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NURZHAN BOKAYEV

(to the 60th birthday)

On January 5, 2016 was the 60th birthday of Doctor
of Physical-Mathematical Sciences (1996), Professor Nurzhan
Adilkhanovich Bokayev. Professor Bokayev is the head of
the department "Higher Mathematics" of the L.N. Gumilyov
Eurasian National University (since 2009), the Vice-President
of Mathematical Society of the Turkic World (since 2014), and
a member of the Editorial Board of our journal.

N.A. Bokayevwas born in the Urnek village, Karabalyk dis-
trict, Kostanay region. He graduated from the E.A. Buketov
Karaganda State University in 1977 and the M.V. Lomonosov
Moscow State University’s full-time postgraduate study in
1984.

Scientific works of Professor Bokayev are devoted to studying problems of the theory
of functions, in particular of the theory of orthogonal series.

He proved renewal and uniqueness theorems for series with respect to periodic mul-
tiplicative systems and Haar-type systems, constructed continual sets of uniqueness
(U -sets) and sets of non-uniqueness (M -sets) for multiplicative systems; investigated
Besov-type function spaces with respect to the Price bases; studied the Price - and
Haar-type p-adic operators; introduced new classes of Faber-Schauder-type systems of
functions and spaces of multivariable functions of bounded p-variation and of bounded
p-fluctuation, obtained estimates for the best approximation of functions in these spaces
by polynomials with respect to the Walsh and Haar systems, established weighted inte-
grability conditions of the sum of multiple trigonometric series and series with respect
to multiplicative systems, found the embedding criterion for the Nikol’skii-Besov spaces
with respect to multiplicative bases and the coefficient criterion for belonging of func-
tions to such spaces.

His scientific results have made essential contribution to the theory of series with
respect to the Walsh and Haar systems and multiplicative systems.

N.A. Bokayev has published more than 150 scientific papers. Under his supervision
8 dissertations have been defended: 4 candidate of sciences dissertations and 4 PhD
dissertations.

The Editorial Board of the Eurasian Mathematical Journal congratulates Nurzhan
Adilkhanovich Bokayev on the occasion of his 60th birthday and wishes him good
health and successful work in mathematics and mathematical education.
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The EMJ has been included in the Emerging Sources Citation Index

This year, Thomson Reuters is launching the Emerging Sources Citation Index
(ESCI), which will extend the universe of publications in Web of Science to include high-
quality, peer-reviewed publications of regional importance and in emerging scientific
fields. ESCI will also make content important to funders, key opinion leaders, and
evaluators visible in Web of Science Core Collection even if it has not yet demonstrated
citation impact on an international audience.

Journals in ESCI have passed an initial editorial evaluation and can continue to be
considered for inclusion in the Science Citation Index ExpandedTM (SCIE), one of the
flagship indices of the Web of Science Core Collection, which has rigorous evaluation
processes and selection criteria.

To be included, candidate journals must pass in-depth editorial review; peer review,
timely publishing, novel content, international diversity, and citation impact, among
other criteria, are evaluated and compared across the entire index.

All ESCI journals will be indexed according to the same data standards, includ-
ing cover-to-cover indexing, cited reference indexing, subject category assignment, and
indexing all authors and addresses.

Rapidly changing research fields and the rise of interdisciplinary scholarship calls
for libraries to provide coverage of relevant titles in evolving disciplines. ESCI pro-
vides Web of Science Core Collection users with expanded options to discover relevant
scholarly content. Get real-time insight into a journal’s citation performance while the
content is considered for inclusion in other Web of Science collections. Items in ESCI
are searchable, discoverable, and citable so you can measure the contribution of an
article in specific disciplines and identify potential collaborators for expanded research.

ESCI expands the citation universe and reflects the growing global body of science
and scholarly activity. ESCI complements the highly selective indexes by providing
earlier visibility for sources under evaluation as part of SCIE rigorous journal selection
process. Inclusion in ESCI provides greater discoverability which leads to measurable
citations and more transparency in the selection process.

The Eurasian Mathematical Journal, together with other 70 internationally recog-
nized mathematical journal has been included in the Emerging Sources Citation Index
(Mathematics).

Below is the extract from the list of such journals including journals with numbers
from 22 to 29.

ELEMENTE DER MATHEMATIK
Quarterly ISSN: 0013-6018
EUROPEAN MATHEMATICAL SOC, PUBLISHING HOUSE, E T H-ZENTRUM
SEW A27, SCHEUCHZERSTRASSE 70, ZURICH, SWITZERLAND, CH-8092

ENSEIGNEMENT MATHEMATIQUE
Quarterly ISSN: 0013-8584
EUROPEAN MATHEMATICAL SOC PUBLISHING HOUSE, SEMINAR APPLIED
MATHEMATICS, ETH-ZENTRUM FLI C4, ZURICH, SWITZERLAND, 8092
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EURASIAN MATHEMATICAL JOURNAL
Quarterly ISSN: 2077 -9879
L N GUMILYOV EURASIAN NATL UNIV, L N GUMILYOV EURASIAN NATL
UNIV, ASTANA, KAZAKHSTAN, 010008

EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Quarterly ISSN: 1307-5543
EUROPEAN JOURNAL PURE AND APPLIED MATHEMATICS, FAK AVCILAR,
ISTANBUL UNIV, ISLETME, ISTANBUL, TURKEY, 34320

FIBONACCI QUARTERLY
Quarterly ISSN: 0015-0517
FIBONACCI ASSOC, CIO PATTY SOLSAA, PO BOX 320, AURORA, USA, SD,
57002-0320

FORUM OF MATHEMATICS PI
lrregular ISSN: 2050-5086
CAMBRIDGE UNIV PRESS, EDINBURGH BLDG, SHAFTESBURY RD, CAM-
BRIDGE, ENGLAND, CB2 8RU

FORUM OF MATHEMATICS SIGMA
lrregular ISSN: 2050-5094
CAMBRIDGE UNIV PRESS, EDINBURGH BLDG, SHAFTESBURY RD, CAM-
BRIDGE, ENGLAND, C82 8RU

INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS
Bimonthly ISSN: 2291 -8639
ETAMATHS PUBL, 701 W GEORGIA ST, STE 1500, VANCOUVER, CANADA,
BC, V7Y 1C6

The complete list of all 71 mathematical journals included in the ESCI can be
viewed on wokinfo.com/productstools/multidisciplinary/esci.

On behalf of the Editorial Board of the EMJ
V.I. Burenkov, T.V. Tararykova, A.M. Temirkhanova
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HARDY-TYPE INEQUALITIES FOR THE FRACTIONAL INTEGRAL
OPERATOR IN q-ANALYSIS

S. Shaimardan

Communicated by R. Oinarov

Key words: Hardy-type inequalities, integral operator, q-analysis, q-integral.

AMS Mathematics Subject Classification: 26D10, 26D15, 33D05, 39A13.

Abstract. We obtain necessary and sufficient conditions for the validity of a certian
Hardy-type inequality involving q-integrals.

1 Introduction

The q-derivative or Jackson’s derivative, is a q-analogue of the ordinary derivative.
q-differentiation is the inverse of Jackson’s q-integration. It was introduced by F. H.
Jackson [11] (see also [7]). He was the first to develop q-analysis. After that many
q-analogue of classical results and concepts were studied and their applications are
investigated.

Concerning recent results on q-analysis and its applications we also refer to the
resent book by T. Ernst [8]. Some integral inequalities were obtained by H. Gauchman
[10]. A Hardy-type inequality in q-analysis was recently obtained by L. Maligranda,
R. Oinarov and L-E. Persson [13].

In this paper we prove a new Hardy-type inequality in which the Hardy operator
is replaced by the q-analogue of the infinitesimal fractional operator (see [1] and (1.3)
below).

In classical analysis, the hypergeometric function (Gaussian function) is defined for
|z| < 1 by the power series [9]:

2F1 (α, β; γ; z) =
∞∑

n=0

(α)n(β)n

(γ)n

zn

n!
, ∀α, β, γ ∈ C,

where (α)n is the Pochhammer symbol, which is defined by:

(α)0 = 1, (α)n = α(α+ 1) · · · (α+ n− 1), n > 0.

If B denotes the Beta function, then

2F1 (α− 1, β; γ; z) =
1

B(β, γ − β)

1∫
0

xβ−1(1− x)γ−β−1(1− zx)2−αdx,
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where Re(γ) > Re(β) > 0. When β = γ we have that

2F1 (α− 1, β; β; z) = (1− z)α−1.

Let α+β < γ, γ 6= 0,−1,−2, · · · . Then the following generalized fractional integral
operator was introduced in [14]:

Iγ,β
α f(x) =

xα−1

Γ(α)

x∫
0

2F1

(
α− 1, β; γ;

s

x

)
ds, (1.1)

where Γ(·) denotes the Gamma function. If β = γ then the operator

Iαf(x) :=
xα−1

Γ(α)

x∫
0

2F1

(
α− 1, β; β;

s

x

)
ds,

is called the Riemann-Liouville fractional integral operator. When γ = 1, β = 2, we
have that

Îf(x) := lim
α−→0

Γ(α)I1,2
α f(x) =

x∫
0

ln
x

x− s

f(s)

s
ds, (1.2)

which is called the infinitesimal fractional integral operator [1].
The purpose of this paper is to find a q-analogue of operator (1.2) and to prove a

q-analogue of the following Hardy-type integral inequality [1]:

 ∞∫
0

ur(x)

 x∫
0

tγ−1 ln
x

x− t
f(t)dt

r

dx


1
r

≤ C

 ∞∫
0

fp(x)dx

 1
p

, ∀f(·) ≥ 0, (1.3)

where C > 0 is independent of f and u is a positive real valued function on (0,∞)
briefly a weight function. We derive necessary and sufficient conditions for the validity
of a q-analogue of inequality (1.3) in q-analysis for the case 1 < p <∞, 0 < r <∞ and
γ > 1

p
(see Theorem 3.1 and Theorem 3.2). We also consider the problem of finding

the best constant in a q-analogue of inequality (1.3).
The paper is organized as follows: We present some preliminaries in Section 2. The

main results and detailed proofs are presented in Section 3.

2 Preliminaries

First we recall definitions and notions of the theory of q-analysis, our main references
are the books [7], [8] and [9].
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Let 0 < q < 1 be fixed.
For a real number α ∈ R, the q-real number [α]q is defined by

[α]q =
1− qα

1− q
, α ∈ R.

It is clear that lim
q−→1

1−qα

1−q
= α.

The q-analogue of the power (a− b)k is defined by

(a− b)0
q = 1, k ∈ N, (a− b)k

q =
k−1∏
i=0

(a− qib), ∀ a, b ∈ R,

and

(1− b)α
q :=

(1− b)∞q
(1− qαb)∞q

, ∀ b, α ∈ R. (2.1)

and by using well-known relations this can also be written as

(1− b)α
q =

1

(1− qαb)−α
q

, ∀b, α ∈ R. (2.2)

The q-hypergeometric function 2Φ1 is defined by ([9]):

2Φ1

[
qα qβ

;q ;x
qγ

]
:=

∞∑
n=0

(qα; q)n
q (qβ; q)n

q

(qγ; q)n
q (q; q)n

q

xn, |x| < 1,

where (qα; q)n
q =

n−1∏
i=0

(1− qi+α) and γ 6= 0,−1,−2, · · · . Moreover, this series converges

absolutely and lim
q→1

(qα;q)n
q

(1−q)n = (a)n, so

lim
q→1

2Φ1

[
qα qβ

;q ;x
qγ

]
=2 F1 (α, β; γ;x) .

For f : [0, b) −→ R, 0 ≤ b <∞, the q-derivative is defined by:

Dqf(x) :=
f(x)− f(qx)

(1− q)x
, x ∈ (0, b), (2.3)

and Dqf(0) = f ′(0) provided f ′(0) exists. It is clear that if f(x) is differentiable, then
lim

q−→1
Dqf(x) = f ′(x).

Definition 1. The q-Taylor series of f(x) at x = c is defined by

f(x) :=
∞∑

j=0

(
Dj

q

)
(c)

(x− c)j
q

[j]q!
,

where
[j]q! =

{
1, if j = 0,
[1]q × [2]q × · · · × [j]q, if j ∈ N.
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The definite q-integral or the q-Jackson integral of a function f is defined by the
formula

x∫
0

f(t)dqt := (1− q)x
∞∑

k=0

qkf(qkx), x ∈ (0, b), (2.4)

and the improper q-integral of a function f(x) : [0,∞) → R, is defined by the formula

∞∫
0

f(t)dqt := (1− q)
∞∑

k=−∞

qkf(qk). (2.5)

Note that the series in the right hand sides of (2.4) and (2.5) converge absolutely.

Definition 2. The function

Γq(α) :=

∞∫
0

xα−1E−qx
q dqx, α > 0,

is called the q-Gamma function, where E−qx
q = (1− (1− q)x)∞q .

We have that
Γq(α+ 1) = [α]qΓq(α),

for any α > 0.

Definition 3. The function

Bq(α, β) :=

1∫
0

tα−1(1− qt)β−1
q dqt, α, β > 0,

is called the q-Beta function. Note that

Bq(α, β) =
Γq(α)Γq(β)

Γq(α+ β)
,

for α, β > 0.

Let Ω be a subset of (0,∞) and XΩ(t) denote the characteristic function of Ω. For
all z > 0, we have that(see [5]):

∞∫
0

X(0,z](t)f(t)dqt = (1− q)
∑
qi≤z

qif(qi), (2.6)

∞∫
0

X[z,∞)(t)f(t)dqt = (1− q)
∑
qi≥z

qif(qi). (2.7)
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R.P. Agarwal and W.A. Al-Salam (see [2], [3] and [4]) introduced several types of
fractional q-integral operators and fractional q-derivatives. In particular, they defined
the q-analogue of the fractional integral operator of the Riemann-Liouville type by

Iq,αf(x) =
xα−1

Γq(α)

x∫
0

(1− qs

x
)α−1
q f(s)dqs, α ∈ R+.

Using formula (2.2), we can rewrite Iq,α as follows:

Iq,αf(x) =
xα−1

Γq(α)

x∫
0

f(s)

(1− qα s
x
)1−α
q

dqs, α ∈ R+. (2.8)

Out next goal is to define a q-analogue of ln x
x−s

, but for this we need the following
result of independent interest.

Proposition 2.1. Let 0 < s ≤ x <∞. Then

2Φ1

[
q1−α qβ

;q ;qα s
x

qγ

]
=

1

Bq(β, γ)

1∫
0

tβ−1(1− qt)γ−β−1
q

(1− qαt s
x
)1−α
q

dqt, (2.9)

for β, γ > 0, and

2Φ1

[
q1−α qβ

;q ;qα s
x

qβ

]
=

1

(1− qα s
x
)1−α
q

, (2.10)

for β = γ.

Proof. First we consider equality (2.10). From (2.1) and (2.3), we get that

D1
q.s

(
1

(1− qα s
x
)1−α
q

)
= D1

q,s

(
(1− q s

x
)∞q

(1− qα s
x
)∞q

)
=

[
(1− q2 s

x
)∞q

(1− qα+1 s
x
)∞q

−
(1− q s

x
)∞q

(1− qα s
x
)∞q

]
1

(q − 1)s

=
(1− q2 s

x
)∞q

(1− qα s
x
)∞q

[
(1− qα s

x
)− (1− q s

x
)

s(q − 1)

]
=

(1− q2 s
x
)∞q

(1− qα s
x
)∞q

[
qα(q1−α − 1)

x(q − 1)

]
=

qα

x
[1− α]q

(1− qα s
x
)2−α
q

.

Using this relation and induction, one can easily see that

Dj
q,s

(
1

(1− qα s
x
)1−α
q

)∣∣∣∣
s=0

=
qjα

xj
[1− α]q[2− α]q · · · [j − α]q,

for any j ≥ 1. Therefore, we have the q-Taylor expansion (see Definition 1)



Some Hardy-type inequalities for the fractional integral operator in q-analysis 89

1

(1− qα s
x
)1−α
q

=
∞∑

j=0

[1− α]q[2− α]q · · · [j − α]q
[j]q!

(qαs

x

)j
=

∞∑
j=0

(1− q1−α)j
q

(1− q)j
q

(qαs

x

)j
= 2Φ1

[
q1−α qβ

;q ;qα s
x

qβ

]
, (2.11)

and (2.10) is proved.
By using the same arguments as above we see that

1

(1− qαt s
x
)1−α
q

=
∞∑

n=0

(1− q1−α)n
q

(1− q)n
q

(
t
qαs

x

)n

,

for x ≥ s, 0 < t ≤ 1. Therefore
1∫

0

tβ−1(1− qt)γ−β−1
q

(1− qαt s
x
)1−α
q

dqt =
∞∑

n=0

(1− q1−α)n
q

(1− q)n
q

(
qαs

x

)n
1∫

0

tβ+n−1(1− qt)γ−β−1
q dqt

=
∞∑

n=0

(1− q1−α)n
q

(1− q)n
q

(
qαs

x

)n
Γq(β + n)Γq(γ − β)

Γq(γ + n)

=
Γq(β)Γq(γ − β)

Γq(γ)

∞∑
n=0

(1− q1−α)n
q (1− qβ)n

q

(1− q)n
q (1− qγ)n

q

(
qαs

x

)n

= Bq(β, γ)2Φ1

[
q1−α qβ

;q ;qα s
x

qγ

]
.

and also (2.9) is proved.

By Proposition 2.1, the integral (2.8) can be rewritten as

Iq,αf(x) =
xα−1

Γq(α)

x∫
0

2Φ1

[
q1−α qβ

;q ;qα s
x

qβ

]
f(s)dqs, α ∈ R+, β ∈ R.

More generally, we consider the q-analogue of Iγ,β
α (see (1.1))

Iγ,β
q,α f(x) =

xα−1

Γq(α)

x∫
0

2Φ1

[
q1−α qβ

;q ;qα s
x

qγ

]
f(s)dqs, α, β, γ ∈ R+.

Due to uniform convergence of the series 2Φ1

[
q1−α q

;q ;qα s
x

q2

]
for 0 < α < 1, we get

that

lim
α→0+

2Φ1

[
q1−α q

;q ;qα s
x

q2

]
s

x
= 2Φ1

[
q q

;q ; s
x

q2

]
s

x

=
∞∑

j=0

1− q

1− qj+1

sj+1

xj+1
=

∞∑
j=0

(
s
x

)j+1

[j + 1]q
=

∞∑
j=1

( s
x
)j

[j]q
,
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which is the q-analogue of the Taylor series of the function ln x
x−s

with s < x.

Definition 4. We define the q-analogue of the function ln x
x−s

, 0 < s < x < ∞, as
follows:

lnq
x

x− s
:=

∞∑
j=1

( s
x
)j

[j]q
.

Remark 5. We define the q-analog of (1.2) as follows:

Îqf(x) :=

qx∫
0

lnq
x

x− s

f(s)

s
dqs, (2.12)

which is called the infinitesimal q-fractional integral operator.
Observe that:

lim
q→1

Îqf(x) =

x∫
0

ln
x

x− s

f(s)

s
ds

.

Hence, from (2.12) we obtain the q-analogue of (1.3) in the following form: ∞∫
0

ur(x)
(
Îqf(x)

)r

dqx

 1
r

≤ C

 ∞∫
0

fp(t)dqt

 1
p

, ∀f(·) ≥ 0, (2.13)

where C > 0 independent of f .
In the q-integral we are allowed to change variables in the form x = tξ for 0 < ξ <∞

(see [7]). So by making the substitution t = qs, and dqt = qdqs inequality (2.13)
becomes ∞∫

0

ur(x)

 x∫
0

sγ−1 lnq
x

x− qs
f̃(s)dqs

r

dqx


1
r

≤ C̃

 ∞∫
0

f̃p(s)dqs

 1
p

, ∀f(·) ≥ 0. (2.14)

where f̃(s) = f(qs), C̃ = qγ− 1
pC.

Since inequality (2.13) holds if and only if inequality (2.14) holds, from now on we
will investigate necessary and sufficient conditions the validity of inequality (2.14).
Notation. In the sequel, for any p > 1 the conjugate number p′ is defined by p′ :=
p/(p − 1). Moreover, the symbol M � K means that there exists α > 0 such that
M ≤ αK, where α is a constant which depend only on the numerical parameters such
as p, q, r. If M � K �M , then we write M ≈ K.

For the proof of our main theorems we will need the following well-known discrete
weighted Hardy inequality proved by G. Bennett [6] (see also [12], p.58):
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Theorem A. Let {ui}∞i=1 and {vj}∞j=1 be non-negative sequences of real numbers and
1 < p ≤ r <∞. Then the inequality(

∞∑
j=−∞

(
∞∑
i=j

fi

)r

ur
j

) 1
r

≤ C

(
∞∑

i=−∞

vp
i f

p
i

) 1
p

, f ≥ 0, i ∈ Z, (2.15)

with C > 0 independent of fi, i ∈ Z holds if and only if

B1 := sup
n∈Z

(
n∑

j=−∞

ur
j

) 1
r
(

∞∑
i=n

v−p′

i

) 1
p′

<∞, p′ =
p

p− 1
.

Moreover,B1 ≈ C, where C is the best constant in (2.15).
Theorem B. Let 0 < r < p <∞ and 1 < p. Then inequality (2.15) holds if and only
if B2 <∞, where

B2 :=

 ∞∑
k=−∞

v−p′

k

(
k∑

i=−∞

ur
i

) p
p−r
(

∞∑
i=k

v−p′

i

) p(r−1)
p−r


p−r
pr

.

Moreover, B2 ≈ C, where C is the best constant in (2.15).
Also we need the following lemma ([5]):

Lemma A. Let f , ϕ and g be nonnegative functions. Then

∞∫
0

 ∞∫
0

X[z,∞)(t)f(t)dqt

α ∞∫
0

X(0,z](x)g(x)dqx

β

ϕ(z)dqz

= (1− q)α+β

∞∑
k=−∞

( k∑
i=−∞

qif(qi)

)α( ∞∑
j=k

qjg(qj)

)β

qkϕ(qk)

 ,
for α, β ∈ R.

3 Main results

Our main result reads:

Theorem 3.1. Let 1 < p ≤ r <∞, γ > 1
p
. Then the inequality

 ∞∫
0

ur(x)

 x∫
0

sγ−1 lnq
x

x− qs
f(s)dqs

r

dqx


1
r

≤ C

 ∞∫
0

fp(s)dqs

 1
p

, ∀f(·) ≥ 0, (3.1)
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with C > 0 independent of f holds if and only if B1 <∞, where

B1 := sup
x>0

x
γ+ 1

p′

( ∞∫
0

X[x,∞)(t)
ur(t)

tr
dqt

) 1
r

,

Moreover, B1 ≈ C , where C is the best constant in (3.1).

Theorem 3.2. Let 0 < r < p <∞, 1 < p and γ > 1
p
. Then the inequality (3.1) holds

if and only if B2 <∞, where

B2 :=


∞∫

0

xγ+ 1
p′

 ∞∫
0

X[x,∞)(t)
ur(t)

tr
dqt

 1
r


pr

p−r

dqx


p−r
pr

.

Moreover, B2 ≈ C , where C is the best constant in (3.1).

Remark 6. By using formulas (2.4) and (2.5) in (3.1) we get that(
∞∑

j=−∞

(1− q)qjur(qj)

(
∞∑
i=j

(1− q)qiγf(qi) lnq
1

1− qi−j+1

)r) 1
r

≤ C

(
∞∑

i=−∞

(1− q)qifp(qi)

) 1
P

.

Let

ur
j = (1− q)

1+ r
p′ qjur(qj), fi = (1− q)

1
p q

i
pf(qi), ai,j = lnq

1

1− qi−j+1
. (3.2)

Then we get that inequality (3.1) is equivalent to the discrete weighted Hardy-type
inequality (

∞∑
j=−∞

ur
j

(
∞∑
i=j

qi(γ− 1
p
)fiai,j

)r) 1
r

≤ C

(
∞∑

i=−∞

fp
i

) 1
p

. (3.3)

Note that inequality (3.1) holds if and only if inequality (3.3) holds, so we will obtain
the desired necessary and sufficient conditions for the validity of inequality (3.3).

Our next Lemmas give a characterization of the discrete Hardy-type inequality
(3.3).

Lemma 3.1. Let 1 < p ≤ r <∞, γ > 1
p
. Then the inequality (3.3) holds if and only

if B1 <∞, where

B1 := sup
k∈Z

( ∞∑
i=k

qi(p′γ+1)

) 1
p′
( k∑

j=−∞

q−jrur
j

) 1
r

. (3.4)

Moreover, B1 ≈ C, where C is the best constant in (3.3).
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Proof. Necessity. Let us assume that (3.3) holds with some C > 0. From (3.2) and
Definition 4 we get that qi+1/qj ≤ ai,j for j ≤ i. Then

∞∑
j=−∞

ur
j

(
∞∑
i=j

qi(γ− 1
p
)fiai,j

)r

≥ q

∞∑
j=−∞

q−jrur
j

(
∞∑
i=j

q
i(γ+ 1

p′ )fi

)r

.

Moreover,

q

(
∞∑

j=−∞

q−jrur
j

(
∞∑
i=j

q
i(γ+ 1

p′ )fi

)r) 1
r

≤ C

(
∞∑

j=−∞

fp
i

) 1
p

.

Hence, by Theorem A we obtain that

B1 � C. (3.5)

The proof of the necessity is complete.
Sufficiency. Let B <∞ and f ≥ 0 be arbitrary. We will show that inequality (3.3)

holds.
We consider two cases separately: 0 < q ≤ 1

2
and 1

2
< q < 1.

1) Let 0 < q ≤ 1
2
. Let j ≤ k ≤ i. Then from (3.2) and Definition 4 it follows that

aj,j = lnq
1

1−q
≤ lnq 2 (we note that lnq 2 :=

∞∑
n=1

2−n

[n]q
), and

q−kak,j − q−iai,j = q−k

∞∑
n=1

(qqk/qj)n

[n]q
− q−i

∞∑
n=1

(qqi/qj)n

[n]q

=
∞∑

n=1

(q/qj)n

[n]q

(
qk(n−1) − qi(n−1)

)
≥ 0,

i.e.

q−iai,j ≤ q−kak,j, (3.6)

for j ≤ k ≤ i.
Thus by (3.6) we have that

∞∑
j=−∞

ur
j

(
∞∑
i=j

qi(γ− 1
p
)fiai,j

)r

=
∞∑

j=−∞

ur
j

(
∞∑
i=j

q
i(γ+ 1

p′ )q−iai,jfi

)r

≤
∞∑

j=−∞

q−jrur
ja

r
j,j

(
∞∑
i=j

q
i(γ+ 1

p′ )fi

)r

≤ (lnq 2)r
∞∑

j=−∞

q−jrur
j

(
∞∑
i=j

q
i(γ+ 1

p′ )fi

)r

�
∞∑

j=−∞

q−jrur
j

(
∞∑
i=j

q
i(γ+ 1

p′ )fi

)r

.
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Hence, by Theorem A we obtain that(
∞∑

j=−∞

q−jrur
j

(
∞∑
i=j

q
i(γ+ 1

p′ )fi

)r) 1
r

≤ B1

(
∞∑

j=−∞

fp
i

) 1
p

,

which means that inequality (3.3) is valid and that C � B1, where C is the best
constant for which (3.3) holds.

2) Let 1
2
< q < 1. Then ∃i0 ∈ N such that i0 > 1 and qi0 ≤ 1

2
< qi0−1. We assume

that Z =
⋃

k∈Z

[tk + 1, tk+1] and tk+1 − tk = t0. Then the left hand side of (3.3) can be

written as
∞∑

j=−∞

ur
j

(
∞∑
i=j

qi(γ− 1
p
)fiai,j

)r

=
∑

k

tk+1∑
j=tk+1

ur
j

(
∞∑
i=j

qi(γ− 1
p
)fiai,j

)r

≈
∑

k

tk+1∑
j=tk+1

ur
j

(
tk+2−1∑

i=j

qi(γ− 1
p
)fiai,j

)r

+
∑

k

tk+1∑
j=tk+1

ur
j

 ∞∑
i=tk+2

qi(γ− 1
p
)fiai,j

r

= I1 + I2. (3.7)

To estimate I1 we use Hölder’s inequality. We find that

I1 ≤
∑

k

tk+1∑
j=tk+1

ur
j

(
tk+2−1∑

i=j

qip′(γ− 1
p
)ap′

i,j

) r
p′
(

tk+2−1∑
i=j

fp
i

) r
p

≤
∑

k

tk+1∑
j=tk+1

ur
j

(
∞∑
i=j

qip′(γ− 1
p
)ap′

i,j

) r
p′
(

tk+2∑
i=tk+1

fp
i

) r
p

=
∑

k

tk+1∑
j=tk+1

ur
jq

jr(γ− 1
p
)

(
∞∑
i=0

qip′(γ− 1
p
)ap′

i,0

) r
p′
(

tk+2∑
i=tk+1

fp
i

) r
p

= C
r
p′
0

∑
k

tk+1∑
j=tk+1

ur
jq
−jrq

jr(γ+ 1
p′ )

(
tk+2∑

i=tk+1

fp
i

) r
p

, (3.8)

where C0 :=
∞∑
i=0

qip′(γ− 1
p
)ap′

i,0.

Since

M := (1− q)C0 =

1∫
0

xp′(γ− 1
p
)

(
lnq

1

1− qx

)p′

dqx <∞

and

q
jr(γ+ 1

p′ ) ≤ q
(tk+1)(γ+ 1

p′ )r = q
−(i0−1)(γ+ 1

p′ )q
tk+1r(γ+ 1

p′ ) ≤ 2
r(γ+ 1

p′ )q
tk+1(p′γ+1) r

p′ , (3.9)
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for tk + 1 ≤ j, we get that

I1 ≤ 2
r(γ+ 1

p′ )M
r
p′ [p′γ + 1]

r
p′
q

∑
k

(
tk+2∑

i=tk+1

fp
i

) r
p (

qtk+1(p′γ+1)

1− qp′γ+1

) r
p′

tk+1∑
j=−∞

ur
jq
−jr

�
∑

k

(
tk+2∑

i=tk+1

fp
i

) r
p (

qtk+1(p′γ+1)

1− qp′γ+1

) r
p′

tk+1∑
j=−∞

ur
jq
−jr

=
∑

k

(
tk+2∑

i=tk+1

fp
i

) r
p


 ∞∑

i=tk+1

qir(p′γ+1)

 1
p′ ( tk+1∑

j=−∞

ur
jq
−jr

) 1
r


r

� Br
1

(
∞∑

i=−∞

fp
i

) r
p

. (3.10)

Let j ≤ k ≤ i. Then from (3.2) and Definition 4 it follows that

qkai,k − qjai,j ≥ qj (ai,k − ai,j) = qk

∞∑
n=1

(
qi+1/qk

)n
[n]q

− qj

∞∑
n=1

(qi+1/qj)
n

[n]q

=
∞∑

n=1

q(i+1)n

[n]q

(
qk(1−n) − qj(1−n)

)
≥ 0,

i.e.

qjai,j ≤ qkai,k, (3.11)

for j ≤ k ≤ i.
Using (3.6) and (3.11) we find that

1

qi−j
ai,j ≤

1

qtk+1−tk+2
lnq

1

1− qtk+1−tk
=

1

qi0
lnq

1

1− qi0
≤ 2 lnq 2,

for j ≤ tk+1 and tk+2 ≤ i.
Therefore,

I2 =
∑

k

tk+1∑
j=tk+1

ur
j

 ∞∑
i=tk+2

qi(γ− 1
p
)fiai,j

r

=
∑

k

tk+1∑
j=tk+1

q−jrur
j

 ∞∑
i=tk+2

q
i(γ+ 1

p′ )
1

qi−j
ai,jfi

r

≤ (2 lnq 2)
r
p′
∑

k

tk+1∑
j=tk+1

q−jrur
j

 ∞∑
i=tk+2

q
i(γ+ 1

p′ )fi

r

�
∞∑

j=−∞

q−jrur
j

(
∞∑
i=j

q
i(γ+ 1

p′ )fi

)r

.
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By using Theorem A we have that

I2 � Br
1

(
∞∑

i=−∞

fp
i

) r
p

, (3.12)

Thus, from (3.7), (3.10) and (3.12) it follows that inequality (3.3) is valid and we
see that the best constant C in (3.3) is such that C � B1, which together with (3.5)
gives that C ≈ B1.

Lemma 3.2. Let 0 < r < p < ∞ and 1 < p. Then inequality (3.3) holds if and only
if B2 <∞, where

B2 :=

 ∞∑
k=−∞

qk(p′γ+1)

(
k∑

i=−∞

ur
i q
−ir

) p
p−r
(

∞∑
i=k

qi(p′γ+1)

) p(r−1)
p−r


p−r
pr

.

Moreover, B2 ≈ C, where C is the best constant in (3.3).

Proof. In a similar way as in the proof of Lemma 3.1. by Theorem B we obtain that
inequality (3.3) is valid and that C ≈ B2. where C is the best constant for which (3.3)
holds for 0 < q ≤ 1

2
.

In case 1
2
< q < 1 the necessary part is due to Theorem B. Therefore,

B2 � C. (3.13)

To prove sufficiency we proceed as follows. Applying to (3.8) Hölder’s inequality
with the exponents p

p−r
and p

r
we obtain that

I1 �
∑

k

(
tk+2∑

i=tk+1

fp
i

) r
p

q
tk+1(p′γ+1) r

p′

tk+1∑
j=−∞

ur
jq
−jr

≤

∑
k

qtk+1(p′γ+1)
r(p−1)

p−r

(
tk+1∑

j=−∞

ur
jq
−jr

) p
p−r


p−r

p (∑
k

tk+2∑
i=tk+1

fp
i

) r
p

� B̃
p−r

p

(
∞∑

i=−∞

fp
i

) r
p

.

Since

B̃ :=
∞∑

i=−∞

qi(p′γ+1)
r(p−1)

p−r

(
i∑

j=−∞

ur
jq
−jr

) p
p−r

≤
∞∑

i=−∞

qi(p′γ+1)

(
qi(p′γ+1)

1− qp′γ+1

) p(r−1)
p−r

(
i∑

j=−∞

ur
jq
−jr

) p
p−r

= B
pr

p−r

2 ,
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we have that

I1 � Br
2

(
∞∑

i=−∞

fp
i

) r
p

(3.14)

From (3.12) and Theorem B it follows that

I2 �
∞∑

j=−∞

q−jrur
j

(
∞∑
i=j

q
i(γ+ 1

p′ )fi

)r

≤
∞∑

j=−∞

q−jrur
j

(
∞∑
i=j

q
i(γ+ 1

p′ )fi

)r

≤ Br
2

(
∞∑

i=−∞

fp
i

) r
p

. (3.15)

Thus, from (3.14) and (3.15) it follows that C � B2 which means that the inequality
(3.3) is valid, which together with (3.13) gives B2 ≈ C.

Lemma 3.3. Let γ > 1
p
, and B1 <∞. Then

αB1 = sup
k∈Z

(
∞∑

i=k

qi(p′γ+1)

) 1
p′
(

k∑
j=−∞

qj(1−r)ur(qj)

) 1
r

, (3.16)

for r > 0, where α = [p′γ + 1]
− 1

p′
q (1− q)

− 1
r
− 1

p′ .

Proof. Let γ > 1
p
. By using (2.7) we obtain that

I(x) = x
γ+ 1

p′

 ∞∫
0

X[x,∞)(t)t
−rur(t)dqt

 1
r

= (1− q)
1
rx

γ+ 1
p′

∑
qj≥x

q(1−r)jur(qj)

 1
r

,

for ∀r > 0. Then

I(x) = (1− q)
1
p′+

1
r [p′γ + 1]

1
p′
q

(
∞∑

i=k

qi(p′γ+1)

) 1
p′
(

k∑
j=−∞

q(1−r)iur(qi)

) 1
r

,

for x = qk,∀k ∈ Z. Moreover,

I(x) = (1− q)
1
p′+

1
r [p′γ + 1]

1
p′
q

(
∞∑

i=k

qi(p′γ+1)

) 1
p′
(

k−1∑
j=−∞

q(1−r)iur(qi)

) 1
r

,

for qk < x < qk−1. Hence

sup
qk<x≤qk−1

I(x) = (1− q)
1
p′+

1
r [p′γ + 1]

1
p′
q

(
∞∑

i=k

qi(p′γ+1)

) 1
p′
(

k∑
j=−∞

q(1−r)iur(qi)

) 1
r

,
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and

αB1 = α sup
k∈Z

sup
qk<x≤qk−1

I(x) = sup
k∈Z

(
∞∑

i=k

qi(p′γ+1)

) 1
p′
(

k∑
j=−∞

q(1−r)iur(qi)

) 1
r

.

We have proved that (3.16) holds.

Next, we prove Theorem 3.1.
Proof of Theorem 3.1. First we note that inequality (3.3) is equivalent to inequality
(3.1). Moreover, by Lemma 3.1 inequality (3.1) holds if and only if B1 <∞. From (3.2)
and Lemma 3.3 we have that B1 = αB1. which means that B1 ≈ C and inequality
(3.1) holds if and only if B1 <∞. �
Proof of Theorem 3.2. In a similar way as in the proof of Theorem 3.1, by Lemma 3.2
we have that inequality (3.1) holds if and only if B2 < ∞. From (3.2) and Lemma A
we have that

B
pr

p−r

2 = (1− q)
∞∑

k=−∞

qk(p′γ+1)

(
(1− q)

k∑
i=−∞

ur(qi)q−ir

) p
p−r

×

(
(1− q)

∞∑
i=k

qi(p′γ+1)

) p(r−1)
p−r

=

∞∫
0

xp′γ+1

 ∞∫
0

X[x,∞)(t)
ur(t)

tr
dqt


p

p−r
 ∞∫

0

X(0,x](t)s
p′γdqs


p(r−1)

p−r

dqx

= [p′γ + 1]
− pr

p−r
q

∞∫
0

xγ+ 1
p′

 ∞∫
0

X[x,∞)(t)
ur(t)

tr
dqt

 1
r


pr

p−r

dqx

� B2,

which means that B2 ≈ C and inequality (3.1) holds if and only if B2 <∞. The proof
is complete. �
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