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TYNYSBEK SHARIPOVICH KAL'MENOV
(to the 70th birthday)

On May 5, 2016 was the 70th birthday of Tynysbek Sharipovich
Kal’'menov, member of the Editorial Board of the Eurasian Math-
ematical Journal, general director of the Institute of Mathematics
and Mathematical Modeling of the Ministry of Education and Sci-
ence of the Republic of Kazakhstan, laureate of the Lenin Komsomol
Prize of the Kazakh SSR (1978), doctor of physical and mathemat-
ical sciences (1983), professor (1986), honoured worker of science
and technology of the Republic of Kazakhstan (1996), academician
of the National Academy of Sciences (2003), laureate of the State
Prize in the field of science and technology (2013).

T.Sh. Kal’'menov was born in the South-Kazakhstan region of
the Kazakh SSR. He graduated from the Novosibirsk State University (1969) and completed
his postgraduate studies there in 1972.

He obtained seminal scientific results in the theory of partial differential equations and
in the spectral theory of differential operators.

For the Lavrentiev-Bitsadze equation T.Sh. Kal’'menov proved the criterion of strong
solvability of the Tricomi problem in the L,-spaces. He described all well-posed boundary
value problems for the wave equation and equations of mixed type within the framework of
the general theory of boundary value problems.

He solved the problem of existence of an eigenvalue of the Tricomi problem for the
Lavrentiev-Bitsadze equation and the general Gellerstedt equation on the basis of the new
extremum principle formulated by him.

T.Sh. Kal’'menov proved the completeness of root vectors of main types of Bitsadze-
Samarskii problems for a general elliptic operator. Green’s function of the Dirichlet problem
for the polyharmonic equation was constructed. He established that the spectrum of general
differential operators, generated by regular boundary conditions, is either an empty or an
infinite set. The boundary conditions characterizing the volume Newton potential were
found. A new criterion of well-posedness of the mixed Cauchy problem for the Poisson
equation was found.

On the whole, the results obtained by T.Sh. Kal’'menov have laid the groundwork for
new perspective scientific directions in the theory of boundary value problems for hyperbolic
equations, equations of the mixed type, as well as in the spectral theory.

More than 50 candidate of sciences and 9 doctor of sciences dissertations have been
defended under his supervision. He has published more than 120 scientific papers. The list
of his basic publications can be viewed on the web-page

https : | /scholar.google.com/citations?user = ZaydfrkAAAAJ&Rl = ru&authuser = 1

The Editorial Board of the Furasian Mathematical Journal congratulates Tynysbek
Sharipovich Kal'menov on the occasion of his 70th birthday and wishes him good health
and new creative achievements!
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EQUIVALENT QUASI-NORMS INVOLVING
DIFFERENCES AND MODULI OF CONTINUITY
IN ANISOTROPIC NIKOL’SKII-BESOV SPACES

B. Halim, A. Senouci

Communicated by V.S. Guliyev

Key words: equivalent quasi-norms, anisotropic Nikol’skii-Besov spaces.
AMS Mathematics Subject Classification: 35J20, 35J25.

Abstract. In this paper we study the equivalence of quasi-norms in the anisotropic
Nikol’skii-Besov Bll)ﬂ(R”) spaces involving differences and moduli of continuity for 0 <
p, 0 < oo.

1 Introduction

Definition 1 Let [ >0, 0 € N, 0 > 1, 0 < p,# < oco. Then f € Bf)jg(R”), the
Nikol’skii-Besov space, if f is measurable on R"™ and

115ty = F |y + 1 et oy < 00, (1.1)
where .
- 0 s
£l ) = ( [ (15 ) ﬁ’f) , (12)
if 0<6< o0, 3
£l .y = heﬂs{g’;})l#o HA’WJC}’L%, (1.3)

if 0 =o00,and AfJf is the difference of the function f of order o with step h € R".

Definition 2 Let | >0, 0 € N, 0 >, 0 < p,6 < oo. Then f € E}Dﬂ(R”), the
Nikol’skii-Besov space, if f is measurable on R"™ and

110y = 1 lzuie + 11y ey < 0, (1.4)
where )
* (W8 f),) 48\’
w ) P
if 0<6 < o0,
W(J)((S? Ny
11y = S92 =57 (1.6)
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if =00, and w(6; f), = SUp|y <5 [|A7 | is the Ly- modulus of continuity of the function
f of order o.

It has been known that if 1 < p,0 < oo then the quasinorms ||| mn corre-
sponding to different o € N,o > [,] > 0 are equivalent, B]ljye(R”) = BLG(R”), and the
norms ||.[|p @ny and |||z J@n With o > are equivalent (see, for example [2], [6]).

Db, P,
By the result of H. Triebel (see [8]) it also follows that similar statements holds for arbitrary
0 < p,0 < oo under the assumption that [ > n(% — 1);, where the a, denotes the

positive part of a. The aim of article [3] was to get rid of the assumption [ > n(llJ — 14,
and the following result was obtained.

Theorem 1 Let [ >0, c €N, 0<p,0 < o0.

1. The quasi-norms ||| gt gn) corresponding to different o >1 are equivalent.
P,

2. The quasi-norms ||| @ny and the quasi-norms |||z J(®") with the same o > 1
p, p,

are equivalent and EAG(R") = B! o(R").
3. The quasi-norms ||.|| z Jmny corresponding to different o > 1 are equivalent.
p,

The aim of this work is to obtain similar results for the anistropic Nikol’skii-Besov
spaces.

2 Main results for the anisotropic Nikol’skii-Besov spaces

We introduce some notation. If p = (p1,...,pn), 0 = (01,...,6,), | = (Lh,...,0n), 0 =
(01,...,00), we write ¢ > [ if and only if o; > [;, ( in particular 0 = (0,...,0),
00 = (00,...,00), 0<p<oo&0<p; <oo, j=1,n).

Definition 3 Let | = (I1,...,0,), 0 =(01,...,00), 0; €N, p=(p1,....,0n), 0 = (01, ....6,),
oc>10>0, 0<p,6d<oo. Then fe Bif)ﬁ(]R”), the anistropic Nikol’skii-Besov space, if f
is measurable on R"™ and

5 = 3 gt gy < 21
j=1 32955
where
R T T P 22
with )
o . S dh\ %
_ = LA ), ) 2.
g, = (071801 ) 23

it 0<6; <oo and

1AL Nz, @)
_ > J
1l ey = 5P L : (2.4)

Pj,003]
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Definition 4 Let [ = (ly,...,1,), 0= (01,...,04), 0; €N, p=(p1,...,pn), 0= (01,....,6,),
c>1>0, 0<p,0O<oo. Then fe€ BAQ(R”), the anistropic Nikolskii-Besov space, if f
is measurable on R"™ and

1750 ey = S5 gy < 20 (25)
P =1 p;j,0537
where
150 ey = i+ WP
with
1
- o 0, o
£, _ / wi' (f,0)p; | " dd ) (2.6)
bPJj‘oj?j(Rn) 0 ol 0 '
it 0<6; <oo and
W (f,0)p,
J )7/ Pj
. = J 2.7
Hf”blpjj,oo;j(Rn) Sélig (Slj Y ( )

where

w;j <f7 6)%‘ = sup ||A2fjf||Lp(R”)7j = 1,_71,,
|h|<é

is the partial modulus of continuity of the function f of order o;.

Theorem 2 Let | = (ly,....1,) >0, 0 = (01,...,0,), 0 €N, o >1, p= (p1,-..,Pn),
0= (61,....,0,), 0<p,0 < 0.

1. The quasi-norms ||.||Bze(Rn) corresponding to different o satisfying o > | are
P,
equivalent.
2. The quasi-norms ||.HB;0(RTL) and the quasi-norms H'HE;'Q(R") with the same o > 1

are equivalent and E;,’@(R”) = Bl 4(R").

3. The quasi-norms ||'||§19(1Rn) corresponding to different o satisfying o > | are
P,

equivalent.

The proof of Statement 1 for 0 < p,f < oo is based on the scheme used in the proof
for the isotropic case given in [3] and the proof of Statement 2 is based on the Hardy-type
inequality for 0 < @ <1 (see [6]). The proof of Statement 3 follows by Statement 1
and 2. We shall systematically use of the following inequality: if 0 < p < 1, then for all
f,g€ L,(R"), and for all € >0,

1f =+ gllp < A+l + cap, )llgllp, (2.8)

p—1

where (sce e.g [5], Exercise, 6, p. 36), c1(p,€) = (1 — (1+¢)71) 7 .
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2.1 Equivalence of quasi-norms for different o > [

Lemma 1 Let | = (l,...,0), |; >0, 0 = (01,...,00), 0 € N, p=(p1,....pn), 0 =
(01,..,0,), 0 >1>0, 0<p,0 <oo. Then the quasi-norms ||.||Bé9(Rn) corresponding to
different o satisfying o > 1 are equivalent. ’

Idea of proof. Denote temporarily quasi-norms (2.1) corresponding to o by

o - a5)
LA =157 (2.9)
j=1
Let 0 = (01,...,0,), 0 = (G1,...,0,). We need to prove that |||.|||(©) and ||[.]||®) are

equivalent where o > 1, o > [. Let

(o4) o
LA = 0 F ey ey + 117,

where )
o o o 0; dh '\ %
1) = ([~ nazann) )" (2.10)
it 0<6; <oo and
1119 = sup (R5(| A} fllp, ) + (2.11)
h>0
Since

+1 o ;
HAZ?]' f”Pj < 27 ||A(f?jf||pja
it follows that

oj+1 £ o
A1 < 20 | £ 9. (2.12)

The proof of the converse inequality is based on the scheme used in the proof given in |[3].
Inequality (2.8) will be applied to the identity

gj —0; AOj oj+1
AJLf=2"TAY f+ Po1(Eng) A7 f, (2.13)
where
i — o o Uj 0j s—1lo—s
R AR CRRVEED R 3] (4 [
s=1
consequently
J o e
Py, 1(Bng) == (Sj) (Eny —1)127°
s=1

where Ej, (f)(z) = f(z + he;) forall x € R* and heR.
Proof. 1. First, we assume that 0 <p; <1, 0<6; < 0.
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Let 0; €N, and |f||*Y < co. By [3] (see p.6) we have,
IAT ey any < 2777 (Lt ) IAG  Flliy oy + €2(05: 250 )IATE flly ey (2:14)

where N

R T | o
caoj,pjy €5) = aulpy,€5)o;” 2 Pi((2%  +1)7 —1).
Case 0; = +o00. Forall h € R, h # 0 consider the functional

ALl
oty = 1250,

Clearly ®;(h) < +oo for all h #0.

It has been proved in [3] that if €; > 0 is such that 2i=9)(1 4+ ¢;) < 1, say if

€; =207ti71 — 271 then

£ = sup oy () < [1 = 257701 + €] sl £

= 2(1 - 25709) Ty £
= eyl f .

So
1199 < es(py, b, o) LA FY, (2.15)
where

o1
Cg(pj,lj,O'j) :2(1—2l7 J) Co

1 —1 1 _Pj Pj—

_ 2<1 _ 21j—aj)—10]?1 2pj [(2;].—1 + 1)0’j _ 1][1 (20j—l._1 + 27 )Pj—l] Pj

Since o; >1;, 0; >1;, 0<p; <1 it follows that c3(p;,l;,0;) > 1, hence we obtain

oj oj 1
A1 < espy, 1y, o) | F1LT0. (2.16)
If 6; > 0j, then by inequality (2.12)

o 5j7,oj o
11157 < 277 || 711,

If 6, <oj, then by inequality (2.16)

A < 7% (g Ly, o) 1 11577

Hence

£ < As | F1157, (2.17)

where

Ti—os

J J ~
- —0y
Agzmax<max2 i, max cy’ J).

J,0;20; J,0;<0;
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If o, > 0;, then by inequality (2.16)

0;—0; oj) (o,
77 by, o) LIS < (AN

If 6, <oj, then by inequality (2.12) we have

%3

7 o 5
277 || FIC < £

Hence
A1 < A, (2.18)
where o
A; = min <'I~nin 2%, ‘min cgj_&j) :
§,55<0; .55 >0;
Consequently

AdFIS? < IS < Aall £, (2.19)

Case 0 < 0¢; < +oo. Now consider, for all 6 > 0, the quantity

g4 0]'
,(8) = / B0 ) dh
P ass hli h

Clearly W;(d) < +oo for all 6 > 0.

0;

If 1<6;<oo, by inequalities (2.14) and (2.8) we get
W;(0) < 2979 (1 + ¢;)W;(20) + ca(ay, pj, )| £ 7Y,

with the same value of €; similar arguments leads to inequality (2.16) and consequently
we obtain inequality (2.19).

If 0<6; <1,thenby [3] we get
U;(0) < (1+¢;)?2070W5(20) + e1(6), €5)c2(pys s ) |1 7HY,
which leads to
LA < eaer (85, €) (1 — (14 €5)°2~) 1 £+ (2.20)
If ¢; >0 issuchthat 2579 (1 +¢;)? <1 sayif ¢ =+v2%%-142-1 -1 then we have

6;—1 6,—1
0.

o 17 i 1
c1(8;,€5) = [1 - +€j)9j1] - {1 —(277h +2_1)2(9j1>} s

pj—1
Pj

N
+1)% — 1] X [1 — (2797 27 21)2@;‘”} > 1,
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and
[1—(14€)*25 ] =[1— 27 42712 =2(1 - 257%) " < 1.
Let c4(pj,0;,15,05) = ca(p;, 05, €5)c1(0;,1;)2(1 — 24793) =1 Thus
LA < eaps 05,5 o) LA, (2.21)

and by (2.12) and (2.21) we obtain

) (o5 o
As[ A < A < Adll 1157, (2.22)
where o
Az = min < min 2 % ], min ch_&j) :
J,05<0; 3,020
and

g;—0;
T g g4
Ay =max | max 2 » | max ¢,/ "’ |.
j,ﬁjzaj j,a']‘<0'j

2. If p; > 1 we apply the standard Minkovski inequality to identity (2.13) instead of
inequality (2.8), (see [4], p. 205 ) then instead of (2.14) we get

AR Ly ) < 2771 A5 5 f Ny, ey + 271 (27 — DIAT fllz,, @, (2.23)
If 1<6; <oo, we have
1715 < es(pis L a1, (2:24)
where
es(pj, 1y, 0) = 27127 = 1))(1 = 25779) 7L,
Since

1AL Fllp, < 20857 f Iy,

it follows that ( : o
O'j-l—l g
£l <2 fll;7, (2.25)

If 5, > 0j, then by inequality (2.25)
[FEE=tEad ViV

If 6; <oj, then by inequality (2.24)

A < 77 (g, Ly, o) 11577
Hence N
A1 < Aqll £, (2.26)
where

im0 0 —0;
Ag = max | max 2%7% max ¢;’ 7 |.
J,05>0; J,05<0;
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If 6, > 0j, then by inequality (2.24)

05-3; () @)
cs” (g Ly o) FI < I

thus N N
min & (pi i o)L < A

If o, <oj, then by inequality (2.25) we have

G|l £/ @)
27| Fll T < AN

SO B B
min 2777 [ < |17,
j
Hence
A (05) < (o3) 297

sl < AN (2.27)

where
As = min ( min 297 min cgj_aj) :

J,05<0; J,052>0;

Consequently

AsllFIS < A < Aql| 71157, (2.28)
If 0<6; <1, then by (2.8) it follows from (2.23) that

W;(0) < 277 (14 )W;(20) + 271 (27 = Der (05, ) 1)+,

where €; > 0 is such that 2479 (1 +¢;) < 1, say if ¢ =271(2%7% — 1), in which case
1+¢€ =271(2975 4+ 1), and we get the following analogue of inequality (2.24)

o o;i+1
A1 < o8, 5, 05 £, (2.29)
where

co(0;,1;,05) = 27127 — 1)ey (05, ;)20 (27 — 20y 7!

%5 17
= 275(2 — 1)(27 — 25)! {1 —@7 2)} ”

Similar arguments lead to the following inequalities

A IS < IS < Al (2.30)
where
A7 = min ( min 2%7%, min cgjgj) :
j,O’j<O’j j,O'jZO'j
and

Fi—os 0 —0;
Ag = max | max 2%7% max ¢g 7.
J,05>0; J,05<0;
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So, for all 0 < p; < o0, if 1 < 8; < o0,
min(Ar, As) || FI77 < 1577 < max(As, A) [ £,

if0<0; <1,
min(Az, A7) | £\ < [ £ < max(As, Ag)| 1)}

Thus for all 0 < 6]' <o0,0< Dj < 00, we have
min(Ay, As, As, A7) £ < 57 < max(As, Ay, Ag, Ag) || 1.

Finally we obtain

min(Ar, A, A A7) SIS < SO < max(ds, Ar, g, A S 7.

j=1 j=1 j=1

2.2 Equivalence of the quasi-norms ||.||z g»), [|[|5 J(R")
p; D,

Lemma 2. Let | = (ly,....,0,), 0= (01,....,00), 0 €EN, p=(p1,....pn), 0= (01,...,0),
oc>1>0, 0<p,0<oo. Then the quasi-norms ||.||p gy and .||z J(®y ore equivalent.
p, b,
To prove this lemma we need the following statement.

Lemma 3. Let 0; € N, 0 <p; <oo. Then there exist cg >0 depending only on p;,0;,0;
such that for all 6 >0 and f € L,(R™)

A0, o [ 18,51, 2 =
J »Y)p; = 8 37 1P ' |
0 n
(2-1) 1+ (1 _ o 7i+2
Gy VP07 For py > 1 ( see [4], [2]) and

where cg = ¢7 (1 — %) , and ¢y = ajp” 3% 2
for 0 < p; < 1( see [3], p. 9).

Proof of Lemma 2. Let 0 < p;, 8; <oo. We have for all h >0

1T, @i (F ),

R~ hli ’
hence for all j=1,n
) < ~1
O 1

and

||fHle779(Rn) < HfHE]lDﬂ(]R")‘
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By Lemma 3 and the Hardy-type inequality for 0 < §; <1 (see [7], p.114), we get

oj 0; %
111, - /OO 3y ) ds
ZP]]' 10539 (R™) 0 (5lj (5

oL o dh
o5 [ 1A%

< cooo[p |7

< cg

Y

ng (0700)

?

pj LQJ(()’OO)

X %1 . 17% 1—03'
where o; =1—-1; — o and ¢y = (1;6;) % {07 (1 - E) } ’
Let C10 = CgCg, then

Pj,05:7 P05
Consequently
Hngé’@(Rn) < A9Hf”Bé’9(R")>

where

Ag = max <1, max 010> )
7j=1,..,n

For the case 6; > 1 we apply Lemma 3 and the standard Hardy inequality (see [4], p.
208) and similar arguments lead to the analogous result

y < )
Hf|’b;Jj,0]-;j(Rn) -~ ClleHb;iv]j,Gj;j(Rn)’
where - s .
=—1 1 1 ]
. \pj 7 olp; Do+ -4 ( ) -1
Ci1 = 0, 3% 2P J 1—— (l) .
J 30'j J
Hence
”fHELG(Rn) < AlO”fHB;lLQ(]R")a
where Ajg = max(1, max;—y__,c11). O

Remark. If p; = 6;,7 = 1,n, then the proof of Theorem 2 can be reduced, by applying
the Fubini theorem, to the one-dimensional case (Theorem 1 with n = 1). Indeed, denote

1F1D = 11l @ + 11,

PjPjiJ

= j z - A% pjd_h z
= ([spas)” ([T oriana,)» )

Since for all a,b>0,0<p < 00

(R™)

min(2°~', 1)(a” + V) < (a + b)” < max(2°", 1)(a” + "), (2.32)
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we have !

CONPN )P dr - —Pjl i £(2) P do @)
Aoy ~ [ Apmdss (7 (0o [ iagsopa) 5. e
Next

17 ~ </Rn|f(x)‘pjdm+/ooo (hpjlj /Rn A7 f(x )|Pyda:> dhh>
~ [/Rnl (/ |f (@5, 25) 1P dfcj) dz;
N Ay ST fx],m'dasj%)dx—jr"

N
~ 171 i)
(/R"—l ( pJ Py ](R) ’

||fH UJ ||f|| z , 0 #0j, 0, €N, 05,07 > 1,

p] pj; i (R) p] Py (R

where 7; = (21, ..., -1, Tjt1, ..., Tp). Since

we have

1

P b
o5 0') —
i1~ ([ (s )
Rn— pj Pjis J(R) ’
P o
~ 1717 dry |~ | f]
</R"—1 ( lloj Py i (R) !

Z 17115 ~ Z ||f|| - (2.34)

p] Pjii pJ PjiJ

Consequently we obtain,

Thus, Statement 1 of Theorem 2 follows. Statements 2 and 3 can be proved in a similar
way.
Note that if p; # 0;, for at least one j, then this argument does not work.
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