Eurasian Mathematical Journal

2016, Volume 7, Number 1

Founded in 2010 by
the L.N. Gumilyov Eurasian National University
in cooperation with
the M.V. Lomonosov Moscow State University
the Peoples' Friendship University of Russia
the University of Padua

Supported by the ISAAC (International Society for Analysis, its Applications and Computation) and by the Kazakhstan Mathematical Society

Published by

the L.N. Gumilyov Eurasian National University Astana, Kazakhstan

EURASIAN MATHEMATICAL JOURNAL

Editorial Board

Editors-in-Chief

V.I. Burenkov, M. Otelbaev, V.A. Sadovnichy

Editors

Sh.A. Alimov (Uzbekistan), H. Begehr (Germany), T. Bekjan (China), O.V. Besov (Russia), N.A. Bokayev (Kazakhstan), A.A. Borubaev (Kyrgyzstan), G. Bourdaud (France), A. Caetano (Portugal), M. Carro (Spain), A.D.R. Choudary (Pakistan), V.N. Chubarikov (Russia), A.S. Dzumadildaev (Kazakhstan), V.M. Filippov (Russia), H. Ghazaryan (Armenia), M.L. Goldman (Russia), V. Goldshtein (Israel), V. Guliyev (Azerbaijan), D.D. Haroske (Germany), A. Hasanoglu (Turkey), M. Huxley (Great Britain), M. Imanaliev (Kyrgyzstan), P. Jain (India), T.Sh. Kalmenov (Kazakhstan), B.E. Kangyzhin (Kazakhstan), K.K. Kenzhibaev (Kazakhstan), S.N. Kharin (Kazakhstan), E. Kissin (Great Britain), V. Kokilashvili (Georgia), V.I. Korzyuk (Belarus), A. Kufner (Czech Republic), L.K. Kussainova (Kazakhstan), P.D. Lamberti (Italy), M. Lanza de Cristoforis (Italy), V.G. Maz'ya (Sweden), E.D. Nursultanov (Kazakhstan), R. Oinarov (Kazakhstan), K.N. Ospanov (Kazakhstan), I.N. Parasidis (Greece), J. Pečarić (Croatia), S.A. Plaksa (Ukraine), L.-E. Persson (Sweden), E.L. Presman (Russia), M.A. Ragusa (Italy), M.D. Ramazanov (Russia), M. Reissig (Germany), M. Ruzhansky (Great Britain), S. Sagitov (Sweden), T.O. Shaposhnikova (Sweden), A.A. Shkalikov (Russia), V.A. Skvortsov (Poland), G. Sinnamon (Canada), E.S. Smailov (Kazakhstan), V.D. Stepanov (Russia), Ya.T. Sultanaev (Russia) sia), I.A. Taimanov (Russia), T.V. Tararykova (Great Britain), J.A. Tussupov (Kazakhstan), U.U. Umirbaev (Kazakhstan), Z.D. Usmanov (Tajikistan), N. Vasilevski (Mexico), Dachun Yang (China), B.T. Zhumagulov (Kazakhstan)

Managing Editor

A.M. Temirkhanova

Executive Editor

D.T. Matin

Aims and Scope

The Eurasian Mathematical Journal (EMJ) publishes carefully selected original research papers in all areas of mathematics written by mathematicians, principally from Europe and Asia. However papers by mathematicians from other continents are also welcome.

From time to time the EMJ publishes survey papers.

The EMJ publishes 4 issues in a year.

The language of the paper must be English only.

The contents of EMJ are indexed in Scopus, Web of Science (ESCI), Mathematical Reviews, MathSciNet, Zentralblatt Math (ZMATH), Referativnyi Zhurnal – Matematika, Math-Net.Ru.

The EMJ is included in the list of journals recommended by the Committee for Control of Education and Science (Ministry of Education and Science of the Republic of Kazakhstan).

Information for the Authors

<u>Submission.</u> Manuscripts should be written in LaTeX and should be submitted electronically in DVI, PostScript or PDF format to the EMJ Editorial Office via e-mail (eurasianmj@yandex.kz).

When the paper is accepted, the authors will be asked to send the tex-file of the paper to the Editorial Office.

The author who submitted an article for publication will be considered as a corresponding author. Authors may nominate a member of the Editorial Board whom they consider appropriate for the article. However, assignment to that particular editor is not guaranteed.

Copyright. When the paper is accepted, the copyright is automatically transferred to the EMJ. Manuscripts are accepted for review on the understanding that the same work has not been already published (except in the form of an abstract), that it is not under consideration for publication elsewhere, and that it has been approved by all authors.

<u>Title page.</u> The title page should start with the title of the paper and authors' names (no degrees). It should contain the <u>Keywords</u> (no more than 10), the <u>Subject Classification</u> (AMS Mathematics Subject <u>Classification</u> (2010) with primary (and secondary) subject classification codes), and the <u>Abstract</u> (no more than 150 words with minimal use of mathematical symbols).

<u>Figures</u>. Figures should be prepared in a digital form which is suitable for direct reproduction.

<u>References</u>. Bibliographical references should be listed alphabetically at the end of the article. The authors should consult the Mathematical Reviews for the standard abbreviations of journals' names.

<u>Authors' data.</u> The authors' affiliations, addresses and e-mail addresses should be placed after the References.

<u>Proofs.</u> The authors will receive proofs only once. The late return of proofs may result in the paper being published in a later issue.

Offprints. The authors will receive offprints in electronic form.

Publication Ethics and Publication Malpractice

For information on Ethics in publishing and Ethical guidelines for journal publication see http://www.elsevier.com/publishingethics and http://www.elsevier.com/journal-authors/ethics.

Submission of an article to the EMJ implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see http://www.elsevier.com/postingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. In particular, translations into English of papers already published in another language are not accepted.

No other forms of scientific misconduct are allowed, such as plagiarism, falsification, fraudulent data, incorrect interpretation of other works, incorrect citations, etc. The EMJ follows the Code of Conduct of the Committee on Publication Ethics (COPE), and follows the COPE Flowcharts for Resolving Cases of Suspected Misconduct (http://publicationethics.org/files/u2/New_Code.pdf). To verify originality, your article may be checked by the originality detection service CrossCheck http://www.elsevier.com/editors/plagdetect.

The authors are obliged to participate in peer review process and be ready to provide corrections, clarifications, retractions and apologies when needed. All authors of a paper should have significantly contributed to the research.

The reviewers should provide objective judgments and should point out relevant published works which are not yet cited. Reviewed articles should be treated confidentially. The reviewers will be chosen in such a way that there is no conflict of interests with respect to the research, the authors and/or the research funders.

The editors have complete responsibility and authority to reject or accept a paper, and they will only accept a paper when reasonably certain. They will preserve anonymity of reviewers and promote publication of corrections, clarifications, retractions and apologies when needed. The acceptance of a paper automatically implies the copyright transfer to the EMJ.

The Editorial Board of the EMJ will monitor and safeguard publishing ethics.

Web-page

The web-page of EMJ is www.emj.enu.kz. One can enter the web-page by typing Eurasian Mathematical Journal in any search engine (Google, Yandex, etc.). The archive of the web-page contains all papers published in EMJ (free access).

Subscription

For Institutions

- US\$ 200 (or equivalent) for one volume (4 issues)
- US\$ 60 (or equivalent) for one issue

For Individuals

- US\$ 160 (or equivalent) for one volume (4 issues)
- US\$ 50 (or equivalent) for one issue.

The price includes handling and postage.

The Subscription Form for subscribers can be obtained by e-mail:

eurasianmj@yandex.kz

The Eurasian Mathematical Journal (EMJ)

The Editorial Office

The L.N. Gumilyov Eurasian National University

Building no. 3

Room 306a

Tel.: +7-7172-709500 extension 33312

13 Kazhymukan St

010008 Astana

Kazakhstan

NURZHAN BOKAYEV

(to the 60th birthday)

On January 5, 2016 was the 60th birthday of Doctor of Physical-Mathematical Sciences (1996), Professor Nurzhan Adilkhanovich Bokayev. Professor Bokayev is the head of the department "Higher Mathematics" of the L.N. Gumilyov Eurasian National University (since 2009), the Vice-President of Mathematical Society of the Turkic World (since 2014), and a member of the Editorial Board of our journal.

N.A. Bokayevwas born in the Urnek village, Karabalyk district, Kostanay region. He graduated from the E.A. Buketov Karaganda State University in 1977 and the M.V. Lomonosov Moscow State University's full-time postgraduate study in 1984.

Scientific works of Professor Bokayev are devoted to studying problems of the theory of functions, in particular of the theory of orthogonal series.

He proved renewal and uniqueness theorems for series with respect to periodic multiplicative systems and Haar-type systems, constructed continual sets of uniqueness (U-sets) and sets of non-uniqueness (M-sets) for multiplicative systems; investigated Besov-type function spaces with respect to the Price bases; studied the Price - and Haar-type p-adic operators; introduced new classes of Faber-Schauder-type systems of functions and spaces of multivariable functions of bounded p-variation and of bounded p-fluctuation, obtained estimates for the best approximation of functions in these spaces by polynomials with respect to the Walsh and Haar systems, established weighted integrability conditions of the sum of multiple trigonometric series and series with respect to multiplicative systems, found the embedding criterion for the Nikol'skii-Besov spaces with respect to multiplicative bases and the coefficient criterion for belonging of functions to such spaces.

His scientific results have made essential contribution to the theory of series with respect to the Walsh and Haar systems and multiplicative systems.

N.A. Bokayev has published more than 150 scientific papers. Under his supervision 8 dissertations have been defended: 4 candidate of sciences dissertations and 4 PhD dissertations.

The Editorial Board of the Eurasian Mathematical Journal congratulates Nurzhan Adilkhanovich Bokayev on the occasion of his 60th birthday and wishes him good health and successful work in mathematics and mathematical education.

The EMJ has been included in the Emerging Sources Citation Index

This year, Thomson Reuters is launching the Emerging Sources Citation Index (ESCI), which will extend the universe of publications in Web of Science to include high-quality, peer-reviewed publications of regional importance and in emerging scientific fields. ESCI will also make content important to funders, key opinion leaders, and evaluators visible in Web of Science Core Collection even if it has not yet demonstrated citation impact on an international audience.

Journals in ESCI have passed an initial editorial evaluation and can continue to be considered for inclusion in the Science Citation Index ExpandedTM (SCIE), one of the flagship indices of the Web of Science Core Collection, which has rigorous evaluation processes and selection criteria.

To be included, candidate journals must pass in-depth editorial review; peer review, timely publishing, novel content, international diversity, and citation impact, among other criteria, are evaluated and compared across the entire index.

All ESCI journals will be indexed according to the same data standards, including cover-to-cover indexing, cited reference indexing, subject category assignment, and indexing all authors and addresses.

Rapidly changing research fields and the rise of interdisciplinary scholarship calls for libraries to provide coverage of relevant titles in evolving disciplines. ESCI provides Web of Science Core Collection users with expanded options to discover relevant scholarly content. Get real-time insight into a journal's citation performance while the content is considered for inclusion in other Web of Science collections. Items in ESCI are searchable, discoverable, and citable so you can measure the contribution of an article in specific disciplines and identify potential collaborators for expanded research.

ESCI expands the citation universe and reflects the growing global body of science and scholarly activity. ESCI complements the highly selective indexes by providing earlier visibility for sources under evaluation as part of SCIE rigorous journal selection process. Inclusion in ESCI provides greater discoverability which leads to measurable citations and more transparency in the selection process.

The Eurasian Mathematical Journal, together with other 70 internationally recognized mathematical journal has been included in the Emerging Sources Citation Index (Mathematics).

Below is the extract from the list of such journals including journals with numbers from 22 to 29.

ELEMENTE DER MATHEMATIK

Quarterly ISSN: 0013-6018

EUROPEAN MATHEMATICAL SOC, PUBLISHING HOUSE, E T H-ZENTRUM SEW A27, SCHEUCHZERSTRASSE 70, ZURICH, SWITZERLAND, CH-8092

ENSEIGNEMENT MATHEMATIQUE

Quarterly ISSN: 0013-8584

EUROPEAN MATHEMATICAL SOC PUBLISHING HOUSE, SEMINAR APPLIED MATHEMATICS, ETH-ZENTRUM FLI C4, ZURICH, SWITZERLAND, 8092

EURASIAN MATHEMATICAL JOURNAL

Quarterly ISSN: 2077 -9879

L N GUMILYOV EURASIAN NATL UNIV, L N GUMILYOV EURASIAN NATL

UNIV, ASTANA, KAZAKHSTAN, 010008

EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Quarterly ISSN: 1307-5543

EUROPEAN JOURNAL PURE AND APPLIED MATHEMATICS, FAK AVCILAR,

ISTANBUL UNIV, ISLETME, ISTANBUL, TURKEY, 34320

FIBONACCI QUARTERLY

Quarterly ISSN: 0015-0517

FIBONACCI ASSOC, CIO PATTY SOLSAA, PO BOX 320, AURORA, USA, SD,

57002-0320

FORUM OF MATHEMATICS PI

lrregular ISSN: 2050-5086

CAMBRIDGE UNIV PRESS, EDINBURGH BLDG, SHAFTESBURY RD, CAM-

BRIDGE, ENGLAND, CB2 8RU

FORUM OF MATHEMATICS SIGMA

lrregular ISSN: 2050-5094

CAMBRIDGE UNIV PRESS, EDINBURGH BLDG, SHAFTESBURY RD, CAM-

BRIDGE, ENGLAND, C82 8RU

INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS

Bimonthly ISSN: 2291 -8639

ETAMATHS PUBL, 701 W GEORGIA ST, STE 1500, VANCOUVER, CANADA,

BC, V7Y 1C6

The complete list of all 71 mathematical journals included in the ESCI can be viewed on $wokinfo.com/products_tools/multidisciplinary/esci$.

On behalf of the Editorial Board of the EMJ

V.I. Burenkov, T.V. Tararykova, A.M. Temirkhanova

EURASIAN MATHEMATICAL JOURNAL

ISSN 2077-9879

Volume 7, Number 1 (2016), 74 – 83

UNIQUENESS OF AN INVERSE SOURCE NON-LOCAL PROBLEM FOR FRACTIONAL ORDER MIXED TYPE EQUATIONS

M.S. Salakhitdinov, E.T. Karimov

Communicated by V.I. Burenkov

Key words: inverse source problem, fractional order mixed type equation, Caputo fractional derivative.

AMS Mathematics Subject Classification: 35M10, 35R11, 35R30.

Abstract. In the present work, we investigate the uniqueness of a solution to the inverse source problem with non-local conditions for a mixed parabolic-hyperbolic type equation with the Caputo fractional derivative. Solution of the problem we represent as bi-orthogonal series with respect to space variable and will get fractional order differential equations with respect to time-variable. Using boundary and gluing conditions, we deduce system of algebraic equations regarding unknown constants and imposing condition to the determinant of this system, we prove the uniqueness of the considered problem. Moreover, we find some non-trivial solutions to the problem in the case, in which the imposed conditions are not satisfie.

1 Formulation of a problem

Consider the equation

$$f(x) = \begin{cases} {}_{C}D_{0t}^{\alpha}u - u_{xx}, & t > 0, \\ {}_{C}D_{t0}^{\beta}u - u_{xx}, & t < 0 \end{cases}$$
 (1.1)

in the rectangular domain $\Omega = \{(x,t): 0 < x < 1, -p < t < q\}$. Here $\alpha, \beta, p, q \in \mathbb{R}$ are such that $0 < \alpha \le 1, 1 < \beta \le 2, f$ is the unknown function,

$${}_{C}D_{0t}^{\alpha}g = \begin{cases} \frac{1}{\Gamma(1-\alpha)} \int_{0}^{t} \frac{g'(z)}{(t-z)^{\alpha}} dz, & 0 < \alpha < 1, \\ \frac{dg}{dt}, & \alpha = 1, \end{cases}$$

$${}_{C}D_{t0}^{\beta}g = \begin{cases} \frac{1}{\Gamma(2-\beta)} \int_{t}^{0} \frac{g''(z)}{(z-t)^{\beta-1}} dz, & 1 < \beta < 2, \\ \frac{d^{2}g}{dt^{2}}, & \beta = 2 \end{cases}$$

are the Caputo fractional differential operators [1, page 92, formular (2.4.16)].

Problem. Find a pair of functions (u(x,t),f(x)) in the domain Ω , satisfying

- i) the regularity conditions $u(x,t) \in C(\overline{\Omega}), u_{xx}(x,t) \in C^2(\Omega^+ \cup \Omega^-), CD_{0t}^{\alpha}u \in C(\Omega^+), CD_{t0}^{\beta}u \in C(\Omega^-), f(t) \in C(0,1);$
 - ii) equation (1.1) in Ω^+ , Ω^- ;
 - iii) the boundary conditions

$$u(0,t) = u(1,t), \ u_x(0,t) = 0, \ -p \le t \le q,$$
 (1.2)

$$u(x, -p) = 0, \ u(x, q) = 0, \ 0 \le x \le 1,$$
 (1.3)

and

iv) the transmitting condition

$$\lim_{t \to +0} {}_{C}D_{0t}^{\alpha}u(x,t) = \lim_{t \to -0} \frac{\partial u(x,t)}{\partial (-t)}, \ 0 < x < 1, \tag{1.4}$$

where $\Omega^+ = \Omega \cap \{t > 0\}, \ \Omega^- = \Omega \cap \{t < 0\}.$

Solution of this problem we represent as follows:

$$u(x,t) = V_0(t) + \sum_{k=1}^{\infty} V_{1k}(t) \cos 2k\pi x + \sum_{k=1}^{\infty} V_{2k}(t) \cdot x \sin 2k\pi x, \ t \ge 0,$$
 (1.5)

$$u(x,t) = W_0(t) + \sum_{k=1}^{\infty} W_{1k}(t) \cos 2k\pi x + \sum_{k=1}^{\infty} W_{2k}(t) \cdot x \sin 2k\pi x, \ t \le 0,$$
 (1.6)

$$f(x) = f_0 + \sum_{k=1}^{\infty} f_{1k} \cos 2k\pi x + \sum_{k=1}^{\infty} f_{2k} \cdot x \sin 2k\pi x, \tag{1.7}$$

where

$$V_{0}(t) = 2 \int_{0}^{1} u(x,t)(1-x) dx, t \ge 0,$$

$$V_{1k}(t) = 4 \int_{0}^{1} u(x,t)(1-x) \cos 2k\pi x dx, t \ge 0,$$

$$V_{2k}(t) = 4 \int_{0}^{1} u(x,t) \sin 2k\pi x dx, t \ge 0,$$

$$W_{0}(t) = 2 \int_{0}^{1} u(x,t)(1-x) dx, t \le 0,$$

$$W_{1k}(t) = 4 \int_{0}^{1} u(x,t)(1-x) \cos 2k\pi x dx, t \le 0,$$

$$W_{2k}(t) = 4 \int_{0}^{1} u(x,t) \sin 2k\pi x dx, t \le 0,$$

$$f_{0} = 2 \int_{0}^{1} f(x)(1-x) dx,$$

$$f_{1k} = 4 \int_{0}^{1} f(x)(1-x) \cos 2k\pi x dx,$$

$$f_{2k} = 4 \int_{0}^{1} f(x) \sin 2k\pi x dx.$$
(1.8)

Detailed explanation of this representation can be found in [2, p.62], which is based on [3,4].

We would like to note some works [5-7], where local and non-local inverse source problems for time-fractional diffusion and diffusion-wave equations were studied. Especially, the work by M. Kirane and S.A. Malik [8], where similar non-local conditions were in use.

Based on (1.8), we introduce similar functions with small shift into the interior of the considered domain. Then applying appropriate Caputo fractional operators, after integrating by parts, we deduce

$$_{C}D_{0t}^{\alpha}V_{0}(t) = f_{0}, \quad t \ge 0,$$
 (1.9)

$$_{C}D_{t0}^{\beta}W_{0}(t) = f_{0}, \quad t < 0,$$
 (1.10)

$$_{C}D_{0t}^{\alpha}V_{1k}(t) + (2k\pi)^{2}V_{1k}(t) = f_{1k} + 4k\pi V_{2k}(t), \quad t \ge 0,$$
 (1.11)

$${}_{C}D_{t0}^{\beta}W_{1k}(t) + (2k\pi)^{2}W_{1k}(t) = f_{1k} + 4k\pi W_{2k}(t), \quad t < 0, \tag{1.12}$$

$$_{C}D_{0t}^{\alpha}V_{2k}(t) + (2k\pi)^{2}V_{2k}(t) = f_{2k}, \quad t \ge 0,$$
 (1.13)

$$_{C}D_{t0}^{\beta}W_{2k}(t) + (2k\pi)^{2}W_{2k}(t) = f_{2k}, \quad t < 0.$$
 (1.14)

The general solutions of (1.9) and (1.13) can be written as [1, p.231, form. (4.1.66)]

$$V_0(t) = V_0(0) + \frac{f_0}{\Gamma(\alpha + 1)} t^{\alpha}, \tag{1.15}$$

$$V_{2k}(t) = V_{2k}(0)E_{\alpha,1}\left(-(2k\pi)^2t^{\alpha}\right) + f_{2k}t^{\alpha}E_{\alpha,\alpha+1}\left(-(2k\pi)^2t^{\alpha}\right),\tag{1.16}$$

respectively. Here

$$E_{\alpha,\beta}(t) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + \beta)}, \quad \alpha, \beta > 0$$

is the Mittag-Leffler function of two parameters [9, p.17].

We write the general solution of equation (1.11) in the following form

$$V_{1k}(t) = V_{1k}(0)E_{\alpha,1}\left(-(2k\pi)^{2}t^{\alpha}\right) + f_{1k} \cdot t^{\alpha} \cdot E_{\alpha,\alpha+1}\left(-(2k\pi)^{2}t^{\alpha}\right)$$

$$+ 4k\pi \cdot V_{2k}(0) \cdot t^{\alpha} \cdot E_{1}\left(\begin{matrix} 1,1;1,1 & |-(2k\pi)^{2}t^{\alpha}\\ \alpha+1,\alpha,\alpha;1,1;1,1 & |-(2k\pi)^{2}t^{\alpha}\end{matrix}\right)$$

$$+ 4k\pi \cdot f_{2k} \cdot t^{2\alpha} \cdot E_{1}\left(\begin{matrix} 1,1;1,1 & |-(2k\pi)^{2}t^{\alpha}\\ 2\alpha+1,\alpha,\alpha;1,1;1,1 & |-(2k\pi)^{2}t^{\alpha}\end{matrix}\right).$$

$$(1.17)$$

Based on [1, p. 232, formula (4.1.74)], the general solution of (1.10) can be written as

$$W_0(t) = W_0(0) - tW_0'(0) + \frac{f_0}{\Gamma(\beta + 1)}(-t)^{\beta}.$$
 (1.18)

Similarly, we can write the general solution of (1.14) as follows

$$W_{2k}(t) = W_{2k}(0)E_{\beta,1}\left(-(2k\pi)^2(-t)^\beta\right) - tW'_{2k}(0)E_{\beta,2}\left(-(2k\pi)^2(-t)^\beta\right) + f_{2k}(-t)^\beta E_{\beta,\beta+1}\left(-(2k\pi)^2(-t)^\beta\right).$$
(1.19)

The general solution of (1.12) has the form

$$W_{1k}(t) = W_{1k}(0)E_{\beta,1}\left(-(2k\pi)^{2}(-t)^{\beta}\right) - tW_{1k}'(0)E_{\beta,2}\left(-(2k\pi)^{2}(-t)^{\beta}\right) + f_{1k} \cdot (-t)^{\beta}E_{\beta,\beta+1}\left(-(2k\pi)^{2}(-t)^{\beta}\right) + 4k\pi \cdot W_{2k}(0) \cdot (-t)^{\beta}E_{1}\left(\begin{matrix} 1,1;1,1 & |-(2k\pi)^{2}(-t)^{\beta}\\ \beta+1,\beta,\beta;1,1;1,1 & |-(2k\pi)^{2}(-t)^{\beta}\end{matrix}\right) + 4k\pi \cdot W_{2k}'(0) \cdot (-t)^{\beta+1}E_{1}\left(\begin{matrix} 1,1;1,1 & |-(2k\pi)^{2}(-t)^{\beta}\\ \beta+2,\beta,\beta;1,1;1,1 & |-(2k\pi)^{2}(-t)^{\beta}\end{matrix}\right) + 4k\pi \cdot f_{2k} \cdot (-t)^{2\beta}E_{1}\left(\begin{matrix} 1,1;1,1 & |-(2k\pi)^{2}(-t)^{\beta}\\ 2\beta+1,\beta,\beta;1,1;1,1 & |-(2k\pi)^{2}(-t)^{\beta}\end{matrix}\right),$$

$$(1.20)$$

Here

$$E_1\left(\begin{array}{cc} \gamma_1,\alpha_1;\gamma_2,\beta_1 & |x\\ \delta_1,\alpha_2,\beta_2;\delta_2,\alpha_3;\delta_3,\beta_3 & |y\end{array}\right) = \sum_{m,n=0}^{\infty} \frac{(\gamma_1)_{\alpha_1 m}(\gamma_2)_{\beta_1 n}}{\Gamma(\delta_1 + \alpha_2 m + \beta_2 n)} \cdot \frac{x^m}{\Gamma(\delta_2 + \alpha_3 m)} \cdot \frac{y^n}{\Gamma(\delta_3 + \beta_3 n)}$$

is the Mittag-Leffler type function in two variables, introduced by Garg et al in [10, formula (11)].

Now, using conditions (1.2)-(1.4) we find the unknown constants $f_0, f_{1k}, f_{2k}, V_0(0), V_{1k}(0), V_{2k}(0), W_0(0), W_{1k}(0), W_{2k}(0), W_0'(0), W_{1k}'(0), W_{2k}'(0)$.

We substitute the obtained solutions in condition (1.3) and deduce that

$$W_0(0) + pW_0'(0) + \frac{f_0}{\Gamma(\beta + 1)}p^{\beta} = 0, \tag{1.21}$$

$$W_{1k}(0)E_{\beta,1}\left(-(2k\pi)^{2}p^{\beta}\right) + pW_{1k}'(0)E_{\beta,2}\left(-(2k\pi)^{2}p^{\beta}\right) + f_{1k}p^{\beta}E_{\beta,\beta+1}\left(-(2k\pi)^{2}p^{\beta}\right) + 4k\pi \cdot W_{2k}(0) \cdot p^{\beta}E_{1}\left(\begin{matrix} 1,1;1,1 & |-(2k\pi)^{2}p^{\beta}\\ \beta+1,\beta,\beta;1,1;1,1 & |-(2k\pi)^{2}p^{\beta}\end{matrix}\right) + 4k\pi \cdot W_{2k}'(0) \cdot p^{\beta+1}E_{1}\left(\begin{matrix} 1,1;1,1 & |-(2k\pi)^{2}p^{\beta}\\ \beta+2,\beta,\beta;1,1;1,1 & |-(2k\pi)^{2}p^{\beta}\end{matrix}\right) + 4k\pi \cdot f_{2k} \cdot p^{2\beta}E_{1}\left(\begin{matrix} 1,1;1,1 & |-(2k\pi)^{2}p^{\beta}\\ 2\beta+1,\beta,\beta;1,1;1,1 & |-(2k\pi)^{2}p^{\beta}\end{matrix}\right) = 0,$$

$$(1.22)$$

$$W_{2k}(0)E_{\beta,1}\left(-(2k\pi)^2p^{\beta}\right) + pW_{2k}'(0)E_{\beta,2}\left(-(2k\pi)^2p^{\beta}\right) + f_{2k}p^{\beta}E_{\beta,\beta+1}\left(-(2k\pi)^2p^{\beta}\right) = 0,$$
(1.23)

$$V_0(0) + \frac{f_0}{\Gamma(\alpha + 1)} q^{\alpha} = 0, \tag{1.24}$$

$$V_{1k}(0)E_{\alpha,1}\left(-(2k\pi)^{2}q^{\alpha}\right) + f_{1k}q^{\alpha}E_{\alpha,\alpha+1}\left(-(2k\pi)^{2}q^{\alpha}\right) + 4k\pi \cdot V_{2k}(0) \cdot q^{\alpha}E_{1}\begin{pmatrix} 1,1;1,1 & |-(2k\pi)^{2}q^{\alpha}\\ \alpha+1,\alpha,\alpha;1,1;1,1 & |-(2k\pi)^{2}q^{\alpha}\end{pmatrix} + 4k\pi \cdot f_{2k} \cdot q^{2\alpha}E_{1}\begin{pmatrix} 1,1;1,1 & |-(2k\pi)^{2}q^{\alpha}\\ 2\alpha+1,\alpha,\alpha;1,1;1,1 & |-(2k\pi)^{2}q^{\alpha}\end{pmatrix} = 0,$$

$$(1.25)$$

$$V_{2k}(0)E_{\alpha,1}\left(-(2k\pi)^2q^{\alpha}\right) + f_{2k}q^{\alpha}E_{\alpha,\alpha+1}\left(-(2k\pi)^2q^{\alpha}\right) = 0.$$
 (1.26)

Taking into account that u(x, +0) = u(x, -0), which follows from $u(x, t) \in C(\overline{\Omega})$, we get

$$V_0(0) = W_0(0), \ V_{1k}(0) = W_{1k}(0), \ V_{2k}(0) = W_{2k}(0).$$
 (1.27)

Based on (1.9), (1.11), (1.13), we deduce

$$\lim_{t \to +0} {}_{C}D_{0t}^{\alpha}V_{0}(t) = f_{0},$$

$$\lim_{t \to +0} {}_{C}D_{0t}^{\alpha}V_{1k}(t) = f_{1k} + 4k\pi V_{2k}(0) - (2k\pi)^{2}V_{1k}(0),$$

$$\lim_{t \to +0} {}_{C}D_{0t}^{\alpha}V_{2k}(t) = f_{2k} - (2k\pi)^{2}V_{2k}(0).$$
(1.28)

Now we calculate $\frac{d}{d(-t)}W_0(t)$, $\frac{d}{d(-t)}W_{1k}(t)$ and $\frac{d}{d(-t)}W_{2k}(t)$. One can easily deduce that

$$\frac{d}{d(-t)}W_0(t) = W_0'(0) + \frac{f_0}{\Gamma(\beta)}(-t)^{\beta-1}.$$
(1.29)

From (1.19) we find

$$\frac{d}{d(-t)}W_{2k}(t) = W_{2k}(0)\frac{d}{d(-t)}E_{\beta,1}\left(-(2k\pi)^2(-t)^\beta\right)
+ W'_{2k}(0)\frac{d}{d(-t)}\left(-tE_{\beta,2}\left(-(2k\pi)^2(-t)^\beta\right)\right)
+ f_{2k}\frac{d}{d(-t)}\left((-t)^\beta E_{\beta,\beta+1}\left(-(2k\pi)^2(-t)^\beta\right)\right).$$

We use the following differentiation formula (see [9], p.21, formula (1.82))

$$_{RL}D_{0t}^{\gamma}\left(t^{\alpha k+\beta-1}E_{\alpha,\beta}^{(k)}\left(\lambda t^{\alpha}\right)\right)=t^{\alpha k+\beta-\gamma-1}E_{\alpha,\beta-\gamma}\left(\left(\lambda t^{\alpha}\right),\right.$$

where $_{RL}D_{0t}^{\gamma}(\cdot)$ is the Riemann-Liouville fractional derivative of order γ [1], $E_{\alpha,\beta}^{(k)}(t) = \frac{d^k}{dt^k}E_{\alpha,\beta}(t)$. After some computations we deduce that

$$\frac{d}{d(-t)}W_{2k}(t) = -W_{2k}(0)(2k\pi)^2(-t)^{\beta-1}E_{\beta,\beta}\left(-(2k\pi)^2(-t)^{\beta}\right)
+ W'_{2k}(0)E_{\beta,1}\left(-(2k\pi)^2(-t)^{\beta}\right)
+ f_{2k}(-t)^{\beta-1}E_{\beta,\beta}\left(-(2k\pi)^2(-t)^{\beta}\right).$$
(1.30)

In a similar way, using the following formula (see [10], formula (33))

$$\begin{split} &_{RL}D_{ax}^{\gamma}\left\{(x-a)^{\delta_{1}-1}E_{1}\left(\begin{array}{ccc} \gamma_{1},\alpha_{1};\gamma_{2},\beta_{1} & |w_{1}(x-a)^{\alpha_{2}} \\ \delta_{1},\alpha_{2},\beta_{2};\delta_{2},\alpha_{3},\delta_{3},\beta_{3} & |w_{2}(x-a)^{\beta_{2}} \end{array}\right)\right\} \\ &=(x-a)^{\delta_{1}-\gamma-1}E_{1}\left(\begin{array}{ccc} \gamma_{1},\alpha_{1};\gamma_{2},\beta_{1} & |w_{1}(x-a)^{\alpha_{2}} \\ \delta_{1}-\gamma,\alpha_{2},\beta_{2};\delta_{2},\alpha_{3};\delta_{3},\beta_{3} & |w_{2}(x-a)^{\beta_{2}} \end{array}\right), \end{split}$$

we deduce that

$$\frac{d}{d(-t)}W_{1k}(t) = -(2k\pi)^2 W_{1k}(0)(-t)^{\beta-1} E_{\beta,\beta} \left(-(2k\pi)^2 (-t)^{\beta} \right)
+ W'_{1k}(0) E_{\beta,1} \left(-(2k\pi)^2 (-t)^{\beta} \right) + f_{1k}(-t)^{\beta-1} E_{\beta,\beta+1} \left(-(2k\pi)^2 (-t)^{\beta} \right)
+ 4k\pi W_{2k}(0)(-t)^{\beta-1} E_1 \begin{pmatrix} 1,1;1,1 & |-(2k\pi)^2 (-t)^{\beta} \\ \beta,\beta,\beta;1,1;1,1 & |-(2k\pi)^2 (-t)^{\beta} \end{pmatrix}
+ 4k\pi W'_{2k}(0)(-t)^{\beta} E_1 \begin{pmatrix} 1,1;1,1 & |-(2k\pi)^2 (-t)^{\beta} \\ \beta+1,\beta,\beta;1,1;1,1 & |-(2k\pi)^2 (-t)^{\beta} \end{pmatrix}
+ 4k\pi f_{2k}(-t)^{2\beta-1} E_1 \begin{pmatrix} 1,1;1,1 & |-(2k\pi)^2 (-t)^{\beta} \\ 2\beta,\beta,\beta;1,1;1,1 & |-(2k\pi)^2 (-t)^{\beta} \end{pmatrix}.$$
(1.31)

From (1.29)-(1.31) we get

$$\lim_{t \to -0} \frac{d}{d(-t)} W_0(t) = W_0'(0), \ \lim_{t \to -0} \frac{d}{d(-t)} W_{1k}(t) = W_{1k}'(0), \ \lim_{t \to -0} \frac{d}{d(-t)} W_{2k}(t) = W_{2k}'(0).$$
(1.32)

Considering (1.28) and (1.32) we have

$$f_0 = W'_0(0),$$

$$f_{1k} + 4k\pi V_{2k}(0) - (2k\pi)^2 V_{1k}(0) = W'_{1k}(0),$$

$$f_{2k} - (2k\pi)^2 V_{2k}(0) = W'_{2k}(0).$$
(1.33)

From (1.21), (1.24) and first relations of (1.27), (1.33) we get the following system of equations

$$\begin{cases} W_0(0) + \left(\frac{p^{\beta}}{\Gamma(\beta+1)} + p\right) W_0'(0) = 0, \\ W_0(0) + \frac{q^{\alpha}}{\Gamma(\alpha+1)} W_0'(0) = 0, \\ f_0 = W_0'(0). \end{cases}$$
(1.34)

If

$$\Delta_0 = p + \frac{p^{\beta}}{\Gamma(\beta + 1)} - \frac{q^{\alpha}}{\Gamma(\alpha + 1)} \neq 0, \tag{1.35}$$

then we find that

$$f_0 = W_0'(0) = V_0(0) = W_0(0) = 0.$$
 (1.36)

Now from (1.22), (1.23), (1.25), (1.26) and last two relations in (1.27), (1.33), we obtain another system of equations

$$\begin{cases}
f_{1k} = W'_{1k}(0) + (2k\pi)^2 W_{1k}(0) - 4k\pi W_{2k}(0), \\
f_{2k} = W'_{2k}(0) + (2k\pi)^2 W_{2k}(0), \\
W_{2k}(0) + W'_{2k}(0) \left[p^{\beta} E_{\beta,\beta+1} \left(-(2k\pi)^2 p^{\beta} \right) + p E_{\beta,2} \left(-(2k\pi)^2 p^{\beta} \right) \right] = 0, \\
W_{2k}(0) + W'_{2k}(0) q^{\alpha} E_{\alpha,\alpha+1} \left(-(2k\pi)^2 q^{\alpha} \right) = 0, \\
W_{1k}(0) + W'_{1k}(0) \left[p^{\beta} E_{\beta,\beta+1} \left(-(2k\pi)^2 p^{\beta} \right) + p E_{\beta,2} \left(-(2k\pi)^2 p^{\beta} \right) \right] = 0, \\
W_{1k}(0) + W'_{1k}(0) q^{\alpha} E_{\alpha,\alpha+1} \left(-(2k\pi)^2 q^{\alpha} \right) = 0.
\end{cases} (1.37)$$

Further, assuming that

$$\Delta_k = p^{\beta} E_{\beta,\beta+1} \left(-(2k\pi)^2 p^{\beta} \right) + p E_{\beta,2} \left(-(2k\pi)^2 p^{\beta} \right) - q^{\alpha} E_{\alpha,\alpha+1} \left(-(2k\pi)^2 q^{\alpha} \right) \neq 0, (1.38)$$

we get

$$V_{1k}(0) = V_{2k}(0) = W_{1k}(0) = W_{2k}(0) = W'_{1k}(0) = W'_{2k}(0) = f_{1k} = f_{2k} = 0.$$
 (1.39)

If conditions (1.35), (1.38) hold, then based on (1.5)-(1.7), due to (1.36), (1.39) we have

$$\int_{0}^{1} u(x,t)(1-x) dx = 0, \quad \int_{0}^{1} u(x,t) \sin 2k\pi x dx = 0,$$

$$\int_{0}^{1} u(x,t)(1-x) \cos 2k\pi x dx = 0, \quad \int_{0}^{1} f(x)(1-x) dx = 0,$$

$$\int_{0}^{1} f(x) \sin 2k\pi x dx = 0, \quad \int_{0}^{1} f(x)(1-x) \cos 2k\pi x dx = 0, \quad k = 1, 2, \dots$$

According to the completeness of the system $\{1, \cos 2k\pi x, x \sin 2k\pi x\}$ in $L_2[0, 1]$, we can state that u(x, t) = 0 a.e. in [0, 1] for $t \in [-p, q]$ and f(x) = 0 a.e. in [0, 1]. Now we formulate the obtained result as the following

Theorem 1.1. If conditions (1.35), (1.38) hold, then problem has only trivial solution.

2 Nontrivial solutions of the problem

We consider case, when conditions (1.35), (1.38) are not satisfied. Let $\Delta_0 = 0$ for some p, q. Then problem has a nontrivial solution of the form

$$u(x,t) = u_0(t), \ f(x) = f_0,$$
 (2.1)

where

$$u_0(t) = \begin{cases} \frac{t^{\alpha} - q^{\alpha}}{\Gamma(\alpha + 1)} f_0, & t \ge 0, \\ \left[\frac{(-t)^{\beta} - p^{\beta}}{\Gamma(\beta + 1)} - t - p \right] f_0, & t \le 0, \end{cases}$$

 $f_0 \neq 0$ is an arbitrary constant.

If $\Delta_k = 0$ for $k = m \in \mathbb{N}$, i.e. $\Delta_m = 0$, then the considered problem has nontrivial solutions of the form

$$u_m(x,t) = \begin{cases} V_{1m}(t)\cos 2m\pi x + V_{2m}(t)x\sin 2m\pi x, & t \ge 0, \\ W_{1m}(t)\cos 2m\pi x + W_{2m}(t)x\sin 2m\pi x, & t \le 0, \end{cases}$$
(2.2)

$$f_{m}(x) = \left\{ E_{\alpha,1} \left(-(2m\pi)^{2} q^{\alpha} \right) W_{1m}'(0) + 4k\pi q^{\alpha} E_{\alpha,\alpha+1} \left(-(2m\pi)^{2} q^{\alpha} \right) W_{2m}'(0) \right\} \cos 2m\pi x + E_{\alpha,1} \left(-(2m\pi)^{2} q^{\alpha} \right) W_{2m}'(0) x \sin 2m\pi x,$$
(2.3)

where

$$V_{1m}(t) = W'_{1m}(0) \left\{ t^{\alpha} E_{\alpha,\alpha+1} \left(-(2m\pi)^{2} t^{\alpha} \right) E_{\alpha,1} \left(-(2m\pi)^{2} q^{\alpha} \right) - q^{\alpha} E_{\alpha,\alpha+1} \left(-(2m\pi)^{2} q^{\alpha} \right) \right.$$

$$\times E_{\alpha,1} \left(-(2m\pi)^{2} t^{\alpha} \right) \right\} + 4k\pi t^{\alpha} W'_{2m}(0) \left\{ q^{\alpha} E_{\alpha,\alpha+1} \left(-(2m\pi)^{2} q^{\alpha} \right) \right.$$

$$\times \left[E_{\alpha,\alpha+1} \left(-(2m\pi)^{2} t^{\alpha} \right) - E_{1} \left(\begin{array}{cc} 1,1;1,1 & | -(2k\pi)^{2} t^{\alpha} \\ \alpha+1,\alpha,\alpha;1,1;1,1 & | -(2k\pi)^{2} t^{\alpha} \end{array} \right) \right]$$

$$+ t^{\alpha} E_{\alpha,1} \left(-(2m\pi)^{2} q^{\alpha} \right) E_{1} \left(\begin{array}{cc} 1,1;1,1 & | -(2k\pi)^{2} t^{\alpha} \\ 2\alpha+1,\alpha,\alpha;1,1;1,1 & | -(2k\pi)^{2} t^{\alpha} \end{array} \right) \right\},$$

$$V_{2m}(t) = \left\{ t^{\alpha} E_{\alpha,\alpha+1} \left(-(2m\pi)^{2} t^{\alpha} \right) E_{\alpha,1} \left(-(2m\pi)^{2} q^{\alpha} \right) \right.$$

 $-q^{\alpha}E_{\alpha,\alpha+1}\left(-(2m\pi)^{2}q^{\alpha}\right)E_{\alpha,1}\left(-(2m\pi)^{2}t^{\alpha}\right)\}W_{2m}'(0),$

$$W_{1m}(t) = \left\{ (-t)^{\beta} E_{\alpha,1} \left(-(2m\pi)^{2} q^{\alpha} \right) E_{\beta,\beta+1} \left(-(2m\pi)^{2} (-t)^{\beta} \right) - q^{\alpha} E_{\alpha,\alpha+1} \left(-(2m\pi)^{2} q^{\alpha} \right) E_{\beta,1} \left(-(2m\pi)^{2} (-t)^{\beta} \right) \right\} W'_{1m}(0)$$

$$+ 4k\pi (-t)^{\beta} W'_{2m}(0) \left\{ q^{\alpha} E_{\alpha,\alpha+1} \left(-(2m\pi)^{2} q^{\alpha} \right) \right.$$

$$\times \left[E_{\beta,\beta+1} \left(-(2m\pi)^{2} (-t)^{\beta} \right) - E_{1} \left(\begin{array}{c} 1,1;1,1 \\ \beta+1,\beta,\beta;1,1;1,1 \end{array} \right. \left. \left| -(2k\pi)^{2} (-t)^{\beta} \right) \right] \right.$$

$$- t E_{1} \left(\begin{array}{c} 1,1;1,1 \\ \beta+2,\beta,\beta;1,1;1,1 \end{array} \right. \left. \left| -(2k\pi)^{2} (-t)^{\beta} \right) \right.$$

$$+ (-t)^{\beta} E_{\alpha,1} \left(-(2m\pi)^{2} q^{\alpha} \right) E_{1} \left(\begin{array}{c} 1,1;1,1 \\ 2\beta+1,\beta,\beta;1,1;1,1 \end{array} \right. \left. \left| -(2k\pi)^{2} (-t)^{\beta} \right) \right.$$

$$+ \left. \left(-(2m\pi)^{2} q^{\alpha} \right) E_{1} \left(\begin{array}{c} 1,1;1,1 \\ 2\beta+1,\beta,\beta;1,1;1,1 \end{array} \right. \left. \left| -(2k\pi)^{2} (-t)^{\beta} \right) \right.$$

$$+ \left. \left(-(2m\pi)^{2} q^{\alpha} \right) E_{\beta,\beta+1} \left(-(2m\pi)^{2} (-t)^{\beta} \right) - q^{\alpha} E_{\alpha,\alpha+1} \left(-(2m\pi)^{2} q^{\alpha} \right) E_{\beta,1} \left(-(2m\pi)^{2} (-t)^{\beta} \right) - - t E_{\beta,2} \left(-(2m\pi)^{2} (-t)^{\beta} \right) \right\} W'_{2m}(0).$$

Here $W'_{1m}(0), W_{2m}(0)$ are arbitrary non-zero constants.

Conclusion If conditions (1.35), (1.38) are not satisfied, there exist nontrivial solutions of the considered problem and they have form (2.1) or (2.2)-(2.3).

Acknowledgments

The authors thank the unknown referee for his/her useful suggestions and the editors, who improved English of the paper.

This work was partially supported by the Grant no. 3293/GF4 of the Ministry of Education and Science of the Republic of Kazakhstan

References

- [1] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006. xvi+523 pp.
- [2] K.B. Sabitov, N.V. Martem'yanova, A nonlocal inverse problem for a mixed-type equation, Russian Mathematics (Izv. VUZ). 55 (2011), no. 2., 71–85.
- [3] M.V. Keldysh, On eigenvalues and eigenfunctions of some classes of nonselfadjoint equations, Sov. Phys. Dokl. 77 (1951), no. 1, 11—14.
- [4] V.A. Il'in, Existence of a reduced system of eigen- and associated functions for a nonself adjoint ordinary differential operator, Trudy MIAN 142 (1976), 148–155.
- [5] K. Sakamoto, M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl. 382 (2011), 426-447.
- [6] Jin Cheng, J. Nakagawa, M. Yamamoto, T. Yamazaki, Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation, Inverse Problems 25 (2009), 115002 16 pp.
- [7] Jun-Gang Wang, Yu-Bin Zhou, Ting Wei, Two regularization methods to identify a spacedependent source for the time-fractional diffusion equation, Applied Numerical Mathematics 68 (2013), 39-57.
- [8] M. Kirane, S.A. Malik, Determination of an unknown source term and the temperature distribution for the linear heat equation involving fractional derivative in time, Applied Mathematics and Computation, 218 (2011), 163–170.
- [9] I. Podlubny, Fractional differential equations, Math. Sci. Eng. 198, Academic Press, San Diego, 1999.
- [10] M. Garg, P. Manohar, S.L. Kalla, A Mittag-Leffler-type function of two variables, Integral Transforms and Special Functions 24 (2013), 934–944.

Makhmud Salakhitdinov, Erkinjon Karimov Department of Differential Equations Institute of Mathematics, National University of Uzbekistan 29 Durmon yuli St, 100125 Tashkent, Uzbekistan

E-mails: salakhitdinovms@yahoo.com, erkinjon@gmail.com

Received: 07.09.2015