Eurasian Mathematical Journal

2016, Volume 7, Number 1

Founded in 2010 by
the L.N. Gumilyov Eurasian National University
in cooperation with
the M.V. Lomonosov Moscow State University
the Peoples' Friendship University of Russia
the University of Padua

Supported by the ISAAC (International Society for Analysis, its Applications and Computation) and by the Kazakhstan Mathematical Society

Published by

the L.N. Gumilyov Eurasian National University Astana, Kazakhstan

EURASIAN MATHEMATICAL JOURNAL

Editorial Board

Editors-in-Chief

V.I. Burenkov, M. Otelbaev, V.A. Sadovnichy

Editors

Sh.A. Alimov (Uzbekistan), H. Begehr (Germany), T. Bekjan (China), O.V. Besov (Russia), N.A. Bokayev (Kazakhstan), A.A. Borubaev (Kyrgyzstan), G. Bourdaud (France), A. Caetano (Portugal), M. Carro (Spain), A.D.R. Choudary (Pakistan), V.N. Chubarikov (Russia), A.S. Dzumadildaev (Kazakhstan), V.M. Filippov (Russia), H. Ghazaryan (Armenia), M.L. Goldman (Russia), V. Goldshtein (Israel), V. Guliyev (Azerbaijan), D.D. Haroske (Germany), A. Hasanoglu (Turkey), M. Huxley (Great Britain), M. Imanaliev (Kyrgyzstan), P. Jain (India), T.Sh. Kalmenov (Kazakhstan), B.E. Kangyzhin (Kazakhstan), K.K. Kenzhibaev (Kazakhstan), S.N. Kharin (Kazakhstan), E. Kissin (Great Britain), V. Kokilashvili (Georgia), V.I. Korzyuk (Belarus), A. Kufner (Czech Republic), L.K. Kussainova (Kazakhstan), P.D. Lamberti (Italy), M. Lanza de Cristoforis (Italy), V.G. Maz'ya (Sweden), E.D. Nursultanov (Kazakhstan), R. Oinarov (Kazakhstan), K.N. Ospanov (Kazakhstan), I.N. Parasidis (Greece), J. Pečarić (Croatia), S.A. Plaksa (Ukraine), L.-E. Persson (Sweden), E.L. Presman (Russia), M.A. Ragusa (Italy), M.D. Ramazanov (Russia), M. Reissig (Germany), M. Ruzhansky (Great Britain), S. Sagitov (Sweden), T.O. Shaposhnikova (Sweden), A.A. Shkalikov (Russia), V.A. Skvortsov (Poland), G. Sinnamon (Canada), E.S. Smailov (Kazakhstan), V.D. Stepanov (Russia), Ya.T. Sultanaev (Russia) sia), I.A. Taimanov (Russia), T.V. Tararykova (Great Britain), J.A. Tussupov (Kazakhstan), U.U. Umirbaev (Kazakhstan), Z.D. Usmanov (Tajikistan), N. Vasilevski (Mexico), Dachun Yang (China), B.T. Zhumagulov (Kazakhstan)

Managing Editor

A.M. Temirkhanova

Executive Editor

D.T. Matin

Aims and Scope

The Eurasian Mathematical Journal (EMJ) publishes carefully selected original research papers in all areas of mathematics written by mathematicians, principally from Europe and Asia. However papers by mathematicians from other continents are also welcome.

From time to time the EMJ publishes survey papers.

The EMJ publishes 4 issues in a year.

The language of the paper must be English only.

The contents of EMJ are indexed in Scopus, Web of Science (ESCI), Mathematical Reviews, MathSciNet, Zentralblatt Math (ZMATH), Referativnyi Zhurnal – Matematika, Math-Net.Ru.

The EMJ is included in the list of journals recommended by the Committee for Control of Education and Science (Ministry of Education and Science of the Republic of Kazakhstan).

Information for the Authors

<u>Submission.</u> Manuscripts should be written in LaTeX and should be submitted electronically in DVI, PostScript or PDF format to the EMJ Editorial Office via e-mail (eurasianmj@yandex.kz).

When the paper is accepted, the authors will be asked to send the tex-file of the paper to the Editorial Office.

The author who submitted an article for publication will be considered as a corresponding author. Authors may nominate a member of the Editorial Board whom they consider appropriate for the article. However, assignment to that particular editor is not guaranteed.

Copyright. When the paper is accepted, the copyright is automatically transferred to the EMJ. Manuscripts are accepted for review on the understanding that the same work has not been already published (except in the form of an abstract), that it is not under consideration for publication elsewhere, and that it has been approved by all authors.

<u>Title page.</u> The title page should start with the title of the paper and authors' names (no degrees). It should contain the <u>Keywords</u> (no more than 10), the <u>Subject Classification</u> (AMS Mathematics Subject <u>Classification</u> (2010) with primary (and secondary) subject classification codes), and the <u>Abstract</u> (no more than 150 words with minimal use of mathematical symbols).

<u>Figures</u>. Figures should be prepared in a digital form which is suitable for direct reproduction.

<u>References</u>. Bibliographical references should be listed alphabetically at the end of the article. The authors should consult the Mathematical Reviews for the standard abbreviations of journals' names.

<u>Authors' data.</u> The authors' affiliations, addresses and e-mail addresses should be placed after the References.

<u>Proofs.</u> The authors will receive proofs only once. The late return of proofs may result in the paper being published in a later issue.

Offprints. The authors will receive offprints in electronic form.

Publication Ethics and Publication Malpractice

For information on Ethics in publishing and Ethical guidelines for journal publication see http://www.elsevier.com/publishingethics and http://www.elsevier.com/journal-authors/ethics.

Submission of an article to the EMJ implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see http://www.elsevier.com/postingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. In particular, translations into English of papers already published in another language are not accepted.

No other forms of scientific misconduct are allowed, such as plagiarism, falsification, fraudulent data, incorrect interpretation of other works, incorrect citations, etc. The EMJ follows the Code of Conduct of the Committee on Publication Ethics (COPE), and follows the COPE Flowcharts for Resolving Cases of Suspected Misconduct (http://publicationethics.org/files/u2/New_Code.pdf). To verify originality, your article may be checked by the originality detection service CrossCheck http://www.elsevier.com/editors/plagdetect.

The authors are obliged to participate in peer review process and be ready to provide corrections, clarifications, retractions and apologies when needed. All authors of a paper should have significantly contributed to the research.

The reviewers should provide objective judgments and should point out relevant published works which are not yet cited. Reviewed articles should be treated confidentially. The reviewers will be chosen in such a way that there is no conflict of interests with respect to the research, the authors and/or the research funders.

The editors have complete responsibility and authority to reject or accept a paper, and they will only accept a paper when reasonably certain. They will preserve anonymity of reviewers and promote publication of corrections, clarifications, retractions and apologies when needed. The acceptance of a paper automatically implies the copyright transfer to the EMJ.

The Editorial Board of the EMJ will monitor and safeguard publishing ethics.

Web-page

The web-page of EMJ is www.emj.enu.kz. One can enter the web-page by typing Eurasian Mathematical Journal in any search engine (Google, Yandex, etc.). The archive of the web-page contains all papers published in EMJ (free access).

Subscription

For Institutions

- US\$ 200 (or equivalent) for one volume (4 issues)
- US\$ 60 (or equivalent) for one issue

For Individuals

- US\$ 160 (or equivalent) for one volume (4 issues)
- US\$ 50 (or equivalent) for one issue.

The price includes handling and postage.

The Subscription Form for subscribers can be obtained by e-mail:

eurasianmj@yandex.kz

The Eurasian Mathematical Journal (EMJ)

The Editorial Office

The L.N. Gumilyov Eurasian National University

Building no. 3

Room 306a

Tel.: +7-7172-709500 extension 33312

13 Kazhymukan St

010008 Astana

Kazakhstan

NURZHAN BOKAYEV

(to the 60th birthday)

On January 5, 2016 was the 60th birthday of Doctor of Physical-Mathematical Sciences (1996), Professor Nurzhan Adilkhanovich Bokayev. Professor Bokayev is the head of the department "Higher Mathematics" of the L.N. Gumilyov Eurasian National University (since 2009), the Vice-President of Mathematical Society of the Turkic World (since 2014), and a member of the Editorial Board of our journal.

N.A. Bokayevwas born in the Urnek village, Karabalyk district, Kostanay region. He graduated from the E.A. Buketov Karaganda State University in 1977 and the M.V. Lomonosov Moscow State University's full-time postgraduate study in 1984.

Scientific works of Professor Bokayev are devoted to studying problems of the theory of functions, in particular of the theory of orthogonal series.

He proved renewal and uniqueness theorems for series with respect to periodic multiplicative systems and Haar-type systems, constructed continual sets of uniqueness (U-sets) and sets of non-uniqueness (M-sets) for multiplicative systems; investigated Besov-type function spaces with respect to the Price bases; studied the Price - and Haar-type p-adic operators; introduced new classes of Faber-Schauder-type systems of functions and spaces of multivariable functions of bounded p-variation and of bounded p-fluctuation, obtained estimates for the best approximation of functions in these spaces by polynomials with respect to the Walsh and Haar systems, established weighted integrability conditions of the sum of multiple trigonometric series and series with respect to multiplicative systems, found the embedding criterion for the Nikol'skii-Besov spaces with respect to multiplicative bases and the coefficient criterion for belonging of functions to such spaces.

His scientific results have made essential contribution to the theory of series with respect to the Walsh and Haar systems and multiplicative systems.

N.A. Bokayev has published more than 150 scientific papers. Under his supervision 8 dissertations have been defended: 4 candidate of sciences dissertations and 4 PhD dissertations.

The Editorial Board of the Eurasian Mathematical Journal congratulates Nurzhan Adilkhanovich Bokayev on the occasion of his 60th birthday and wishes him good health and successful work in mathematics and mathematical education.

The EMJ has been included in the Emerging Sources Citation Index

This year, Thomson Reuters is launching the Emerging Sources Citation Index (ESCI), which will extend the universe of publications in Web of Science to include high-quality, peer-reviewed publications of regional importance and in emerging scientific fields. ESCI will also make content important to funders, key opinion leaders, and evaluators visible in Web of Science Core Collection even if it has not yet demonstrated citation impact on an international audience.

Journals in ESCI have passed an initial editorial evaluation and can continue to be considered for inclusion in the Science Citation Index ExpandedTM (SCIE), one of the flagship indices of the Web of Science Core Collection, which has rigorous evaluation processes and selection criteria.

To be included, candidate journals must pass in-depth editorial review; peer review, timely publishing, novel content, international diversity, and citation impact, among other criteria, are evaluated and compared across the entire index.

All ESCI journals will be indexed according to the same data standards, including cover-to-cover indexing, cited reference indexing, subject category assignment, and indexing all authors and addresses.

Rapidly changing research fields and the rise of interdisciplinary scholarship calls for libraries to provide coverage of relevant titles in evolving disciplines. ESCI provides Web of Science Core Collection users with expanded options to discover relevant scholarly content. Get real-time insight into a journal's citation performance while the content is considered for inclusion in other Web of Science collections. Items in ESCI are searchable, discoverable, and citable so you can measure the contribution of an article in specific disciplines and identify potential collaborators for expanded research.

ESCI expands the citation universe and reflects the growing global body of science and scholarly activity. ESCI complements the highly selective indexes by providing earlier visibility for sources under evaluation as part of SCIE rigorous journal selection process. Inclusion in ESCI provides greater discoverability which leads to measurable citations and more transparency in the selection process.

The Eurasian Mathematical Journal, together with other 70 internationally recognized mathematical journal has been included in the Emerging Sources Citation Index (Mathematics).

Below is the extract from the list of such journals including journals with numbers from 22 to 29.

ELEMENTE DER MATHEMATIK

Quarterly ISSN: 0013-6018

EUROPEAN MATHEMATICAL SOC, PUBLISHING HOUSE, E T H-ZENTRUM SEW A27, SCHEUCHZERSTRASSE 70, ZURICH, SWITZERLAND, CH-8092

ENSEIGNEMENT MATHEMATIQUE

Quarterly ISSN: 0013-8584

EUROPEAN MATHEMATICAL SOC PUBLISHING HOUSE, SEMINAR APPLIED MATHEMATICS, ETH-ZENTRUM FLI C4, ZURICH, SWITZERLAND, 8092

EURASIAN MATHEMATICAL JOURNAL

Quarterly ISSN: 2077 -9879

L N GUMILYOV EURASIAN NATL UNIV, L N GUMILYOV EURASIAN NATL

UNIV, ASTANA, KAZAKHSTAN, 010008

EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Quarterly ISSN: 1307-5543

EUROPEAN JOURNAL PURE AND APPLIED MATHEMATICS, FAK AVCILAR,

ISTANBUL UNIV, ISLETME, ISTANBUL, TURKEY, 34320

FIBONACCI QUARTERLY

Quarterly ISSN: 0015-0517

FIBONACCI ASSOC, CIO PATTY SOLSAA, PO BOX 320, AURORA, USA, SD,

57002-0320

FORUM OF MATHEMATICS PI

lrregular ISSN: 2050-5086

CAMBRIDGE UNIV PRESS, EDINBURGH BLDG, SHAFTESBURY RD, CAM-

BRIDGE, ENGLAND, CB2 8RU

FORUM OF MATHEMATICS SIGMA

lrregular ISSN: 2050-5094

CAMBRIDGE UNIV PRESS, EDINBURGH BLDG, SHAFTESBURY RD, CAM-

BRIDGE, ENGLAND, C82 8RU

INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS

Bimonthly ISSN: 2291 -8639

ETAMATHS PUBL, 701 W GEORGIA ST, STE 1500, VANCOUVER, CANADA,

BC, V7Y 1C6

The complete list of all 71 mathematical journals included in the ESCI can be viewed on $wokinfo.com/products_tools/multidisciplinary/esci$.

On behalf of the Editorial Board of the EMJ

V.I. Burenkov, T.V. Tararykova, A.M. Temirkhanova

EURASIAN MATHEMATICAL JOURNAL

ISSN 2077-9879

Volume 7, Number 1 (2016), 84 – 99

HARDY-TYPE INEQUALITIES FOR THE FRACTIONAL INTEGRAL OPERATOR IN q-ANALYSIS

S. Shaimardan

Communicated by R. Oinarov

Key words: Hardy-type inequalities, integral operator, q-analysis, q-integral.

AMS Mathematics Subject Classification: 26D10, 26D15, 33D05, 39A13.

Abstract. We obtain necessary and sufficient conditions for the validity of a certian Hardy-type inequality involving q-integrals.

1 Introduction

The q-derivative or Jackson's derivative, is a q-analogue of the ordinary derivative. q-differentiation is the inverse of Jackson's q-integration. It was introduced by F. H. Jackson [11] (see also [7]). He was the first to develop q-analysis. After that many q-analogue of classical results and concepts were studied and their applications are investigated.

Concerning recent results on q-analysis and its applications we also refer to the resent book by T. Ernst [8]. Some integral inequalities were obtained by H. Gauchman [10]. A Hardy-type inequality in q-analysis was recently obtained by L. Maligranda, R. Oinarov and L-E. Persson [13].

In this paper we prove a new Hardy-type inequality in which the Hardy operator is replaced by the q-analogue of the infinitesimal fractional operator (see [1] and (1.3) below).

In classical analysis, the hypergeometric function (Gaussian function) is defined for |z| < 1 by the power series [9]:

$$_{2}F_{1}(\alpha,\beta;\gamma;z) = \sum_{n=0}^{\infty} \frac{(\alpha)_{n}(\beta)_{n}}{(\gamma)_{n}} \frac{z^{n}}{n!}, \quad \forall \alpha,\beta,\gamma \in \mathbb{C},$$

where $(\alpha)_n$ is the Pochhammer symbol, which is defined by:

$$(\alpha)_0 = 1, \ (\alpha)_n = \alpha(\alpha+1)\cdots(\alpha+n-1), \ n>0.$$

If B denotes the Beta function, then

$$_{2}F_{1}(\alpha-1,\beta;\gamma;z) = \frac{1}{B(\beta,\gamma-\beta)} \int_{0}^{1} x^{\beta-1} (1-x)^{\gamma-\beta-1} (1-zx)^{2-\alpha} dx,$$

where $Re(\gamma) > Re(\beta) > 0$. When $\beta = \gamma$ we have that

$$_{2}F_{1}(\alpha-1,\beta;\beta;z) = (1-z)^{\alpha-1}.$$

Let $\alpha + \beta < \gamma, \gamma \neq 0, -1, -2, \cdots$. Then the following generalized fractional integral operator was introduced in [14]:

$$I_{\alpha}^{\gamma,\beta}f(x) = \frac{x^{\alpha-1}}{\Gamma(\alpha)} \int_{0}^{x} {}_{2}F_{1}\left(\alpha - 1, \beta; \gamma; \frac{s}{x}\right) ds, \tag{1.1}$$

where $\Gamma(\cdot)$ denotes the Gamma function. If $\beta = \gamma$ then the operator

$$I_{\alpha}f(x) := \frac{x^{\alpha-1}}{\Gamma(\alpha)} \int_{0}^{x} {}_{2}F_{1}\left(\alpha - 1, \beta; \beta; \frac{s}{x}\right) ds,$$

is called the Riemann-Liouville fractional integral operator. When $\gamma=1,\,\beta=2,$ we have that

$$\hat{I}f(x) := \lim_{\alpha \to 0} \Gamma(\alpha) I_{\alpha}^{1,2} f(x) = \int_{0}^{x} \ln \frac{x}{x - s} \frac{f(s)}{s} ds, \tag{1.2}$$

which is called the infinitesimal fractional integral operator [1].

The purpose of this paper is to find a q-analogue of operator (1.2) and to prove a q-analogue of the following Hardy-type integral inequality [1]:

$$\left(\int_{0}^{\infty} u^{r}(x) \left(\int_{0}^{x} t^{\gamma-1} \ln \frac{x}{x-t} f(t) dt\right)^{r} dx\right)^{\frac{1}{r}}$$

$$\leq C \left(\int_{0}^{\infty} f^{p}(x) dx\right)^{\frac{1}{p}}, \quad \forall f(\cdot) \geq 0, \quad (1.3)$$

where C > 0 is independent of f and u is a positive real valued function on $(0, \infty)$ briefly a weight function. We derive necessary and sufficient conditions for the validity of a q-analogue of inequality (1.3) in q-analysis for the case $1 , <math>0 < r < \infty$ and $\gamma > \frac{1}{p}$ (see Theorem 3.1 and Theorem 3.2). We also consider the problem of finding the best constant in a q-analogue of inequality (1.3).

The paper is organized as follows: We present some preliminaries in Section 2. The main results and detailed proofs are presented in Section 3.

2 Preliminaries

First we recall definitions and notions of the theory of q-analysis, our main references are the books [7], [8] and [9].

86 S. Shaimardan

Let 0 < q < 1 be fixed.

For a real number $\alpha \in \mathbb{R}$, the q-real number $[\alpha]_q$ is defined by

$$[\alpha]_q = \frac{1 - q^{\alpha}}{1 - q}, \quad \alpha \in R.$$

It is clear that $\lim_{q \longrightarrow 1} \frac{1-q^{\alpha}}{1-q} = \alpha$.

The q-analogue of the power $(a - b)^k$ is defined by

$$(a-b)_q^0 = 1, \quad k \in \mathbb{N}, \quad (a-b)_q^k = \prod_{i=0}^{k-1} (a-q^i b), \quad \forall \ a, b \in \mathbb{R},$$

and

$$(1-b)_q^{\alpha} := \frac{(1-b)_q^{\infty}}{(1-q^{\alpha}b)_q^{\infty}}, \quad \forall \ b, \alpha \in \mathbb{R}.$$

$$(2.1)$$

and by using well-known relations this can also be written as

$$(1-b)_q^{\alpha} = \frac{1}{(1-q^{\alpha}b)_q^{-\alpha}}, \quad \forall b, \alpha \in \mathbb{R}.$$
 (2.2)

The q-hypergeometric function ${}_{2}\Phi_{1}$ is defined by ([9]):

$${}_{2}\Phi_{1}\left[\begin{smallmatrix} q^{\alpha} & q^{\beta} \\ & q^{\gamma} \end{smallmatrix}\right] := \sum_{n=0}^{\infty} \frac{(q^{\alpha};q)_{q}^{n}(q^{\beta};q)_{q}^{n}}{(q^{\gamma};q)_{q}^{n}(q;q)_{q}^{n}} x^{n}, \quad |x| < 1,$$

where $(q^{\alpha};q)_q^n = \prod_{i=0}^{n-1} (1-q^{i+\alpha})$ and $\gamma \neq 0, -1, -2, \cdots$. Moreover, this series converges absolutely and $\lim_{q \to 1} \frac{(q^{\alpha};q)_q^n}{(1-q)^n} = (a)_n$, so

$$\lim_{q \to 1} {}_{2}\Phi_{1} \left[\begin{smallmatrix} q^{\alpha} & q^{\beta} \\ & q^{\gamma} \end{smallmatrix} \right] : q : x \right] = {}_{2} F_{1} \left(\alpha, \beta; \gamma; x \right).$$

For $f:[0,b)\longrightarrow R,\quad 0\leq b<\infty$, the q-derivative is defined by:

$$D_q f(x) := \frac{f(x) - f(qx)}{(1 - q)x}, \quad x \in (0, b),$$
(2.3)

and $D_q f(0) = f'(0)$ provided f'(0) exists. It is clear that if f(x) is differentiable, then $\lim_{q \to 1} D_q f(x) = f'(x)$.

Definition 1. The q-Taylor series of f(x) at x = c is defined by

$$f(x) := \sum_{j=0}^{\infty} (D_q^j)(c) \frac{(x-c)_q^j}{[j]_q!},$$

where

$$[j]_q! = \begin{cases} 1, & \text{if } j = 0, \\ [1]_q \times [2]_q \times \dots \times [j]_q, & \text{if } j \in \mathbb{N}. \end{cases}$$

The definite q-integral or the q-Jackson integral of a function f is defined by the formula

$$\int_{0}^{x} f(t)d_{q}t := (1-q)x \sum_{k=0}^{\infty} q^{k}f(q^{k}x), \quad x \in (0,b),$$
(2.4)

and the improper q-integral of a function $f(x):[0,\infty)\to\mathbb{R}$, is defined by the formula

$$\int_{0}^{\infty} f(t)d_{q}t := (1 - q)\sum_{k = -\infty}^{\infty} q^{k}f(q^{k}).$$
(2.5)

Note that the series in the right hand sides of (2.4) and (2.5) converge absolutely.

Definition 2. The function

$$\Gamma_q(\alpha) := \int_0^\infty x^{\alpha - 1} E_q^{-qx} d_q x, \quad \alpha > 0,$$

is called the q-Gamma function, where $E_q^{-qx} = (1 - (1 - q)x)_q^{\infty}$.

We have that

$$\Gamma_q(\alpha+1) = [\alpha]_q \Gamma_q(\alpha),$$

for any $\alpha > 0$.

Definition 3. The function

$$B_q(\alpha,\beta) := \int_0^1 t^{\alpha-1} (1 - qt)_q^{\beta-1} d_q t, \quad \alpha,\beta > 0,$$

is called the q-Beta function. Note that

$$B_q(\alpha, \beta) = \frac{\Gamma_q(\alpha)\Gamma_q(\beta)}{\Gamma_q(\alpha + \beta)},$$

for α , $\beta > 0$.

Let Ω be a subset of $(0, \infty)$ and $\mathcal{X}_{\Omega}(t)$ denote the characteristic function of Ω . For all z > 0, we have that(see [5]):

$$\int_{0}^{\infty} \mathcal{X}_{(0,z]}(t)f(t)d_{q}t = (1-q)\sum_{q^{i} \le z} q^{i}f(q^{i}), \tag{2.6}$$

$$\int_{0}^{\infty} \mathcal{X}_{[z,\infty)}(t)f(t)d_{q}t = (1-q)\sum_{q^{i}>z} q^{i}f(q^{i}).$$
(2.7)

R.P. Agarwal and W.A. Al-Salam (see [2], [3] and [4]) introduced several types of fractional q-integral operators and fractional q-derivatives. In particular, they defined the q-analogue of the fractional integral operator of the Riemann-Liouville type by

$$I_{q,\alpha}f(x) = \frac{x^{\alpha-1}}{\Gamma_q(\alpha)} \int_0^x (1 - \frac{qs}{x})_q^{\alpha-1} f(s) d_q s, \quad \alpha \in \mathbb{R}^+.$$

Using formula (2.2), we can rewrite $I_{q,\alpha}$ as follows:

$$I_{q,\alpha}f(x) = \frac{x^{\alpha-1}}{\Gamma_q(\alpha)} \int_0^x \frac{f(s)}{(1 - q^{\alpha} \frac{s}{x})_q^{1-\alpha}} d_q s, \quad \alpha \in \mathbb{R}^+.$$
 (2.8)

Out next goal is to define a q-analogue of $\ln \frac{x}{x-s}$, but for this we need the following result of independent interest.

Proposition 2.1. Let $0 < s \le x < \infty$. Then

$${}_{2}\Phi_{1}\left[\begin{matrix} q^{1-\alpha} & q^{\beta} \\ q^{\gamma} \end{matrix}; q ; q^{\alpha} \frac{s}{x} \right] = \frac{1}{B_{q}(\beta, \gamma)} \int_{0}^{1} \frac{t^{\beta-1} (1 - qt)_{q}^{\gamma-\beta-1}}{(1 - q^{\alpha}t \frac{s}{x})_{q}^{1-\alpha}} d_{q}t, \tag{2.9}$$

for $\beta, \gamma > 0$, and

$${}_{2}\Phi_{1}\begin{bmatrix} q^{1-\alpha} & q^{\beta} \\ & ;q \; ;q^{\alpha} \frac{s}{x} \end{bmatrix} = \frac{1}{(1-q^{\alpha} \frac{s}{x})^{1-\alpha}}, \tag{2.10}$$

for $\beta = \gamma$.

Proof. First we consider equality (2.10). From (2.1) and (2.3), we get that

$$\begin{split} D_{q,s}^{1}\left(\frac{1}{(1-q^{\alpha}\frac{s}{x})_{q}^{1-\alpha}}\right) &= D_{q,s}^{1}\left(\frac{(1-q\frac{s}{x})_{q}^{\infty}}{(1-q^{\alpha}\frac{s}{x})_{q}^{\infty}}\right) \\ &= \left[\frac{(1-q^{2}\frac{s}{x})_{q}^{\infty}}{(1-q^{\alpha+1}\frac{s}{x})_{q}^{\infty}} - \frac{(1-q\frac{s}{x})_{q}^{\infty}}{(1-q^{\alpha}\frac{s}{x})_{q}^{\infty}}\right] \frac{1}{(q-1)s} \\ &= \frac{(1-q^{2}\frac{s}{x})_{q}^{\infty}}{(1-q^{\alpha}\frac{s}{x})_{q}^{\infty}} \left[\frac{(1-q^{\alpha}\frac{s}{x}) - (1-q\frac{s}{x})}{s(q-1)}\right] \\ &= \frac{(1-q^{2}\frac{s}{x})_{q}^{\infty}}{(1-q^{\alpha}\frac{s}{x})_{q}^{\infty}} \left[\frac{q^{\alpha}(q^{1-\alpha}-1)}{x(q-1)}\right] \\ &= \frac{\frac{q^{\alpha}}{x}[1-\alpha]_{q}}{(1-q^{\alpha}\frac{s}{x})_{q}^{2-\alpha}}. \end{split}$$

Using this relation and induction, one can easily see that

$$D_{q,s}^{j} \left(\frac{1}{(1 - q^{\alpha} \frac{s}{x})_{q}^{1-\alpha}} \right) \Big|_{s=0} = \frac{q^{j\alpha}}{x^{j}} [1 - \alpha]_{q} [2 - \alpha]_{q} \cdots [j - \alpha]_{q},$$

for any $j \geq 1$. Therefore, we have the q-Taylor expansion (see Definition 1)

$$\frac{1}{(1-q^{\alpha}\frac{s}{x})_{q}^{1-\alpha}} = \sum_{j=0}^{\infty} \frac{[1-\alpha]_{q}[2-\alpha]_{q}\cdots[j-\alpha]_{q}}{[j]_{q}!} \left(\frac{q^{\alpha}s}{x}\right)^{j}$$

$$= \sum_{j=0}^{\infty} \frac{(1-q^{1-\alpha})_{q}^{j}}{(1-q)_{q}^{j}} \left(\frac{q^{\alpha}s}{x}\right)^{j}$$

$$= {}_{2}\Phi_{1} \begin{bmatrix} q^{1-\alpha} & q^{\beta} \\ q^{\beta} & ;q : q^{\alpha}\frac{s}{x} \end{bmatrix}, \qquad (2.11)$$

and (2.10) is proved.

By using the same arguments as above we see that

$$\frac{1}{(1-q^{\alpha}t\frac{s}{x})_{q}^{1-\alpha}} = \sum_{n=0}^{\infty} \frac{(1-q^{1-\alpha})_{q}^{n}}{(1-q)_{q}^{n}} \left(t\frac{q^{\alpha}s}{x}\right)^{n},$$

for $x \ge s$, $0 < t \le 1$. Therefore

$$\int_{0}^{1} \frac{t^{\beta-1}(1-qt)_{q}^{\gamma-\beta-1}}{(1-q^{\alpha}t_{x}^{s})_{q}^{1-\alpha}} d_{q}t = \sum_{n=0}^{\infty} \frac{(1-q^{1-\alpha})_{q}^{n}}{(1-q)_{q}^{n}} \left(\frac{q^{\alpha}s}{x}\right)^{n} \int_{0}^{1} t^{\beta+n-1}(1-qt)_{q}^{\gamma-\beta-1} d_{q}t \\
= \sum_{n=0}^{\infty} \frac{(1-q^{1-\alpha})_{q}^{n}}{(1-q)_{q}^{n}} \left(\frac{q^{\alpha}s}{x}\right)^{n} \frac{\Gamma_{q}(\beta+n)\Gamma_{q}(\gamma-\beta)}{\Gamma_{q}(\gamma+n)} \\
= \frac{\Gamma_{q}(\beta)\Gamma_{q}(\gamma-\beta)}{\Gamma_{q}(\gamma)} \sum_{n=0}^{\infty} \frac{(1-q^{1-\alpha})_{q}^{n}(1-q^{\beta})_{q}^{n}}{(1-q)_{q}^{n}(1-q^{\gamma})_{q}^{n}} \left(\frac{q^{\alpha}s}{x}\right)^{n} \\
= B_{q}(\beta,\gamma)_{2}\Phi_{1} \begin{bmatrix} q^{1-\alpha}q^{\beta} & q^{\beta}s & q^{\alpha}s \\ q^{\gamma} & q^{\alpha}s & q^{\alpha}s \\ q^{\gamma} & q^{\alpha}s & q^{\alpha}s \end{bmatrix}.$$

and also (2.9) is proved.

By Proposition 2.1, the integral (2.8) can be rewritten as

$$I_{q,\alpha}f(x) = \frac{x^{\alpha-1}}{\Gamma_q(\alpha)} \int_0^x {}_2\Phi_1 \left[\begin{smallmatrix} q^{1-\alpha} & q^{\beta} \\ q^{\beta} \end{smallmatrix} ; q ; q^{\alpha} \frac{s}{x} \right] f(s) d_q s, \quad \alpha \in \mathbb{R}^+, \ \beta \in \mathbb{R}.$$

More generally, we consider the q-analogue of $I_{\alpha}^{\gamma,\beta}$ (see (1.1))

$$I_{q,\alpha}^{\gamma,\beta}f(x) = \frac{x^{\alpha-1}}{\Gamma_q(\alpha)} \int_0^x {}_2\Phi_1\left[\begin{smallmatrix} q^{1-\alpha} & q^{\beta} \\ q^{\gamma} \end{smallmatrix}; q : q^{\alpha}\frac{s}{x} \right] f(s)d_qs, \quad \alpha, \ \beta, \gamma \in \mathbb{R}^+.$$

Due to uniform convergence of the series ${}_2\Phi_1\left[\begin{smallmatrix}q^{1-\alpha}&q\\q^2&\end{cases};q:q^{\alpha}\frac{s}{x}\right]$ for $0<\alpha<1$, we get that

$$\lim_{\alpha \to 0^{+}} {}_{2}\Phi_{1} \begin{bmatrix} q^{1-\alpha} & q \\ q^{2} & ;q : q^{\alpha} \frac{s}{x} \end{bmatrix} \frac{s}{x} = {}_{2}\Phi_{1} \begin{bmatrix} q & q \\ q^{2} & ;q : \frac{s}{x} \end{bmatrix} \frac{s}{x}$$

$$= \sum_{j=0}^{\infty} \frac{1-q}{1-q^{j+1}} \frac{s^{j+1}}{x^{j+1}} = \sum_{j=0}^{\infty} \frac{\left(\frac{s}{x}\right)^{j+1}}{[j+1]_{q}} = \sum_{j=1}^{\infty} \frac{\left(\frac{s}{x}\right)^{j}}{[j]_{q}},$$

90 S. Shaimardan

which is the q-analogue of the Taylor series of the function $\ln \frac{x}{x-s}$ with s < x.

Definition 4. We define the q-analogue of the function $\ln \frac{x}{x-s}$, $0 < s < x < \infty$, as follows:

$$\ln_q \frac{x}{x-s} := \sum_{j=1}^{\infty} \frac{\left(\frac{s}{x}\right)^j}{[j]_q}.$$

Remark 5. We define the q-analog of (1.2) as follows:

$$\widehat{I}_q f(x) := \int_0^{qx} \ln_q \frac{x}{x - s} \frac{f(s)}{s} d_q s, \qquad (2.12)$$

which is called the infinitesimal q-fractional integral operator.

Observe that:

$$\lim_{q \to 1} \widehat{I}_q f(x) = \int_0^x \ln \frac{x}{x - s} \frac{f(s)}{s} ds$$

Hence, from (2.12) we obtain the q-analogue of (1.3) in the following form:

$$\left(\int_{0}^{\infty} u^{r}(x) \left(\widehat{I}_{q} f(x)\right)^{r} d_{q} x\right)^{\frac{1}{r}} \leq C \left(\int_{0}^{\infty} f^{p}(t) d_{q} t\right)^{\frac{1}{p}}, \quad \forall f(\cdot) \geq 0, \tag{2.13}$$

where C > 0 independent of f.

In the q-integral we are allowed to change variables in the form $x = t\xi$ for $0 < \xi < \infty$ (see [7]). So by making the substitution t = qs, and $d_qt = qd_qs$ inequality (2.13) becomes

$$\left(\int_{0}^{\infty} u^{r}(x) \left(\int_{0}^{x} s^{\gamma-1} \ln_{q} \frac{x}{x - qs} \widetilde{f}(s) d_{q} s\right)^{r} d_{q} x\right)^{\frac{1}{r}}$$

$$\leq \widetilde{C} \left(\int_{0}^{\infty} \widetilde{f}^{p}(s) d_{q} s\right)^{\frac{1}{p}}, \quad \forall f(\cdot) \geq 0. \quad (2.14)$$

where $\widetilde{f}(s) = f(qs), \ \widetilde{C} = q^{\gamma - \frac{1}{p}}C.$

Since inequality (2.13) holds if and only if inequality (2.14) holds, from now on we will investigate necessary and sufficient conditions the validity of inequality (2.14).

Notation. In the sequel, for any p > 1 the conjugate number p' is defined by p' := p/(p-1). Moreover, the symbol $M \ll K$ means that there exists $\alpha > 0$ such that $M \leq \alpha K$, where α is a constant which depend only on the numerical parameters such as p, q, r. If $M \ll K \ll M$, then we write $M \approx K$.

For the proof of our main theorems we will need the following well-known discrete weighted Hardy inequality proved by G. Bennett [6] (see also [12], p.58):

Theorem A. Let $\{u_i\}_{i=1}^{\infty}$ and $\{v_j\}_{j=1}^{\infty}$ be non-negative sequences of real numbers and 1 . Then the inequality

$$\left(\sum_{j=-\infty}^{\infty} \left(\sum_{i=j}^{\infty} f_i\right)^r u_j^r\right)^{\frac{1}{r}} \le C \left(\sum_{i=-\infty}^{\infty} v_i^p f_i^p\right)^{\frac{1}{p}}, \quad f \ge 0, i \in \mathbb{Z},$$
 (2.15)

with C > 0 independent of f_i , $i \in \mathbb{Z}$ holds if and only if

$$\mathfrak{B}_1 := \sup_{n \in \mathbb{Z}} \left(\sum_{j=-\infty}^n u_j^r \right)^{\frac{1}{r}} \left(\sum_{i=n}^{\infty} v_i^{-p'} \right)^{\frac{1}{p'}} < \infty, \quad p' = \frac{p}{p-1}.$$

Moreover, $\mathfrak{B}_1 \approx C$, where C is the best constant in (2.15).

Theorem B. Let $0 < r < p < \infty$ and 1 < p. Then inequality (2.15) holds if and only if $\mathfrak{B}_2 < \infty$, where

$$\mathfrak{B}_2 := \left(\sum_{k=-\infty}^{\infty} v_k^{-p'} \left(\sum_{i=-\infty}^k u_i^r\right)^{\frac{p}{p-r}} \left(\sum_{i=k}^{\infty} v_i^{-p'}\right)^{\frac{p(r-1)}{p-r}}\right)^{\frac{p-r}{pr}}.$$

Moreover, $\mathfrak{B}_2 \approx C$, where C is the best constant in (2.15).

Also we need the following lemma ([5]):

Lemma A. Let f, φ and g be nonnegative functions. Then

$$\int_{0}^{\infty} \left(\int_{0}^{\infty} \mathcal{X}_{[z,\infty)}(t) f(t) d_{q} t \right)^{\alpha} \left(\int_{0}^{\infty} \mathcal{X}_{(0,z]}(x) g(x) d_{q} x \right)^{\beta} \varphi(z) d_{q} z$$

$$= (1-q)^{\alpha+\beta} \sum_{k=-\infty}^{\infty} \left[\left(\sum_{i=-\infty}^{k} q^{i} f(q^{i}) \right)^{\alpha} \left(\sum_{j=k}^{\infty} q^{j} g(q^{j}) \right)^{\beta} q^{k} \varphi(q^{k}) \right],$$

for $\alpha, \beta \in \mathbb{R}$.

3 Main results

Our main result reads:

Theorem 3.1. Let $1 , <math>\gamma > \frac{1}{p}$. Then the inequality

$$\left(\int_{0}^{\infty} u^{r}(x) \left(\int_{0}^{x} s^{\gamma-1} \ln_{q} \frac{x}{x - qs} f(s) d_{q} s\right)^{r} d_{q} x\right)^{\frac{1}{r}}$$

$$\leq C \left(\int_{0}^{\infty} f^{p}(s) d_{q} s\right)^{\frac{1}{p}}, \quad \forall f(\cdot) \geq 0, \quad (3.1)$$

with C > 0 independent of f holds if and only if $B_1 < \infty$, where

$$\boldsymbol{B}_{1} := \sup_{x>0} x^{\gamma + \frac{1}{p'}} \left(\int_{0}^{\infty} \mathcal{X}_{[x,\infty)}(t) \frac{u^{r}(t)}{t^{r}} d_{q} t \right)^{\frac{1}{r}},$$

Moreover, $B_1 \approx C$, where C is the best constant in (3.1).

Theorem 3.2. Let $0 < r < p < \infty$, 1 < p and $\gamma > \frac{1}{p}$. Then the inequality (3.1) holds if and only if $B_2 < \infty$, where

$$\boldsymbol{B}_{2} := \left(\int\limits_{0}^{\infty} \left[x^{\gamma + \frac{1}{p'}} \left(\int\limits_{0}^{\infty} \mathcal{X}_{[x,\infty)}(t) \frac{u^{r}(t)}{t^{r}} d_{q} t \right)^{\frac{1}{r}} \right]^{\frac{pr}{p-r}} d_{q} x \right)^{\frac{p-r}{pr}}.$$

Moreover, $B_2 \approx C$, where C is the best constant in (3.1).

Remark 6. By using formulas (2.4) and (2.5) in (3.1) we get that

$$\left(\sum_{j=-\infty}^{\infty} (1-q)q^{j}u^{r}(q^{j}) \left(\sum_{i=j}^{\infty} (1-q)q^{i\gamma}f(q^{i}) \ln_{q} \frac{1}{1-q^{i-j+1}}\right)^{r}\right)^{\frac{1}{r}}$$

$$\leq C \left(\sum_{i=-\infty}^{\infty} (1-q)q^{i}f^{p}(q^{i})\right)^{\frac{1}{p}}.$$

Let

$$u_j^r = (1-q)^{1+\frac{r}{p'}}q^ju^r(q^j), \ f_i = (1-q)^{\frac{1}{p}}q^{\frac{i}{p}}f(q^i), \ a_{i,j} = \ln_q \frac{1}{1-q^{i-j+1}}.$$
 (3.2)

Then we get that inequality (3.1) is equivalent to the discrete weighted Hardy-type inequality

$$\left(\sum_{j=-\infty}^{\infty} u_j^r \left(\sum_{i=j}^{\infty} q^{i(\gamma-\frac{1}{p})} f_i a_{i,j}\right)^r\right)^{\frac{1}{r}} \le C \left(\sum_{i=-\infty}^{\infty} f_i^p\right)^{\frac{1}{p}}.$$
(3.3)

Note that inequality (3.1) holds if and only if inequality (3.3) holds, so we will obtain the desired necessary and sufficient conditions for the validity of inequality (3.3).

Our next Lemmas give a characterization of the discrete Hardy-type inequality (3.3).

Lemma 3.1. Let $1 , <math>\gamma > \frac{1}{p}$. Then the inequality (3.3) holds if and only if $B_1 < \infty$, where

$$B_1 := \sup_{k \in \mathbb{Z}} \left(\sum_{i=k}^{\infty} q^{i(p'\gamma+1)} \right)^{\frac{1}{p'}} \left(\sum_{j=-\infty}^{k} q^{-jr} u_j^r \right)^{\frac{1}{r}}. \tag{3.4}$$

Moreover, $B_1 \approx C$, where C is the best constant in (3.3).

Proof. Necessity. Let us assume that (3.3) holds with some C > 0. From (3.2) and Definition 4 we get that $q^{i+1}/q^j \leq a_{i,j}$ for $j \leq i$. Then

$$\sum_{j=-\infty}^{\infty} u_j^r \left(\sum_{i=j}^{\infty} q^{i(\gamma-\frac{1}{p})} f_i a_{i,j} \right)^r \ge q \sum_{j=-\infty}^{\infty} q^{-jr} u_j^r \left(\sum_{i=j}^{\infty} q^{i(\gamma+\frac{1}{p'})} f_i \right)^r.$$

Moreover,

$$q\left(\sum_{j=-\infty}^{\infty}q^{-jr}u_{j}^{r}\left(\sum_{i=j}^{\infty}q^{i(\gamma+\frac{1}{p'})}f_{i}\right)^{r}\right)^{\frac{1}{r}}\leq C\left(\sum_{j=-\infty}^{\infty}f_{i}^{p}\right)^{\frac{1}{p}}.$$

Hence, by Theorem A we obtain that

$$B_1 \ll C. \tag{3.5}$$

The proof of the necessity is complete.

Sufficiency. Let $B < \infty$ and $f \ge 0$ be arbitrary. We will show that inequality (3.3) holds.

We consider two cases separately: $0 < q \le \frac{1}{2}$ and $\frac{1}{2} < q < 1$. 1) Let $0 < q \le \frac{1}{2}$. Let $j \le k \le i$. Then from (3.2) and Definition 4 it follows that $a_{j,j} = \ln_q \frac{1}{1-q} \le \ln_q 2$ (we note that $\ln_q 2 := \sum_{n=1}^{\infty} \frac{2^{-n}}{[n]_q}$), and

$$q^{-k}a_{k,j} - q^{-i}a_{i,j} = q^{-k} \sum_{n=1}^{\infty} \frac{(qq^k/q^j)^n}{[n]_q} - q^{-i} \sum_{n=1}^{\infty} \frac{(qq^i/q^j)^n}{[n]_q}$$
$$= \sum_{n=1}^{\infty} \frac{(q/q^j)^n}{[n]_q} \left(q^{k(n-1)} - q^{i(n-1)} \right) \ge 0,$$

i.e.

$$q^{-i}a_{i,j} \le q^{-k}a_{k,j},\tag{3.6}$$

for $j \leq k \leq i$.

Thus by (3.6) we have that

$$\sum_{j=-\infty}^{\infty} u_j^r \left(\sum_{i=j}^{\infty} q^{i(\gamma - \frac{1}{p})} f_i a_{i,j} \right)^r = \sum_{j=-\infty}^{\infty} u_j^r \left(\sum_{i=j}^{\infty} q^{i(\gamma + \frac{1}{p'})} q^{-i} a_{i,j} f_i \right)^r$$

$$\leq \sum_{j=-\infty}^{\infty} q^{-jr} u_j^r a_{j,j}^r \left(\sum_{i=j}^{\infty} q^{i(\gamma + \frac{1}{p'})} f_i \right)^r$$

$$\leq (\ln_q 2)^r \sum_{j=-\infty}^{\infty} q^{-jr} u_j^r \left(\sum_{i=j}^{\infty} q^{i(\gamma + \frac{1}{p'})} f_i \right)^r$$

$$\ll \sum_{j=-\infty}^{\infty} q^{-jr} u_j^r \left(\sum_{i=j}^{\infty} q^{i(\gamma + \frac{1}{p'})} f_i \right)^r.$$

Hence, by Theorem A we obtain that

$$\left(\sum_{j=-\infty}^{\infty} q^{-jr} u_j^r \left(\sum_{i=j}^{\infty} q^{i(\gamma+\frac{1}{p'})} f_i\right)^r\right)^{\frac{1}{r}} \leq B_1 \left(\sum_{j=-\infty}^{\infty} f_i^p\right)^{\frac{1}{p}},$$

which means that inequality (3.3) is valid and that $C \ll B_1$, where C is the best constant for which (3.3) holds.

2) Let $\frac{1}{2} < q < 1$. Then $\exists i_0 \in N$ such that $i_0 > 1$ and $q^{i_0} \le \frac{1}{2} < q^{i_0-1}$. We assume that $\mathbb{Z} = \bigcup_{k \in \mathbb{Z}} [t_k + 1, t_{k+1}]$ and $t_{k+1} - t_k = t_0$. Then the left hand side of (3.3) can be written as

$$\sum_{j=-\infty}^{\infty} u_j^r \left(\sum_{i=j}^{\infty} q^{i(\gamma - \frac{1}{p})} f_i a_{i,j} \right)^r = \sum_k \sum_{j=t_k+1}^{t_{k+1}} u_j^r \left(\sum_{i=j}^{\infty} q^{i(\gamma - \frac{1}{p})} f_i a_{i,j} \right)^r \\
\approx \sum_k \sum_{j=t_k+1}^{t_{k+1}} u_j^r \left(\sum_{i=j}^{t_{k+2}-1} q^{i(\gamma - \frac{1}{p})} f_i a_{i,j} \right)^r \\
+ \sum_k \sum_{j=t_k+1}^{t_{k+1}} u_j^r \left(\sum_{i=t_{k+2}}^{\infty} q^{i(\gamma - \frac{1}{p})} f_i a_{i,j} \right)^r \\
= I_1 + I_2. \tag{3.7}$$

To estimate I_1 we use Hölder's inequality. We find that

$$I_{1} \leq \sum_{k} \sum_{j=t_{k}+1}^{t_{k+1}} u_{j}^{r} \left(\sum_{i=j}^{t_{k+2}-1} q^{ip'(\gamma-\frac{1}{p})} a_{i,j}^{p'} \right)^{\frac{1}{p'}} \left(\sum_{i=j}^{t_{k+2}-1} f_{i}^{p} \right)^{\frac{1}{p}}$$

$$\leq \sum_{k} \sum_{j=t_{k}+1}^{t_{k+1}} u_{j}^{r} \left(\sum_{i=j}^{\infty} q^{ip'(\gamma-\frac{1}{p})} a_{i,j}^{p'} \right)^{\frac{r}{p'}} \left(\sum_{i=t_{k}+1}^{t_{k+2}} f_{i}^{p} \right)^{\frac{r}{p}}$$

$$= \sum_{k} \sum_{j=t_{k}+1}^{t_{k+1}} u_{j}^{r} q^{jr(\gamma-\frac{1}{p})} \left(\sum_{i=0}^{\infty} q^{ip'(\gamma-\frac{1}{p})} a_{i,0}^{p'} \right)^{\frac{r}{p'}} \left(\sum_{i=t_{k}+1}^{t_{k+2}} f_{i}^{p} \right)^{\frac{r}{p}}$$

$$= C_{0}^{\frac{r}{p'}} \sum_{k} \sum_{j=t_{k}+1}^{t_{k+1}} u_{j}^{r} q^{-jr} q^{jr(\gamma+\frac{1}{p'})} \left(\sum_{i=t_{k}+1}^{t_{k+2}} f_{i}^{p} \right)^{\frac{r}{p}}, \qquad (3.8)$$

where $C_0 := \sum_{i=0}^{\infty} q^{ip'(\gamma - \frac{1}{p})} a_{i,0}^{p'}$.

Since

$$M := (1 - q)C_0 = \int_0^1 x^{p'(\gamma - \frac{1}{p})} \left(\ln_q \frac{1}{1 - qx} \right)^{p'} d_q x < \infty$$

and

$$q^{jr(\gamma+\frac{1}{p'})} \leq q^{(t_k+1)(\gamma+\frac{1}{p'})r} = q^{-(i_0-1)(\gamma+\frac{1}{p'})}q^{t_{k+1}r(\gamma+\frac{1}{p'})} \leq 2^{r(\gamma+\frac{1}{p'})}q^{t_{k+1}(p'\gamma+1)\frac{r}{p'}}, \quad (3.9)$$

for $t_k + 1 \leq j$, we get that

$$I_{1} \leq 2^{r(\gamma+\frac{1}{p'})} M^{\frac{r}{p'}} [p'\gamma+1]_{q}^{\frac{r}{p'}} \sum_{k} \left(\sum_{i=t_{k}+1}^{t_{k+2}} f_{i}^{p} \right)^{\frac{r}{p}} \left(\frac{q^{t_{k+1}(p'\gamma+1)}}{1-q^{p'\gamma+1}} \right)^{\frac{r}{p'}} \sum_{j=-\infty}^{t_{k+1}} u_{j}^{r} q^{-jr}$$

$$\ll \sum_{k} \left(\sum_{i=t_{k}+1}^{t_{k+2}} f_{i}^{p} \right)^{\frac{r}{p}} \left(\frac{q^{t_{k+1}(p'\gamma+1)}}{1-q^{p'\gamma+1}} \right)^{\frac{r}{p'}} \sum_{j=-\infty}^{t_{k+1}} u_{j}^{r} q^{-jr}$$

$$= \sum_{k} \left(\sum_{i=t_{k}+1}^{t_{k+2}} f_{i}^{p} \right)^{\frac{r}{p}} \left[\left(\sum_{i=t_{k+1}}^{\infty} q^{ir(p'\gamma+1)} \right)^{\frac{1}{p'}} \left(\sum_{j=-\infty}^{t_{k+1}} u_{j}^{r} q^{-jr} \right)^{\frac{1}{r}} \right]^{r}$$

$$\ll B_{1}^{r} \left(\sum_{i=-\infty}^{\infty} f_{i}^{p} \right)^{\frac{r}{p}}. \tag{3.10}$$

Let $j \leq k \leq i$. Then from (3.2) and Definition 4 it follows that

$$q^{k}a_{i,k} - q^{j}a_{i,j} \ge q^{j} (a_{i,k} - a_{i,j}) = q^{k} \sum_{n=1}^{\infty} \frac{(q^{i+1}/q^{k})^{n}}{[n]_{q}} - q^{j} \sum_{n=1}^{\infty} \frac{(q^{i+1}/q^{j})^{n}}{[n]_{q}}$$
$$= \sum_{n=1}^{\infty} \frac{q^{(i+1)n}}{[n]_{q}} (q^{k(1-n)} - q^{j(1-n)}) \ge 0,$$

i.e.

$$q^j a_{i,j} \le q^k a_{i,k},\tag{3.11}$$

for $j \leq k \leq i$.

Using (3.6) and (3.11) we find that

$$\frac{1}{q^{i-j}}a_{i,j} \le \frac{1}{q^{t_{k+1}-t_{k+2}}} \ln_q \frac{1}{1-q^{t_{k+1}-t_k}} = \frac{1}{q^{i_0}} \ln_q \frac{1}{1-q^{i_0}} \le 2 \ln_q 2,$$

for $j \leq t_{k+1}$ and $t_{k+2} \leq i$.

Therefore,

$$I_{2} = \sum_{k} \sum_{j=t_{k}+1}^{t_{k+1}} u_{j}^{r} \left(\sum_{i=t_{k+2}}^{\infty} q^{i(\gamma-\frac{1}{p})} f_{i} a_{i,j} \right)^{r}$$

$$= \sum_{k} \sum_{j=t_{k}+1}^{t_{k+1}} q^{-jr} u_{j}^{r} \left(\sum_{i=t_{k+2}}^{\infty} q^{i(\gamma+\frac{1}{p'})} \frac{1}{q^{i-j}} a_{i,j} f_{i} \right)^{r}$$

$$\leq \left(2 \ln_{q} 2 \right)^{\frac{r}{p'}} \sum_{k} \sum_{j=t_{k}+1}^{t_{k+1}} q^{-jr} u_{j}^{r} \left(\sum_{i=t_{k+2}}^{\infty} q^{i(\gamma+\frac{1}{p'})} f_{i} \right)^{r}$$

$$\ll \sum_{j=-\infty}^{\infty} q^{-jr} u_{j}^{r} \left(\sum_{i=j}^{\infty} q^{i(\gamma+\frac{1}{p'})} f_{i} \right)^{r}.$$

96 S. Shaimardan

By using Theorem A we have that

$$I_2 \ll B_1^r \left(\sum_{i=-\infty}^{\infty} f_i^p\right)^{\frac{r}{p}},\tag{3.12}$$

Thus, from (3.7), (3.10) and (3.12) it follows that inequality (3.3) is valid and we see that the best constant C in (3.3) is such that $C \ll B_1$, which together with (3.5) gives that $C \approx B_1$.

Lemma 3.2. Let $0 < r < p < \infty$ and 1 < p. Then inequality (3.3) holds if and only if $B_2 < \infty$, where

$$B_2 := \left(\sum_{k=-\infty}^{\infty} q^{k(p'\gamma+1)} \left(\sum_{i=-\infty}^{k} u_i^r q^{-ir}\right)^{\frac{p}{p-r}} \left(\sum_{i=k}^{\infty} q^{i(p'\gamma+1)}\right)^{\frac{p(r-1)}{p-r}}\right)^{\frac{p-r}{pr}}.$$

Moreover, $B_2 \approx C$, where C is the best constant in (3.3).

Proof. In a similar way as in the proof of Lemma 3.1. by Theorem B we obtain that inequality (3.3) is valid and that $C \approx B_2$. where C is the best constant for which (3.3) holds for $0 < q \le \frac{1}{2}$.

In case $\frac{1}{2} < q < 1$ the necessary part is due to Theorem B. Therefore,

$$B_2 \ll C. \tag{3.13}$$

To prove sufficiency we proceed as follows. Applying to (3.8) Hölder's inequality with the exponents $\frac{p}{p-r}$ and $\frac{p}{r}$ we obtain that

$$I_{1} \ll \sum_{k} \left(\sum_{i=t_{k}+1}^{t_{k+2}} f_{i}^{p} \right)^{\frac{r}{p}} q^{t_{k+1}(p'\gamma+1)\frac{r}{p'}} \sum_{j=-\infty}^{t_{k+1}} u_{j}^{r} q^{-jr}$$

$$\leq \left(\sum_{k} q^{t_{k+1}(p'\gamma+1)\frac{r(p-1)}{p-r}} \left(\sum_{j=-\infty}^{t_{k+1}} u_{j}^{r} q^{-jr} \right)^{\frac{p}{p-r}} \right)^{\frac{p-r}{p}} \left(\sum_{k} \sum_{i=t_{k}+1}^{t_{k+2}} f_{i}^{p} \right)^{\frac{r}{p}}$$

$$\ll \widetilde{B}^{\frac{p-r}{p}} \left(\sum_{i=-\infty}^{\infty} f_{i}^{p} \right)^{\frac{r}{p}}.$$

Since

$$\begin{split} \widetilde{B} &:= \sum_{i=-\infty}^{\infty} q^{i(p'\gamma+1)\frac{r(p-1)}{p-r}} \left(\sum_{j=-\infty}^{i} u_{j}^{r} q^{-jr} \right)^{\frac{p}{p-r}} \\ &\leq \sum_{i=-\infty}^{\infty} q^{i(p'\gamma+1)} \left(\frac{q^{i(p'\gamma+1)}}{1-q^{p'\gamma+1}} \right)^{\frac{p(r-1)}{p-r}} \left(\sum_{j=-\infty}^{i} u_{j}^{r} q^{-jr} \right)^{\frac{p}{p-r}} \\ &= B_{2}^{\frac{pr}{p-r}}, \end{split}$$

we have that

$$I_1 \ll B_2^r \left(\sum_{i=-\infty}^{\infty} f_i^p\right)^{\frac{r}{p}} \tag{3.14}$$

From (3.12) and Theorem B it follows that

$$I_{2} \ll \sum_{j=-\infty}^{\infty} q^{-jr} u_{j}^{r} \left(\sum_{i=j}^{\infty} q^{i(\gamma + \frac{1}{p'})} f_{i} \right)^{r}$$

$$\leq \sum_{j=-\infty}^{\infty} q^{-jr} u_{j}^{r} \left(\sum_{i=j}^{\infty} q^{i(\gamma + \frac{1}{p'})} f_{i} \right)^{r}$$

$$\leq B_{2}^{r} \left(\sum_{i=-\infty}^{\infty} f_{i}^{p} \right)^{\frac{r}{p}}. \tag{3.15}$$

Thus, from (3.14) and (3.15) it follows that $C \ll B_2$ which means that the inequality (3.3) is valid, which together with (3.13) gives $B_2 \approx C$.

Lemma 3.3. Let $\gamma > \frac{1}{p}$, and $B_1 < \infty$. Then

$$\alpha \mathbf{B}_{1} = \sup_{k \in \mathbb{Z}} \left(\sum_{i=k}^{\infty} q^{i(p'\gamma+1)} \right)^{\frac{1}{p'}} \left(\sum_{j=-\infty}^{k} q^{j(1-r)} u^{r}(q^{j}) \right)^{\frac{1}{r}}, \tag{3.16}$$

for r > 0, where $\alpha = [p'\gamma + 1]_q^{-\frac{1}{p'}} (1-q)^{-\frac{1}{r} - \frac{1}{p'}}$.

Proof. Let $\gamma > \frac{1}{p}$. By using (2.7) we obtain that

$$I(x) = x^{\gamma + \frac{1}{p'}} \left(\int_{0}^{\infty} \mathcal{X}_{[x,\infty)}(t) t^{-r} u^{r}(t) d_{q} t \right)^{\frac{1}{r}} = (1 - q)^{\frac{1}{r}} x^{\gamma + \frac{1}{p'}} \left(\sum_{q^{j} \ge x} q^{(1-r)j} u^{r}(q^{j}) \right)^{\frac{1}{r}},$$

for $\forall r > 0$. Then

$$I(x) = (1-q)^{\frac{1}{p'} + \frac{1}{r}} [p'\gamma + 1]_q^{\frac{1}{p'}} \left(\sum_{i=k}^{\infty} q^{i(p'\gamma+1)} \right)^{\frac{1}{p'}} \left(\sum_{j=-\infty}^{k} q^{(1-r)i} u^r(q^i) \right)^{\frac{1}{r}},$$

for $x = q^k, \forall k \in \mathbb{Z}$. Moreover,

$$I(x) = (1-q)^{\frac{1}{p'} + \frac{1}{r}} [p'\gamma + 1]_q^{\frac{1}{p'}} \left(\sum_{i=k}^{\infty} q^{i(p'\gamma+1)} \right)^{\frac{1}{p'}} \left(\sum_{j=-\infty}^{k-1} q^{(1-r)i} u^r(q^i) \right)^{\frac{1}{r}},$$

for $q^k < x < q^{k-1}$. Hence

$$\sup_{q^k < x \le q^{k-1}} I(x) = (1-q)^{\frac{1}{p'} + \frac{1}{r}} [p'\gamma + 1]_q^{\frac{1}{p'}} \left(\sum_{i=k}^{\infty} q^{i(p'\gamma + 1)} \right)^{\frac{1}{p'}} \left(\sum_{j=-\infty}^{k} q^{(1-r)i} u^r(q^i) \right)^{\frac{1}{r}},$$

98 S. Shaimardan

and

$$\alpha \mathbf{B}_{1} = \alpha \sup_{k \in \mathbb{Z}} \sup_{q^{k} < x \leq q^{k-1}} I(x) = \sup_{k \in \mathbb{Z}} \left(\sum_{i=k}^{\infty} q^{i(p'\gamma+1)} \right)^{\frac{1}{p'}} \left(\sum_{j=-\infty}^{k} q^{(1-r)i} u^{r}(q^{i}) \right)^{\frac{1}{r}}.$$

We have proved that (3.16) holds.

Next, we prove Theorem 3.1.

Proof of Theorem 3.1. First we note that inequality (3.3) is equivalent to inequality (3.1). Moreover, by Lemma 3.1 inequality (3.1) holds if and only if $B_1 < \infty$. From (3.2) and Lemma 3.3 we have that $B_1 = \alpha \mathbf{B}_1$. which means that $\mathbf{B}_1 \approx C$ and inequality (3.1) holds if and only if $\mathbf{B}_1 < \infty$.

Proof of Theorem 3.2. In a similar way as in the proof of Theorem 3.1, by Lemma 3.2 we have that inequality (3.1) holds if and only if $B_2 < \infty$. From (3.2) and Lemma A we have that

$$B_{2}^{\frac{pr}{p-r}} = (1-q) \sum_{k=-\infty}^{\infty} q^{k(p'\gamma+1)} \left((1-q) \sum_{i=-\infty}^{k} u^{r}(q^{i}) q^{-ir} \right)^{\frac{p}{p-r}}$$

$$\times \left((1-q) \sum_{i=k}^{\infty} q^{i(p'\gamma+1)} \right)^{\frac{p(r-1)}{p-r}}$$

$$= \int_{0}^{\infty} x^{p'\gamma+1} \left(\int_{0}^{\infty} \mathcal{X}_{[x,\infty)}(t) \frac{u^{r}(t)}{t^{r}} d_{q}t \right)^{\frac{p}{p-r}} \left(\int_{0}^{\infty} \mathcal{X}_{(0,x]}(t) s^{p'\gamma} d_{q}s \right)^{\frac{p(r-1)}{p-r}} d_{q}x$$

$$= [p'\gamma + 1]_{q}^{-\frac{pr}{p-r}} \int_{0}^{\infty} \left(x^{\gamma+\frac{1}{p'}} \left(\int_{0}^{\infty} \mathcal{X}_{[x,\infty)}(t) \frac{u^{r}(t)}{t^{r}} d_{q}t \right)^{\frac{1}{r}} \right)^{\frac{pr}{p-r}} d_{q}x$$

$$\ll \mathbf{B}_{2},$$

which means that $\mathbf{B}_2 \approx C$ and inequality (3.1) holds if and only if $\mathbf{B}_2 < \infty$. The proof is complete.

Acknowledgments

The author thank Professor Ryskul Oinarov (L.N. Gumilyev Eurasian National University, Kazakhstan) and Lars-Erik Persson (Department of Engineering Sciences and Mathematics, Luleå University of Technology, Sweden) for good advices which have improved the final version of this paper.

This work was supported by Scientific Committee of Ministry of Education and Science of the Republic of Kazakhstan, grant no. 5495/GF4. It was also supported by the Russian Sientific Foundation (project RFFI 16-31-50042).

References

- [1] A.M. Abylaeva, M.Zh. Omirbek, A weighted estimate for an integral operator with a logarithmic singularity, (Russian) Izv. Nats. Akad. Nauk Resp. Kaz. Ser. Fiz.-Mat. No 1 (2005), 38-47.
- [2] R.P. Agarwal, Certain fractional q-integrals and q-derivatives, Proc. Camb. Phil. Soc. 66 (1969), 365-370.
- [3] W.A. Al-Salam, Some fractional q-integrals and q-derivatives, Proc. Edinb. Math. Soc. 2 (1966/1967), 135-140.
- [4] M. H. Annaby, Z.S. Mansour, q-fractional calculus and equations, Springer, Heidelberg, 2012.
- [5] A.O. Baiaristanov, S. Shaimardan, A. Temirkhanova, Weighted Hardy inequalities in quantum analysis, Vestinik KarGU. Mathematics series. 2 (2013), no. 70, 35-45 (in Russian).
- [6] G. Bennett, Some elementary inequalities, Quart. J. Math. Oxford Ser. 38 (1987), no. 152, 401-425.
- [7] P. Cheung, V. Kac, Quantum calculus, Edwards Brothers, Inc., Ann Arbor, MI, USA, 2000.
- [8] T. Ernst, A comprehensive treatment of q-calculus, Birkhäuser/Springer Basel AG, Basel, 2012.
- [9] G. Gasper, M. Rahman, Basic hypergeometric series, Cambridge 1990.
- [10] H. Gauchman, Integral inequalities in q-calculus, Comput. Math. Appl. 47 (2004), no. 2-3, 281-300.
- [11] F.H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math. 41 (1910), 193-203.
- [12] A. Kufner, L. Maligranda, L-E. Persson, The Hardy inequality. About its history and some related results, Vydavatelský Servis, Plzeň, 2007.
- [13] L. Maligranda, R. Oinarov, L-E. Persson, On Hardy q-inequalities, Czechoslovak Math. J. 64 (2014), 659-682.
- [14] A.M. Nakhushev, Equations of mathematical biology, M.: Vysshaya shkola, 1995 (in Russian).

Serikbol Shaimardan Faculty of Mechanics and Mathematics L.N. Gumilyov Eurasian National University 2 Satpayev St, 010000 Astana, Kazakhstan E-mail: serikbol-87@yandex.kz

Received: 20.11.2015