Eurasian Mathematical Journal

2016, Volume 7, Number 1

Founded in 2010 by
the L.N. Gumilyov Eurasian National University
in cooperation with
the M.V. Lomonosov Moscow State University
the Peoples' Friendship University of Russia
the University of Padua

Supported by the ISAAC (International Society for Analysis, its Applications and Computation) and by the Kazakhstan Mathematical Society

Published by

the L.N. Gumilyov Eurasian National University Astana, Kazakhstan

EURASIAN MATHEMATICAL JOURNAL

Editorial Board

Editors-in-Chief

V.I. Burenkov, M. Otelbaev, V.A. Sadovnichy

Editors

Sh.A. Alimov (Uzbekistan), H. Begehr (Germany), T. Bekjan (China), O.V. Besov (Russia), N.A. Bokayev (Kazakhstan), A.A. Borubaev (Kyrgyzstan), G. Bourdaud (France), A. Caetano (Portugal), M. Carro (Spain), A.D.R. Choudary (Pakistan), V.N. Chubarikov (Russia), A.S. Dzumadildaev (Kazakhstan), V.M. Filippov (Russia), H. Ghazaryan (Armenia), M.L. Goldman (Russia), V. Goldshtein (Israel), V. Guliyev (Azerbaijan), D.D. Haroske (Germany), A. Hasanoglu (Turkey), M. Huxley (Great Britain), M. Imanaliev (Kyrgyzstan), P. Jain (India), T.Sh. Kalmenov (Kazakhstan), B.E. Kangyzhin (Kazakhstan), K.K. Kenzhibaev (Kazakhstan), S.N. Kharin (Kazakhstan), E. Kissin (Great Britain), V. Kokilashvili (Georgia), V.I. Korzyuk (Belarus), A. Kufner (Czech Republic), L.K. Kussainova (Kazakhstan), P.D. Lamberti (Italy), M. Lanza de Cristoforis (Italy), V.G. Maz'ya (Sweden), E.D. Nursultanov (Kazakhstan), R. Oinarov (Kazakhstan), K.N. Ospanov (Kazakhstan), I.N. Parasidis (Greece), J. Pečarić (Croatia), S.A. Plaksa (Ukraine), L.-E. Persson (Sweden), E.L. Presman (Russia), M.A. Ragusa (Italy), M.D. Ramazanov (Russia), M. Reissig (Germany), M. Ruzhansky (Great Britain), S. Sagitov (Sweden), T.O. Shaposhnikova (Sweden), A.A. Shkalikov (Russia), V.A. Skvortsov (Poland), G. Sinnamon (Canada), E.S. Smailov (Kazakhstan), V.D. Stepanov (Russia), Ya.T. Sultanaev (Russia) sia), I.A. Taimanov (Russia), T.V. Tararykova (Great Britain), J.A. Tussupov (Kazakhstan), U.U. Umirbaev (Kazakhstan), Z.D. Usmanov (Tajikistan), N. Vasilevski (Mexico), Dachun Yang (China), B.T. Zhumagulov (Kazakhstan)

Managing Editor

A.M. Temirkhanova

Executive Editor

D.T. Matin

Aims and Scope

The Eurasian Mathematical Journal (EMJ) publishes carefully selected original research papers in all areas of mathematics written by mathematicians, principally from Europe and Asia. However papers by mathematicians from other continents are also welcome.

From time to time the EMJ publishes survey papers.

The EMJ publishes 4 issues in a year.

The language of the paper must be English only.

The contents of EMJ are indexed in Scopus, Web of Science (ESCI), Mathematical Reviews, MathSciNet, Zentralblatt Math (ZMATH), Referativnyi Zhurnal – Matematika, Math-Net.Ru.

The EMJ is included in the list of journals recommended by the Committee for Control of Education and Science (Ministry of Education and Science of the Republic of Kazakhstan).

Information for the Authors

<u>Submission.</u> Manuscripts should be written in LaTeX and should be submitted electronically in DVI, PostScript or PDF format to the EMJ Editorial Office via e-mail (eurasianmj@yandex.kz).

When the paper is accepted, the authors will be asked to send the tex-file of the paper to the Editorial Office.

The author who submitted an article for publication will be considered as a corresponding author. Authors may nominate a member of the Editorial Board whom they consider appropriate for the article. However, assignment to that particular editor is not guaranteed.

Copyright. When the paper is accepted, the copyright is automatically transferred to the EMJ. Manuscripts are accepted for review on the understanding that the same work has not been already published (except in the form of an abstract), that it is not under consideration for publication elsewhere, and that it has been approved by all authors.

<u>Title page.</u> The title page should start with the title of the paper and authors' names (no degrees). It should contain the <u>Keywords</u> (no more than 10), the <u>Subject Classification</u> (AMS Mathematics Subject <u>Classification</u> (2010) with primary (and secondary) subject classification codes), and the <u>Abstract</u> (no more than 150 words with minimal use of mathematical symbols).

<u>Figures</u>. Figures should be prepared in a digital form which is suitable for direct reproduction.

<u>References</u>. Bibliographical references should be listed alphabetically at the end of the article. The authors should consult the Mathematical Reviews for the standard abbreviations of journals' names.

<u>Authors' data.</u> The authors' affiliations, addresses and e-mail addresses should be placed after the References.

<u>Proofs.</u> The authors will receive proofs only once. The late return of proofs may result in the paper being published in a later issue.

Offprints. The authors will receive offprints in electronic form.

Publication Ethics and Publication Malpractice

For information on Ethics in publishing and Ethical guidelines for journal publication see http://www.elsevier.com/publishingethics and http://www.elsevier.com/journal-authors/ethics.

Submission of an article to the EMJ implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see http://www.elsevier.com/postingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. In particular, translations into English of papers already published in another language are not accepted.

No other forms of scientific misconduct are allowed, such as plagiarism, falsification, fraudulent data, incorrect interpretation of other works, incorrect citations, etc. The EMJ follows the Code of Conduct of the Committee on Publication Ethics (COPE), and follows the COPE Flowcharts for Resolving Cases of Suspected Misconduct (http://publicationethics.org/files/u2/New_Code.pdf). To verify originality, your article may be checked by the originality detection service CrossCheck http://www.elsevier.com/editors/plagdetect.

The authors are obliged to participate in peer review process and be ready to provide corrections, clarifications, retractions and apologies when needed. All authors of a paper should have significantly contributed to the research.

The reviewers should provide objective judgments and should point out relevant published works which are not yet cited. Reviewed articles should be treated confidentially. The reviewers will be chosen in such a way that there is no conflict of interests with respect to the research, the authors and/or the research funders.

The editors have complete responsibility and authority to reject or accept a paper, and they will only accept a paper when reasonably certain. They will preserve anonymity of reviewers and promote publication of corrections, clarifications, retractions and apologies when needed. The acceptance of a paper automatically implies the copyright transfer to the EMJ.

The Editorial Board of the EMJ will monitor and safeguard publishing ethics.

Web-page

The web-page of EMJ is www.emj.enu.kz. One can enter the web-page by typing Eurasian Mathematical Journal in any search engine (Google, Yandex, etc.). The archive of the web-page contains all papers published in EMJ (free access).

Subscription

For Institutions

- US\$ 200 (or equivalent) for one volume (4 issues)
- US\$ 60 (or equivalent) for one issue

For Individuals

- US\$ 160 (or equivalent) for one volume (4 issues)
- US\$ 50 (or equivalent) for one issue.

The price includes handling and postage.

The Subscription Form for subscribers can be obtained by e-mail:

eurasianmj@yandex.kz

The Eurasian Mathematical Journal (EMJ)

The Editorial Office

The L.N. Gumilyov Eurasian National University

Building no. 3

Room 306a

Tel.: +7-7172-709500 extension 33312

13 Kazhymukan St

010008 Astana

Kazakhstan

NURZHAN BOKAYEV

(to the 60th birthday)

On January 5, 2016 was the 60th birthday of Doctor of Physical-Mathematical Sciences (1996), Professor Nurzhan Adilkhanovich Bokayev. Professor Bokayev is the head of the department "Higher Mathematics" of the L.N. Gumilyov Eurasian National University (since 2009), the Vice-President of Mathematical Society of the Turkic World (since 2014), and a member of the Editorial Board of our journal.

N.A. Bokayevwas born in the Urnek village, Karabalyk district, Kostanay region. He graduated from the E.A. Buketov Karaganda State University in 1977 and the M.V. Lomonosov Moscow State University's full-time postgraduate study in 1984.

Scientific works of Professor Bokayev are devoted to studying problems of the theory of functions, in particular of the theory of orthogonal series.

He proved renewal and uniqueness theorems for series with respect to periodic multiplicative systems and Haar-type systems, constructed continual sets of uniqueness (U-sets) and sets of non-uniqueness (M-sets) for multiplicative systems; investigated Besov-type function spaces with respect to the Price bases; studied the Price - and Haar-type p-adic operators; introduced new classes of Faber-Schauder-type systems of functions and spaces of multivariable functions of bounded p-variation and of bounded p-fluctuation, obtained estimates for the best approximation of functions in these spaces by polynomials with respect to the Walsh and Haar systems, established weighted integrability conditions of the sum of multiple trigonometric series and series with respect to multiplicative systems, found the embedding criterion for the Nikol'skii-Besov spaces with respect to multiplicative bases and the coefficient criterion for belonging of functions to such spaces.

His scientific results have made essential contribution to the theory of series with respect to the Walsh and Haar systems and multiplicative systems.

N.A. Bokayev has published more than 150 scientific papers. Under his supervision 8 dissertations have been defended: 4 candidate of sciences dissertations and 4 PhD dissertations.

The Editorial Board of the Eurasian Mathematical Journal congratulates Nurzhan Adilkhanovich Bokayev on the occasion of his 60th birthday and wishes him good health and successful work in mathematics and mathematical education.

The EMJ has been included in the Emerging Sources Citation Index

This year, Thomson Reuters is launching the Emerging Sources Citation Index (ESCI), which will extend the universe of publications in Web of Science to include high-quality, peer-reviewed publications of regional importance and in emerging scientific fields. ESCI will also make content important to funders, key opinion leaders, and evaluators visible in Web of Science Core Collection even if it has not yet demonstrated citation impact on an international audience.

Journals in ESCI have passed an initial editorial evaluation and can continue to be considered for inclusion in the Science Citation Index ExpandedTM (SCIE), one of the flagship indices of the Web of Science Core Collection, which has rigorous evaluation processes and selection criteria.

To be included, candidate journals must pass in-depth editorial review; peer review, timely publishing, novel content, international diversity, and citation impact, among other criteria, are evaluated and compared across the entire index.

All ESCI journals will be indexed according to the same data standards, including cover-to-cover indexing, cited reference indexing, subject category assignment, and indexing all authors and addresses.

Rapidly changing research fields and the rise of interdisciplinary scholarship calls for libraries to provide coverage of relevant titles in evolving disciplines. ESCI provides Web of Science Core Collection users with expanded options to discover relevant scholarly content. Get real-time insight into a journal's citation performance while the content is considered for inclusion in other Web of Science collections. Items in ESCI are searchable, discoverable, and citable so you can measure the contribution of an article in specific disciplines and identify potential collaborators for expanded research.

ESCI expands the citation universe and reflects the growing global body of science and scholarly activity. ESCI complements the highly selective indexes by providing earlier visibility for sources under evaluation as part of SCIE rigorous journal selection process. Inclusion in ESCI provides greater discoverability which leads to measurable citations and more transparency in the selection process.

The Eurasian Mathematical Journal, together with other 70 internationally recognized mathematical journal has been included in the Emerging Sources Citation Index (Mathematics).

Below is the extract from the list of such journals including journals with numbers from 22 to 29.

ELEMENTE DER MATHEMATIK

Quarterly ISSN: 0013-6018

EUROPEAN MATHEMATICAL SOC, PUBLISHING HOUSE, E T H-ZENTRUM SEW A27, SCHEUCHZERSTRASSE 70, ZURICH, SWITZERLAND, CH-8092

ENSEIGNEMENT MATHEMATIQUE

Quarterly ISSN: 0013-8584

EUROPEAN MATHEMATICAL SOC PUBLISHING HOUSE, SEMINAR APPLIED MATHEMATICS, ETH-ZENTRUM FLI C4, ZURICH, SWITZERLAND, 8092

EURASIAN MATHEMATICAL JOURNAL

Quarterly ISSN: 2077 -9879

L N GUMILYOV EURASIAN NATL UNIV, L N GUMILYOV EURASIAN NATL

UNIV, ASTANA, KAZAKHSTAN, 010008

EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Quarterly ISSN: 1307-5543

EUROPEAN JOURNAL PURE AND APPLIED MATHEMATICS, FAK AVCILAR,

ISTANBUL UNIV, ISLETME, ISTANBUL, TURKEY, 34320

FIBONACCI QUARTERLY

Quarterly ISSN: 0015-0517

FIBONACCI ASSOC, CIO PATTY SOLSAA, PO BOX 320, AURORA, USA, SD,

57002-0320

FORUM OF MATHEMATICS PI

lrregular ISSN: 2050-5086

CAMBRIDGE UNIV PRESS, EDINBURGH BLDG, SHAFTESBURY RD, CAM-

BRIDGE, ENGLAND, CB2 8RU

FORUM OF MATHEMATICS SIGMA

lrregular ISSN: 2050-5094

CAMBRIDGE UNIV PRESS, EDINBURGH BLDG, SHAFTESBURY RD, CAM-

BRIDGE, ENGLAND, C82 8RU

INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS

Bimonthly ISSN: 2291 -8639

ETAMATHS PUBL, 701 W GEORGIA ST, STE 1500, VANCOUVER, CANADA,

BC, V7Y 1C6

The complete list of all 71 mathematical journals included in the ESCI can be viewed on $wokinfo.com/products_tools/multidisciplinary/esci$.

On behalf of the Editorial Board of the EMJ

V.I. Burenkov, T.V. Tararykova, A.M. Temirkhanova

EURASIAN MATHEMATICAL JOURNAL

ISSN 2077-9879

Volume 7, Number 1 (2016), 9 – 27

BOUNDEDNESS, COMPACTNESS FOR A CLASS OF FRACTIONAL INTEGRATION OPERATORS OF WEYL TYPE

A.M. Abylayeva

Communicated by E.D. Nursultanov

Key words: fractional integration operator, Weyl operator, Riemann-Liouville operator, Hadamard operator, Erdelyi-Kober operator, boundedness, compactness.

AMS Mathematics Subject Classification: 26A33, 26D10, 47G10.

Abstract. We establish criteria for the boundedness and compactness for a class of operators of fractional integration involving the Weyl operator.

1 Introduction

Let I = (a, b), $0 \le a < b \le \infty$, $0 < q, p < \infty$, $\frac{1}{p} + \frac{1}{p'} = 1$. Let u, v be almost everywhere positive and locally integrable functions on I. By $L_{p,u} \equiv L_p(u, I)$ we denote the set of all measurable functions f on I such that

$$||f||_{p,u} = \left(\int_a^b |f(x)|^p u(x)dx\right)^{\frac{1}{p}} < \infty.$$

In the case $u \equiv 1$ we write $L_p \equiv L_p(I)$. Let W be a positive strictly increasing and locally absolutely continuous function on I. Suppose $\frac{dW(x)}{dx} \equiv w(x)$ for almost everywhere $x \in I$.

Let $1 > \alpha > 0$. We consider the operator

$$K_{\alpha,\beta}f(x) = \int_{x}^{b} \frac{u(s)W^{\beta}(s)f(s)w(s)ds}{(W(s) - W(x))^{1-\alpha}}, \quad x \in I.$$
 (1.1)

In the case $\beta = 0$, $u \equiv 1$ the dual operator to operator (1.1) has the form

$$K_{\alpha,\beta}^* f(x) = \int_a^x \frac{f(s)w(s)ds}{(W(x) - W(s))^{1-\alpha}}, \quad x \in I.$$
 (1.2)

Operator (1.2) is called [12] the operator of fractional integration of the function f of the function W. Weighted estimates for operator (1.2) were previously considered in [9], [1].

When W(x) = x, $u \equiv 1$, $\beta = 0$ operator (1.1) is the Weyl operator

$$I_{\alpha}^* f(x) = \int_x^b \frac{f(s)ds}{(s-x)^{1-\alpha}}, \quad x \in I,$$
 (1.3)

which is dual to the Riemann-Liouville operator

$$I_{\alpha}g(s) = \int_{a}^{s} \frac{g(x)dx}{(s-x)^{1-\alpha}}, \quad s \in I.$$
 (1.4)

Operators (1.3) and (1.4) acting from the weighted space $L_{p,u}$ to the weighted space $L_{q,v}$ are investigated in papers [2], [3], [4], [8], [10], [11] and others, where necessary and sufficient conditions for their boundedness, compactness are obtained for various relations between the parameters α, p, q and under various assumptions regarding the weight functions u and v. Two-sided estimates of their norms are also obtained.

We investigate operator (1.1) acting from the space $L_{p,w}$ to $L_{q,v}$. From the obtained results new assertions follow, in simple terms, for operators (1.3) and (1.4), generalizing the results of [4], [8], [10].

The positivity and monotonicity of W implies the existence of the non-negative limit $\lim_{x\to a^+} W(x) \equiv W(a)$. Futher, we assume W(a) = 0 and otherwise, we consider the operator $K_{\alpha,\beta}$ in the form, where function W(x) is replaced by the function $W_0(x) = W(x) - W(a), x \in I$.

Further, the norm of the linear operator T from a normed space to another one is denoted briefly by ||T||. Which spaces are meant will be clear from the context.

Throughout the paper the products of the form $0 \cdot \infty$ are supposed be equal to zero. Relations $A \ll B$, $A \gg B$ mean $A \leq cB$ with a constant c depending only on p, q, α which can be different in different places. If $A \ll B$ and $A \gg B$ then we write $A \approx B$. By \mathbb{Z} we denote the set of all integer numbers, χ_E denotes the characteristic function of the set E.

2 Auxiliary assertions

To prove the main results we need some well-known assertions.

Along with operator (1.1) we consider the Hardy operator

$$H_{\alpha,\beta}f(x) = \int_{x}^{b} u(s)W^{\beta+\alpha-1}(s)f(s)w(s)ds. \tag{2.1}$$

It is easy to see that for $f \geq 0$

$$K_{\alpha,\beta}f(x) \ge H_{\alpha,\beta}f(x), \ \forall x \in I.$$
 (2.2)

Issues of boundedness and compactness of operator (2.1) in weighted Lebesgue spaces were studied quite completely. A summary of the results can be found in [7]. The

following Theorem A and Theorem B are corollaries of Theorem 5 and Theorem 6 in [7].

Theorem A. Let $1 . The operator <math>H_{\alpha,\beta}$ is bounded from $L_{p,w}$ to $L_{q,v}$ if and only if

$$A_{\alpha,\beta} = \sup_{z \in I} \left(\int_a^z v(x) dx \right)^{\frac{1}{q}} \left(\int_z^b u^{p'}(s) W^{p'(\alpha+\beta-1)}(s) w(s) ds \right)^{\frac{1}{p'}} < \infty.$$

Moreover, $||H_{\alpha,\beta}|| \approx A_{\alpha,\beta}$.

Theorem B. Let $0 < q < p < \infty$, p > 1. The operator $H_{\alpha,\beta}$ is bounded from $L_{p,w}$ to $L_{q,v}$ if and only if

$$B_{\alpha,\beta} = \left(\int_{a}^{b} \left(\int_{z}^{b} u^{p'}(s) W^{p'(\alpha+\beta-1)} w(s) ds \right)^{\frac{q(p-1)}{p-q}} \times \left(\int_{a}^{z} v(x) dx \right)^{\frac{q}{p-q}} v(z) dz \right)^{\frac{p-q}{pq}} < \infty.$$

Moreover, $||H_{\alpha,\beta}|| \approx B_{\alpha,\beta}$.

Remark 1. In the case $1 < q < p < \infty$, p > 1 the value $B_{\alpha,\beta}$ is equivalent to the value

$$\widetilde{B}_{\alpha,\beta}(a,b) = \left(\int_{a}^{b} \left(\int_{z}^{b} u^{p'}(s) W^{p'(\alpha+\beta-1)}(s) w(s) ds \right)^{\frac{p(q-1)}{p-q}} \right) \times \left(\int_{a}^{z} v(x) dx \right)^{\frac{p}{p-q}} u^{p'}(z) W^{p'(\alpha+\beta-1)}(z) w(z) dz \right)^{\frac{p-q}{pq}}.$$

Remark 2. Note that a function u non-decreasing on I and such that $uW^{\beta+\alpha-1} \in L_{p',w}(z,b)$, for all $z \in I$, exists if and only if $W^{\beta+\alpha-1} \in L_{p',w}(z,b)$ for all $z \in I$.

3 Boundedness of the operator $K_{\alpha,\beta}$

Theorem 3.1. Let $0 < \alpha < 1$, $\frac{1}{\alpha} and <math>\beta \le 0$ ($\beta < \frac{1}{p} - \alpha$ when $W(b) = \infty$). Let u be a non-decreasing function on I. Then the operator $K_{\alpha,\beta}$ is bounded from $L_{p,w}$ to $L_{q,v}$ if and only if $A_{\alpha,\beta} < \infty$. Moreover, $||K_{\alpha,\beta}|| \approx A_{\alpha,\beta}$.

Proof. Necessity. Let the operator $K_{\alpha,\beta}$ be bounded from $L_{p,w}$ to $L_{q,v}$. Then, in view of (2.2), the operator $H_{\alpha,\beta}$ is bounded from $L_{p,w}$ to $L_{q,v}$ and $||K_{\alpha,\beta}|| \ge ||H_{\alpha,\beta}||$, therefore by Theorem A the value $A_{\alpha,\beta} < \infty$ and

$$||K_{\alpha,\beta}|| \gg A_{\alpha,\beta}.\tag{3.1}$$

Sufficiency. Since the function W is continuous and strictly increasing on I and W(a) = 0, then for any $k \in \mathbb{Z}$ the set $\{x : W(x) \le 2^k, x \in I\}$ is non-empty. Denoting $x_k = \sup\{x : W(x) \le 2^k, x \in I\}$ we obtain a sequence of points $\{x_k\}_{k \in \mathbb{Z}}$ such that $0 < x_k \le x_{k+1}$, $\forall k \in \mathbb{Z}$, and if $x_k < b$, then $W(x_k) = 2^k, 2^k \le W(x) \le 2^{k+1}$ for $x_k \le x \le x_{k+1}$, $x_k \in \mathbb{Z}$ and if $x_{k+1} = b$, then $\int_{x_k}^{x_{k+1}} w(s) ds \le 2^k$. These facts will be used below without reminders. We assume that $I_k = [x_k, x_{k+1}), k \in \mathbb{Z}, \mathbb{Z}_0 = \{k : k \in \mathbb{Z}, I_k \ne \emptyset\}$. Then $\mathbb{Z}_0 \subseteq \mathbb{Z}$ and $I = \bigcup_{k \in \mathbb{Z}} I_k = \bigcup_{k \in \mathbb{Z}_0} I_k$. Since $I_k = \emptyset$, $\forall k \in \mathbb{Z} \setminus \mathbb{Z}_0$, and integrals over these intervals are equal to zero, then in the sequel, without loss of generality, we suppose that $\mathbb{Z} = \mathbb{Z}_0$.

Let $A_{\alpha,\beta} < \infty$. We need to prove that the inequality

$$||T_{\alpha,\beta}f||_{q,v} \ll A_{\alpha,\beta}||f||_{p,w}, \quad f \in L_{p,w}, \tag{3.2}$$

holds, which means $||T_{\alpha,\beta}|| \ll A_{\alpha,\beta}$ and, together with (3.1), gives

$$||T_{\alpha,\beta}|| \approx A_{\alpha,\beta}.$$

It suffices to prove inequality (3.2) for $f \ge 0$. So let $f \ge 0$. Using the relation $I = \bigcup_k I_k$, we have

$$||K_{\alpha,\beta}f||_{q,v}^{q} = \sum_{k} \int_{x_{k-1}}^{x_{k}} v(x) \left(\int_{x}^{b} \frac{u(s)W^{\beta}(s)f(s)w(s)ds}{(W(s) - W(x))^{1-\alpha}} \right)^{q} dx$$

$$= \sum_{k} \int_{x_{k-1}}^{x_{k}} v(x) \left[\left(\int_{x}^{x_{k+1}} + \int_{x_{k+1}}^{b} \right) \frac{u(s)W^{\beta}(s)f(s)w(s)ds}{(W(s) - W(x))^{1-\alpha}} \right]^{q} dx$$

$$\ll \sum_{k} \int_{x_{k-1}}^{x_{k}} v(x) \left(\int_{x}^{x_{k+1}} \frac{u(s)W^{\beta}(s)f(s)w(s)ds}{(W(s) - W(x))^{1-\alpha}} \right)^{q} dx$$

$$+ \sum_{k} \int_{x_{k-1}}^{x_{k}} v(x) \left(\int_{x_{k+1}}^{b} \frac{u(s)W^{\beta}(s)f(s)w(s)ds}{(W(s) - W(x))^{1-\alpha}} \right)^{q} dx = J_{1} + J_{2}.$$

$$(3.3)$$

We estimate the values J_1 and J_2 separately. Using Hölder's inequality, nondecreasing of the function u and $\beta \leq 0$ and in view of change of variables W(s) = W(x)t we have

$$J_{1} = \sum_{k} \int_{x_{k-1}}^{x_{k}} v(x) \left(\int_{x}^{x_{k+1}} \frac{u(s)W^{\beta}(s)f(s)w(s)ds}{(W(s) - W(x))^{1-\alpha}} \right)^{q} dx$$

$$\leq \sum_{k} \int_{x_{k-1}}^{x_{k}} v(x) \left(\int_{x}^{x_{k+1}} |f(s)|^{p} w(s)ds \right)^{\frac{q}{p}} \left(\int_{x}^{x_{k+1}} \frac{u^{p'}(s)W^{p'\beta}(s)w(s)ds}{(W(s) - W(x))^{(1-\alpha)p'}} \right)^{\frac{q}{p'}} dx$$

$$\leq \sum_{k} \left(\int_{x_{k-1}}^{x_{k+1}} |f(s)|^{p} w(s) ds \right)^{\frac{q}{p}} u^{q}(x_{k+1}) \int_{x_{k-1}}^{x_{k}} v(x) W^{\frac{q}{p'}(p'\beta+p'(\alpha-1))}(x) \\
\times W^{\frac{q}{p'}}(x) \left(\int_{1}^{\frac{W(x_{k+1})}{W(x_{k-1})}} t^{p'\beta} (t-1)^{p'(\alpha-1)} dt \right)^{\frac{q}{p'}} dx$$

$$\leq \sum_{k} \left(\int_{x_{k-1}}^{x_{k+1}} |f(s)|^{p} w(s) ds \right)^{\frac{q}{p}} u^{q}(x_{k+1}) \\
\times 2^{\frac{q}{p'}(p'(\beta+\alpha-1))(k-1)} 2^{\frac{q}{p'}k} \left(\int_{1}^{4} t^{p'\beta} (t-1)^{p'(\alpha-1)} dt \right)^{\frac{q}{p'}} \int_{x_{k-1}}^{x_{k}} v(x) dx. \quad (3.4)$$

By the assumptions of the theorem $\alpha > \frac{1}{p}$, therefore $\int_{1}^{4} t^{p'\beta} (t-1)^{p'(\alpha-1)} dt < \infty$.

The expression $F = u^q(x_{k+1})2^{q(\beta+\alpha-1)(k-1)}2^{\frac{q}{p'}k}$ is estimated as follows. Since $\beta + \alpha - 1 < 0$ then

$$F = u^{q}(x_{k+1})2^{3q|\beta+\alpha-1|}2^{q(\beta+\alpha-1)(k+2)}2^{-\frac{q}{p'}}2^{\frac{q}{p'}(k+1)}$$

$$= 2^{3q|\beta+\alpha-1|-\frac{q}{p'}}u^{q}(x_{k+1})2^{q(\beta+\alpha-1)(k+2)}\left(\int_{x_{k+1}}^{x_{k+2}}w(s)ds\right)^{\frac{q}{p'}}$$

$$\leq 2^{3q|\beta+\alpha-1|-\frac{q}{p'}}\left(\int_{x_{k+1}}^{x_{k+2}}W^{p'(\beta+\alpha-1)}(s)u^{p'}(s)w(s)ds\right)^{\frac{q}{p'}}.$$

Substituting this estimate in (3.4) we obtain

$$J_{1} \ll \sum_{k} \left(\int_{x_{k-1}}^{x_{k+1}} |f(s)|^{p} w(s) ds \right)^{\frac{q}{p}} \int_{x_{k-1}}^{x_{k}} v(x) dx$$

$$\times \left(\int_{x_{k+1}}^{x_{k+2}} u^{p'}(s) W^{p'(\beta+\alpha-1)} w(s) ds \right)^{\frac{q}{p'}}$$

$$\leq A_{\alpha,\beta}^{q} \sum_{k} \left(\int_{x_{k-1}}^{x_{k+1}} |f(s)|^{p} w(s) ds \right)^{\frac{q}{p}} \leq A_{\alpha,\beta}^{q} \left(\sum_{k} \int_{x_{k-1}}^{x_{k+1}} |f(s)|^{p} w(s) ds \right)^{\frac{q}{p}}$$

$$\ll A_{\alpha,\beta}^q \|f\|_{p,w}^q. \tag{3.5}$$

Now, we estimate J_2 .

$$J_{2} = \sum_{k} \int_{x_{k-1}}^{x_{k}} v(x) \left(\int_{x_{k+1}}^{b} \frac{u(s)W^{\beta}(s)f(s)w(s)ds}{(W(s) - W(x))^{1-\alpha}} \right)^{q} dx$$

$$\leq \sum_{k} \int_{x_{k-1}}^{x_{k}} v(x) \left(\int_{x_{k+1}}^{b} \frac{u(s)W^{\beta}(s)f(s)w(s)ds}{(W(s) - W(x_{k}))^{1-\alpha}} \right)^{q} dx$$

$$\leq \sum_{k} \int_{x_{k-1}}^{x_{k}} v(x) \left(\int_{x_{k+1}}^{b} \frac{u(s)W^{\beta}(s)f(s)w(s)ds}{(W(s) - \frac{1}{2}W(x_{k+1}))^{1-\alpha}} \right)^{q} dx$$

$$\leq 2^{q(1-\alpha)} \sum_{k} \int_{x_{k-1}}^{x_{k}} v(x) \left(\int_{x_{k+1}}^{b} \frac{u(s)W^{\beta}(s)f(s)w(s)ds}{(W(s))^{1-\alpha}} \right)^{q} dx$$

$$\ll \int_{a}^{b} v(x) \left(\int_{x}^{b} u(s)W^{\beta+\alpha-1}(s)f(s)w(s)ds \right)^{q} dx = \|H_{\alpha,\beta}f\|_{q,v}^{q}. \tag{3.6}$$

Then, by Theorem A

$$J_2 \ll A_{\alpha,\beta}^q ||f||_{p,w}^q.$$
 (3.7)

Inequalities (3.3), (3.5) and (3.7) imply inequality (3.2).

Theorem 3.2. Let $0 < \alpha < 1$, $0 < q < p < \infty$, $p > \frac{1}{\alpha}$ and $\beta \leq 0$ ($\beta < \frac{1}{p} - \alpha$ in the case $W(b) = \infty$). Let u be a non-decreasing function on I. Then the operator $K_{\alpha,\beta}$ is bounded from $L_{p,w}$ to $L_{q,v}$ if and only if $B_{\alpha,\beta} < \infty$. Moreover, $||K_{\alpha,\beta}|| \approx B_{\alpha,\beta}$.

Proof. Necessity and the estimate

$$||K_{\alpha,\beta}|| \gg B_{\alpha,\beta} \tag{3.8}$$

follows by relation (2.2) and Theorem B. Sufficiency. Let $B_{\alpha,\beta} < \infty$. If the inequality

$$||K_{\alpha,\beta}f||_{q,v} \ll B_{\alpha,\beta}||f||_{p,w},$$
 (3.9)

holds then by (3.8) and (3.9) we obtain $||K_{\alpha,\beta}|| \approx B_{\alpha,\beta}$.

To prove (3.9) we use relation (3.3) of Theorem 3.1. Estimate for J_2 directly follows by (3.6) and Theorem B:

$$J_2 \ll B_{\alpha,\beta}^q ||f||_{p,w}^q.$$
 (3.10)

By (3.5) we have

$$J_1 \ll \sum_{k} \left(\int_{x_{k-1}}^{x_{k+1}} |f(s)|^p w(s) ds \right)^{\frac{q}{p}} \int_{x_{k-1}}^{x_k} v(x) dx$$

$$\times \left(\int_{x_k}^{b} u^{p'}(s) W^{p'(\beta+\alpha-1)}(s) w(s) ds \right)^{\frac{q}{p'}}$$

(applying the Hölder inequality with the exponents $\frac{p}{q}$, $\frac{p}{p-q}$)

$$\leq \left(\sum_{k} \left(\int_{x_{k-1}}^{x_{k}} v(x)dx\right)^{\frac{p}{p-q}} \left(\int_{x_{k}}^{b} u^{p'}(s)W^{p'(\beta+\alpha-1)}(s)w(s)ds\right)^{\frac{q(p-1)}{p-q}}\right)^{\frac{p-q}{p}} \times \left(\sum_{k} \int_{x_{k-1}}^{x_{k+1}} |f(s)|^{p}w(s)ds\right)^{\frac{q}{p}} \leq G||f||_{p,w}^{q}, \quad (3.11)^{\frac{q}{p}}$$

where

$$G = \left(\sum_{k} \left(\int_{x_{k-1}}^{x_k} v(x)dx\right)^{\frac{p}{p-q}} \left(\int_{x_k}^{b} u^{p'}(s)W^{p'(\beta+\alpha-1)}(s)w(s)ds\right)^{\frac{q(p-1)}{p-q}}\right)^{\frac{p-q}{p}}.$$

Using the relation

$$\left(\int\limits_{x_{k-1}}^{x_k}v(x)dx\right)^{\frac{p}{p-q}}=\frac{p}{p-q}\int\limits_{x_{k-1}}^{x_k}v(x)\left(\int\limits_{x_{k-1}}^xv(t)dt\right)^{\frac{q}{p-q}}dx$$

we estimate G:

$$G \ll \left(\sum_{k} \int_{x_{k-1}}^{x_k} v(x) \left(\int_{x_{k-1}}^{x} v(t)dt\right)^{\frac{q}{p-q}} dx \right) \times \left(\int_{x_k}^{b} u^{p'}(s)W^{p'(\beta+\alpha-1)}(s)w(s)ds\right)^{\frac{q(p-1)}{p-q}}$$

$$\leq \left(\sum_{k} \int_{x_{k-1}}^{x_k} \left(\int_{a}^{x} v(t)dt\right)^{\frac{q}{p-q}} \times \left(\int_{x}^{b} u^{p'}(s)W^{p'(\beta+\alpha-1)}(s)w(s)ds\right)^{\frac{q(p-1)}{p-q}} v(x)dx\right)^{\frac{p-q}{p}}$$

$$\leq B_{\alpha,\beta}^{q}. \tag{3.12}$$

By (3.11) and (3.12) it follows that

$$J_1 \ll B_{\alpha,\beta}^q ||f||_{p,w}^q. \tag{3.13}$$

Therefore, by (3.3), (3.10) and (3.13) it follows that inequality (3.9) holds.

4 The compactness of the operator $K_{\alpha,\beta}$

Theorem 4.1. Let $0 < \alpha < 1$, $\frac{1}{\alpha} and <math>\beta \le 0$ ($\beta < \frac{1}{p} - \alpha$ if $W(b) = \infty$). Let u be a non-decreasing function on I. Then the operator $K_{\alpha,\beta}$ is compact from $L_{p,w}$ to $L_{q,v}$ if and only if $A_{\alpha,\beta} < \infty$ and

$$\lim_{z \to a^+} A_{\alpha,\beta}(z) = \lim_{z \to b^-} A_{\alpha,\beta}(z) = 0,$$

where

$$A_{\alpha,\beta}(z) = \left(\int_a^z v(x)dx\right)^{\frac{1}{q}} \left(\int_z^b u^{p'}(s)W^{p'(\beta+\alpha-1)}(s)w(s)ds\right)^{\frac{1}{p'}}.$$

Proof. Necessity. Let the operator $K_{\alpha,\beta}$ be compact from $L_{p,w}$ to $L_{q,v}$. Then the operator is bounded and therefore, by Theorem 3.1, $A_{\alpha,\beta} < \infty$. First, we prove that $\lim_{z\to b^-} A_{\alpha,\beta}(z) = 0$.

Let $F(t) = \int_t^b u^{p'}(s) W^{p'(\beta+\alpha-1)}(s) w(s) ds$. Since $A_{\alpha,\beta} < \infty$ and function u non-decreasing then $0 < F(t) < \infty$ for $t \in I$. Consider the family of functions $\{f_t\}_{t \in I}$, where

$$f_t(x) = \chi_{(t,b)}(x)u^{p'-1}(x)W^{(p'-1)(\beta+\alpha-1)}(x)(F(t))^{-\frac{1}{p}}.$$
(4.1)

Then

$$\int_{a}^{b} |f_{t}(x)|^{p} w(x) dx = (F(t))^{-1} \int_{t}^{b} u^{p'}(x) W^{p'(\beta+\alpha-1)}(x) w(x) dx \equiv 1.$$
 (4.2)

We show that the family of functions $\{f_t\}$ weakly converges to zero in $L_{p,w}$. Let $g \in L_{p',w^{1-p'}} = (L_{p,w})^*$.

Applying the Holder inequality and using (4.2) we have

$$\int_{a}^{b} f_{t}(x)g(x)dx \leq \left(\int_{t}^{b} |f_{t}(x)|^{p} w(x)dx\right)^{\frac{1}{p}} \left(\int_{t}^{b} |g(x)|^{p'} w^{1-p'}(x)dx\right)^{\frac{1}{p'}}$$

$$= \left(\int_{t}^{b} |g(x)|^{p'} w^{1-p'}(x)dx\right)^{\frac{1}{p'}}.$$

Since $g \in L_{p',w^{1-p'}}$ then the last integral converges to zero as $t \to b$, which means the weak convergence to zero the family of function $\{f_t\}$. Then, by the compactness of the operator $K_{\alpha,\beta}$ from $L_{p,w}$ to $L_{q,v}$

$$\lim_{z \to b^{-}} \|K_{\alpha,\beta} f_t\|_{q,v} = 0. \tag{4.3}$$

We have

$$||K_{\alpha,\beta}f_{t}||_{q,v}^{q} = \int_{a}^{b} v(x) \left(\int_{x}^{b} \frac{u(s)W^{\beta}(s)f_{t}(s)w(s)ds}{(W(s) - W(x))^{1-\alpha}} \right)^{q} dx$$

$$\geq \int_{a}^{t} v(x) \left(\int_{t}^{b} \frac{u(s)W^{\beta}(s)f_{t}(s)w(s)ds}{(W(s) - W(x))^{1-\alpha}} \right)^{q} dx$$

$$\geq \int_{a}^{t} v(x)dx \left(\int_{t}^{b} u(s)W^{\beta+\alpha-1}(s)f_{t}(s)w(s)ds \right)^{q}$$

$$= (F(t))^{-\frac{q}{p}} \left(\int_{t}^{b} u^{p'}(s)W^{p'(\beta+\alpha-1)}(s)w(s)ds \right)^{q} \int_{a}^{t} v(x)dx = (A_{\alpha,\beta}(t))^{q}. \tag{4.4}$$

By (4.3) and (4.4) we obtain that $\lim_{t\to b^-} A_{\alpha,\beta}(t) = 0$.

Now, we show $\lim_{t\to a^+} A_{\alpha,\beta}(t) = 0$.

The compactness of the operator $K_{\alpha,\beta}: L_{p,w} \to L_{q,v}$ implies the compactness of the adjoint operator

$$K_{\alpha,\beta}^*g(x) = u(s)W^{\beta}(s)w(s)\int_a^s \frac{g(x)dx}{(W(s) - W(x))^{1-\alpha}}$$

from $L_{q',v^{1-q'}}$ to $L_{p',w^{1-p'}}$.

We introduce the family of functions $\{g_t\}_{t\in I}$, where

$$g_t(x) = \chi_{(a,t)}(x) \left(\int_a^t v(x) dx \right)^{-\frac{1}{q'}} v(x).$$

Since almost everywhere v > 0 and $A_{\alpha,\beta} < \infty$ then the function g_t is well defined. In view of the equality

$$\int_{a}^{b} |g_{t}(x)|^{q'} v^{1-q'}(x) dx = \left(\int_{a}^{t} v(x) dx \right)^{-1} \left(\int_{a}^{t} v(x) dx \right) = 1$$

for $f \in L_{q,v} = (L_{q',v^{1-q'}})^*$ we have

$$\int_{a}^{b} f(x)g_{t}(x)dx \leq \left(\int_{a}^{t} |f(x)|^{q}v(x)dx\right)^{\frac{1}{q}} \left(\int_{a}^{t} |g_{t}(x)|^{q'}v^{1-q'}(x)dx\right)^{\frac{1}{q'}} \\
= \left(\int_{a}^{t} |f(x)|^{q}v(x)dx\right)^{\frac{1}{q}}.$$

Consequently $\lim_{t\to a^+} \int_a^b f(x)g_t(x)dx = 0$ for any $f\in L_{q,v}$, which means the weak convergence to zero the family of functions g_t . Then by the compactness of the operator $K_{\alpha,\beta}^*$ from $L_{q',v^{1-q'}}$ to $L_{p',w^{1-p'}}$

$$\lim_{t \to a^+} \|K_{\alpha,\beta}^* g_t\|_{p',w^{1-p'}} = 0. \tag{4.5}$$

We have

$$||K_{\alpha,\beta}^*g_t||_{p',w^{1-p'}}^{p'} \ge \int_t^b |u(s)W^{\beta}(s)w(s)|^{p'} \left(\int_a^t \frac{g_t(x)dx}{(W(s)-W(x))^{1-\alpha}}\right)^{p'} w^{1-p'}(s)ds$$

$$\geq \int_{t}^{b} u^{p'}(s) W^{p'(\beta+\alpha-1)}(s) w(s) ds \left(\int_{a}^{t} v(x) dx \right)^{-\frac{p'}{q'}} \left(\int_{a}^{t} v(x) dx \right)^{p'} = \left(A_{\alpha,\beta}(t) \right)^{p'}. \quad (4.6)$$

By (4.5) and (4.6) it follows that $\lim_{t\to a^+} A_{\alpha,\beta}(t) = 0$. The necessity is proved. Sufficiency. Let $A_{\alpha,\beta} < \infty$ and $\lim_{z\to a^+} A_{\alpha,\beta}(z) = \lim_{z\to b^-} A_{\alpha,\beta}(z) = 0$.

Yet for a < c < d < b

$$P_c f = \chi_{(a,c]} f, \ P_{cd} f = \chi_{(c,d]} f, \ Q_d f = \chi_{(d,b)} f.$$

Then $f = P_c f + P_{cd} f + Q_d f$ and by the equalities $P_{cd} K_{\alpha,\beta} Q_d \equiv 0$, $P_{cd} K_{\alpha,\beta} P_c \equiv 0$, $Q_d K_{\alpha,\beta} P_c \equiv 0$, we have

$$K_{\alpha,\beta}f = P_{cd}K_{\alpha,\beta}P_{cd}f + Q_dK_{\alpha,\beta}Q_df + P_{cd}K_{\alpha,\beta}Q_df + P_cK_{\alpha,\beta}f. \tag{4.7}$$

We show that the operator $P_{cd}K_{\alpha,\beta}P_{cd}$ is compact from $L_{p,w}$ to $L_{q,v}$. $P_{cd}K_{\alpha,\beta}P_{cd}f(x)=0$ when $x\in I\setminus (c,d]$ then it suffices to show that the operator $P_{cd}K_{\alpha,\beta}P_{cd}$ is compact from $L_{p,w}(c,d)$ to $L_{q,v}(c,d)$ and this is equivalent to the compactness of the operator $Kf(x) = \int_{c}^{d} K(x,s)f(s)ds$ with the kernel

$$K(x,s) = \frac{u(s)W^{\beta}(s)v^{\frac{1}{q}}(x)\chi_{(c,d)}(s-x)w^{\frac{1}{p'}}(s)}{(W(s)-W(x))^{1-\alpha}}$$

from L_p to L_q .

Let $\{x_k\}_{k\in\mathbb{Z}}$ be a sequence of points introduces in the proof of Theorem 3.1. There are the points $x_{i-1}, x_n, x_{i-1} < x_n$ such that $x_{i-1} \le c < x_i, x_{n-1} < d \le x_n$. We assume that the number c, d are chosen so that $x_i < x_{n-1}$. Similarly to obtaining estimates of J_1, J_2 in Theorem 3.1, we have

$$\int_{c}^{d} \left(\int_{c}^{d} |K(x,s)|^{p'} ds \right)^{\frac{q}{p'}} dx = \int_{c}^{d} v(x) \left(\int_{x}^{d} \frac{u^{p'}(s)W^{p'\beta}(s)w(s)ds}{(W(s) - W(x))^{p'(1-\alpha)}} \right)^{\frac{q}{p'}} dx$$

$$\leq \sum_{k=i}^{n} \int_{x_{k-1}}^{x_{k}} v(x) \left[\left(\int_{x_{k+1}}^{b} + \int_{x}^{x_{k+1}} \right) \frac{u^{p'}(s)W^{p'\beta}(s)w(s)ds}{(W(s) - W(x))^{p'(1-\alpha)}} \right]^{\frac{q}{p'}} dx$$

$$\leq \mu(n - i + 1)A_{\alpha\beta}^{q} < \infty,$$

where the constant μ does not depend on i, n. Therefore, on the basis of the theorem in Kantorovich and Akilov [5] (page 420), the operator K is compact from $L_p(c,d)$ to $L_q(c,d)$, which is equivalent to the compactness of the operator $P_{cd}K_{\alpha,\beta}P_{cd}$ from $L_{p,w}$ to $L_{q,v}$.

By (4.7) we have

$$||K_{\alpha,\beta} - P_{cd}K_{\alpha,\beta}P_{cd}|| \le ||Q_dK_{\alpha,\beta}Q_d|| + ||P_{cd}K_{\alpha,\beta}Q_d|| + ||P_cK_{\alpha,\beta}||.$$
(4.8)

We shall show that the right-hand side of (4.8) tends to zero as $c \to a^+$, $d \to b^-$. This will imply that the operator $K_{\alpha,\beta}$ being a uniform limit of compact operators, is compact from $L_{p,w}$ to $L_{q,v}$.

On the basis of Theorem 3.1, we have:

$$\|Q_{d}K_{\alpha,\beta}Q_{d}f\|_{q,v} = \left(\int_{d}^{b} v(x) \left(\int_{x}^{b} \frac{u(s)W^{\beta}(s)f(s)w(s)ds}{(W(s)-W(x))^{1-\alpha}}\right)^{q} dx\right)^{\frac{1}{q}}$$

$$\ll \sup_{d < z < b} \left(\int_{d}^{z} v(x)dx\right)^{\frac{1}{q}} \left(\int_{z}^{b} u^{p'}(s)W^{p'(\beta+\alpha-1)}(s)w(s)ds\right)^{\frac{1}{p'}} \|f\|_{p,w}$$

$$\leq \sup_{d < z < b} A_{\alpha,\beta}(z)\|f\|_{p,w}.$$

Hence

$$\lim_{d \to b^{-}} \|Q_{d} K_{\alpha,\beta} Q_{d} f\| \ll \lim_{d \to b^{-}} \sup_{d < z < b} A_{\alpha,\beta}(z) = \lim_{z \to b^{-}} A_{\alpha,\beta}(z) = 0; \tag{4.9}$$

Let $1 > \varepsilon > 0$. To estimate $||P_{cd}K_{\alpha,\beta}Q_df||_{q,v}$ we introduce the functions v_{ε} , u_{ε} defined by $v_{\varepsilon}(x) = v(x)$ for $x \in (a,d]$ and $v_{\varepsilon}(x) = \varepsilon^q v(x)$ for $x \in I \setminus (a,d]$, $u_{\varepsilon}(s) = u(s)$ for $s \in (d,b)$ and $u_{\varepsilon}(s) = \varepsilon u(s)$ for $s \in I \setminus (d,b)$. Obviously, the function u_{ε} is non-decreasing on I. Then by Theorem 3.1

$$\|P_{cd}K_{\alpha,\beta}Q_{d}f\|_{q,v} = \left(\int_{c}^{d} v(x) \left(\int_{d}^{b} \frac{u(s)W^{\beta}(s)f(s)w(s)ds}{(W(s)-W(x))^{1-\alpha}}\right)^{q} dx\right)^{\frac{1}{q}}$$

$$\leq \left(\int_{c}^{b} v_{\varepsilon}(x) \left(\int_{c}^{b} \frac{u_{\varepsilon}(s)W^{\beta}(s)f(s)w(s)ds}{(W(s)-W(x))^{1-\alpha}}\right)^{q} dx\right)^{\frac{1}{q}} \ll A_{\alpha,\beta}^{\varepsilon} \|f\|_{p,w}, \tag{4.10}$$

where

$$A_{\alpha,\beta}^{\varepsilon} = \sup_{z \in I} \left(\int_{a}^{z} v_{\varepsilon}(x) dx \right)^{\frac{1}{q}} \left(\int_{z}^{b} u_{\varepsilon}^{p'}(s) W^{p'\beta}(s) w(s) ds \right)^{\frac{1}{p'}}.$$

We estimate $A_{\alpha,\beta}^{\varepsilon}$.

$$A_{\alpha,\beta}^{\varepsilon} \leq \sup_{a < z < d} \left(\int_{a}^{z} v(x) dx \right)^{\frac{1}{q}} \left(\varepsilon^{p'} \int_{z}^{d} u^{p'}(s) W^{p'\beta}(s) w(s) ds + \int_{d}^{b} u^{p'}(s) W^{p'\beta}(s) w(s) ds \right)^{\frac{1}{p'}}$$

$$+ \sup_{d < z < b} \left(\int_{a}^{d} v(x) dx + \varepsilon^{q} \int_{d}^{z} v(x) dx \right)^{\frac{1}{q}} \left(\int_{z}^{b} u^{p'}(s) W^{p'\beta}(s) w(s) ds \right)^{\frac{1}{p'}}$$

$$\ll 2(\varepsilon A_{\alpha,\beta} + A_{\alpha,\beta}(d)).$$

Hence, by (4.10) we have

$$||P_{cd}K_{\alpha,\beta}Q_df||_{q,v} \ll (\varepsilon A_{\alpha,\beta} + A_{\alpha,\beta}(d))||f||_{p,w}. \tag{4.11}$$

Where, due to the independence of the left-hand side of (28) of $\varepsilon > 0$, by letting $\varepsilon \to 0^+$, we obtain

$$||P_{cd}K_{\alpha,\beta}Q_df||_{q,v} \ll A_{\alpha,\beta}(d)||f||_{p,\omega}.$$

Then

$$\lim_{d \to b^{-}} \|P_{cd}K_{\alpha,\beta}Q_d\| \ll \lim_{d \to b^{-}} A_{\alpha,\beta}(d) = 0. \tag{4.12}$$

Similarly, we obtain

$$||P_c K_{\alpha,\beta}||_{q,v} = \left(\int_a^c v(x) \left(\int_x^b \frac{u(s)W^{\beta}(s)f(s)w(s)ds}{(W(s)-W(x))^{1-\alpha}}\right)^q dx\right)^{\frac{1}{q}}$$

$$\ll \sup_{a < z < c} A_{\alpha,\beta}(z) ||f||_{p,w}.$$

Therefore

$$\lim_{c \to a^+} \| P_c K_{\alpha,\beta} f \| \ll \lim_{c \to a^+} \sup_{a < z < c} A_{\alpha,\beta}(z) = \lim_{z \to a^+} A_{\alpha,\beta}(z) = 0. \tag{4.13}$$

By (4.8), (4.9), (4.12) and (4.13) it follows that
$$\lim_{c \to a^+, d \to b^-} ||K_{\alpha,\beta} - P_{cd}K_{\alpha,\beta}P_{cd}|| = 0.$$

Theorem 4.2. Let $0 < \alpha < 1$, $p > \frac{1}{\alpha}$ and $\beta \le 0$ ($\beta < \frac{1}{p} - \alpha$ in the case $W(b) = \infty$). Let u be a non-decreasing function on I. If $b < \infty$ and $0 < q < p < \infty$ or $a = 0, b = \infty$ and $1 < q < p < \infty$, then the operator $K_{\alpha,\beta}$ is compact from $L_{p,w}$ to $L_{q,v}$ if and only if $B_{\alpha,\beta} < \infty$.

Proof. In the case $b < \infty$ and $0 < q < p < \infty$ the statement of Theorem 4.2 follows by Ando Theorem and its generalizations [6]. Therefore, we prove Theorem 4.2 in the case $a = 0, b = \infty$ and $1 < q < p < \infty$.

Necessity. Let the operator $K_{\alpha,\beta}$ be compact from $L_{p,w}$ to $L_{q,v}$. Then the operator is bounded. Hence, by Theorem 3.2 $B_{\alpha,\beta} < \infty$.

Sufficiency. Let $B_{\alpha,\beta} < \infty$. Here $K_{\alpha,\beta}f = P_dK_{\alpha,\beta}P_df + P_dK_{\alpha,\beta}Q_dF + Q_dK_{\alpha,\beta}f$. Therefore

$$||K_{\alpha,\beta} - P_d K_{\alpha,\beta} P_d|| \le ||P_d K_{\alpha,\beta} Q_d|| + ||Q_d K_{\alpha,\beta}||.$$
 (4.14)

Since $d < \infty$ then the operator $P_d K_{\alpha,\beta} P_d$ is compact from $L_{p,w}(0,d)$ to $L_{q,v}(0,d)$, which is equivalent to its compactness from $L_{p,w}$ to $L_{q,v}$. We show that the right-hand side of (4.14) tends to zero as $d \to \infty$. Then the operator $K_{\alpha,\beta}$ is compact from $L_{p,w}$ to $L_{q,v}$ as the uniform limit of compact operators. On the basis of Theorem 3.2

$$\|Q_d K_{\alpha,\beta}\| \le \left(\int_d^\infty \left(\int_z^\infty u^{p'}(s) W^{p'(\alpha+\beta-1)} w(s) ds\right)^{\frac{q(p-1)}{p-q}} \times \left(\int_d^z v(x) dx\right)^{\frac{q}{p-q}} v(z) dz\right)^{\frac{(p-q)}{pq}}.$$

Hence, since $B_{\alpha,\beta} < \infty$, it follows that

$$\lim_{d \to \infty} \|Q_d K_{\alpha,\beta}\| = 0. \tag{4.15}$$

Let $1 > \varepsilon > 0$. To estimate $||P_dK_{\alpha,\beta}Q_df||$ we suppose as above, that $v_{\varepsilon}(x) = v(x)$ for $x \in (0,d]$ and $v_{\varepsilon}(x) = \varepsilon^q v(x)$ for $x \in (d,\infty)$, $u_{\varepsilon}(s) = u(s)$ for $s \in (d,\infty)$ and $u_{\varepsilon}(s) = \varepsilon u(s)$ for $s \in (0,d]$. Obviously, the function u_{ε} is non-decreasing on $I = (0,\infty)$. Now, by Theorem 3.2, estimating the norm $||P_dK_{\alpha,\beta}Q_d||$ as in (4.10), and then passing to the limit as $\varepsilon \to 0^+$, we obtain

$$||P_d K_{\alpha,\beta} Q_d|| \ll \left(\int_0^d v(x) dx \right)^{\frac{1}{q}} \left(\int_d^\infty u^{p'}(s) W^{p'(\alpha+\beta-1)}(s) w(s) ds \right)^{\frac{1}{p'}} = A_{\alpha,\beta}(d). \quad (4.16)$$

By Remark 1 $B_{\alpha,\beta} \approx \widetilde{B}_{\alpha,\beta}(0,\infty)$. Since $A_{\alpha,\beta}(d) \ll \widetilde{B}_{\alpha,\beta}(d,\infty)$ then by (4.16) it follows that $\lim_{d\to\infty} \|P_d K_{\alpha,\beta} Q_d\| = 0$. Hence by (4.15) it follows that the right-hand side of (4.14) tends to zero as $d\to\infty$.

5 Dual case

We consider the operator

$$T_{\alpha,\beta}f(x) = u(x)W^{\beta}(x)\int_{a}^{x} \frac{v(s)f(s)ds}{(W(x) - W(s))^{1-\alpha}}$$

acting from $L_{p,v}$ to $L_{q,w}$.

Assume that

$$A_{\alpha,\beta}^*(z) = \left(\int_a^z v(x)dx\right)^{\frac{1}{p'}} \left(\int_z^b u^q(x)W^{q(\beta+\alpha-1)}(x)w(x)dx\right)^{\frac{1}{q}},$$
$$A_{\alpha,\beta}^* = \sup_{z \in I} A_{\alpha,\beta}^*(z).$$

Theorem 5.1. Let $0 < \alpha < 1$, $1 and <math>\beta \le 0$ ($\beta < 1 - \frac{1}{q} - \alpha$ in the case $W(b) = \infty$). Let u be a non-decreasing function on I. Then the operator $T_{\alpha,\beta}$

- i) is bounded from $L_{p,v}$ to $L_{q,w}$ if and only if $A_{\alpha,\beta}^*(z) < \infty$, moreover, $||T_{\alpha,\beta}|| \approx A_{\alpha,\beta}^*$,
- ii) is compact from $L_{p,v}$ to $L_{q,w}$ if and only if $A^*_{\alpha,\beta}(z) < \infty$ and

$$\lim_{z \to a} A_{\alpha,\beta}^*(z) = \lim_{z \to b} A_{\alpha,\beta}^*(z) = 0.$$

Proof. The operator $T_{\alpha,\beta}$ acting from $L_{p,v}$ to $L_{q,w}$ is adjoint to the operator

$$\widetilde{K}_{\alpha,\beta}f(x) = v(x) \int_{x}^{b} \frac{u(s)W^{\beta}(s)f(s)ds}{(W(x) - W(s))^{1-\alpha}}$$

acting from $L_{q',w^{1-q'}}$ to $L_{p',v^{1-p'}}$, which is equivalent to the action of the operator $K_{\alpha,\beta}$ from $L_{q',\omega}$ to $L_{p',v}$. Consequently, the operator $T_{\alpha,\beta}$ is bounded and compact from $L_{p,v}$ to $L_{q,\omega}$ if and only if the operator $K_{\alpha,\beta}$ is bounded and compact from $L_{q',\omega}$ to $L_{p',v}$ respectively. Since by the assumptions of Theorem 5.1 it follows that $\frac{1}{\alpha} < q' \le p' < \infty$ then on the basis of Theorems 3.1 and 4.1 the validity of the Statements i) and ii) of Theorem 5.1 follows.

Similarly, on the basis of Theorem 4.2, we have

Theorem 5.2. Yet $0 < \alpha < 1$, $1 < q < \min\{p, \frac{1}{1-\alpha}\}$, p > 1 and $\beta \le 0$ ($\beta < 1 - \frac{1}{q} - \alpha$ in the case $W(b) = \infty$). Let u be a non-decreasing function on I. Then the operator $T_{\alpha,\beta}$ is bounded and compact from $L_{p,v}$ to $L_{q,w}$ if and only if $B^*_{\alpha,\beta}(z) < \infty$, where

$$B_{\alpha,\beta}^* = \left(\int_a^b \left(\int_a^x v(x)dx\right)^{\frac{p(q-1)}{p-q}} \left(\int_x^b u^q(s)W^{q(\beta+\alpha-1)}w(s)ds\right)^{\frac{p}{p-q}}v(x)dx\right)^{\frac{p-q}{p}}.$$

6 Applications

We consider the weighted Weyl operator

$$\widetilde{I}_{\alpha}^*g(s) = \omega(s) \int_{s}^{\infty} \frac{\rho(x)g(x)dx}{(x-s)^{1-\alpha}}, \ s>0$$

and the weighted Riemann-Liouville operator

$$\widetilde{I}_{\alpha}f(x) = \rho(x) \int_{0}^{x} \frac{\omega(s)f(s)ds}{(x-s)^{1-\alpha}}, \ x > 0$$

acting from L_p to L_q , where the weight functions ρ and ω are almost everywhere positive and locally integrable on $I=(0,\infty)$. The actions of the operator $K_{\alpha,\beta}$ from $L_{p,\omega}$ to $L_{q,v}$ and the operator $T_{\alpha,\beta}$ from $L_{p,v}$ to $L_{q,\omega}$ are equivalent to the actions of the operators

$$\widetilde{K}_{\alpha,\beta}g(s) = v^{\frac{1}{q}}(s) \int_{s}^{b} \frac{u(x)W^{\beta}(x)w^{\frac{1}{p'}}(x)g(x)dx}{(W(x) - W(s))^{1-\alpha}},$$
(6.1)

$$\widetilde{T}_{\alpha,\beta}f(x) = w^{\frac{1}{q}}(x)u(x)W^{\beta}(x)\int_{a}^{x} \frac{v^{\frac{1}{p'}}(s)f(s)ds}{(W(x) - W(s))^{1-\alpha}},$$
(6.2)

from L_p to L_q , respectively.

Let $\omega(s) = v^{\frac{1}{q}}(s)$ in (6.1) and $\omega(s) = v^{\frac{1}{p'}}(s)$ in (6.2). If W(x) = x, $a = 0, b = \infty$ and $\rho(x) = u(x)x^{\beta}$ then the operators (6.1) and (6.2) coincide with the operators I_{α}^* and I_{α} , respectively. Therefore, by Theorems 3.1- 4.2 we have

Corollary 6.1. Let $0 < \alpha < 1$, $\beta < \frac{1}{p} - \alpha$ and $\rho(x) = u(x)x^{\beta}$, where u is a non-decreasing function on $I = (0, \infty)$. Then the operator \widetilde{I}_{α}^*

i) for $\frac{1}{\alpha} is bounded from <math>L_p$ to L_q if and only if $\widetilde{A}_{\alpha} < \infty$, moreover, $\|\widetilde{I}_{\alpha}^*\| \approx \widetilde{A}_{\alpha}$, and is compact from L_p to L_q if and only if $\widetilde{A}_{\alpha} < \infty$ and $\lim_{z \to 0^+} \widetilde{A}_{\alpha}(z) = \lim_{z \to 0} \widetilde{A}_{\alpha}(z) = 0$, where

$$\widetilde{A}_{\alpha}(z) = \left(\int_{z}^{\infty} \rho^{p'}(x) x^{p'(\alpha-1)} dx\right)^{\frac{1}{p'}} \left(\int_{0}^{z} \omega^{q}(s) ds\right)^{\frac{1}{q}}, \ \widetilde{A}_{\alpha} = \sup_{z \in I} \widetilde{A}_{\alpha}(z);$$

Corollary 6.3. Let $0 < \alpha < 1$, $\beta < 1 - \frac{1}{q} - \alpha$ and $\rho(x) = u(x)x^{\sigma\beta + \frac{\sigma-1}{q}}$, where u is a non-decreasing function on $I = (0, \infty)$. Then the operator $E_{\alpha, \gamma}$

i) for $1 is bounded from <math>L_p$ to L_q if and only if $A_{\alpha,\gamma}^{\circ} < \infty$, moreover, $||E_{\alpha,\gamma}|| \approx A_{\alpha,\gamma}^{\circ}$ and compact from L_p to L_q if and only if $A_{\alpha,\gamma}^{\circ} < \infty$ and $\lim_{z \to 0^+} A_{\alpha,\gamma}^{\circ}(z) = \lim_{z \to \infty} A_{\alpha,\gamma}^{\circ}(z) = 0$, where $A_{\alpha,\gamma}^{\circ} = \sup_{z \in I} A_{\alpha,\gamma}^{\circ}(z)$,

$$A_{\alpha,\gamma}^{\circ}(z) = \left(\int_{z}^{\infty} \rho^{q}(x) x^{q\sigma(\alpha-1)} dx\right)^{\frac{1}{q}} \left(\int_{0}^{z} \omega^{p'}(s) s^{p'(\sigma\gamma+\sigma-1)} ds\right)^{\frac{1}{p'}}.$$

ii) for $1 < q < \min\{p, \frac{1}{1-\alpha}\} < \infty$, p > 1 is bounded (compact) from L_p to L_q if and only if $B_{\alpha,\gamma}^{\circ} < \infty$, moreover, $||E_{\alpha,\gamma}|| \approx B_{\alpha,\gamma}^{\circ}$, where

$$B_{\alpha,\gamma}^{\circ} = \left(\int\limits_{0}^{\infty} \left(\int\limits_{z}^{\infty} \rho^{q}(x) x^{q\sigma(\alpha-1)} dx\right)^{\frac{p}{p-q}} \right) \left(\int\limits_{0}^{z} \omega^{p'}(s) s^{p'(\sigma\gamma+\sigma-1)} ds\right)^{\frac{p(q-1)}{p-q}} \omega^{p'}(z) z^{p'(\sigma\gamma+\sigma-1)} dz\right)^{\frac{p-q}{pq}}.$$

Corollary 6.4. Let $a > 0, 0 < \alpha < 1$, $\beta \le 0$ ($\beta < 1 - \frac{1}{q} - \alpha$ in the case $b = \infty$) and $\rho(x) = u(x)x^{-\frac{1}{q}}(\ln \frac{x}{a})^{\beta}$, where u is non-decreasing function on I = (a, b). Then the operator \mathcal{H}_{α}

i) for $1 is bounded from <math>L_p$ to L_q if and only if $A_{\alpha}^1 < \infty$, moreover, $\|H_{\alpha}\| \approx A_{\alpha}^1$, and compact from L_p to L_q if and only if $A_{\alpha}^1 < \infty$ and $\lim_{z \to a^+} A_{\alpha}^1(z) = \lim_{z \to b^-} A_{\alpha}^1(z) = 0$, where $A_{\alpha}^1 = \sup_{z \in I} A_{\alpha}^1(z)$,

$$A_{\alpha}^{1}(z) = \left(\int_{z}^{b} \rho^{q}(x) \left(\ln \frac{x}{a}\right)^{q(\alpha-1)} dx\right)^{\frac{1}{q}} \left(\int_{a}^{z} \omega^{p'}(s) s^{-p'} ds\right)^{\frac{1}{p'}};$$

ii) for $1 < q < \min\{p, \frac{1}{1-\alpha}\} < \infty$, p > 1 is bounded (compact) from L_p to L_q if and only if $B_{\alpha}^1 < \infty$, moreover, $||H_{\alpha}|| \approx B_{\alpha}^1$, where

$$B_{\alpha}^{1} = \left(\int_{a}^{b} \left(\int_{z}^{b} \rho^{q}(x) \left(\ln \frac{x}{a} \right)^{q(\alpha - 1)} dx \right)^{\frac{p}{p - q}} \right)$$

$$\left(\int_{a}^{z} \omega^{p'}(s) s^{-p'} ds \right)^{\frac{p(q - 1)}{p - q}} \omega^{p'}(z) z^{-p'} dz$$

Acknowledgments

The work on the paper was supported by the Science Committee of the Ministry of Education and Science of Kazakhstan, project 5499/GF4 (priority direction "Intellectual potential of the country").

References

- [1] A.M. Abylaeva, D. Kaskirbaeva, Boundedness and compactness of fractional integration operator of Holmgren type in weighted Lebesgue spaces, Evraziiskii Matematicheskii Zhurnal, 2 (2007), 75-86. (in Russian).
- [2] K.F. Andersen, E.T. Sawyer, Weighted norm inequalities for the Riemann-Liouville and Weyl fractional integral operators, Trans. Amer. Math. Soc. 308 (1988), 547-558.
- [3] D.E. Edmunds, V. Kokilashvili, A. Meskhi, Bounded and compact integral operators, Kluwer Academic Publishers, Dordrecht 2002.
- [4] S.M. Farsani, On the boundedness and compactness of the fractional Riemann-Liouville operators, Sibirsk. Mat. J. 54 (2013), no. 2, 468-479. (in Russian).
- [5] L.V. Kantarovich, G.R. Akilov, Functional analysis, M.: Nauka 1977. (in Russian).
- [6] M.A. Krasnosel'skii, P.P. Zabreiko, E.N. Pustilnik, P.E. Sobolevski, *Integral operators in spaces of summable functions*, Moscow: Nauka, 1966. (in Russian).
- [7] A. Kufner, L. Maligranda, L.-E. Persson, *The Hardy inequality about its history and some related results*, University of West Bohemia, Plzen, 2007, 152 pp.
- [8] A. Meskhi, Solution of some weight problems for the Riemann-Liouville and Weyl operators, Georgian Math. J. 106 (1989), 727-733.
- [9] R. Oinarov, A.M. Abylaeva, Criteria for the boundedness of a class of fractional integration, Mathematical Journal. 4 (2004), no. 2(12), 5-14. (in Russian).
- [10] D.V. Prokhorov, On the boundedness and compactness of a class of integral operators, J. London Math. Soc. 61 (2000), no. 2, 617-628.
- [11] D.V. Prokhorov, V.D. Stepanov, Weighted estimates for the Riemann-Liouville operators and applications, Proc. Steklov Math. 248 (2003), 289-312 (in Russian).
- [12] S.G. Samko, A.A. Kilbac, O.I. Marichev, *Integrals and derivatives of fractional order and some of their applications*, Minsk: Science and Technology, 1987, 688 pp. (in Russian).

Akbota Muhamediyarovna Abylayeva Faculty of Mechanics and Mathematics L.N. Gumilyov Eurasian National University 13 Kazhymukan St, 010008 Astana, Kazakhstan E-mail: abylayeva b@mail.ru

Received: 11.01.2016