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NURZHAN BOKAYEV

(to the 60th birthday)

On January 5, 2016 was the 60th birthday of Doctor
of Physical-Mathematical Sciences (1996), Professor Nurzhan
Adilkhanovich Bokayev. Professor Bokayev is the head of
the department "Higher Mathematics" of the L.N. Gumilyov
Eurasian National University (since 2009), the Vice-President
of Mathematical Society of the Turkic World (since 2014), and
a member of the Editorial Board of our journal.

N.A. Bokayevwas born in the Urnek village, Karabalyk dis-
trict, Kostanay region. He graduated from the E.A. Buketov
Karaganda State University in 1977 and the M.V. Lomonosov
Moscow State University’s full-time postgraduate study in
1984.

Scientific works of Professor Bokayev are devoted to studying problems of the theory
of functions, in particular of the theory of orthogonal series.

He proved renewal and uniqueness theorems for series with respect to periodic mul-
tiplicative systems and Haar-type systems, constructed continual sets of uniqueness
(U -sets) and sets of non-uniqueness (M -sets) for multiplicative systems; investigated
Besov-type function spaces with respect to the Price bases; studied the Price - and
Haar-type p-adic operators; introduced new classes of Faber-Schauder-type systems of
functions and spaces of multivariable functions of bounded p-variation and of bounded
p-fluctuation, obtained estimates for the best approximation of functions in these spaces
by polynomials with respect to the Walsh and Haar systems, established weighted inte-
grability conditions of the sum of multiple trigonometric series and series with respect
to multiplicative systems, found the embedding criterion for the Nikol’skii-Besov spaces
with respect to multiplicative bases and the coefficient criterion for belonging of func-
tions to such spaces.

His scientific results have made essential contribution to the theory of series with
respect to the Walsh and Haar systems and multiplicative systems.

N.A. Bokayev has published more than 150 scientific papers. Under his supervision
8 dissertations have been defended: 4 candidate of sciences dissertations and 4 PhD
dissertations.

The Editorial Board of the Eurasian Mathematical Journal congratulates Nurzhan
Adilkhanovich Bokayev on the occasion of his 60th birthday and wishes him good
health and successful work in mathematics and mathematical education.
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The EMJ has been included in the Emerging Sources Citation Index

This year, Thomson Reuters is launching the Emerging Sources Citation Index
(ESCI), which will extend the universe of publications in Web of Science to include high-
quality, peer-reviewed publications of regional importance and in emerging scientific
fields. ESCI will also make content important to funders, key opinion leaders, and
evaluators visible in Web of Science Core Collection even if it has not yet demonstrated
citation impact on an international audience.

Journals in ESCI have passed an initial editorial evaluation and can continue to be
considered for inclusion in the Science Citation Index ExpandedTM (SCIE), one of the
flagship indices of the Web of Science Core Collection, which has rigorous evaluation
processes and selection criteria.

To be included, candidate journals must pass in-depth editorial review; peer review,
timely publishing, novel content, international diversity, and citation impact, among
other criteria, are evaluated and compared across the entire index.

All ESCI journals will be indexed according to the same data standards, includ-
ing cover-to-cover indexing, cited reference indexing, subject category assignment, and
indexing all authors and addresses.

Rapidly changing research fields and the rise of interdisciplinary scholarship calls
for libraries to provide coverage of relevant titles in evolving disciplines. ESCI pro-
vides Web of Science Core Collection users with expanded options to discover relevant
scholarly content. Get real-time insight into a journal’s citation performance while the
content is considered for inclusion in other Web of Science collections. Items in ESCI
are searchable, discoverable, and citable so you can measure the contribution of an
article in specific disciplines and identify potential collaborators for expanded research.

ESCI expands the citation universe and reflects the growing global body of science
and scholarly activity. ESCI complements the highly selective indexes by providing
earlier visibility for sources under evaluation as part of SCIE rigorous journal selection
process. Inclusion in ESCI provides greater discoverability which leads to measurable
citations and more transparency in the selection process.

The Eurasian Mathematical Journal, together with other 70 internationally recog-
nized mathematical journal has been included in the Emerging Sources Citation Index
(Mathematics).

Below is the extract from the list of such journals including journals with numbers
from 22 to 29.

ELEMENTE DER MATHEMATIK
Quarterly ISSN: 0013-6018
EUROPEAN MATHEMATICAL SOC, PUBLISHING HOUSE, E T H-ZENTRUM
SEW A27, SCHEUCHZERSTRASSE 70, ZURICH, SWITZERLAND, CH-8092

ENSEIGNEMENT MATHEMATIQUE
Quarterly ISSN: 0013-8584
EUROPEAN MATHEMATICAL SOC PUBLISHING HOUSE, SEMINAR APPLIED
MATHEMATICS, ETH-ZENTRUM FLI C4, ZURICH, SWITZERLAND, 8092
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EURASIAN MATHEMATICAL JOURNAL
Quarterly ISSN: 2077 -9879
L N GUMILYOV EURASIAN NATL UNIV, L N GUMILYOV EURASIAN NATL
UNIV, ASTANA, KAZAKHSTAN, 010008

EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Quarterly ISSN: 1307-5543
EUROPEAN JOURNAL PURE AND APPLIED MATHEMATICS, FAK AVCILAR,
ISTANBUL UNIV, ISLETME, ISTANBUL, TURKEY, 34320

FIBONACCI QUARTERLY
Quarterly ISSN: 0015-0517
FIBONACCI ASSOC, CIO PATTY SOLSAA, PO BOX 320, AURORA, USA, SD,
57002-0320

FORUM OF MATHEMATICS PI
lrregular ISSN: 2050-5086
CAMBRIDGE UNIV PRESS, EDINBURGH BLDG, SHAFTESBURY RD, CAM-
BRIDGE, ENGLAND, CB2 8RU

FORUM OF MATHEMATICS SIGMA
lrregular ISSN: 2050-5094
CAMBRIDGE UNIV PRESS, EDINBURGH BLDG, SHAFTESBURY RD, CAM-
BRIDGE, ENGLAND, C82 8RU

INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS
Bimonthly ISSN: 2291 -8639
ETAMATHS PUBL, 701 W GEORGIA ST, STE 1500, VANCOUVER, CANADA,
BC, V7Y 1C6

The complete list of all 71 mathematical journals included in the ESCI can be
viewed on wokinfo.com/productstools/multidisciplinary/esci.

On behalf of the Editorial Board of the EMJ
V.I. Burenkov, T.V. Tararykova, A.M. Temirkhanova
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INEQUALITIES BETWEEN THE NORMS
OF A FUNCTION AND ITS DERIVATIVES

A. S. Kochurov

Communicated by V. I. Burenkov

Key words: inequalities for derivatives, necessary conditions for an extremum, Weier-
strass formula, Euler equation.

AMS Mathematics Subject Classification: 26D10.

Abstract. The paper is devoted to the problem of finding the maximum of the norm
‖x‖q with the constraints ‖x‖p = η, ‖ẋ‖r = σ, x(0) = a, a, σ, η > 0, for functions
x ∈ Lp(R−) with derivatives ẋ ∈ Lr(R−), 0 < p 6 q < ∞, r > 1. The arguments
employed are based on the standard machinery of the calculus of variations

1 Introduction

Kolmogorov inequalities for derivatives (or Landau–Kolmogorov inequalities) on the
line or on the half-line are inequalities of the form

‖x(k)(·)‖Lq(T ) 6 K · ‖x(·)‖α
Lp(T )‖x(n)(·)‖β

Lr(T ), x(·) ∈ Wn
p,r(T ),

where T is R or R−, n, k, k < n, are nonnegative integers, Wn
p,r(T ) is the class of

functions x(·) in Lp(T ) whose derivatives x(n−1)(·) of order (n−1) are locally absolutely
continuous on T and the nth derivatives x(n)(·) belong to the space Lr(T ), α, β are
positive numbers, α + β = 1. The smallest possible constant K > 0 in this inequality
is the solution of the extremal problem(∫

T

|x(k)|q dt
)1/q

→ sup,

∫
T

|x|p dt 6 1,

∫
T

|x(n)|r dt 6 1, (1.1)

over all functions x(·) ∈ Wn
p,r(T ). This constant is called the Kolmogorov constant (or

the Landau–Kolmogorov constant). The first problem of this kind, for p = q = r = ∞,
n = 2, k = 1, was solved by Landau (1913) on the half-line ([7]) and by Hadamard
(1914) on the line. Hadamard’s result was extended in 1937 by Kolmogorov [5], who
found the exact value in (1.1) for p = q = r = ∞, T = R with all possible n, k.
At present, no exact solution of (1.1) is known in the general case, it is only known
for particular values of p, q, r, T , n and k. Such partial solutions with arbitrary k
and n were found by G.H. Hardy, J. E. Littlewood, G. Pólya, E. Stein, L.V. Taikov,
Yu. I. Lyubich, N. P. Kuptsov, V.N. Gabushin. Besides, there is a number of studies in
which the exact solutions were found for small n (mostly for n = 2) for some particular
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values of the remaining parameters p, q, r, T and k. The available exact constantsK and
means of finding them are given in [12], [2], [9], [3], [13], [10] [6], [8], [4]. Exact solutions
of (1.1) have great importance for various problems of the recovery of functionals (see,
for example, [8]); they also appear in the problem of the best approximation to the
differentiation operator [10].

Proofs and surveys of available results on inequalities for derivatives may also be
found in [3], [6].

In 1941 Sz.-Nagy ([11], see also [3]) found the solution of (1.1) for all possible
p, q > 0, r > 1 and T = R, n = 1, k = 0. For r > 1 we shall obtain this and similar
results using the standard machinery of the calculus of variations.

2 Main results

Let p, q ∈ (0,∞), r ∈ (1,∞) a, η, σ > 0, and let p 6 q. On the half-line R− we
consider the problem of the calculus of variations

−
∫

R−

|x|q dt→ inf

∫
R−

|x|p dt = ηp,

∫
R−

|ẋ|r dt = σr (2.1)

(here ẋ(·) denotes the derivative in t of a function x(·)) and the isoperimetric problem

−
∫

R−

|x|q dt→ inf

∫
R−

|x|p dt = ηp,

∫
R−

|ẋ|r dt = σr, x(0) = a. (2.2)

If p = q, then problems (2.1) and (2.2) degenerate: the value of (2.1) is (−ηq), while
in (2.2) it may happen that there will be no admissible functions, but if there are
admissible functions, then the value of (2.2) is also (−ηq).

Throughout it will be assumed that p < q. Note that η, σ are fixed, hence a > 0
in (2.2) cannot be arbitrarily large — it is bounded from above by the value of the
problem

x(0) → sup

∫
R−

|x|p dt = ηp,

∫
R−

|ẋ|r dt = σr, (2.3)

which is equal to

(1− s)s−1 σ1−sηs, s = (1 + r′/p)−1, 1/r + 1/r′ = 1

(this fact will be considered separately from (2.1) and (2.2)):

Lemma 2.1. (see [11]). Let 0 < p < ∞, 1 < r < ∞. Then the solution of problems
(2.3), (2.30) is equal to (1− s)s−1 σ1−sηs.

The proof of Lemma 2.1 will be given later.

Consider the following problem of the calculus of variations

J0(x(·)) → extr, Ji(x(·)) = 0, 1 6 i 6 m, (2.4)

where

Ji(x(·)) =

∫ t1

t0

Li(t, x(t), ẋ(t)) dt+ `i(x(t0), x(t1)),
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Li : R2n+1 → R, `i : R2n → R, 0 6 i 6 m. Its Lagrange function reads as

L(x, λ) =
m∑

i=0

λiJi(x(·)) =

∫ t1

t0

L(t, x(t), ẋ(t)) dt+ `(x(t0), x(t1))

L =
m∑

i=0

λiLi , ` =
m∑

i=0

λi`i.

Let x1(·) ∈ C1[t0, t1] and let Q(x1) be the set of points τ ∈ [t0, t1] for any of which
there is a neighbourhood U = U(t, x1) ⊂ R2n+1 of the point (τ, x1(τ), ẋ1(τ))

T at which
both the functions Li(t, x, ẋ), i = 0, . . . ,m, and their partial derivatives in x and in ẋ
are defined and continuous (this definition implies that Q(x1) is an open subset of
[t0, t1]). We will use the following statement

Proposition 1. (see [1]). If a function x̂(·) ∈ C1[t0, t1] is a local extremum for prob-
lem (2.4) in the space C1([t0, t1]), then there exists a vector λ = (λ0, . . . , λm) 6= 0

of Lagrange multipliers such that, at the points of the set Q(x̂), the function L̂ẋ is
continuously differentiable in t and the Euler equation holds

− d

dt
L̂ẋ(t) + L̂x(t) = 0,

where L̂ẋ(t) = Lẋ(t, x̂(t), ˙̂x(t)), L̂x(t) = Lx(t, x̂(t), ˙̂x(t)).
If tj ∈ Q(x̂) for j = 0 (or j = 1) and if at the point x̂(tj) all the functions `i(·, x̂(t1))

for j = 0 (or all `i(x̂(t0), ·) for j = 1), i = 0, . . . ,m, are continuously differentiable,
then the transversality condition holds

L̂ẋ(tj) = (−1)j`x(tj)(x̂(t0), x̂(t1)).

The proof of Proposition 1 will be given later.
To solve problem (2.2) we construct a special function which is admissible for (2.2)

and verify that it minimizes the problem.
We let L = −λ0|x|q +B|x|p +A|ẋ|r denote the Lagrangian of (2.2), where (λ0, A,B)

are the Lagrange multipliers. A solution x̂(·) of problem (2.2) in the space C1(R −)
can be found from the necessary conditions for an extremum, in accordance with
which (see Proposition 1) for x̂(t) at each point t ∈ R − either the Euler equation
− d

dt
Lẋ(t, x̂(t), ˙̂x(t)) + Lx(t, x̂(t), ˙̂x(t)) = 0 holds or x̂(t) = 0. The Lagrangian L does

not explicitly depend on t, and hence (see [1]) the Euler equation has the first integral
(the ‘energy’ integral):

λ0|x|q −B|x|p + A(r − 1)|ẋ|r = const .

If const = 0, then this equation is clearly satisfied by the identically zero function. We
shall assume that the solution of (2.2) is sought among the functions which tend to
zero together with its first derivative as t→ −∞. Hence,

|x|q −B|x|p + A(r − 1)|ẋ|r = 0 (2.5)



Inequalities between the norms of a function and its derivatives 31

(we assume that λ0 = 1, A > 0, B > 0). Equation (2.5) will be considered on the
entire real line; a continuously differentiable solution thereof satisfying the constraints
in (2.2) will be sought in the form of a function x̂(·) with support in (m−,m+) ⊂ R,
which is strictly increasing on (m−, τ ] and strictly decreasing on [τ,m+). Note that
τ ∈ (m−,m+) may be positive or negative and that for m−,m+ it may happen that
m− = −∞, m+ = +∞ (a possible occurrence of two intervals of monotonicity for x̂ on
(−∞, 0) is due to the fact that with fixed parameters η, σ and sufficiently small value
of a in (2.2) there are no monotone solutions of (2.5) on (−∞, 0)).

From the character of variation of x̂(·) one may change, on each of the intervals
(m−, τ), (τ, 0), to a new independent variable x̂ and assume that on each of these
intervals

˙̂x = ˙̂x(x̂), t = t(x̂).

Such a change enables one to skip finding the explicit form of the function x̂(t) and
be confined with its parametric representation ˙̂x(x̂), which follows from (2.5): since τ
is a point of maximum of the function x̂, from (2.5) and the properties of x̂ it follows
that x̂(τ) = B1/(q−p), x̂(m−) = 0, and moreover,

dt =

(
Bx̂p − x̂q

A(r − 1)

)−1/r

dx̂, τ − t =

∫ B1/(q−p)

x̂(t)

(
Bzp − zq

A(r − 1)

)−1/r

dz, (2.6)

on (m−, τ) and

dt = sgn τ

(
Bx̂p − x̂q

A(r − 1)

)−1/r

dx, τ − t = sgn τ

∫ B1/(q−p)

x̂(t)

(
Bzp − zq

A(r − 1)

)−1/r

dz,

on (τ, 0).
From (2.6) it is clear that the satisfaction (and failure) of the equalities m− = −∞,

m+ = +∞ depends on the convergence of the integral∫ 1

0

z−p/rdz.

Accordingly, if the integral diverges (p > r), then m− = −∞, m+ = +∞; if it converges
(0 < p < r), then m− > −∞, m+ < +∞.

To find the Lagrange multipliers A, B and the value of sgn τ there are two equations,
which result from eliminating the variable t in the isoperimetric constraints in (2.2):(∫ B1/(q−p)

0

+ sgn τ

∫ a

B1/(q−p)

)
zp

(
Bzp − zq

A(r − 1)

)−1/r

dz = ηp,

(∫ B1/(q−p)

0

+ sgn τ

∫ a

B1/(q−p)

)(
Bzp − zq

A(r − 1)

)1−1/r

dz = σr.

Below it will be shown that from these equations one may find the unknowns A, B,
sgn τ , and that the value of problem (2.2) is equal to

J = J (a, η, σ) = −

(∫ B1/(q−p)

0

+ sgn τ

∫ a

B1/(q−p)

)
zq

(
Bzp − zq

A(r − 1)

)−1/r

dz. (2.7)
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Theorem 2.1. Let 0 < p < q < ∞, r ∈ (1,∞), 1/r + 1/r′ = 1, s = (1 + r′/p)−1,
a, η, σ > 0. If a 6 (1− s)s−1 σ1−sηs, then the value of problem (2.2) is J (a, η, σ). If
a > (1− s)s−1 σ1−sηs, then problem (2.2) has no admissible functions.

Proof. If a > (1− s)s−1 σ1−sηs, then the conclusion of Theorem 2.1 follows from
Lemma 2.1. Let a 6 (1− s)s−1 σ1−sηs and let x(·) be a function which is contin-
uously differentiable on R−, admissible for (2.2), is supported in [−l, 0], and which,
for any t ∈ (−l, 0], satisfies the strict inequality x(t) > 0 and the strict inequality
(see (2.3))

x(t) < (1− s)s−1 β(t)(1−s)/rα(t)s/p, s = (1 + r′/p)−1, 1/r + 1/r′ = 1, (2.8)

where

α(t) :=

∫ t

−l

|x(z)|p dz, β(t) :=

∫ t

−l

|ẋ(z)|r dz.

Lemma 2.2. Let r > 1, q > p > 0. Then, for t ∈ (−l, 0], there exist continuously
differentiable functions C(t) > 0, D(t) > 0 and a continuous function s(t) satisfying
relations (∫ D1/(q−p)

0

+ sgn(s− t)

∫ x(t)

D1/(q−p)

)
zp

(
Dzp − zq

C(r − 1)

)−1/r

dz = α(t),

(∫ D1/(q−p)

0

+ sgn(s− t)

∫ x(t)

D1/(q−p)

)(
Dzp − zq

C(r − 1)

)1−1/r

dz = β(t), (2.9)

|s− t| =
∫ D1/(q−p)

x(t)

(
Dzp − zq

C(r − 1)

)−1/r

dz.

Moreover, the condition s(t) = t is equivalent to the equality x(t) = D(t)1/(q−p) and the
expression x(t) ·D(t)1/(p−q) depends only on α(t)r−1β(t)x(t)−pr−r+p.

As a result, the values A = C(0), B = D(0), τ = s(0), and hence, the function x̂(·)
are well-defined.

Example. Let ν > 1, r > 1, q > p > 0, y(t) = ε · (t + l)ν , t ∈ [−l, 0], ε, l > 0. Let us
find the functions C(t) and D(t) with this y(·):

α(t) =

∫ t

−l

|y(z)|p dz =
εp(t+ l)νp+1

νp+ 1
, β(t) =

∫ t

−l

|ẏ(z)|r dz =
(ν ε)r(t+ l)(ν−1)r+1

(ν − 1)r + 1
,

αr−1(t) · β(t)

y(t)pr+r−p
=

νr

(νp+ 1)r−1((ν − 1)r + 1)
.

Hence, D(t) = γp−q · (t+ l)ν(q−p), γ = const. From (2.9) we have

(C · β)1/r′β1/r = const ·D
1

q−p
( q

r′+1),
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that is (C · β)1/r′ = const · (t + l)ν( q
r′+1)−ν+ 1

r′ , C · β = const · (t + l)νq+1, C(t) =
const · (t+ l)νq−(ν−1)r.

Thus, for any ν > 1 and y(t) = ε · (t+ l)ν , the functions D(·), C(·)β(·) are contin-
uously differentiable on the half-line R− and are supported in the interval [−l, 0]. The
function C(·) has the same properties if ν > 1 is sufficiently close to 1.

Lemma 2.3. Let, in addition, x(·) satisfy the conditions:

lim
t→−l

D(t) · α(t) = 0, lim
t→−l

C(t) · β(t) = 0, (2.10)

where the functions C(·), D(·) and s(·) are defined in Lemma 2.2. Then,∫
R−

(x̂q − xq) dt = (2.11)

=

∫
[−l,0]

C ·

(
|ẋ|r −

(
D · xp − xq

C · (r − 1)

)
− r sgn(s− t)

(
D · xp − xq

C · (r − 1)

)1−1/r

×

(
ẋ− sgn(s− t)

(
D · xp − xq

C · (r − 1)

)1/r
))

dt

(this equality is a corollary of the Weierstrass identity for the isoperimetric problem,
see [1]).

Proofs of Lemma 2.2 and Lemma 2.3 will be given later.
The right-hand side in (2.11) is nonnegative, because C(·) is positive and the func-

tion |ẋ|r is convex in ẋ. Hence, ∫
R−

(x̂q − xq) dt > 0 (2.12)

for functions x(·) satisfying (2.8), (2.10). In the remaining part of the proof of the
theorem inequality (2.12) is extended to arbitrary admissible functions.

We shall assume that the function x(·) is continuously differentiable, admissible
for (2.2), has support in [−l, 0], and, for all t ∈ (−l, 0], satisfies the inequality x(t) > 0,
while inequality (2.12) does not hold.

Consider an auxiliary continuously differentiable function y(t), which vanishes iden-
tically on (−∞,−1], is equal to 1 on [0,+∞), is equal to (t+1)ν , ν > 1, on [−1,−1/2],
and which strictly increases on (−1, 0]. We choose ν so that y(·) does not satisfy the
Euler equation for problem (2.3)

d

dt

(
ẏ r−1

)
= λ · y p−1

(see Lemma 2.1) on [−1,−1/2] for any λ ∈ R. According to the example after
Lemma 2.2 and Proposition 1, the function

xε(t) = x(t) + ε · y((t+ l)/ε)
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satisfies for any ε > 0 all the assumptions in (2.8), (2.10). Hence, for z(·) = xε(·),

−J (z(0), ‖z‖p
p, ‖ż‖r

r)−
∫

R−

∣∣z(t)∣∣q dt > 0, (2.13)

which contradicts the continuity (see Lemma 2.2) of J in a > 0, η > 0, σ > 0 and the
fact that (2.12) does not hold with x(·).

Assume that x(·) is an absolutely continuous function which is admissible for (2.2)
and for which (2.12) does not hold. On R− we consider an absolutely continuous
function z1(·), which is supported in [−l, 0], agrees with x(·) on [−l + ε, 0], l > ε > 0,
and is linear function on [−l,−l + ε]. Hence, using the continuity of the integral, one
may find l, ε so that (2.13) would not be satisfied for z(·) = z1(·).

Similarly, approximating the function ż1(·) within ε1 > 0 in the metric of Lr(R−)
by a continuous function ż2(·) supported in [−l1, 0], l1 > 0, we obtain a function z2(·),
which is a continuously differentiable on R−, has support in [−l1, 0]), and for which
‖z1 − z2‖C(R−) = o(1) (as ε1 → 0). Hence, one may choose a sufficiently small ε1 > 0
so that (2.13) would not hold for z(·) = z2(·).

Let δi, i ∈ I, be the intervals on which the function z2(·) has constant sign. If the
number of such intervals is finite, then we set z3(t) = |z2(t)|, t ∈ R−. If the number of
such intervals in infinite,

{t ∈ [−l1, 0] : z2(t) 6= 0} =
⋃∞

i=1
δi , δi ∩ δj = ∅ , i 6= j,

then, given k ∈ N, we put

z3(t) = |z2(t)| , t ∈ δi , i = 1, . . . , k , z3(t) = 0 , t ∈ R− \ ∪k
i=1δi.

For a function z(·) = z3(·) (with sufficiently large k ∈ N in the second case) inequality
(2.13) is not satisfied and this function is nonnegative, continuous and has compact
support. Besides, it is continuously differentiable at all points of R−, except for, pos-
sibly, at a finite number of points, where its derivative has jump discontinuities. For
ε > 0, we replace ż3(·) by the continuous function ż4(·), which on small intervals around
each point of discontinuity of ż3(·) is a linear function and which coincides with ż3(·)
at the remaining points of R− so that

‖ż4 − ż3‖r 6 ε, ‖z4 − z3‖C(R−) 6 ε

(here z4(·) is such a primitive of ż4(·) which vanishes at all points t ∈ R− lying suffi-
ciently far from the origin). If [−lε, 0] is the support of z4(·), then for

z(t) = z4(t) + ε · y((t+ lε)/ε)

inequality (2.13) is satisfied, but as ε → 0+ this contradicts the continuity of J in
a, η, σ > 0 and the fact that, for z3(·), inequality (2.12) is not satisfied. This contra-
diction shows that (2.12) holds for all functions admissible for (2.2).

Proof of Lemma 2.3. Let x(·) be a function which is continuously differentiable on
R−, admissible for (2.2), has support in [−l, 0], and such that, for all t ∈ (−l, 0], it
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satisfies the inequality x(t) > 0 and inequality (2.8). By Lemma 2.2, on (−l, 0] there
exist continuously differentiable functions C(t), D(t) > 0 and a continuous function
s(t), t ∈ (−l, 0], obeying the system of equations (2.9). Moreover, both the function
x̂(·) and the norm ‖x̂‖Lq(R−) are defined.
Opening the brackets in the right-hand side of (2.11) and cancelling, we have∫

R−

x̂q dt =

∫
[−l,0]

(
C|ẋ|r +Dxp − r sgn(s− t)Cẋ

(
Dxp − xq

C(r − 1)

)1−1/r)
dt. (2.14)

Let us check (2.14):∫
R−

x̂q dt
(2.6)
=

(∫ B1/(q−p)

0

+ sgn τ

∫ a

B1/(q−p)

)
zq

(
Bzp − zq

A(r − 1)

)−1/r

dz

(def)
=

(∫ D(0)1/(q−p)

0

+ sgn(s(0)− 0)

∫ x(0)

D(0)1/(q−p)

)
zq

(
D(0)zp − zq

C(0)(r − 1)

)−1/r

dz

(2.9)
= D(0)

∫ 0

−l

|x(z)|p dz − C(0)(r − 1)

∫ 0

−l

|ẋ(z)|r dz

(2.10)
=

∫ 0

−l

d

(
D(t)

∫ t

−l

|x(z)|p dz − C(t)(r − 1)

∫ t

−l

|ẋ(z)|r dz
)

=

∫ 0

−l

(
D(t)|x(t)|p − C(t)(r − 1)|ẋ(t)|r

)
dt

+

∫ 0

−l

(∫ t

−l

|x(z)|p dz
)
d(D(t))− (r − 1)

∫ 0

−l

(∫ t

−l

|ẋ(z)|r dz
)
d(C(t)).

Let J be the sum of integrals with respect to d(D(t)) and d(C(t)) in the last expression.
We calculate J using the fact that for t > −l the functions D(t) > 0 and C(t) > 0 are
continuously differentiable in t.

Let t ∈ (−l, 0]. Assume that either s(t) 6= t or s(t) = t holds identically in
some neighbourhood of t (in the latter case, by Lemma 2.2, D(t)1/(q−p) = x(t) in this
neighbourhood). Hence,

|ẋ(t)|r =

(∫ t

−l

|ẋ(z)|r dz
)′

(2.9)
=

((∫ D(t)1/(q−p)

0

+ sgn(s(t)− t)

∫ x(t)

D(t)1/(q−p)

)(
D(t)zp − zq

C(t)(r − 1)

)1−1/r

dz

)′

= sgn(s(t)− t)

(
D(t)xp(t)− xq(t)

C(t)(r − 1)

)1−1/r

ẋ(t)

+
r − 1

r

(∫ D(t)1/(q−p)

0

+ sgn(s(t)− t)

∫ x(t)

D(t)1/(q−p)

)(
Dzp − zq

C(r − 1)

)−1/r

×
((

D

C(r − 1)

)′
zp −

(
1

C(r − 1)

)′
zq

)
dz

(2.9)
= sgn(s(t)− t)

(
Dxp − xq

C(r − 1)

)1−1/r

ẋ
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+
1

rC

(
D′(t)

∫ t

−l

|x(z)|p dz − C ′(t)(r − 1)

∫ t

−l

|ẋ(z)|r dz
)
.

In the remaining points t, at which s(t) = t, the equality

|ẋ(t)|r = sgn(s(t)− t)

(
Dxp − xq

C(r − 1)

)1−1/r

ẋ

+
1

rC

(
D′(t)

∫ t

−l

|x(z)|p dz − C ′(t)(r − 1)

∫ t

−l

|ẋ(z)|r dz
)

also holds, because its right- and left-hand sides are continuous in t. Hence,

J =

∫ 0

−l

rC(t)|ẋ(t)|r dt−
∫ 0

−l

(
rC(t) sgn(s(t)− t)

(
Dxp − xq

C(r − 1)

)1−1/r

ẋ
)
dt

Finally, using this expression for J , we obtain (2.14). �

Proof of Lemma 2.2. Let x(·) be a function which is continuously differentiable on R−,
admissible for (2.2), supported in [−l, 0], and which satisfies the inequalities x(t) > 0
and (2.8) for all t ∈ (−l, 0].

Before proceeding with the general case in Lemma 2.2, we partially examine the
case q = 4, p = r = 2, for which the quantities C,D and s from (2.9) can be found
explicitly:(∫ √

D

0

+ sgn(s− t)

∫ x

√
D

)
z2

(
Dz2 − z4

C

)−1/2

dz =
√
C(
√
D − g

√
D − x2) = α,

(∫ √
D

0

+ sgn(s− t)

∫ x

√
D

)(
Dz2 − z4

C

)1/2

dz =

√
D3 − g

√
(D − x2)3

3
√
C

= β,

|s− t| =
∫ √

D

x

(
Dz2 − z4

C

)−1/2

dz,

where we put g = sgn(s − t), x = x(t), α = α(t), β = β(t), t > −l. Note that in this
case the quantities α, β > 0, x > 0 are related by inequality (2.3):

x4 < 4αβ.

Excluding the unknown C from the first two equations, we get

(
√
D − g

√
D − x2)(

√
D3 − g

√
(D − x2)3) = 3αβ.

Next, replacing D by γ = D − x2/2, we get

(
√
γ + x2/2− g

√
γ − x2/2)(

√
(γ + x2/2)3 − g

√
(γ − x2/2)3) = 3αβ

which gives, by expanding the brackets,

2γ2 +x4/2− g
√
γ2 − x4/4 ·2γ = 3αβ, 2γ2 +x4/2−3αβ = g

√
γ2 − x4/4 ·2γ. (2.15)
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If γ2 − x4/4 6= 0, then g = sgn(2γ2 + x4/2− 3αβ), which gives, after squaring,

4γ2(x4/2− 3αβ) + (x4/2− 3αβ)2 = (−x4) · γ2,

(3αβ − x4/2)2 = 3(4αβ − x4)γ2.

Hence,

D − x2

2
= γ =

3αβ − x4/2√
3(4αβ − x4)

, (2.16)

2γ2 +x4/2− 3αβ =
2(3αβ − x4/2)2

3(4αβ − x4)
+x4/2− 3αβ = (3αβ−x4/2)(

2(3αβ − x4/2)

3(4αβ − x4)
− 1)

=
(6αβ − x4)(x4 − 3αβ)

3(4αβ − x4)
,

g = sgn(2γ2 + x4/2− 3αβ) = sgn(x4 − 3αβ), (2.17)
√
C =

α

(
√
D − g

√
D − x2)

.

Consequently, using (2.15) and (2.16), we get

g
√
D − x2 = g

√
(γ2 − x4/4)/D =

x4 − 3αβ√
3D(4αβ − x4)

.

After simplifications, we have

C =
α2√

3(4αβ − x4)
.

If the equality γ2 − x4/4 = 0 holds in (2.15), then one will not be able to find g in
a unique way, while for D and C, we have

D − x2

2
= γ =

x2

2
, D = x2, x4 = 3αβ, C =

α2

x2
=

α2

√
3αβ

.

In this case, we set g = 1.
Let us now proceed with the proof of Lemma 2.2. Let t ∈ (−l, 0]. We exclude the

unknown C from the first two equalities in (2.9) and replace the variable z → zD1/(q−p)

under the integral sign, hence we get

1

γpr+r−p

((∫ 1

0

+g

∫ γ

1

)
(zp − zq)

r−1
r dz

)((∫ 1

0

+g

∫ γ

1

)
zp

r
√
zp − zq

dz

)r−1

=
αr−1β

x(t)pr+r−p
,

(2.18)
where γ = x(t)D

1
p−q ∈ (0, 1], g = sgn(s− t). For the general equation

1

γpr+r−p

((∫ 1

0

+g

∫ γ

1

)
zp

r
√
zp − zq

dz

)r−1((∫ 1

0

+g

∫ γ

1

)
(zp − zq)

r−1
r dz

)
= y

(2.19)
we claim that γ = γ(y) depends smoothly on y.
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To this aim we rewrite the left-hand side of (2.19) with g > 0 as

1

γpr+r−p

(∫ γ

0

zp

r
√
zp − zq

dz

)r−1(∫ γ

0

(zp − zq)
r−1

r dz

)
and prove that it is strictly monotone increasing in γ ∈ (0, 1]. Changing the variable
z → z1/(1+p/r′) in the integrals and setting k = r′(q − p)/(p + r′) > 0, w = γ1+p/r′ ,
we find that the left-hand side of (2.19) with g > 0 differs only by a constant positive
factor from

1

wr

(∫ w

0

(1− zk)−1/r dz

)r−1(∫ w

0

(1− zk)1/r′ dz

)
. (2.20)

Let us transform (2.20). We have∫ w

0

(1− zk)1/r′ dz =

∫ w

0

(1− zk)−1/r dz −
∫ w

0

zk−1z(1− zk)−1/r dz

=

∫ w

0

(1− zk)−1/r dz +
r′

k
w(1− wk)1/r′ − r′

k

∫ w

0

(1− zk)1/r′ dz,

and hence

(1 +
r′

k
)

∫ w

0

(1− zk)1/r′ dz =

∫ w

0

(1− zk)−1/r dz +
r′

k
w(1− wk)1/r′ .

Therefore, the verification of monotonicity of (2.20) reduces to the verification of mono-
tonicity in w ∈ (0, 1),

br +
r′

k
(1− c)1/r′br−1, b :=

1

w

∫ w

0

(1− zk)−1/r dz, c := wk.

The derivative of this function in w is as follows:(
rbr−1

(
−b+ (1− c)−1/r

)
− (1− c)−1/rcbr−1

+
r′(r − 1)

k
(1− c)1/r′br−2

(
−b+ (1− c)−1/r

)) 1

w

=
(
−rbr + (1− c)−1/rbr−1(r − c− r

k
(1− c)) +

r

k
br−2(1− c)1−2/r

) 1

w
, (2.21)

and its sign agrees with the sign of

ϕ(c) = −rb2(1− c)1/r + b(r − c− r

k
(1− c)) +

r

k
(1− c)1−1/r. (2.22)

From the explicit representation it is seen that ϕ ∈ C(0, 1] and ϕ(1) = b(r − 1) > 0.
In a small neighbourhood of c = 0 we have,

b = 1 +
c

r + rk
+

c2(1 + r)

2(1 + 2k)r2
+ o(c2), (1− c)1/r = 1− c

r
− c2

2rr′
+ o(c2),

(1− c)1−1/r = 1− c

r′
− c2

2rr′
+ o(c2).
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Substituting into (2.22), this gives

ϕ(c) =
k2(k/r′ + 1)

(1 + k)2(1 + 2k)
c2 + o(c2) > 0,

correspondingly, the function ϕ is positive on (0, c0) if c0 > 0 is sufficiently small.
Assume now that ϕ vanishes at some point c ∈ (0, 1). Let us check that in this case
the derivative of ϕ at this point is positive, which will yield a contradiction, because
this condition cannot be satisfied for all c ∈ (0, 1) for which ϕ(c) = 0.

The derivative of the mapping ϕ(c) in w reads as (c = wk)

−2rb(1−c)1/r−b+ (1− c)−1/r

w
+b2(1−c)−1+1/r kc

w
+(r−c− r

k
(1−c))−b+ (1− c)−1/r

w

−b(k − r)
c

w
− (r − 1)(1− c)−1/r c

w
.

As above, its sign agrees with that of

b2(1−c)
2
r (2r+

kc

1− c
)−b(1−c)

1
r (2r+r−c− r

k
(1−c)+(k−r)c)+(r−c− r

k
(1−c)−(r−1)c).

We set d := b(1−c)1/r > 0, m := 1−c ∈ (0, 1), and write the equation ϕ(c)(1−c)1/r = 0
and the expression of the same sign as the derivative of the function ϕ at the point c
in terms of d,m:

−rd2 +d(r−1+m− r

k
m)+

r

k
m = 0 ⇔ d(dr− r+1) = m(dk+ r−dr)/k, (2.23)

d2(k + (2r − k)m)− dm(2r + rm− 1 +m− r

k
m+ k − km) + r(1− 1/k)m2

= d2(k + (2r − k)m)− dm(2r − 1 + k) + (dk + r − dr)(1− 1/k)m2

(2.23)
= d

(
d(k + (2r − k)m)−m(2r − 1 + k) + (dr − r + 1)(k − 1)m

)
= d
(
dk −mdk + 2rm(d− 1) + r(d− 1)(k − 1)m

)
(2.23)
= d

(
mr(1− d) + dkr(1− d) + 2rm(d− 1) + r(d− 1)(k − 1)m

)
= dkr(1− d)(d−m). (2.24)

If one assumes that
dk + r − dr 6 0

in the equation (2.23), then we would also have dr− r+1 6 0, a contradiction. Hence,
dk + r − dr > 0 and (2.23) implies that

m =
dk(dr − r + 1)

dk + r − dr
,

the sign of (1− d)(d−m) from (2.24) agreeing with the sign of

(1− d)(dk + r − dr − k(dr − r + 1)) = (1− d)2(r + kr − k) > 0,
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because, if d = 1, then m = 1, a contradiction with the condition m ∈ (0, 1).
Thus, for g > 0 the expression on the left of (2.19) has continuous and strictly

positive derivative in γ ∈ (0, 1). This derivative tends to +∞ as γ approaches 1 from
the left (see (2.21)). If γ varies over (0, 1], the left-hand side of (2.19) increases from
(1 + p/r′)−r to

I =

(∫ 1

0

zp

r
√
zp − zq

dz

)r−1 ∫ 1

0

(zp − zq)
r−1

r dz

(the limit as γ → +0 of the left-hand side of (2.19) is (1 + p/r′)−r, inasmuch as∫ γ

0

zp

r
√
zp − zq

dz = (1 + o(1)) ·
∫ γ

0

zp/r′ dz =
γ1+p/r′ · (1 + o(1))

1 + p/r′

as γ → +0).
If now g < 0, then each of the cofactors on the left of (2.19) decreases continuously

and strictly monotonically in γ ∈ (0, 1), so that their product decreases from +∞ to I,
the derivative of the product does not vanish and tends to −∞ as γ approaches 1 on
the left. All these facts can be obtained by a direct calculation of the derivative.

As a result, the left-hand side of (2.19) attains all values from (1 + p/r′)−r to +∞,
and for y ∈

(
(1 + p/r′)−r,∞

)
the dependence γ = γ(y) is continuously differentiable,

it has two intervals of monotonicity and a point of strong maximum γ(y) = 1 with
y = I, at which (2.19), g = 1 with y < I, g = −1 with y > I; for y = I one cannot
find g ∈ {−1,+1} uniquely, and so we set g = 1 by definition.

On the other hand, by the inequality for derivatives (see (2.3)), the number (1+ p
r′

)−r

is the least possible in the right-hand side of (2.18).
Thus, for any

y(t) =
αr−1β

x(t)pr+r−p
, x(t) > 0, (2.25)

the values γ(y(t)) ∈ (0, 1), g(y(t)) ∈ {−1,+1} and

D(t) =
(
x(t)/γ(y(t))

)q−p
> 0 (2.26)

in (2.18) are uniquely defined; moreover, D(t) depends on t in a continuously differen-
tiable way. Using (2.9) we may hence uniquely recover the continuously differentiable
function C(t) > 0 and the function s(t). �

Let us now examine problem (2.1).

Theorem 2.2. (see [11]). Let 0 < p < q < ∞, r ∈ (1,∞), η, σ > 0. Then the value
of problem (2.1) is

Ĵ = Ĵ (η, σ) = − p+ r′

q − p
B
( s

q − p
, 1/r′

) p−q
s
(
σ−r 1

q + r′

) p−q
sr
(
η−p 1

q − p

)−qr−r+q
sr

,

s = 1 + p/r′, where B
(

s
q−p

, 1/r′
)

is the Beta function at the point
(

s
q−p

, 1/r′
)
.
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Proof. Let a, η, σ > 0. We fix η, σ. As in the proof of Lemma 2.2, we exclude A
from (2.7) and change the variable z → zB1/(q−p) under the integral signs(

a

γ

) pr+r−p
r−1

(
η−p

(∫ 1

0

+g

∫ γ

1

)
zp

r
√
zp − zq

dz

)

×
(
σ−r

(∫ 1

0

+g

∫ γ

1

)
(zp − zq)

r−1
r dz

) 1
r−1

= 1,

J (a, η, σ) = −
(
a

γ

) qr+r−q
r−1

((∫ 1

0

+g

∫ γ

1

)
zq

r
√
zp − zq

dz

)

×
(
σ−r

(∫ 1

0

+g

∫ γ

1

)
(zp − zq)

r−1
r dz

) 1
r−1

,

where γ = aB
1

p−q ∈ (0, 1], g = sgn(τ). Expressing a from the first equality and
substituting in the expression for J (a, η, σ), gives

J = J (a, η, σ) = −F ·
(
σ−r(E − F )

) p−q
pr+r−p (

η−pE
)−qr−r+q

pr+r−p ,

E =

(∫ 1

0

+g

∫ γ

1

)
zp

r
√
zp − zq

dz, F =

(∫ 1

0

+g

∫ γ

1

)
zq

r
√
zp − zq

dz.

Let us find the infimum of J (a, η, σ) over all possible values of a, g. We note that if
g = 1 or g = −1 and γ ∈ (0, 1), then the function J (a, η, σ) at the point (a, η, σ),
which corresponds to (γ, g), may not have a local minimum in a, for otherwise the
function x̂(·) = x̂(a, η, σ)(·), which is continuously differentiable on R−, would deliver
a local minimum in problem (2.1). However, in this case the transversality condition
for the function L(·) from (2.2) must be satisfied on x̂(·) (see Proposition 1):

Lẋ(0, x̂(0), ˙̂x(0)) = 0 ⇔ Ar sgn ˙̂x(0) | ˙̂x(0)|r−1 = 0 ⇔ ˙̂x(0) = 0.

The function x̂(·) satisfies (2.5), and hence, a = x̂(0) = B1/(q−p); that is, γ = 1 with
this a, which contradicts the assumption γ ∈ (0, 1).

Let g = 1 and γ0 ∈ (0, 1). For convenience, instead of examining J we shall consider
the value ln |J |: the sign of the increment of ln |J | between the values at 1 and at γ0

agrees with the sign of the derivative ln |J |, which is as follows:

γq

F
(γp − γq)−1/r +

p− q

pr + r − p
· (γp − γq)1/r′

E − F
+
−qr − r + q

pr + r − p
· γ

p

E
(γp − γq)−1/r

at the intermediate point γ ∈ (γ0, 1). This sign also agrees with the sign of

γq

F
+

p− q

pr + r − p
· γ

p − γq

E − F
+
−qr − r + q

pr + r − p
· γ

p

E
. (2.27)

This expression will vanish for γ = 1, because in this case E = I1, F = I2, E − F =
I1 − I2,

I1 =

∫ 1

0

zp

r
√
zp − zq

dz =
1

q − p

∫ 1

0

z
1+p/r′

q−p
−1(1− z)−1/r dz =

1

q − p
B
(1 + p/r′

q − p
, 1/r′

)
,



42 A. S. Kochurov

I1 − I2 =

∫ 1

0

(zp − zq)1/r′ dz =
1

q − p
B
(1 + p/r′

q − p
, 1/r′ + 1

)
=

1

q + r′
B
(1 + p/r′

q − p
, 1/r′

)
,

I2 =

∫ 1

0

zq

r
√
zp − zq

dz =
( 1

q − p
− 1

q + r′

)
B
(1 + p/r′

q − p
, 1/r′

)
,

where B(·, ·) is the beta function. So, (2.27) with γ = 1 becomes

1

I2
+
−qr − r + q

pr + r − p
· 1

I1
= 0.

Hence, the sign of the expression in (2.27) agrees with the opposite sign of

q
γq−1

F
− γ2q

F 2
(γp − γq)−1/r +

p− q

pr + r − p
·
(pγp−1 − qγq−1

E − F
− (γp − γq)1+1/r′

(E − F )2

)
+
−qr − r + q

pr + r − p
·
(
p
γp−1

E
− γ2p

E2
(γp − γq)−1/r

)
,

while the principal significant terms in this sum are as follows:

−(γp − γq)−1/r
(γ2q

F 2
+
−qr − r + q

pr + r − p
· γ

2p

E2

)
.

Substituting γ = 1 into the bracketed expression, we find that

1

I2
2

+
−qr − r + q

pr + r − p
· 1

I2
1

= I2
1

((q + r′)2

(p+ r′)2
− q + r′

p+ r′

)
> 0.

Hence, if γ0 is sufficiently close to 1, then the sign of the derivative of the expression
in (2.27) is negative, while this expression is positive, because it equals the product of
the derivative at an intermediate point and the variation of the argument (γ − 1) < 0.
Hence, and since both J (·) and ln |J | have no local minima at the points a that
correspond to γ ∈ (0, 1), it follows that for a > 0, a ∼ (γ, g), g = 1 and γ ∈ (0, 1], the
least possible value for J (a, η, σ) is attained for γ = 1; it is as follows:

Ĵ = − I2 ·
(
σ−r(I1 − I2)

) p−q
pr+r−p

(
η−pI1

)−qr−r+q
pr+r−p

.

Using the representation of I1, I2 in terms of the Beta function, Ĵ can be written as

Ĵ = − p+ r′

q − p
B
(1 + p/r′

q − p
, 1/r′

) p−q
1+p/r′

(
σ−r 1

q + r′

) p−q
pr+r−p

(
η−p 1

q − p

)−qr−r+q
pr+r−p

.

If g = −1 and γ ∈ (0, 1) tends to zero, then

J = −2 I2 ·
(
2σ−r(I1 − I2)

) p−q
pr+r−p

(
2η−pI1

)−qr−r+q
pr+r−p

(1 + ō(1)) (2.28)

and therefore, Ĵ < J for small values of γ. Again using the fact that J (·) has no
local minima at the points a corresponding to γ ∈ (0, 1), it follows that, for a > 0,
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a ∼ (γ, g), g = −1 and γ ∈ [0, 1], the least value of J (a, η, σ) is attained on Ĵ . Note
that the function Ĵ = Ĵ (η, σ) depends on η > 0, σ > 0 in a continuously differentiable
way.

It remains to consider the case of an admissible function x(·) for (2.1), for which
x(0) = 0. Assume that for such a function

−
∫

R−

|x|q dt < Ĵ . (2.29)

Without loss of generality we may assume that x(·) does not vanish identically on any
interval [τ, 0], τ < 0. Let τ < 0 be such that x(τ) 6= 0. By the above,

−
∫ τ

−∞
|x|q dt > Ĵ

(
‖x‖p

Lp((−∞,τ ]), ‖ẋ‖
r
Lr((−∞,τ ])

)
,

which contradicts (2.29) and the continuity of Ĵ (η, σ), because τ < 0 can be taken
arbitrarily close to zero.

Corollary 2.1. (see [11]). The quantity

2 I2 ·
(
2σ−r(I1 − I2)

) p−q
pr+r−p

(
2η−pI1

)−qr−r+q
pr+r−p

(see (2.28)) is the value of problem (1.1) with p, q > 0, r > 1 and T = R, n = 1, k = 0.

Let 0 < p < ∞, 1 < r < ∞, η, σ > 0. Let us now examine problem (2.3), whose
value agrees with that of the problem

x(0) → sup

∫
R−

|x|p dt 6 ηp,

∫
R−

|ẋ|r dt 6 σr. (2.30)

We set

x̂(t) =

 p1/pσ1/pη1/r′ · eσt/σ for p = r,(
p+r′

r′

) r′
p+r′

σ1−sηs
(
1− p−r

pr−p+r
a1t
) r

r−p

+
for p 6= r,

where (u)+ := max{u, 0} and

s = (1 + r′/p)−1, 1/r + 1/r′ = 1, a1 =

(
σ

η(1− s)

)r′s

.

Proof of Lemma 2.1. If p > 1, then problem (2.30) is convex, and in this case the
verification of the conclusions of Lemma 2.1 presents no challenge: for p > 1 the neces-
sary conditions for an extremum are such that, for the function x̂, the Euler equations
− d

dt
Lẋ + Lx = 0 for the Lagrangian L = L(t, x, ẋ) = λ|x|p + µ|ẋ|r, the transversality

condition at the origin µr|ẋ(0)|r−1 sgn ẋ(0) = 1, the complementary slackness condi-
tions

λ(

∫
R−

|x|p dt− ηp) = 0, µ(

∫
R−

|ẋ|r dt− σr) = 0,
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and the nonnegative conditions for λ, µ > 0 ([1]),

λ = (r − 1)σrη−pµ, µ =
1

r

(
(1− s)σ−r(1+1/p)η

)s
,

must all hold. Moreover, the necessary conditions for an extremum imply that, for
any compactly supported continuously differentiable function x(·), the equality (the
principal identity) holds:

x(0) = pλ

∫
R−

(x̂)p−1 · x dt+ rµ

∫
R−

(x̂ ′)r−1 · x′ dt.

This condition can be also verified directly by integration by parts. Hence, if the
function x(·) satisfies in addition the constraints of problem (2.30), then

|x(0)| 6 pλ|
∫

R−

(x̂)p−1 · x dt|+ rµ|
∫

R−

(x̂ ′)r−1 · x′ dt|

6 pλη
(∫

R−

(x̂)p dt
)1/p′

+ rµσ
(∫

R−

(x̂ ′)r dt
)1/r′

= pληp + rµσr = rµσr(p/r′ + 1) = (1− s)s−1σ1−sηs.

Hence, for any compactly supported continuously differentiable function which is ad-
missible for (2.30),

|x(0)| 6 (1− s)s−1σ1−sηs. (2.31)

Since the expression (1−s)s−1σ1−sηs in the right-hand side of (2.31) depends on η, σ > 0
continuously, it follows that (2.31) is also satisfied for an arbitrary function which is
admissible for (2.30). Inequality (2.30) is sharp: it becomes an equality for the function
x̂(·).

The case p = 1 is a limiting case for p > 1: if x(·) is an arbitrary continuously
differentiable function with compact support on R−, then, for any p > 1,

|x(0)| 6 (1− s)s−1
(∫

R−

|x|p dt
)s/p(∫

R−

|ẋ|r dt
)(1−s)/r

, s = (1 + r′/p)−1.

This continuity in p > 1 implies that this inequality also holds for x(·) and with p = 1.
As in the case p > 1, this secures the assertion of the lemma with p = 1.

In the case p < 1, considering the transformations x(t) → αx(βt) with α, β > 0, we
transform (2.3) to the problem∫

R−

|y|p dt→ inf

∫
R−

|ẏ|r dt = wr, y(0) = a. (2.32)

Let L = λ0|y|p +A|ẏ|r, (λ0, A) be the Lagrange multipliers. The solution to (2.32) may
be found from the necessary conditions for an extremum, which (by Proposition 1) are
related to the first integral for the Euler equations [1] (the ‘energy’ integral):

−λ0|y|p + A(r − 1)|ẏ|r = const
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and to the function x ≡ 0. Thus, the solution to (2.32) will be sought among the
functions that tend to zero together with their first derivative as t → −∞; we shall
also assume that λ0 = 1, A > 0. Hence,

−|y|p + A(r − 1)|ẏ|r = 0. (2.33)

A monotone solution of (2.33) satisfies the equation ẏ = ((r − 1)A)−1/ryp/r; this is

ŷ(t) =
(
a

r−p
r +

(1− p/r) · t
((r − 1)A)1/r

) r
r−p

+
.

In order to find A it remains to invoke the isoperimetric constraint from (2.32). The
optimality of the solution thus obtained will be proved via the Weierstrass formula in
the isoperimetric problem (see [1]). We choose an admissible continuously differentiable
function y(t), supported in [−l, 0], and assuming only positive values on (−l, 0]. For
any t ∈ (−l, 0], we define λ = λ(t) > 0, C = C(t) > 0, so as to have (y = y(t))

(
λ+

(1− p/r) · t
((r − 1)C)1/r

) r
r−p

+
= y,

1

(r − 1)C

t∫
−∞

(
λ+

(1− p/r) · τ
((r − 1)C)1/r

) pr
r−p

+
dτ

= σ = σ(t) :=

t∫
−l

|ẏ(τ)|r dτ

or (after integration)

λ+
(1− p/r) · t
((r − 1)C)1/r

= y
r−p

r ,
1

((r − 1)C)1/r′

(
λ+

(1− p/r) · t
((r − 1)C)1/r

) pr
r−p

+1 1

1 + p/r′
= σ.

Hence,
1

((r − 1)C)1/r′

y1+p/r′

1 + p/r′
= σ, (r − 1)C =

yp+r′σ−r′

(1 + p/r′)r′
. (2.34)

We set
u = u(t) :=

( yp

(r − 1)C

)1/r

.

We assume, in addition, that the function y(·) satisfies the condition

lim
t→−l+0

C(t)1/r · y(t)1+p/r′ = 0 (2.35)

(this condition is satisfied for the functions from the example after Lemma 2.2). For
y(·) satisfying (2.35), we write down the Weierstrass identity and check it:∫

R−

(yp − ŷp) dt =

∫ 0

−l

(
yp + C|ẏ|r − yp − Cur − (ẏ − u)Crur−1

)
dt

=

∫ 0

−l

C ·
(
|ẏ|r − ur − rur−1(ẏ − u)

)
dt > 0.
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After cancelling and substituting u(·), we see that it is required to prove the equality∫
R−

(−ŷp) dt =

∫ 0

−l

(
C|ẏ|r − rẏC1/ryp/r′(r − 1)−1/r′

)
dt. (2.36)

We have dt = ((r − 1)A)1/rŷ −p/r dŷ for t ∈ R− lying in the interior of the support of
ŷ(·), and hence∫

R−

(−ŷp) dt =

∫ a

0

(−zp)((r − 1)A)1/rz−p/r dz
(def)
= −((r − 1)C(0))1/r

∫ y(0)

0

zp/r′ dz

(2.35)
= −

∫ 0

−l

d

dt

(
((r − 1)C(t))1/r

∫ y(t)

0

zp/r′ dz
)
dt

= −
∫ 0

−l

(
((r − 1)C(t))1/ry(t)p/r′ ẏ(t) +

1

r
((r − 1)C(t))−1/r′(r − 1)Ċ(t)

y(t)1+p/r′

1 + p/r′

)
dt.

From (2.34) it follows that, for t ∈ (−l, 0],

(r − 1)Ċ(t) = (p+ r′)(r − 1)C(t)
ẏ(t)

y(t)
− r′(r − 1)C(t)

|ẏ(t)|r

σ
.

Using this representation for (r − 1)Ċ(t), we find that∫
R−

(−ŷp) dt = −
∫ 0

−l

(
((r − 1)C(t))1/ry(t)p/r′ ẏ(t) +

p+ r′

r
((r − 1)C(t))1/r ẏ(t) y(t)

p/r′

1 + p/r′

−1

r

(
(r − 1)C(t)

)−1/r′
r′(r − 1)C(t)

|ẏ(t)|r

σ

y(t)1+p/r′

1 + p/r′

)
dt

(2.34)
= −

∫ 0

−l

(
r′((r − 1)C(t))1/ry(t)p/r′ ẏ(t) − σ

r
r′(r − 1)C(t)

|ẏ(t)|r

σ

)
dt,

which proves (2.36). Thus, in problem (2.32), among the admissible continuously
differentiable functions y(·), with finite support on [−l, 0], which are strictly positive
on (−l, 0] and satisfy (2.35), the smallest value of ‖y‖p is attained for ŷ(·).

Hence, as in the proof of Theorem 2.1, it follows that ŷ(·) is a solution to (2.32).
Again considering the transformations ŷ(t) → αŷ(βt) with α, β > 0, we prove that x̂(·)
is a solution to (2.3) and (2.30). �
Proof of Proposition 1. For the transversality condition the desired conclusion will be
obtained at a point t0 with t0 ∈ Q(x̂) and when at x̂(t0) all the functions `i(·, x̂(t1)),
i = 0, . . . ,m, are continuously differentiable. Let H denote the linear subspace of the
space C1([t0, t1],Rn) consisting of all functions v(·), v(t1) = 0, supported in Q(x̂). For
the mapping Λ(·) from H into Rm+1,

Λv(·) = (J ′
0(x̂(·))[v(·)], . . . ,J ′

m(x̂(·))[v(·)])T , v(·) ∈ H,

J ′
i (x̂(·))[v(·)] =

∫
supp (v)

(
(L̂i)ẋ(t) · v̇(t) + (L̂i)x(t) · v(t)

)
dt+ `x(t0)(x̂(t0), x̂(t1)) · v(t0)
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(here supp (v) is the support a function v(·)
)
, one of the following two cases is possible:

the range of Λ is a proper subspace of Rm+1 or is the whole space Rm+1. In the
first case, there exists a nonzero vector y ∈ Rm+1 orthogonal to this subspace. Let
λ = (λ0, . . . , λm) = yT . Then λ · Λv(·) = 〈y,Λv(·)〉 =

∫
supp (v)

(L̂ẋ(t) · v̇(t) + L̂x(t) ·
v(t))dt+ `x(t0)(x̂(t0), x̂(t1)) · v(t0) = 0 for any v(·) ∈ H.

Let t2 ∈ Q(x̂) and let U = U(t2, x̂) ⊂ R2n+1 be a neighbourhood of the point
(t2, x̂(t2), ˙̂x(t2))

T at which the functions L, Lx, Lẋ are continuous. We consider a non-
degenerate interval [τ0, τ1] ⊂ [t0, t1] which contains t2 and for which the portion
{(t, x̂(t), ˙̂x(t))T ∈ R2n+1 | t ∈ [τ0, τ1]} of the extended graph of x̂(·) lies in U . We
have 〈y,Λv(·)〉 =

∫ τ1
τ0

(L̂ẋ(t) · v̇(t) + L̂x(t) · v(t))dt = 0 for any v(·) ∈ C2[τ0, τ1]∩H sup-
ported in [τ0, τ1]. If τ0 = t0 (or τ1 = t1), we assume in addition that v(t0) = v̇(t0) = 0
(or, respectively, v(t1) = v̇(t1) = 0). Integrating by parts, gives

0 =

∫ τ1

τ0

(
L̂ẋ(t) +

∫ τ1

t

L̂x(τ)dτ − c0
)
· v̇(t) dt

=

∫ τ1

τ0

(∫ τ1

t

(
L̂ẋ(τ) + L̂x(τ)(τ − t)− c0

)
dτ − c1

)
· v̈(t) dt

for any c0, c1 ∈ Rn. We choose c0, c1 and a function v(·) so as to have

v̈(t) =

∫ τ1

t

(
L̂ẋ(τ) + L̂x(τ)(τ − t)− c0

)
dτ − c1 , v(τ0) = v̇(τ0) = 0,

∫ τ1

τ0

v̇(t)dt =

∫ τ1

τ0

v̈(t)dt = 0,

on [τ0, τ1] and have v(t) = 0 outside the interval [τ0, τ1]. Hence,∫ τ1

τ0

∥∥∥∫ τ1

t

(
L̂ẋ(τ) + L̂x(τ)(τ − t)− c0

)
dτ − c1

∥∥∥2

` n
2

dt = 0.

It follows that
∫ τ1

t

(
L̂ẋ(τ) + L̂x(τ)(τ − t) − c0

)
dτ − c1 ≡ 0 on [τ0, τ1] and that L̂ẋ(t)

is continuously differentiable. Differentiating, we arrive at the Euler equation on the
interval [τ0, τ1], and hence, at all points of the set Q(x̂).

Since t0 ∈ Q(x̂), at this point we have, in addition,∫ τ1

t0

(L̂ẋ(t) · v̇(t) + L̂x(t) · v(t))dt+ `x(t0)(x̂(t0), x̂(t1)) · v(t0) = 0

for any v(·) ∈ C2[τ0, τ1] ∩ H supported in [t0, τ1]. Integrating by parts and using the
Euler equation on [t0, τ1], we arrive at the equality(

`x(t0)(x̂(t0), x̂(t1))− L̂ẋ(t0)
)
· v(t0) = 0

for any v(t0) ∈ Rn. Hence, the transversality condition also holds.
In the second case, there exists a subspace M generated by the functions

{vi(·)}m+1
i=1 ⊂ H such that Λ(M) = Rm+1. This means that Λ

∣∣
M

is an isomorphism
between M and Rm+1. Let S = ∪m+1

i=1 supp (vi) denote the union of the supports of
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the functions vi(·), i = 1, . . . ,m + 1. Note that S is a compact subset of Q(x̂) and
supp (v) ⊂ S for any v(·) ∈M . By the definition of Q(x̂) it follows that in some neigh-
bourhood of the set {(t, x̂(t), ˙̂x(t))T ∈ R2n+1 | t ∈ S} both the functions Li(t, x, ẋ),
i = 0, . . . ,m, and their partial derivatives in x and in ẋ are defined and continuous.

Let ϑ ∈ Rm+1, ψ(ϑ) = (J0(x̂(·) + v(·)), . . . ,Jm(x̂(·) + v(·)))T , where v(·) =
(Λ
∣∣
M

)−1(ϑ). By the definition ψ ′(0)[ϑ] = Λv(·) = ϑ; that is, ψ ′(0) is the iden-
tity operator. Next, by the inverse function theorem, applied to ψ(·) at the point
ϑ = 0, at any neighbourhood of x̂(·) one may solve the system of equations J0(x(·)) =
J0(x̂(·)) + ε, J1(x(·)) = . . . = Jm(x(·)) = 0 for each ε sufficiently close to 0. But this
contradicts the fact that x̂(·) is a local extremum of the problem. �
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