 3) , Dβ
ξ = θ(µi,β)Dβ

η , we find that the "con-
tribution" of θ to (2.11) is

θ(2k−1)(1−(αj ,µi))

|γ|∏
j=1

θ(2k)(1−(αr,µi))θ−(|µi|+(m,µi)).

As (αN, µi) = N, (αr, µi) ≤ 1 , r = 1, 2, 3, 4 , i = 1, 2, 3, the exponent of θ is at least
−(|µi|+ (m,µi)).

Let ρi be an exponent of ξi in (2.11) (i = 1, 2, 3). Consider ρ = (ρ1; ρ2; ρ3) and α =
(α1;α2;α3). For the ratios αi

ρi+1
(i = 1, 2, 3) cases 1-3 may arise. Then (2.5) is true for

|tNα1

1 tNα2
2 tNα3

3 DmĜ1,j (t, θ) | in the first case, (2.6) in the second case, and (2.7) in the third
case.

To estimate θ−N |tNβ1

1 tNβ2

2 tNβ3

3 DmĜ1,j (t, θ) | a similar argument can be used. The expo-
nent of θ will be at least − max

i=1,2,3
(|µi|+ (m,µi)), because the multi-index (β1, β2, 0) lies
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on the intersection of the plane passing through the points {α2, α3, α4} and the plane
passing through the points {α1, α3, α4}. Thus, a substitution by µ1 or µ2 will yield
(Nβ;µ1) = (Nβ;µ2) = N , and a substitution by µ3 will yield (Nβ;µ3)>N .

The estimate for θ−N
∣∣∣tNγ11 DmĜ1,j (t, θ)

∣∣∣ is done similarly, taking into account that
γ = (γ1, 0, 0) lies on the plane, passing through the points {α2, α3, α4}, and (Nγ;µ1) =
N, (Nγ;µ2) > N, (Nγ;µ3) > N .

In either case, one of (2.5), (2.6), (2.7) holds.

Remark 1. If (2.9) holds, then in (2.4) the constants C0 and C1 are 0. If there is at least
one equality in (2.9), then C0 = 0.

Lemma 2.2. Let 0 < θ < 1, α1 < α2 < α3. Then there is a constant РЎ, such that∫
R3

dt1dt2dt3

1 + θ−N
(
tNα1
1 tNα2

2 tNα3
3 + tNβ1

1 tNβ2

2 + tNγ11

) = Cθ|µ1|. (2.12)

Proof. Recall, that β1 = α1l3
l3−α3

, β2 = α2l3
l3−α3

, and thus β1

β2
= α1

α2
, β1 < β2.

By substituting t = θµ
1
η in (2.12) (note that it suffices to estimate the integral only on

the closed upper half-space), we have

I =

∫ ∞
0

∫ ∞
0

∫ ∞
0

dt1dt2dt3

1 + θ−N
(
tNα1
1 tNα2

2 tNα3
3 + tNβ1

1 tNβ2

2 + tNγ11

)
= θ|µ

1|
∫ ∞

0

∫ ∞
0

∫ ∞
0

dη1dη2dη3

1 +

((
η

α1
α3
1 η

α2
α3
2 η3

)Nα3

+

(
η

β1
β2
1 η2

)Nβ2

+ ηNγ11

) .

By applying the change of variables τ1 = η1, τ2 = η
α1
α2
1 η2, τ3 = η

α1
α3
1 η

α2
α3
2 η3, we get

I = Cθ|µ
1|
∫ ∞

0

∫ ∞
0

∫ ∞
0

dτ1dτ2dτ3

τ
α1
α2
1 τ

α2
α3
2

(
1 + τNα3

3 + τNβ2

2 + τNγ11

) . (2.13)

Since α1

α2
< 1, α2

α3
< 1, the integral converges and I = Cθ|µ

1|.

Lemma 2.3. Let 0 < θ < 1, α1 < α2 = α3. Then for any multi-index
m = (m1,m2,m3) and any N satisfying (A) there are constants Ci(i = 0, 1, 2), such that∣∣∣DmĜ1,j (t, θ)

∣∣∣ ≤ θ
− max

i=1,2,3
(|µi|+(m,µi))

(
C0(lnθ)

2 + C1 |lnθ|+ C2

)
1 + θ−N

(
tNα1
1 tNα2

2 tNα3
3 + tNβ1

1 tNβ2

2 + tNγ11

)
· 1

1 + θ−N
(
tNα1
1 tNα2

2 tNα3
3 + tNσ1

1 tNσ3
3 + tNγ11

) , (2.14)

where γ = (γ1, γ2, 0) is the point of intersection of the planes µ2 and µ3 and XOY , σ =
(σ1, 0, σ3) is the point of intersection of the planes µ1 and µ3 and XOZ, γ = (γ1, 0, 0) is the
point of intersection of the µ3 plane with the x-axis.
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Proof. Since γ = (γ1, γ2, 0) is the point of intersection of the µ2- and µ3-planes, we have
(γ;µ1) > 1, (γ;µ2) = 1, (γ;µ3) = 1. Analogously, σ = (σ1, 0, σ3) is the point of intersection
of planes µ1 and µ3, thus (σ;µ1) = 1, (σ;µ3) = 1, (σ;µ2) > 1. Similarly, if γ = (γ1, 0, 0),
then γ1µ

1
1 = 1, γ1µ

2
1 > 1, γ1µ

3
1 > 1.

To prove the lemma, let us estimate:(
1 + θ−N

(
tNα1
1 tNα2

2 tNα3
3 + tNβ1

1 tNβ2

2 + tNγ11

))
·
(
1 + θ−N

(
tNα1
1 tNα2

2 tNα3
3 + tNσ1

1 tNσ3
3 + tNγ11

))
DmĜ1,j (t, θ)

=
1

(2π)
3
2

∫
R3

e−i(t,ξ)
(
1 + θ−N

(
DNα1
ξ1

DNα2
ξ2

DNα3
ξ3

+DNβ1

ξ1
DNβ2

ξ2
+DNγ1

ξ1

))
·
(
1 + θ−N

(
DNα1
ξ1

DNα2
ξ2

DNα3
ξ3

+DNσ1
ξ1

DNσ2
ξ2

+DNγ1
ξ1

))
·
(

2k
(
θξα

j
)2k−1

ξm1
1 ξm2

2 ξm3
3 e−P (θ,ξ)

)
dξ1dξ2dξ3.

(2.15)

We expand (2.15) and estimate each summand separately. First, we estimate the expo-
nent of θ. Considering the choice of points β = (β1, β2, 0); σ = (σ1, 0, σ3), γ = (γ1, 0, 0),
we apply the change of variables ξ = θ−µ

i
η. It follows that the exponent of θ is at least

− (|µi|+ (m,µi)).
After applying (2.11) to each summand of (2.15) and comparing the exponents of ξi(i =

1, 2, 3) with the multi-index α = (α1, α2, α3), cases 1-3 may arise. Finally, for each summand
one of inequalities (2.5), (2.6), (2.7) holds.

Lemma 2.4. Let 0 < θ < 1, α1 < α2 = α3. Then there is a constant C > 0, such that

∫
R3

1

1 + θ−N
(
tNα1
1 tNα2

2 tNα3
3 + tNβ1

1 tNβ2

2 + tNγ11

)
· dt1dt2dt3

1 + θ−N
(
tNα1
1 tNα2

2 tNα3
3 + tNσ1

1 tNσ3
3 + tNγ11

) ≤ Cθ|µ
1|.

(2.16)

Proof. As in Lemma 2.2, it suffices to consider the integral only on the closed upper half-
space. We split the integral into the following parts:

I =

∫ ∞
0

∫ ∞
0

∫ ∞
0

1

1 + θ−N
(
tNα1
1 tNα2

2 tNα3
3 + tNβ1

1 tNβ2

2 + tNγ11

)
· dt1dt2dt3

1 + θ−N
(
tNα1
1 tNα2

2 tNα3
3 + tNσ1

1 tNσ3
3 + tNγ11

)
=

∫ ∞
0

dt1

∫ θµ1
2

0

dt2

∫ θµ1
3

0

dt3 +

∫ ∞
0

dt1

∫ ∞
θµ1

2

dt2

∫ θµ1
3

0

dt3 +

∫ ∞
0

dt1

∫ θµ1
2

0

dt2

∫ ∞
θµ1

3

dt3

+

∫ ∞
0

dt1

∫ ∞
θµ1

2

dt2

∫ ∞
θµ1

3

dt3 = I1 + I2 + I3 + I4.
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Let us estimate each integral. Considering the points α, β, γ, σ, (α, µ1) = (β, µ1) = (σ, µ1) =
(γ, µ1) = 1

By substituting t = θµ
1
η in I1, we get

I1 ≤ θ|µ
1|
∫ ∞

0

dη1

∫ 1

0

dη2

∫ 1

0

dη3 ≤ Cθ|µ
1|
∫ ∞

0

dη1

1 + ηNγ11

≤ Cθ|µ
1|.

By substituting t = θµ
1η in I2, we get

I2 ≤ Cθ|µ
1|
∫ ∞

0

dη1

∫ 1

0

dη2

∫ ∞
1

dη3

1 + ηNα1
1 ηNα2

2 ηNα3
3 + ηNσ1

1 ηNσ3
3 + ηNγ11

≤ Cθ|µ
1|
∫ ∞

0

dη1

∫ ∞
1

dη3

1 + ηNσ1
1 ηNσ3

3 + ηNγ11

≤ Cθ|µ
1|
∫ ∞

0

dη1

η
σ1/σ3

1

∫ ∞
1

d(η1
σ1/σ3η3)

1 + (η1
σ1/σ3η3)

Nσ3

+ ηNγ11

≤ Cθ|µ
1|
∫ ∞

0

dη1

η
σ1/σ3

1

∫ ∞
0

dτ

1 + τNσ3 + ηNγ11

≤ Cθ|µ
1|,

since σ1/σ3 < 1.
I3 is estimated similarly, as β1/β2 < 1.
By substituting t = θµ

1η in I4, we get

I4 ≤ Cθ|µ
1|
∫ ∞

0

∫ ∞
1

∫ ∞
1

dη1dη2dη3

1 + (η
α1/α2

1 η2η3)
Nα3

+ (η1

β1
β2 η2)

Nβ2

+ ηNγ11

.

In the last integral the change of variables τ1 = η1, τ2 = η1
α1/α2η2, τ3 = η

α1/α2

1 η2η3 yields

I4 ≤ Cθ|µ
1|
∫ ∞

0

dτ1

τ
α1/α2

1

∫ ∞
τ1α1/α2

dτ2

∫ ∞
0

dτ3

τ2(1 + τNγ11 + τNβ2

2 + τNα3
3 )

= Cθ|µ
1|
∫ ∞

0

dτ1

τ
α1/α2

1

∫ 1

τ1α1/α2

dτ2

∫ ∞
0

dτ3

τ2

(
1 + τNγ11 + τNβ2

2 + τNα3
3

)
+Cθ|µ

1|
∫ ∞

0

dτ1

τ
α1/α2

1

∫ ∞
1

dτ2

∫ ∞
0

dτ3

1 + τNγ11 + τNβ2

2 + τNα3
3

= I1
4 + I2

4 .

The integral I2
4 is convergent. Let us estimate I1

4 .

I1
4 ≤ Cθ|µ

1|
∫ ∞

0

dτ1

τ
α1/α2

1

∫ 1

τ1α1/α2

dτ2
τ2

∫ ∞
0

dτ3

1 + τNγ11 + τNα3
3

≤ Cθ|µ
1|
∫ ∞

0

∣∣∣ln 1
τ1

∣∣∣
τ
α1/α2

1

dτ1

∫ ∞
0

dτ3

1 + τNγ11 + τNα3
3

+ C2θ
|µ1| ≤ Cθ|µ

1|,

since
1∫
0

ln 1
τ

τα1/α2
dτ converges when α1/α2 < 1.
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Now we consider the case α1 = α2 = α3.

Lemma 2.5. Let 0 < θ < 1, α1 = α2 = α3 = α. Then for any multi-index
m = (m1,m2,m3) and any N satisfying (A) there are constants Ci, (i = 0, 1, 2), such that

|DmĜ1,j (t, θ) | ≤ θ
− max

i=1,2,3
(|µi|+(m,µi)) (

C0(lnθ)
2 + C1 |lnθ|+ C2

)
·

· 1

1 + θ−N
(
tNα1 tNα2 tNα3 + tNβ1 tNβ2 + tNγ1

) · 1

1 + θ−N
(
tNα1 tNα2 tNα3 + tNσ1 tNσ3 + tNr3

) ·
· 1

1 + θ−N
(
tNα1 tNα2 tNα3 + tNq2 tNq3 + tNδ2

) ,
where (β, β, 0) is the point of intersection the planes µ1, µ2 and (x, 0, y); (σ, 0, σ) is the point
of intersection of the planes µ1, µ3 and (x, 0, z); (0, q, q) is the point of intersection of the
planes µ2, µ3 and (y, 0, z); γµ1

1 = 1; δµ2
2 = 1; rµ3

3 = 1.

The proof is analogous to the one of Lemma 2.3, if to take into account that

βµ2
1 + βµ2

2 = 1; βµ3
1 + βµ3

2 = 1; βµ1
1 + βµ1

2 > 1,

σµ1
1 + σµ1

3 = 1; σµ3
1 + σµ3

3 = 1;σµ2
1 + σµ2

3 > 1,

qµ1
2 + qµ1

3 = 1; qµ2
2 + qµ2

3 = 1; qµ3
2 + qµ3

3 > 1,

δµ1
1 = 1; δµ2

1 > 1; δµ3
1 > 1,

rµ3
3 = 1; rµ2

3 > 1; rµ1
3 > 1,

γµ2
2 = 1; γµ1

2 > 1; γµ3
2 > 1,

Lemma 2.6. Let α1 = α2 = α3 = α. Then there are constants C0, C1, C2, such that

∫
R3

dt1dt2dt3(
1 + θ−N

(
(t1t2t3)Nα + (t1t2)Nβ + tNγ1

))(
1 + θ−N

(
(t1t2t3)Nα + (t1t3)Nσ + tNr3

))

· 1

1 + θ−N
(
(t1t2t3)Nα + (t2t3)Nq + tNδ2

) ≤ θ|µ
1|(C0(lnθ)

2 + C1 |lnθ|+ C2).

(2.17)

Proof. Since α1 = α2 = α3 = α, we have (µ1, α) = (µ2, α) = (µ3, α) = 1, i.e. |µ1| = |µ2| =
|µ3| = 1

α
.

Let max
i=1,2,3

µij = µ0
j j = 1, 2, 3. Then

µ1
1 =

1

α

(
1− α

l2
− α

l3

)
, µ1

2 =
1

l2
,
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µ1
3 =

1

l3
, µ2

1 =
1

l1
, µ2

2 =
1

α

(
1− α

l1
− α

l3

)
,

µ2
3 =

1

l3
, µ3

1 =
1

l1
,

µ3
2 =

1

l2
, µ3

3 =
1

α

(
1− α

l1
− α

l2

)
.

The polyhedron N is convex, thus

α

l1
+
α

l2
+
α

l3
> 1,

and hence max
i=1,2,3

µij = 1
li
.

Let us split the integral (2.17) into 8 integrals (note that it is sufficient to consider the
integrals only on the closed upper half-space)

I =

∫ ∞
0

dt1

∫ ∞
0

dt2

∫ ∞
0

dt3 = I1 + · · ·+ I8 =

=

∫ θµ0
1

0

dt1

∫ θµ0
2

0

dt2

∫ θµ0
3

0

. . . dt3+

∫ ∞
θµ0

1

dt1

∫ θµ0
2

0

dt2

∫ θµ0
3

0

. . . dt3+

∫ θµ0
1

0

dt1

∫ ∞
θµ0

2

dt2

∫ θµ0
3

0

. . . dt3

+

∫ θµ0
1

0

dt1

∫ θµ0
2

0

dt2

∫ ∞
θµ0

3

. . . dt3 +

∫ ∞
θµ0

1

dt1

∫ ∞
θµ0

2

dt2

∫ θµ0
3

0

. . . dt3 +

∫ θµ0
1

0

dt1

∫ ∞
θµ0

2

dt2

∫ ∞
θµ0

3

. . . dt3

+

∫ ∞
θµ0

1

dt1

∫ θµ0
2

0

dt2

∫ ∞
θµ0

3

. . . dt3 +

∫ ∞
θµ0

1

dt1

∫ ∞
θµ0

2

dt2

∫ ∞
θµ0

3

. . . dt3.

By substituting t = θµ
1
η in I1 and taking into account that µ0

i − µ1
i ≥ 0, i = 1, 2, 3 and

0 < θ < 1, we have

I1 ≤ Cθ|µ
1|
∫ 1

0

∫ 1

0

∫ 1

0

dη1dη2dη3(
1 + (η1η2η3)

Nα + (η1η2)
Nβ + η1

Nγ
) ≤ Cθ|µ

1|.

By substituting t = θµ
1
η in I2, we get

I2 ≤ Cθ|µ
1|
∫ ∞

0

dη1

1 + ηNγ1

∫ 1

0

dη2

∫ 1

0

dη3 ≤ Cθ|µ
1|.

I3 and I4 can be estimated similarly to I2 by the substitutions t = θµ
2
η and t = θµ

3
η.

By substituting t = θµ
1
η in I5, we get

I5 ≤ Cθ|µ
1|
∫ ∞
θµ0

1−µ1
1

dη1

∫ ∞
θµ0

2−µ1
2

dη2

∫ θµ0
3−µ1

3

0

dη3

1 + (η1η2η3)
Nα + (η1η2)

Nβ + η1
Nγ

≤ Cθ|µ
1|
∫ ∞
θµ0

1−µ1
1

dτ1
τ1

∫ ∞
0

dτ2

1 + (τ2)
Nβ + τ1Nγ

≤ θ|µ
1| (C1 |lnθ|+ C2) .
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I6 and I7 are estimated similarly. By substituting t = θµ
1
η in I8, we get

I8 ≤ Cθ|µ
1|
∫ ∞
θµ0

1−µ1
1

dη1

η1

∫ ∞
1

d(η1η2)

η1η2

∫ ∞
1

d(η1η2η3)

1 + (η1η2η3)
Nα + (η1η2)

Nβ + η1
Nγ
.

Let us apply the change of variables τ1 = η1, τ2 = η1η2, τ3 = η1η2η3 in I8, then

I8 ≤ Cθ|µ1|(
∫ 1

θµ0
1−µ1

1

dτ1
τ1

∫ 1

τ1

dτ2
τ2

∫ ∞
0

dτ3

1 + (τ3)
Nα + (τ2)

Nβ + (τ1)
Nγ

+

∫ 1

θµ0
1−µ1

1

dτ1
τ1

∫ ∞
1

dτ2
τ2

∫ ∞
0

dτ3

1 + (τ3)
Nα + (τ2)

Nβ + (τ1)
Nγ

+

∫ ∞
1

dτ1
τ1

∫ ∞
1

dτ2
τ2

∫ ∞
0

dτ3

1 + (τ3)
Nα + (τ2)

Nβ + (τ1)
Nγ

) = Cθ|µ
1|(J1 + J2 + J3).

Let us estimate Ji (i = 1, 2, 3)

J1 ≤
∫ 1

θµ0
1−µ1

1

dτ1
τ1
|lnτ1 |

∫ ∞
0

dτ3

1 + (τ3)
Nα

≤ C(lnθ)2.

J2 ≤ C|lnθ|.

J3 ≤ C

∫ ∞
1

dτ1

∫ ∞
1

dτ2

∫ ∞
0

dη3

1 + (τ3)
Nα + (τ2)

Nβ + τ1Nγ
≤ C.

As a result, for some constants C0, C1, C2

I8 ≤ θ|µ
1| (C0(lnθ)

2 + C1|lnθ|+ C2

)
.

3 Regularization of a function by a set of multi-indices and its
properties

For any measurable function U consider the regularization with the kernel Ĝ0 (t, θ):

Uθ (x) =
1

(2π)
3
2

∫
R3

U(t)Ĝ0 (t− x, θ)dt, x ∈ R3. (3.1)

As in [4], the regularization Uθ satisfies the following properties.

Lemma 3.1. Let p > 1, f ∈ Lp (R3). Then fθ ∈ Lp (R3) and lim
θ→∞

‖fθ‖Lp(R3) = 0.

Proof. Let θ > 1, λ =
(

1
l1
, 1
l2
, 1
l3

)
= (λ1, λ2, λ3). As in [4], we substitute t = θ−λη in

Ĝ0 (t, θ). It can be shown, that for some constant C and a number N satisfying (A) the
following inequality holds:∣∣∣Ĝ0 (t, θ)

∣∣∣ ≤ Cθ|λ|
1

1 + θ−N(tNl11 + tNl22 + tNl33 )
. (3.2)
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As C∞0 (Rn) is dense in Lp(R3), it follows that for any ε > 0 there is an Φε ∈ C∞0 (R3),
such that ‖f − Φε‖Lp(R3) < ε. Applying Young’s inequality to ‖fθ‖Lp(R3) we have

‖fθ‖Lp(R3) ≤
1

(2π)
3
2

∥∥∥∥∥∥
∫
R3

Ĝ0 (t− x, θ) (f − Φε)dt

∥∥∥∥∥∥
Lp(R3)

+
1

(2π)
3
2

∥∥∥∥∥∥
∫
R3

Ĝ0 (t− x, θ) Φε(t)dt

∥∥∥∥∥∥
Lp(R3)

≤ 1

(2π)
3
2

∥∥∥Ĝ0

∥∥∥
L1

‖(f − Φε)‖Lp
+

1

(2π)
3
2

∥∥∥Ĝ0

∥∥∥
Lp

‖Φε‖L1
= I1 + I2.

Using (3.2) for
∥∥∥Ĝ0

∥∥∥
L1∥∥∥Ĝ0

∥∥∥
L1(R3)

≤ Cθ−|λ|
∫
R3

dt1dt2dt3

1 + θ−N
(
tNl11 + tNl22 + tNl33

) ≤ C1.

Thus I1 ≤ εC1. Consider I2:

I2 ≤ Cθ−|λ|

∫
R3

dt1dt2dt3(
1 + θ−N(tNl11 + tNl22 + tNl33 )

)p
 1

p

≤ Cεθ
−|λ|+ |λ|

p .

As p > 1, lim
θ→∞

I2 = 0.

Lemma 3.2. If f ∈ Lp (R3) (1 ≤ p <∞), then fθ ∈ Lp (R3) and lim
θ→0

‖fθ − f‖Lp(R3) = 0.

Proof. Since
1

(2π)
3
2

∫
R3

Ĝ0 (t, θ)dt = G0(0, θ) = 1,

we can estimate the difference fθ − f as follows:

‖fθ − f‖Lp
≤ 1

(2π)
3
2

∫
R3

‖f(·+ τ)− f(·)‖Lp

∣∣∣Ĝ0 (τ, θ)
∣∣∣ dτ.

Applying the generalized Minkowski inequality we have

‖fθ − f‖Lp
≤ 1

(2π)
3
2

∫
R3

‖f (·+ τ)− f(·)‖Lp

∣∣∣Ĝ0 (τ, θ)
∣∣∣dτ. (3.3)

Suppose that the vertex α = (α1, α2, α3) of N satisfies α1 < α2 < α3 (other cases are
proven similarly with the use of Lemmas 2.3 and 2.5)

It can be shown, that for any non-negative integer N there are constants C1, C2, C3, such
that as in Lemma 3.1 for any θ ∈ (0, 1) and λ = (λ1, λ2, λ3) =

(
1
l1
, 1
l2
, 1
l3

)
the following

inequality holds:
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∣∣∣Ĝ0 (t, θ)
∣∣∣ ≤ θ−|λ|+(1−(α;λ))2k

(
C1(lnθ)

2 + C2 |lnθ|+ C3

) 1

1 + θ−N
(
tNl11 + tNl22 + tNl33

) . (3.4)

The proof is similar to the one in Lemma 2.1.
Let ρλ (x) =

(
x2l1

1 + x2l2
2 + x2l3

3

) 1
2 (see [2]). Let γ ∈ (0; 1). Integral (3.3) can be expressed

the following way:

‖fθ − f‖Lp
≤ C

∫
ρλ(τ)≤θγ

‖f (·+ τ)− f(·)‖
∣∣∣Ĝ0 (τ, θ)

∣∣∣dτ
+C

∫
ρλ(τ)≥θγ

‖f (·+ τ)− f(·)‖
∣∣∣Ĝ0 (τ, θ)

∣∣∣dτ = A1 (θ) + A2(θ).

By (3.4) for A2 (θ), we have

A2 (θ) ≤ 2‖f‖Lp(R3)θ
−|λ|+(1−(α;λ))2k

(
C1(lnθ)

2 + C2 |lnθ|+ C3

)
·
∫

ρλ(τ)≥θγ

dτ1dτ2

1 + θ−N
(
τNl11 + τNl22 + τNl33

) .
By substituting τ = θλη, we get

A2 (θ) ≤ 2‖f‖Lp(R3)θ
(1−(α;λ))2k

(
C1(lnθ)

2 + C2 |lnθ|+ C3

)
·

∫
ρλ(η)≥θγ−1

dη1dη2

1 + ηNl11 + ηNl22 + ηNl33

.

The latter integral is estimated using the λ-spherical transformation (see [2]), i.e. we
apply the change of variables η1 = rλ1w1, η2 = rλ2w2, η3 = rλ3w3, where w1

2l1 + w2
2l2 +

w3
2l3 = 1.
As a result,

A2 (θ) ≤ 2‖f‖Lp(R3)θ
(1−(α;λ))2k

(
C1(lnθ)

2 + C2 |lnθ|+ C3

)
·
∫ ∞
θγ−1

∫
ρλ(ω)=1

r|λ|−1dr

1 + rN(w1
2Nl1 + w2

2Nl2 + w3
2Nl3)

3∑
i=1

λ2
iωi

2dω

≤ 2|f‖Lp(R3)θ
(1−(α;λ))2k

(
C1(lnθ)

2 + C2 |lnθ|+ C3

) ∫ ∞
θγ−1

r|λ|−1−Ndr

= 2‖f‖Lp(R3)θ
(N−|λ|)(1−γ)+(1−(α;λ))2k

(
C1(lnθ)

2 + C2 |lnθ|+ C3

)
.

Let N be such that the exponent of θ is positive. Then lim
θ→0

A2 (θ) = 0.
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Let us estimate A1 (θ). By applying Lemma 2.1 for the case m = 0, N = 0, we have

A1 (θ) ≤ C sup
ρλ(η)≤θγ

‖f (·+ τ)− f(·)‖Lp(R3)θ
− max

i=1,2,3
|µi|

∫
ρλ(τ)≤θγ

dη1dη2.

As |λ| > max
i=1,2,3

|µi|, there is γ ∈ (0; 1), such that γ |λ| > max
i=1,2,3

|µi|.
By applying the λ-spherical transformation

A1 (θ) ≤ Cθ
γ|λ|− max

i=1,2,3
|µi|

sup
ρλ(η)≤θγ

‖f (·+ η)− f(·)‖Lp(R3).

Since the exponent of θ is positive and the function f ∈ Lp (1 ≤ p < ∞) is continuous
with respect to translation in Lp (see [2]), it follows that lim

θ→0
A1 (θ) = 0.

Corollary 3.1. Let f∈Lp (R3) (1 ≤ p <∞). Then there is a sequence θk,
such that lim

k→∞
θk = 0 and lim

k→∞
fθk

(x) = f(x) almost everywhere.

Proof follows by the properties of convergence in Lp.

4 Integral representation of functions

Theorem 4.1. Let a function f have the weak derivatives Dαi
f, i = 1, 2, 3, 4, where αi are the

vertices of a completely regular polyhedron N, and Dαf∈Lp (R3) (1 ≤ p <∞) , i = 1, 2, 3, 4.
Then for almost all x ∈ R3

f (x) = fh (x) + lim
ε→0

4∑
i=1

∫ h

ε

dθ

∫
R3

Dαi

f (t) Ĝ1,i (t− x, θ) dt. (4.1)

Proof. By using (3.1) and the Fundamental Theorem of Calculus

fh (x)− fε (x) =
1

(2π)
3
2

∫ h

ε

d

dθ

∫
R3

f (x+ t) Ĝ0 (t, θ) dtdθ

=
1

(2π)
3
2

∫ h

ε

∫
R3

f (x+ t)
d

dθ
Ĝ0 (t, θ) dt.

(4.2)

Let us calculate d
dθ
Ĝ0 (t, θ).

d

dθ
Ĝ0 (t, θ) =

1

(2π)
3
2

4∑
j=1

∫
R3

e−i(t,ξ)e−P (θ,ξ) (−2k) θ2k−1ξ2kαj

dξ

=
1

(2π)
3
2

4∑
j=1

Dαj

t

∫
R3

e−i(t,ξ)e−P (θ,ξ) (−2k)
(
θ ξα

j
)2k−1

dξ



34 G.A. Karapetyan

=
4∑
j=1

Dαj

t Ĝ1j (t, θ).

Hence

fh (x)− fε (x) =
4∑
j=1

∫ h

ε

dθ

∫
R3

Dαj

t f (x+ t) Ĝ1,j (t, θ) dt. (4.3)

By applying Corollary 3.1, we complete the proof.

5 Embedding theorems for multianisotropic spaces

Let N be a completely regular polyhedron described in Section 2, then

WN
p

(
R3
)

= {f : f∈Lp
(
R3
)
;Dαi

f∈Lp
(
R3
)
, i = 1, 2, 3, 4}

is called the multianisotropic Sobolev space. If N = {α; |α| ≤ m}, it coincides with the
Sobolev space Wm

p (R3), if N = {α; (α, µ) ≤ 1}, it coincides with the anisotropic Sobolev
space Wm1,m2,m3

p (R3).
Let us prove embedding theorems for WN

p .

Theorem 5.1. Let 1 ≤ p ≤ q < ∞ or 1 ≤ p < ∞ and q = ∞, m = (m1,m2,m3) be a
multi-index, and let, for the vertex α = (α1, α2, α3) of N, α1 ≤ α2 < α3 or α1 < α2 = α3.
Denote χ = max

i=1,2,3
(|µi|+ (m,µi))− |µ1|

(
1− 1

p
+ 1

q

)
.

If χ < 1, then DmWN
p (R3) ↪→ Lq (R3), i.e. any function f∈WN

p (R3) has the weak
derivative Dmf ∈ Lq (R3), and the following inequality holds

‖Dmf‖Lq(R3) ≤ h1−χ (a1(lnh)
2 + a2|lnh|) + a3

)
·

4∑
i=1

∥∥∥Dαi

f
∥∥∥
Lp(R3)

+h−χ(b1(lnh)
2 + b2 |lnh|+ b3)‖f‖Lp(R3),

(5.1)

where h is an arbitrary positive parameter and a1, a2, a3, b1, b2, b3 are constants, that are
independent of f and h.

Proof. Since α1 ≤ α2 ≤ α3, by (4.3)

Dmfh (x)−Dmfε (x) =
4∑
i=1

∫ h

ε

dθ

∫
R3

Dαj

f (t)DmĜ1,i (t− x, θ) dt.

Applying Young’s inequality to the right-hand side of this equality we have

‖Dmfh (x)−Dmfε (x)‖Lq(R3) ≤
4∑
i=1

∫ h

ε

dθ
∥∥∥Dαj

f
∥∥∥
Lp(R3)

∥∥∥DmĜ1,j (·, θ)
∥∥∥
Lr(R3)

, (5.2)

where 1
r

= 1− 1
p

+ 1
q
.
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Let us estimate
∥∥∥DmĜ1,j (В·, θ)

∥∥∥
Lr(R3)

by applying Lemma 2.1 for the case α1 < α2 < α3,

Lemma 2.3 for the case α1 < α2 = α3 and Lemma 2.5 for the case α1 = α2 = α3. Assume
that α1 < α2 < α3, the other cases being similar.∥∥∥DmĜ1,j (·, θ)

∥∥∥
Lr(R3)

≤
(
a1(lnθ)

2 + a2|lnθ|+ a3

)
θ
− max

i=1,2,3
(|µi|+(m,µi))

·

∫
R3

dt1dt2dt3(
1 + θ−N

(
tNα1
1 tNα2

2 tNα3
3 + t

Nβ1
1 t

Nβ2
2 +t

Nγ1
3

))r
 1

r

.

By substituting t = θµ1τ and applying Lemma 2.2 we conclude that∥∥∥DmĜ1,j (В·, θ)
∥∥∥
Lr(R3)

≤ θ−χ
(
a1(lnθ)

2 + a2|lnθ|+ a3

)
.

Thus,

‖Dmfh (x)−Dmfε (x) ‖Lq(R3) ≤
∫ h

ε

θ−χ
(
a1(lnθ)

2 + a2|lnθ|+ a3

)
dθ·

·
4∑
j=1

∥∥∥Dαj

f
∥∥∥
Lp(R3)

≤ h1−χ (a1(lnh)
2 + a2|lnh|+ a3

) 4∑
j=1

∥∥∥Dαj

f
∥∥∥
Lp(R3)

.

(5.3)

We carried out integration with respect to θ and denoted the constants again by ai (i =
1, 2, 3).

Inequality (5.3) implies that Dmfh is a Cauchy family in Lq (R3) as h→ 0. fε converges
to f in the norm of Lp(1 ≤ p < ∞) as ε→0 (by Lemma 3.2). Taking into account the
properties of the weak derivatives (see Lemma 6.2 of [2]), it follows that the weak derivative
Dmf exists, Dmf∈Lq (R3) and ‖Dmf −Dmfε‖Lq(R3) → 0 as ε→0.

Thus, applying inequality (5.3) to ‖Dmf‖Lq(R3) we have

‖Dmf‖Lq(R3) ≤ ‖Dmfh‖Lq(R3) + ‖Dmf −Dmfh‖Lq(R3) ≤

≤ ‖Dmfh‖Lq(R3) + h1−χ (a1(lnh)
2 + a2 (ln |h|) + a3

)
·

4∑
i=1

∥∥∥Dαj

f
∥∥∥
Lp(R3)

.
(5.4)

Now we only need to estimate ‖Dmfh‖Lq(R3). Putting together the integral representation
(3.1), the properties of Ĝ0 (t, θ) (see Lemma 2.1), and Young’s inequality we conclude, that

‖Dmfh‖Lq(R3) ≤ C‖f‖Lp(R3)

∥∥∥Ĝ0 (·, θ)
∥∥∥
Lr(R3)

,

where C > 0 is independent of f and h.
By substituting t = θµ1η and by applying the inequality (2.4), we get

‖Dmfh‖Lq(R3)
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≤ h
− max

i=1,2,3
(|µi|+(m,µi))+

|µ1|
r
(
b1(lnh)

2 + b2 (|lnh|) + b3
)

·

∫
R3

dη1dη2dη3

(1 + ηNα1
1 ηNα2

2 ηNα3
3 + η

Nβ1
1 η

Nβ2
2 + η

Nγ1
3 )

r

 1
r

‖f‖Lp(R3)

≤ h−χ(b1(lnh)
2 + b2 (|lnh|) + b3)‖f‖Lp(R3).

In particular, if q = +∞ we obtain the embedding DαWN
p (R3) ↪→ C(R3).

Theorem 5.2. Let 1 ≤ p < ∞, m = (m1,m2,m3) be a multi-index, and α1 ≤ α2 < α3 or
α1 < α2 = α3. Let χ = max

i=1,2,3
(|µi|+ (m,µi))− |µ1|

(
1− 1

p

)
.

If χ < 1, then DmWN
p (R3) ↪→ C (R3), i.e. for any function f∈WN

p (R3) the weak
derivative Dmf is equal almost everywhere in R3 to a continuous function which we again
denote by Dmf , and the following inequality holds:

sup
x∈R3

|Dmf (x)| ≤ h1−χ (a1(lnh)
2 + a2 (|lnh|+ a3)

) 4∑
i=1

∥∥∥Dαi

f
∥∥∥
Lp(R3)

+h−χ
(
b1(lnh)

2 + b2 (|lnh|) + b3
)
‖f‖Lp(R3).

Remark 2. If α1 = α2 = α3 and if there is a summand in (2.11) for which ρ1 = ρ2 = ρ3,
where ρi be the exponent of ξi, (i = 1, 2, 3), then a fourth-degree polynomial in |lnh| appears
in inequality (5.1).

Remark 3. In (5.1) the logarithm appears only if there is a summand in (2.11) for which
ρ1+1
ρ2+1

= α1

α2
or ρ1+1

ρ3+1
= α1

α3
. In other cases ai,bi (i = 1, 2) are zero.

Remark 4. As in [4] the presence of the logarithm in (5.1) is natural in the case ρ1+1
ρ2+1

=
α1

α2
, ρ1+1
ρ3+1

= α1

α3
.
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