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TYNYSBEK SHARIPOVICH KAL’MENOV

(to the 70th birthday)

On May 5, 2016 was the 70th birthday of Tynysbek Sharipovich
Kal’menov, member of the Editorial Board of the Eurasian Math-
ematical Journal, general director of the Institute of Mathematics
and Mathematical Modeling of the Ministry of Education and Sci-
ence of the Republic of Kazakhstan, laureate of the Lenin Komsomol
Prize of the Kazakh SSR (1978), doctor of physical and mathemat-
ical sciences (1983), professor (1986), honoured worker of science
and technology of the Republic of Kazakhstan (1996), academician
of the National Academy of Sciences (2003), laureate of the State
Prize in the field of science and technology (2013).

T.Sh. Kal’menov was born in the South-Kazakhstan region of
the Kazakh SSR. He graduated from the Novosibirsk State University (1969) and completed
his postgraduate studies there in 1972.

He obtained seminal scientific results in the theory of partial differential equations and
in the spectral theory of differential operators.

For the Lavrentiev-Bitsadze equation T.Sh. Kal’menov proved the criterion of strong
solvability of the Tricomi problem in the Lp-spaces. He described all well-posed boundary
value problems for the wave equation and equations of mixed type within the framework of
the general theory of boundary value problems.

He solved the problem of existence of an eigenvalue of the Tricomi problem for the
Lavrentiev-Bitsadze equation and the general Gellerstedt equation on the basis of the new
extremum principle formulated by him.

T.Sh. Kal’menov proved the completeness of root vectors of main types of Bitsadze-
Samarskii problems for a general elliptic operator. Green’s function of the Dirichlet problem
for the polyharmonic equation was constructed. He established that the spectrum of general
differential operators, generated by regular boundary conditions, is either an empty or an
infinite set. The boundary conditions characterizing the volume Newton potential were
found. A new criterion of well-posedness of the mixed Cauchy problem for the Poisson
equation was found.

On the whole, the results obtained by T.Sh. Kal’menov have laid the groundwork for
new perspective scientific directions in the theory of boundary value problems for hyperbolic
equations, equations of the mixed type, as well as in the spectral theory.

More than 50 candidate of sciences and 9 doctor of sciences dissertations have been
defended under his supervision. He has published more than 120 scientific papers. The list
of his basic publications can be viewed on the web-page

https : //scholar.google.com/citations?user = Zay4fxkAAAAJ&hl = ru&authuser = 1

The Editorial Board of the Eurasian Mathematical Journal congratulates Tynysbek
Sharipovich Kal’menov on the occasion of his 70th birthday and wishes him good health
and new creative achievements!
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Abstract. In this paper we study the equivalence of quasi-norms in the anisotropic
Nikol’skii-Besov Bl

p,θ(Rn) spaces involving differences and moduli of continuity for 0 <
p, θ ≤ ∞.

1 Introduction

Definition 1 Let l > 0, σ ∈ N, σ > l, 0 < p, θ ≤ ∞. Then f ∈ Bl
p,θ(Rn), the

Nikol’skii-Besov space, if f is measurable on Rn and

‖f‖Bl
p,θ(Rn) = ‖f‖Lp(Rn) + ‖f‖bl

p,θ(Rn) < ∞, (1.1)

where

‖f‖bl
p,θ(Rn) =

(∫
Rn

(
‖∆σ

hf‖Lp(Rn)

|h|l

)θ
dh

|h|n

) 1
θ

, (1.2)

if 0 < θ < ∞,

‖f‖bl
p,∞(Rn) = sup

h∈Rn,h 6=0

‖∆σ
hf‖Lp(Rn)

|h|l
, (1.3)

if θ = ∞, and ∆σ
hf is the difference of the function f of order σ with step h ∈ Rn.

Definition 2 Let l > 0, σ ∈ N, σ > l, 0 < p, θ ≤ ∞. Then f ∈ B̃l
p,θ(Rn), the

Nikol’skii-Besov space, if f is measurable on Rn and

‖f‖B̃l
p,θ(Rn) = ‖f‖Lp(Rn) + ‖f‖b̃l

p,θ(Rn) < ∞, (1.4)

where

‖f‖b̃l
p,θ(Rn) =

(∫ ∞

0

(
ω(σ)(δ; f)p

δl

)θ
dδ

δ

) 1
θ

< ∞, (1.5)

if 0 < θ < ∞,

‖f‖b̃l
p,∞(Rn)

= sup
δ>0

ω(σ)(δ; f)p

δl
, (1.6)
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if θ = ∞, and ω(σ)(δ; f)p = sup|h|≤δ ‖∆σ
hf‖p is the Lp- modulus of continuity of the function

f of order σ.
It has been known that if 1 ≤ p, θ ≤ ∞ then the quasi-norms ‖.‖Bl

p.θ(Rn) corre-

sponding to different σ ∈ N, σ > l, l > 0 are equivalent, B̃l
p,θ(Rn) = Bl

p,θ(Rn), and the
norms ‖.‖Bl

p,θ(Rn) and ‖.‖B̃l
p,θ(Rn) with σ > l are equivalent (see, for example [2], [6]).

By the result of H. Triebel (see [8]) it also follows that similar statements holds for arbitrary
0 < p, θ ≤ ∞ under the assumption that l > n(1

p
− 1)+, where the a+ denotes the

positive part of a. The aim of article [3] was to get rid of the assumption l > n(1
p
− 1)+,

and the following result was obtained.

Theorem 1 Let l > 0, σ ∈ N, 0 < p, θ ≤ ∞.

1. The quasi-norms ‖.‖Bl
p,θ(Rn) corresponding to different σ > l are equivalent.

2. The quasi-norms ‖.‖Bl
p,θ(Rn) and the quasi-norms ‖.‖B̃l

p,θ(Rn) with the same σ > l

are equivalent and B̃l
p,θ(Rn) = Bl

p,θ(Rn).

3. The quasi-norms ‖.‖B̃l
p,θ(Rn) corresponding to different σ > l are equivalent.

The aim of this work is to obtain similar results for the anistropic Nikol’skii-Besov
spaces.

2 Main results for the anisotropic Nikol’skii-Besov spaces

We introduce some notation. If p = (p1, ..., pn), θ = (θ1, ..., θn), l = (l1, ..., ln), σ =
(σ1, ..., σn), we write σ ≥ l if and only if σj ≥ lj, ( in particular 0 = (0, ..., 0),
∞ = (∞, ...,∞), 0 < p ≤ ∞⇔ 0 < pj ≤ ∞, j = 1, n).
Definition 3 Let l = (l1, ..., ln), σ = (σ1, ..., σn), σj ∈ N, p = (p1, ..., pn), θ = (θ1, ..., θn),
σ > l > 0, 0 < p, θ ≤ ∞. Then f ∈ Bl

p,θ(Rn), the anistropic Nikol’skii-Besov space, if f
is measurable on Rn and

‖f‖Bl
p,θ(Rn) =

n∑
j=1

‖f‖
B

lj
pj ,θj ;j(Rn)

< ∞, (2.1)

where
‖f‖

B
lj
pj ,θj ;j(Rn)

= ‖f‖Lpj (Rn) + ‖f‖
b
lj
pj ,θj ;j(Rn)

(2.2)

with

‖f‖
b
lj
pj ,θj ;j(Rn)

=

(∫ ∞

0

(
h−lj‖∆σj

h,jf‖pj

)θj dh

h

) 1
θj

(2.3)

if 0 < θj < ∞ and

‖f‖
b
lj
pj ,∞;j(Rn)

= sup
h>0

‖∆σj

h,jf‖Lpj (Rn)

hlj
. (2.4)
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Definition 4 Let l = (l1, ..., ln), σ = (σ1, ..., σn), σj ∈ N, p = (p1, ..., pn), θ = (θ1, ..., θn),

σ > l > 0, 0 < p, θ ≤ ∞. Then f ∈ B̃l
p,θ(Rn), the anistropic Nikolskii-Besov space, if f

is measurable on Rn and

‖f‖B̃l
p,θ(Rn) =

n∑
j=1

‖f‖
B̃

lj
pj ,θj ;j(Rn)

< ∞, (2.5)

where
‖f‖

B̃
lj
pj ,θj ;j(Rn)

= ‖f‖Lpj (Rn) + ‖f‖
b̃
lj
pj ,θj ;j(Rn)

with

‖f‖
b̃
lj
pj ,θj ;j(Rn)

=

∫ ∞

0

(
ω

σj

j (f, δ)pj

δlj

)θj

dδ

δ

 1
θj

(2.6)

if 0 < θj < ∞ and

‖f‖
b̃
lj
pj ,∞;j(Rn)

= sup
δ>0

ω
σj

j (f, δ)pj

δlj
, (2.7)

where
ω

σj

j (f, δ)pj
= sup

|h|≤δ

‖∆σj

h,jf‖Lp(Rn), j = 1, n,

is the partial modulus of continuity of the function f of order σj.

Theorem 2 Let l = (l1, ..., ln) > 0, σ = (σ1, ..., σn), σj ∈ N, σ > l, p = (p1, ..., pn),
θ = (θ1, ..., θn), 0 < p, θ ≤ ∞.

1. The quasi-norms ‖.‖Bl
p,θ(Rn) corresponding to different σ satisfying σ > l are

equivalent.

2. The quasi-norms ‖.‖Bl
p,θ(Rn) and the quasi-norms ‖.‖B̃l

p,θ(Rn) with the same σ > l

are equivalent and B̃l
p,θ(Rn) = Bl

p,θ(Rn).

3. The quasi-norms ‖.‖B̃l
p,θ(Rn) corresponding to different σ satisfying σ > l are

equivalent.

The proof of Statement 1 for 0 < p, θ ≤ ∞ is based on the scheme used in the proof
for the isotropic case given in [3] and the proof of Statement 2 is based on the Hardy-type
inequality for 0 < θ < 1 (see [6]). The proof of Statement 3 follows by Statement 1
and 2. We shall systematically use of the following inequality: if 0 < p < 1, then for all
f, g ∈ Lp(Rn), and for all ε > 0,

‖f + g‖p ≤ (1 + ε)‖f‖p + c1(p, ε)‖g‖p, (2.8)

where (see e.g [5], Exercise, 6, p. 36), c1(p, ε) = (1− (1 + ε)
p

p−1 )
p−1

p .
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2.1 Equivalence of quasi-norms for different σ > l

Lemma 1 Let l = (l1, ..., ln), lj > 0, σ = (σ1, ..., σn), σj ∈ N, p = (p1, ..., pn), θ =
(θ1, ..., θn), σ > l > 0, 0 < p, θ ≤ ∞. Then the quasi-norms ‖.‖Bl

p,θ(Rn) corresponding to
different σ satisfying σ > l are equivalent.

Idea of proof. Denote temporarily quasi-norms (2.1) corresponding to σ by

|||f |||(σ) =
n∑

j=1

‖f‖(σj)
j . (2.9)

Let σ = (σ1, ..., σn), σ̃ = (σ̃1, ..., σ̃n). We need to prove that |||.|||(σ) and |||.|||(σ̃) are
equivalent where σ > l, σ̃ > l. Let

‖f‖(σj)
j = ‖f‖Lpj (Rn) + ‖f‖(σj),

where

‖f‖(σj) =

(∫ ∞

0

(
h−lj‖∆σj

h,jf‖pj

)θj dh

h

) 1
θj

, (2.10)

if 0 < θj < ∞ and

‖f‖(σj) = sup
h>0

(
h−lj‖∆σj

h,jf‖pj

)
, (2.11)

if θj = ∞.

Since
‖∆σj+1

h,j f‖pj
≤ 2

1
pj ‖∆σj

h,jf‖pj
,

it follows that

‖f‖(σj+1)
j ≤ 2

1
pj ‖f‖(σj)

j . (2.12)

The proof of the converse inequality is based on the scheme used in the proof given in [3].
Inequality (2.8) will be applied to the identity

∆
σj

h,jf = 2−σj∆
σj

2h,jf + Pσj−1(Eh,j)∆
σj+1
h,j f, (2.13)

where

Pσj−1(z) = −2−σj(z − 1)−1((z + 1)σj − 2σj) = −
σj∑

s=1

(
σj

s

)
(z − 1)s−12−s,

consequently

Pσj−1(Eh,j) = −
σj∑

s=1

(
σj

s

)
(Eh,j − I)s−12−s.

where Eh,j(f)(x) = f(x + hej) for all x ∈ Rn and h ∈ R.
Proof. 1. First, we assume that 0 < pj < 1, 0 < θj ≤ ∞.
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Let σj ∈ N, and ‖f‖(σj+1) < ∞. By [3] (see p. 6) we have ,

‖∆σj

h,jf‖Lpj(Rn)
≤ 2−σj(1 + εj)‖∆

σj

2h,jf‖Lpj (Rn) + c2(σj, pj, εj)‖∆
σj+1
h,j f‖Lpj (Rn), (2.14)

where

c2(σj, pj, εj) = c1(pj, εj)σ
1

pj
−1

j 2
− 1

pj ((2
1

pj
−1

+ 1)σj − 1).

Case θj = +∞. For all h ∈ R, h 6= 0 consider the functional

φj(h) =
‖∆σj

h,jf‖pj

hlj
.

Clearly Φj(h) < +∞ for all h 6= 0.

It has been proved in [3] that if εj > 0 is such that 2(lj−σj)(1 + εj) < 1, say if
εj = 2σj−lj−1 − 2−1, then

‖f‖(σj) = sup
h>0

φj(h) ≤ [1− 2lj−σj(1 + εj)]
−1c2‖f‖(σj+1)

= 2(1− 2lj−σj)−1c2‖f‖(σj+1)

= c3‖f‖(σj+1).

So
‖f‖(σj) ≤ c3(pj, lj, σj)‖f‖(σj+1), (2.15)

where
c3(pj, lj, σj) = 2

(
1− 2lj−σj

)−1
c2

= 2(1− 2lj−σj)−1σ
1

pj
−1

j 2
−1
pj [(2

1
pj
−1

+ 1)σj − 1][1− (2σj−lj−1 + 2−1)
pj

pj−1 ]
pj−1

pj .

Since σj > lj, σ̃j > lj, 0 < pj < 1 it follows that c3(pj, lj, σj) > 1, hence we obtain

‖f‖(σj)
j ≤ c3(pj, lj, σj)‖f‖

(σj+1)
j . (2.16)

If σ̃j ≥ σj, then by inequality (2.12)

‖f‖(σ̃j)
j ≤ 2

σ̃j−σj
pj ‖f‖(σj)

j .

If σ̃j < σj, then by inequality (2.16)

‖f‖(σ̃j)
j ≤ c

σj−σ̃j

3 (pj, lj, σj)‖f‖
(σj)
j .

Hence
‖f‖(σ̃j)

j ≤ A2‖f‖
(σj)
j , (2.17)

where

A2 = max

(
max

j,σ̃j≥σj

2
σ̃j−σj

pj , max
j,σ̃j<σj

c
σj−σ̃j

3

)
.
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If σ̃j ≥ σj, then by inequality (2.16)

c
σj−σ̃j

3 (pj, lj, σj)‖f‖
(σj)
j ≤ ‖f‖(σ̃j)

j .

If σ̃j < σj, then by inequality (2.12) we have

2
σ̃j−σj

pj ‖f‖(σj)
j ≤ ‖f‖(σ̃j)

j .

Hence
A1‖f‖

(σj)
j ≤ ‖f‖(σ̃j)

j , (2.18)

where
A1 = min

(
min

j,σ̃j<σj

2
σ̃j−σj

pj , min
j,σ̃j≥σj

c
σj−σ̃j

3

)
.

Consequently

A1‖f‖
(σj)
j ≤ ‖f‖(σ̃j)

j ≤ A2‖f‖
(σj)
j . (2.19)

Case 0 < θj < +∞. Now consider, for all δ > 0, the quantity

Ψj(δ) =

∫
h≥δ

(
‖∆σj

h,jf‖Lpj (Rn)

hlj

)θj

dh

h

 1
θj

.

Clearly Ψj(δ) < +∞ for all δ > 0.

If 1 ≤ θj < ∞, by inequalities (2.14) and (2.8) we get

Ψj(δ) ≤ 2lj−σj(1 + εj)Ψj(2δ) + c2(σj, pj, εj)‖f‖(σj+1),

with the same value of εj similar arguments leads to inequality (2.16) and consequently
we obtain inequality (2.19).

If 0 < θj < 1, then by [3] we get

Ψj(δ) ≤ (1 + εj)
22(lj−σj)Ψj(2δ) + c1(θj, εj)c2(pj, σj, εj)‖f‖(σj+1),

which leads to
‖f‖(σj) ≤ c2c1(θj, εj)(1− (1 + εj)

22lj−σj)−1‖f‖(σj+1). (2.20)

If εj > 0 is such that 2lj−σj(1 + εj)
2 < 1 say if εj =

√
2σj−lj−1 + 2−1 − 1, then we have

c1(θj, εj) =

[
1− (1 + εj)

θj
θj−1

] θj−1

θj

=

[
1− (2σj−lj−1 + 2−1)

θj
2(θj−1)

] θj−1

θj

,

c2 = σ−1
j (

2

σj

)
−1
pj

[
(2

1
pj
−1

+ 1)σj − 1
]
×
[
1− (2σj−lj−1 + 2−1 + 2−1)

pj
2(pj−1)

] pj−1

pj

> 1,
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and

[1− (1 + εj)
22lj−σj ]−1 = [1− (2σj−lj−1 + 2−1)2lj−σj ]−1 = 2(1− 2lj−σj)−1 < 1.

Let c4(pj, θj, lj, σj) = c2(pj, σj, εj)c1(θj, lj)2(1− 2lj−σj)−1. Thus

‖f‖(σj)
j ≤ c4(pj, θj, lj, σj)‖f‖

(σj+1)
j , (2.21)

and by (2.12) and (2.21) we obtain

A3‖f‖
(σj)
j ≤ ‖f‖(σ̃j)

j ≤ A4‖f‖
(σj)
j , (2.22)

where
A3 = min

(
min

j,σ̃j<σj

2
σ̃j−σj

pj , min
j,σ̃j≥σj

c
σj−σ̃j

4

)
,

and
A4 = max

(
max

j,σ̃j≥σj

2
σ̃j−σj

pj , max
j,σ̃j<σj

c
σj−σ̃j

4

)
.

2. If pj ≥ 1 we apply the standard Minkovski inequality to identity (2.13) instead of
inequality (2.8), (see [4], p. 205 ) then instead of (2.14) we get

‖∆σj

h,jf‖Lpj(Rn)
≤ 2−σj‖∆σj

2h,jf‖Lpj (Rn) + 2−1(2σj − 1)‖∆σj+1
h,j f‖Lpj (Rn), (2.23)

If 1 ≤ θj ≤ ∞, we have
‖f‖(σj)

j ≤ c5(pj, lj, σj)‖f‖
(σj+1)
j , (2.24)

where
c5(pj, lj, σj) = [2−1(2σj − 1)](1− 2lj−σj)−1.

Since
‖∆σj+1

h,j f‖pj
≤ 2‖∆σj

h,jf‖pj
,

it follows that
‖f‖(σj+1)

j ≤ 2‖f‖(σj)
j , (2.25)

If σ̃j ≥ σj, then by inequality (2.25)

‖f‖(σ̃j)
j ≤ 2σ̃j−σj‖f‖(σj)

j .

If σ̃j < σj, then by inequality (2.24)

‖f‖(σ̃j)
j ≤ c

σj−σ̃j

5 (pj, lj, σj)‖f‖
(σj)
j .

Hence
‖f‖(σ̃j)

j ≤ A6‖f‖
(σj)
j , (2.26)

where
A6 = max

(
max

j,σ̃j≥σj

2σ̃j−σj , max
j,σ̃j<σj

c
σj−σ̃j

5

)
.
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If σ̃j ≥ σj, then by inequality (2.24)

c
σj−σ̃j

5 (pj, lj, σj)‖f‖
(σj)
j ≤ ‖f‖(σ̃j)

j .

thus
min

j
c
σj−σ̃j

5 (pj, lj, σj)‖f‖(σ) ≤ ‖f‖(σ̃).

If σ̃j < σj, then by inequality (2.25) we have

2σ̃j−σj‖f‖(σj)
j ≤ ‖f‖(σ̃j)

j .

so
min

j
2σ̃j−σj‖f‖(σ) ≤ ‖f‖(σ̃).

Hence

A5‖f‖
(σj)
j ≤ ‖f‖(σ̃j)

j , (2.27)

where
A5 = min

(
min

j,σ̃j<σj

2σ̃j−σj , min
j,σ̃j≥σj

c
σj−σ̃j

5

)
.

Consequently

A5‖f‖
(σj)
j ≤ ‖f‖(σ̃j)

j ≤ A6‖f‖
(σj)
j . (2.28)

If 0 < θj < 1, then by (2.8) it follows from (2.23) that

Ψj(δ) ≤ 2lj−σj(1 + εj)Ψj(2δ) + 2−1(2σj − 1)c1(θj, εj)‖f‖(σj+1),

where εj > 0 is such that 2lj−σj(1 + εj) < 1, say if εj = 2−1(2σj−lj − 1), in which case
1 + εj = 2−1(2σj−lj + 1), and we get the following analogue of inequality (2.24)

‖f‖(σj)
j ≤ c6(θj, lj, σj)‖f‖

(σj+1)
j , (2.29)

where

c6(θj, lj, σj) = 2−1(2σj − 1)c1(θj, εj)2
(σj+1)(2σj − 2lj)−1

= 2σj(2σj − 1)(2σj − 2lj)−1

[
1− (2−1 + 2σj−lj)

θj
θj−1

] θj−1

θj

.

Similar arguments lead to the following inequalities

A7‖f‖
(σj)
j ≤ ‖f‖(σ̃j)

j ≤ A8‖f‖
(σj)
j , (2.30)

where
A7 = min

(
min

j,σ̃j<σj

2σ̃j−σj , min
j,σ̃j≥σj

c
σj−σ̃j

6

)
,

and
A8 = max

(
max

j,σ̃j≥σj

2σ̃j−σj , max
j,σ̃j<σj

c
σj−σ̃j

6

)
.
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So, for all 0 < pj ≤ ∞, if 1 ≤ θj ≤ ∞,

min(A1, A5)‖f‖
(σj)
j ≤ ‖f‖(σ̃j)

j ≤ max(A2, A6)‖f‖
(σj)
j ,

if 0 < θj < 1,
min(A3, A7)‖f‖

(σj)
j ≤ ‖f‖(σ̃j)

j ≤ max(A4, A8)‖f‖
(σj)
j .

Thus for all 0 < θj ≤ ∞, 0 < pj ≤ ∞, we have

min(A1, A3, A5, A7)‖f‖
(σj)
j ≤ ‖f‖(σ̃j)

j ≤ max(A2, A4, A6, A8)‖f‖
(σj)
j .

Finally we obtain

min(A1, A3, A5, A7)
n∑

j=1

‖f‖(σj)
j ≤

n∑
j=1

‖f‖(σ̃j)
j ≤ max(A2, A4, A6, A8)

n∑
j=1

‖f‖(σj)
j .

�

2.2 Equivalence of the quasi-norms ‖.‖Bl
p,θ(Rn), ‖.‖B̃l

p,θ(Rn)

Lemma 2. Let l = (l1, ..., ln), σ = (σ1, ..., σn), σj ∈ N, p = (p1, ..., pn), θ = (θ1, ..., θn),
σ > l > 0, 0 < p, θ ≤ ∞. Then the quasi-norms ‖.‖Bl

p,θ(R)n and ‖.‖B̃l
p,θ(R)n are equivalent.

To prove this lemma we need the following statement.
Lemma 3. Let σj ∈ N, 0 < pj ≤ ∞. Then there exist c8 > 0 depending only on pj, σj, θj

such that for all δ > 0 and f ∈ Lp(Rn)

ω
(σj)
j (f, δ)pj

≤ c8

∫ δ

0

‖∆δ
η,jf‖pj

dη

η
. (2.31)

where c8 = c7

(
1− 1

3σj

)
, and c7 = σ

( 1
pj
−1)

j 3
1
θj 2

( 1
pj
−1)+σj+

σj+2

θj . For pj ≥ 1 ( see [4], [2]) and
for 0 < pj < 1( see [3], p. 9).

Proof of Lemma 2. Let 0 < pj, θj ≤ ∞. We have for all h > 0

‖∆σj

h,jf‖pj

hlj
≤

ω
(σj)
j (f, h)pj

hlj
,

hence for all j = 1, n

‖f‖
B

lj
pj ,θj ;j(Rn)

≤ ‖f‖
B̃

lj
pj ,θj ;j(Rn)

,

and

‖f‖Bl
p,θ(Rn) ≤ ‖f‖B̃l

p,θ(Rn).
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By Lemma 3 and the Hardy-type inequality for 0 < θj < 1 (see [7], p. 114), we get

‖f‖
b̃
lj
pj ,θj ;j(Rn)

=

∫ ∞

0

(
ω

(σj)
j (f, δ)pj

δlj

)θj

dδ

δ

 1
θj

≤ c8

∥∥∥δαj
1

δ

∫ δ

0

‖∆σj

h,jf‖pj

dh

h

∥∥∥
Lθj

(0,∞)
,

≤ c8c9

∥∥∥hαj
∥∥∆σj

h,jf
∥∥

pj

∥∥∥
Lθj

(0,∞)
,

where αj = 1− lj − 1
θj

and c9 = (ljθj)
−1
θj

[
c7

(
1− 1

3σj

)1− 1
θj

]1−θj

.

Let c10 = c8c9, then
‖f‖

b̃
lj
pj ,θj ;j(Rn)

≤ c10‖f‖
b
lj
pj ,θj ;j(Rn)

.

Consequently
‖f‖B̃l

p,θ(Rn) ≤ A9‖f‖Bl
p,θ(Rn),

where
A9 = max

(
1, max

j=1,..,n
c10

)
.

For the case θj ≥ 1 we apply Lemma 3 and the standard Hardy inequality (see [4], p.
208) and similar arguments lead to the analogous result

‖f‖
b̃
lj
pj ,θj ;j(Rn)

≤ c11‖f‖
b
lj
pj ,θj ;j(Rn)

,

where
c11 = σ

( 1
pj
−1)

j 3
1
θj 2

( 1
pj
−1)+σj+

σj+2

θj

(
1− 1

3σj

)
(lj)

−1.

Hence

‖f‖B̃l
p,θ(Rn) ≤ A10‖f‖Bl

p,θ(Rn),

where A10 = max(1, maxj=1,..,n c11). �

Remark. If pj = θj, j = 1, n, then the proof of Theorem 2 can be reduced, by applying
the Fubini theorem, to the one-dimensional case (Theorem 1 with n = 1). Indeed, denote

‖f‖(σj) = ‖f‖Lpj (Rn) + ‖f‖
b
lj
pj ,pj ;j(Rn)

=

(∫
Rn

|f(x)|pjdx

) 1
pj

+

(∫ ∞

0

(
h−lj‖∆σj

h,jf‖pj

)pj dh

h

) 1
pj

.

Since for all a, b > 0, 0 < p < ∞

min(2p−1, 1)(ap + bp) ≤ (a + b)p ≤ max(2p−1, 1)(ap + bp), (2.32)
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we have 1

(‖f‖(σj))pj ≈
∫

Rn

|f(x)|pjdx +

(∫ ∞

0

(
h−pj lj

∫
Rn

|∆σj

h,jf(x)|pjdx

)
dh

h

)
. (2.33)

Next

‖f‖(σj) ≈
(∫

Rn

|f(x)|pjdx +

∫ ∞

0

(
h−pj lj

∫
Rn

|∆σj

h,jf(x)|pjdx

)
dh

h

) 1
pj

≈
[∫

Rn−1

(∫
R
|f(xj, xj)|pj dxj

)
dxj

+

∫
Rn−1

(∫ ∞

0

h−pj lj

∫
R
|∆σj

h,jf(xj, xj)|pj dxj
dh

h

)
dxj

] 1
pj

≈

(∫
Rn−1

(
‖f‖(σj)

B
lj
pj ,pj ;j(R)

)pj

dxj

) 1
pj

,

where xj = (x1, ..., xj−1, xj+1, ..., xn). Since

‖f‖(σj)

B
lj
pj ,pj ;j(R)

≈ ‖f‖(σ′j)

B
lj
pj ,pj ;j(R)

, σj 6= σ′j, σ′j ∈ N, σj, σ
′
j > lj,

we have

‖f‖(σj) ≈

(∫
Rn−1

(
‖f‖(σj)

B
lj
pj ,pj ;j(R)

)pj

dxj

) 1
pj

≈

(∫
Rn−1

(
‖f‖(σ′j)

B
lj
pj ,pj ;j(R)

)pj

dxj

) 1
pj

≈ ‖f‖(σ′j).

Consequently we obtain,

n∑
j=1

‖f‖(σj)

B
lj
pj ,pj ;j(Rn)

≈
n∑

j=1

‖f‖(σ′j)

B
lj
pj ,pj ;j(Rn)

. (2.34)

Thus, Statement 1 of Theorem 2 follows. Statements 2 and 3 can be proved in a similar
way.

Note that if pj 6= θj, for at least one j, then this argument does not work.
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