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(to the 60th birthday)

On 25 September 2015 Kordan Nauryzhanovich Ospanov,
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of methods of functional analysis to the theory of differential

equations. On the basis of a local approach to the resolvent representation he has
found weak conditions for the solvability of the singular generalized Cauchy-Riemann
system and established coercive estimates for its solution. He has obtained a criterion
of the spectrum discreteness for the resolvent of the system and the exact in order
estimates of singular values and Kolmogorov widths. He has original research results on
the coercive solvability of the quasilinear singular generalized Cauchy-Riemann system
and degenerate Beltrami-type system. He has established important smoothness and
approximation properties of non strongly elliptic systems. K.N. Ospanov has found
separability conditions in Banach spaces for singular linear and quasi-linear second-
order differential operators with growing intermediate coefficients and established a
criterion for the compactness of its resolvent and finiteness of the resolvent type.
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http://mmf.enu.kz/images/stories/photo/pasport/fm/ospanov
K.N. Ospanov is an Honoured Worker of Education of the Republic of Kazakhstan,

and he was awarded the state grant "The best university teacher".
The Editorial Board of the Eurasian Mathematical Journal is happy to congratulate

Kordan Nauryzkhanovich Ospanov on occasion of his 60th birthday, wishes him good
health and further productive work in mathematics and mathematical education.
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Abstract. An open neighbourhood k-colouring of a simple connected undirected graph
G(V,E) is a k-colouring c : V → {1, 2, · · · , k}, such that, for every w ∈ V and for all
u, v ∈ N(w), c(u) 6= c(v). The minimal value of k for which G admits an open
neighbourhood k-colouring is called the open neighbourhood chromatic number of G
and is denoted by χonc(G). In this paper, we obtain the open neighbourhood chromatic
number of the line graph and total graph of a path Pn. We also obtain the open
neighbourhood chromatic number of two families of graphs which are derived from a
path Pn, namely kth power of a path and transformation graph of a path.

1 Introduction

All the graphs considered in this paper are simple, non-trivial and undirected. For
standard terminology, we refer to [5] and [11]. A vertex colouring , or simply colouring,
of a graph G = (V,E) is an assignment of colours to the vertices of G. A vertex
colouring can be viewed as a function c : V → S, S being a set of colours. A k-vertex
colouring , or simply k-colouring , of G is a surjection c : V → {1, 2, · · · , k}. A proper
vertex colouring or proper colouring of G is an assignment of colours to the vertices of
G so that no two adjacent vertices are assigned the same colour. A k-proper colouring
of G is a surjection c : V → {1, 2, · · · , k} such that c(u) 6= c(v) if u and v are adjacent
in G. In such a case, G is said to be k-proper colourable. An open neighbourhood
colouring [7, 8, 17] of a connected graph G(V,E) is a colouring c : V → Z+, such that
for each w ∈ V and ∀u, v ∈ N(w), c(u) 6= c(v). An open neighbourhood k-colouring of
a graph G(V,E) is a k-colouring c : V → {1, 2, · · · , k} which satisfies the conditions
of an open neighbourhood colouring. The minimal value of k for which G admits an
open neighbourhood k-colouring is called the open neighbourhood chromatic number of
G and is denoted by χonc(G).

We extend the above definition to any graph, connected or disconnected, as follows.

Definition 6. If G = (V,E) is any graph, then the open neighbourhood chromatic
number of G is defined as max{χonc(H)} where maximum is taken over all components
H of G.
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We recall some of the definitions and results on the open neighbourhood chromatic
number discussed in [7] for further reference.

Theorem 1.1. For any graph G, χonc(G) ≥ ∆(G).

Theorem 1.2. If H is a connected subgraph of G, then χonc(H) ≤ χonc(G).

Theorem 1.3. Let G(V,E) be a connected graph on n ≥ 3 vertices. Then χonc(G) = n
if and only if N(u)

⋂
N(v) 6= ∅ holds for every pair of vertices u, v ∈ V (G).

Theorem 1.4. For a path Pn, n ≥ 2,

χonc(Pn) =

{
1, if n = 2,

2, otherwise.

Theorem 1.5. For a cycle Cn, n ≥ 3,

χonc(Cn) =

{
2, if n ≡ 0 (mod 4),

3, otherwise.

Definition 7. Given a graph G(V,E) and an integer k with 1 ≤ k ≤ diam(G), the kth

power of G is a graph, denoted by Gk, having the vertex set V (Gk) = V (G) with the
property that two vertices u and v are adjacent in V (Gk) if and only if dG(u, v) ≤ k.
In particular, if k = 1, then G1 = G and if k = diam(G), then G ∼= KV (G).

As discussed in [19], the transformation graph Gxyz with x, y, z ∈ {−,+} is a
generalization of the concept of total graph of a graph G and is defined as follows.

Definition 8. Given a graph G(V,E), the transformation graph of G is a graph,
denoted Gxyz = (V1, E1), with V1 = V

⋃
E such that two vertices u, v ∈ V1 are adjacent

in Gxyz if one of the following conditions holds:

i) x = + and the vertices u, v ∈ V are adjacent in G or
x = − and the vertices u, v ∈ V are non-adjacent in G.

ii) y = + and the edges u, v ∈ E are adjacent in G or
y = − and the edges u, v ∈ E are non-adjacent in G.

iii) z = + and the vertex u ∈ V and the edge v ∈ E are incident in G or
z = − and the vertex u ∈ V and the edge v ∈ E are non-incident in G.

By definition, it follows that for every graph G, there correspond eight transforma-
tion graphs namely G+++, G++−, G+−+, G+−−, G−++, G−+−, G−−+ and G−−−. Each of
these eight transformation graphs appear to possess nice properties, some of which are
discussed in [20, 16, 4, 1]. In particular, the graph G+++ is nothing but the total graph
of G and the graph G−−− is the complement of the graph G+++.

In this paper, we obtain the open neighbourhood chromatic number of the line
graph, total graph & kth power of a path and transformation graphs of a path.
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2 Open neighbourhood colouring of the line graph, total graph
and kth power of a path

In this section, we obtain the open neighbourhood chromatic number of the line graph
and total graph of a path. We also obtain the open neighbourhood chromatic number
of the graph P k

n , the kth power of the path Pn, n ≥ 2, 1 ≤ k ≤ diam(Pn) = n− 1.

Theorem 2.1. For the line graph L(Pn) of the path Pn on n vertices, n ≥ 3,

χonc(L(Pn)) =

{
1, if n = 3,

2, otherwise.

Proof. Since the line graph L(Pn) is isomorphic to the path Pn−1, χonc(L(Pn)) =
χonc(Pn−1).
The result then follows by Theorem 1.4.

Theorem 2.2. For the total graph T (Pn) of the path Pn on n vertices, n ≥ 3,
χonc(T (Pn)) = 5.

Proof. For n = 3, it is easy to observe that every two vertices in T (P3) are connected
by a path of length two. Hence, in any open neighbourhood colouring of T (P3), every
vertex must be given a different colour so that χonc(T (P3)) = 5.

We now consider the case n ≥ 4.
Consider the path Pn on n ≥ 4 vertices. Without loss of generality, let V (Pn) =

{v1, v2, · · · , vn} & E(Pn) = {e1 = v1v2, e2 = v2v3, · · · , en−1 = vn−1vn}.
Then, the total graph T (Pn) has V (T (Pn)) = {v1, v2, · · · , vn, e1, e2, · · · , en−1}.
Since T (P3) is a subgraph of T (Pn), we have χonc(T (Pn)) ≥ χonc(T (P3)) = 5.
For each i, 1 ≤ i ≤ 5, we define the set Si =

{vj| j ≡ i (mod 5)}
⋃
{ek| k + 3≡ i(mod 5)}. In each Si, every vertex is at a

distance of at least 3 from every other vertex. Thus, each Si, 1 ≤ i ≤ 5, is a
P3-independent set of T (Pn).

Now, define a colouring c : V (T (Pn)) → {1, 2, 3, 4, 5} as c(Si) = i for each 1 ≤ i ≤ 5.
Clearly, c is an open neighbourhood colouring of T (Pn) so that χonc(T (Pn)) ≤ 5.

Therefore, χonc(T (Pn)) = 5.

Lemma 2.1. For any 3 ≤ n ≤ 2k + 1, χonc(P
k
n ) = n where 2 ≤ k ≤ n− 1.

Proof. Consider the graph P k
n with 3 ≤ n ≤ 2k+1. It is easy to observe that every two

vertices in P k
n are connected by a path of length two. Thus, in any open neighbourhood

colouring of P k
n , every vertex has to be given a different colour.

Hence, χonc(P
k
n ) = n if 3 ≤ n ≤ 2k + 1.

Theorem 2.3. For the kth power of a path on n vertices P k
n , n ≥ 3, 2 ≤ k ≤ n− 1,

χonc(P
k
n ) =

{
n, if n ≤ 2k + 1,

2k + 1, otherwise.
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Proof. Consider P k
n , the kth power of a path Pn, n ≥ 3, k ≥ 2. Let the vertices of P k

n

be v1, v2, · · · , vn.
We prove the result in the two cases as follows.

Case (1) : Suppose n ≤ 2k+1. By Lemma 2.1, we have χonc(P
k
n ) = n if n ≤ 2k+1.

Case (2) : Suppose n > 2k+1. Then, the graph P k
n contains P k

2k+1 as its subgraph
so that χonc(P

k
n ) ≥ χonc(P

k
2k+1) = 2k + 1.

For each i, 1 ≤ i ≤ 2k + 1, we define the set Si = {vj| j ≡ i(mod(2k + 1))}.
As seen from the graph, the distance between any two vertices in each Si is at least

3. Thus, each Si is a P3-independent set of P k
n .

Now, define a colouring c : V (P k
n ) → {1, 2, · · · , 2k+1} as c(Si) = i for each 1 ≤ i ≤

2k+1. Clearly, c is an open neighbourhood colouring of Ck
n so that χonc(P

k
n ) ≤ 2k+1.

Hence, χonc(P
k
n ) = 2k + 1 if n > 2k + 1.

3 Open neighbourhood colouring of transformation graphs of
a path

In this section, we obtain the open neighbourhood chromatic number of the eight
transformation graphs of the path Pn on n vertices. Let V (Pn) = {v1, v2, · · · , vn} and
E(Pn) = {e1 = v1v2, e2 = v2v3, · · · , en−1 = vn−1vn}. Then, the transformation graph
P xyz

n , n ≥ 3 has V (P xyz
n ) = {v1, v2, · · · , vn, e1, e2, · · · , en−1}.

Theorem 3.1. For the transformation graph P+++
n , n ≥ 3, χonc(P

+++
n ) = 5.

Proof. As observed earlier, the graph G+++ is nothing but the total graph T (G) of G.
Therefore, χonc(P

+++
n ) = χonc(T (Pn)) = 5.

Theorem 3.2. For the transformation graph P++−
n , n ≥ 3,

χonc(P
++−
n ) =


3, if n = 3,

6, if n = 4,

2n− 1, otherwise.

Proof. The result is proved in various cases as follows.
Case (1) : For n = 3, the transformation graph P++−

3
∼= C5. Hence, it follows by

Theorem 1.5 that χonc(P
++−
3 ) = χonc(C5) = 3.

Case (2) : Suppose n = 4. It is easy to observe that in P++−
4 , every two vertices

except v2 and v3 are connected by a path of length two. Thus, it follows that the
colouring c : V (P++−

4 ) → {1, 2, 3, 4, 5, 6} defined as c(e1) = 1, c(e2) = 2, c(e3) =
3, c(v1) = 4, c(v5) = c(v6) = 5, c(v7) = 6 is an open neighbourhood colouring of P++−

4

with minimum colours so that χonc(P
++−
4 ) = 6.

Case (3) : Suppose n ≥ 5. It is seen that every two vertices in P++−
n are connected

by a path of length two so that each vertex has to be given a different colour in any open
neighbourhood colouring of P++−

n . Hence, χonc(P
++−
n ) = |V (P++−

n )| = 2n− 1.
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Theorem 3.3. For the transformation graph P+−+
n , n ≥ 3,

χonc(P
+−+
n ) =


5, if n ≤ 5,

n+ 1, if n = 6, 7,

n+ 2, otherwise.

Proof. Case (1) : Suppose n ≤ 5. Here, we consider the following subcases.
Subcase (1): Suppose n = 3. Since every two vertices in P+−+

3 are connected by a
path of length two, every vertex receives a different colour in any open neighbourhood
colouring of P+−+

3 . Thus, χonc(P
+−+
3 ) = 5.

Subcase (2): Suppose n = 4, 5. It is easily seen that P+−+
n has P+−+

3 as its
subgraph so that χonc(P

+−+
n ) ≥ χonc(P

+−+
3 ) = 5. Thus, χonc(P

+−+
n ) ≥ 5.

The reverse inequality can be easily established by means of an open neighbourhood
colouring of P+−+

n using five colours so that χonc(P
+−+
n ) ≤ 5.

Therefore, χonc(P
+−+
n ) = 5 if n = 4, 5.

Case (2) : Suppose n = 6, 7.
Subcase (1): Suppose n = 6. The vertices e1, e3 and e5 in P+−+

6 cannot have
any other vertex in any P3-independent set of P+−+

6 as there is a path of length two
between each of them and every other vertex in P+−+

6 . Further, if v1 is taken in a
P3-independent set, then the same set can contain only one of the vertices v4, v5 or v6

and nothing else. In the same way, a P3-independent set containing v2 cannot have
any vertex other than one of v5 or v6. Likewise, if a P3-independent set contains v3, it
cannot contain any vertex other than v6. Proceeding this way, we see that the colouring
shown in Fig. 1 is an open neighbourhood colouring of P+−+

6 using minimum colours.
Thus, we have χonc(P

+−+
6 ) = 7.

Figure 1: An open neighbourhood colouring of P+−+
6 .

Figure 2: An open neighbourhood colouring of P+−+
7 .
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Subcase (2): Suppose n = 7. The vertices e1, e3, e4 and e6 in P+−+
7 cannot have

any other vertex in any P3-independent set of P+−+
6 . Further, if v1 is taken in a P3-

independent set, then the same set can contain only one of the vertices v4, v5 or v6 and
nothing else. In particular, if v4 is taken in the set, then the set may contain no other
vertex other than v7. In the same way, a P3-independent set containing v2 cannot have
any vertex other than one of v4, v5, v6 or v7. Likewise, if a P3-independent set contains
v3, it cannot contain any vertex other than v6. Proceeding this way, we see that the
colouring shown in Fig. 2 is an open neighbourhood colouring of P+−+

7 using minimum
colours.

Thus, we have χonc(P
+−+
7 ) = 8.

Case (3) : Suppose n ≥ 8. In the transformation graph P+−+
n , not more than one

vertex of the form ei, 1 ≤ i ≤ n − 1, can be in one P3-independent set as each such
vertex is connected to every vertex in the graph by a path of length two. Further, it
is easy to observe that not more than one vertex in a set of vertices vi, vi+1, vi+2 can
be in a P3-independent set of P+−+

n . Thus, the minimum number of P3-independent
sets in P+−+

n is given by n + 2, consisting of n − 1 P3-independent sets, one each
for the vertices ei, 1 ≤ i ≤ n − 1, and three P3-independent sets S0, S1, S2 given by
Sk = {vj| j ≡ k(mod 3)}, k = 0, 1, 2.
Thus, χonc(P

+−+
n ) ≥ n+ 2.

To prove the reverse inequality, define a colouring c : V (P+−+
n ) → {1, 2, · · · , n+2})

as follows;

c(v) =


i, if v = ei for some i,

n, if v = vi with i ≡ 0(mod 3),

n+ 1, if v = vi with i ≡ 1(mod 3),

n+ 2, otherwise.

Clearly, c is an open neighbourhood colouring of P+−+
n using n + 2 colours so that

χonc(P
+−+
n ) ≤ n+ 2.

Hence, we conclude that χonc(P
+−+
n ) = n+ 2.

Theorem 3.4. For the transformation graph P+−−
n , n ≥ 3,

χonc(P
+−−
n ) =


2, if n = 3,

4, if n = 4,

2n− 1, otherwise.

Proof. We prove the result in various cases as follows.
Case (1) : Suppose n = 3. Since the transformation graph P+−−

3
∼= P5, from

Theorem 1.4, we have χonc(P
+−−
3 ) = χonc(P5) = 2.

Case (2) : Suppose n = 4. We first prove that in any open neighbourhood
colouring of P+−−

4 , not more than two vertices can receive the same colour. To prove
this, we take various subcases as follows.

Subcase (1): Consider any three vertices of the form vi, vj, vk. Since these are the
vertices in a path P4, we cannot give the same colour to all the three vertices.
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Subcase (2): Consider the three vertices e1, e2, e3. Since e2 is connected by a path
of length two with e1 and e3, it cannot be given the same colour as that of the other
two vertices.

Subcase (3): Consider three vertices of the form vi, vj, ek. Suppose vi and vj are
adjacent, then either of them or both form a path of length two with the vertex ek.
Otherwise, vi and vj are connected by a path of length two. In either case, all the three
vertices cannot be given the same colour.

Subcase (4): Consider the vertices vi, ej, ek. Suppose ej and ek are the consecutive
vertices, one of them is connected by a path of length two with vi. Otherwise, all the
three vertices form a path of length two. In either case, all the three vertices cannot
be given the same colour.

To conclude, we see that not more than two vertices can be given the same colour
in any open neighbourhood colouring of P+−−

4 . Thus, χonc(P
+−−
4 ) ≥ 4.

To prove the reverse inequality, define a colouring c of P+−−
4 as c(v1) = c(e2) =

1, c(v2) = c(v3) = 2, c(e1) = c(e3) = 3, c(v4) = 4. It is easy to verify that c is an open
neighbourhood colouring of P+−−

4 so that χonc(P
+−−
4 ) ≤ 4.

Therefore, χonc(P
+−−
4 ) = 4.

Case (3) : Suppose n ≥ 5. Since every two vertices in P+−−
n are connected

by a path of length two, each vertex has to be given a different colour in any open
neighbourhood colouring of P+−−

n . Hence, χonc(P
+−−
n ) = |V (P+−−

n )| = 2n− 1.

Theorem 3.5. For the transformation graph P−++
n , n ≥ 3,

χonc(P
−++
n ) =


3, if n = 3,

n+ 1, if n = 4, 5,

n+ 2, if n = 6,

n+ 3, otherwise.

Proof. We prove the result in various cases as follows.
Case (1) : Suppose n = 3. Since P−++

3 contains a C3 as its subgraph, we have
χonc(P

−++
3 ) ≥ χonc(C3) = 3.

For the reverse inequality, define c : V (P−++
3 ) → {1, 2, 3} as c(vi) = i, i = 1, 2, 3

and c(e1) = 1, c(e2) = 3. c can be easily verified to be an open neighbourhood colouring
of P−++

3 so that χonc(P
−++
3 ) ≤ 3.

Combining the two, we have χonc(P
−++
3 ) = 3.

Case (2) : Suppose n = 4. The graph P−++
4 contains P+−+

3 as its subgraph so
that χonc(P

−++
4 ) ≥ χonc(P

+−+
3 ) = 5 by Theorem 3.3.

Consider a colouring of P−++
4 as in the Fig. 3. It is easy to verify that this colouring

is an open neighbourhood colouring of P−++
4 using five colours so that χonc(P

−++
4 ) ≤ 5.

Therefore, χonc(P
−++
4 ) = 5.
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Figure 3: An open neighbourhood colouring of P−++
4 .

Figure 4: An open neighbourhood colouring of P−++
5 .

Case (3) : Suppose n = 5.
In P−++

5 , each of the vertices v2, v3, e1, e2 and e3 have to be given different colours as
there is a path of length two connecting every two of them. Further, the vertex v4

cannot be assigned the colour given to any of the vertices v3, e1, e2 and e3. Suppose v4

is assigned a new colour, we have χonc(P
−++
5 ) ≥ 6. Otherwise, v4 is assigned the colour

given to v2, in which case, the vertex v5 has to be given a new colour.
Either way, we need a minimum of six colours to have an open neighbourhood

colouring of P−++
5 .

To prove the reverse inequality, consider a colouring of P−++
5 as in Fig. 4. It is

evident from the figure that the colouring satisfies the conditions of open neighbourhood
colouring.

Therefore, χonc(P
−++
5 ) = 6.

Case (4) : Suppose n = 6. It can be seen that in any open neighbourhood
colouring of P−++

6 , none of the vertices v1, v2, v3, v4, v6, e2, e3 and e4 can be given the
same colour as each of them is connected with the others by a path of length two.
Thus, χonc(P

−++
6 ) ≥ 8.

The reverse inequality can be proved by means of an open neighbourhood colouring
c : V (P−++

6 ) → {1, 2, · · · , 8} defined by c(vi) = i for i = 1, 2, 3, 4, 6 and c(v5) =
2, c(e1) = c(e4) = 8, c(e2) = c(e5) = 5, c(e3) = 7.

We thus conclude that χonc(P
−++
6 ) = 8.

Case (5) : Suppose n ≥ 7. In the transformation graph P−++
n , not more than

one vertex of the form vi, 1 ≤ i ≤ n, can be in one P3-independent set as each such
vertex is connected to every vertex in the graph by a path of length two. Further, not
more than one vertex in a set of vertices ei, ei+1, ei+2 can be in a P3-independent set of
P−++

n . Thus, the minimum number of P3-independent sets in P−++
n is given by n+ 3,

consisting of n P3-independent sets, one each for the vertices vi, 1 ≤ i ≤ n, and three
P3-independent sets S0, S1, S2 given by Sk = {ej| j ≡ k(mod 3)}, k = 0, 1, 2.
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Thus, χonc(P
−++
n ) ≥ n+ 3.

To prove the reverse inequality, define a colouring c : V (P−++
n ) → {1, 2, · · · , n+ 3}

as follows;

c(v) =


i, if v = vi for some i,

n+ 1, if v = ei with i ≡ 0(mod 3),

n+ 2, if v = ei with i ≡ 1(mod 3),

n+ 3, otherwise.

Clearly, c is an open neighbourhood colouring of P−++
n using n+ 3 colours so that

χonc(P
−++
n ) ≤ n+ 3.

Therefore, we conclude that χonc(P
−++
n ) = n+ 3.

Theorem 3.6. For the transformation graph P−+−
n , n ≥ 3,

χonc(P
−+−
n ) =


2, if n = 3,

5, if n = 4,

8, if n = 5,

2n− 1, otherwise.

Proof. We prove the result in various cases as follows.
Case (1) : Suppose n = 3. The transformation graph P−+−

3 is disconnected.
Hence, by Definition 6, χonc(P

−+−
3 ) = χonc(C4) = 2.

Case (2) : Suppose n = 4. The graph P−+−
4 contains P+−+

3 as its subgraph so
that χonc(P

−+−
4 ) ≥ χonc(P

+−+
3 ) = 5 from Theorem 3.3.

The reverse inequality can be proved by observing the colouring of P−+−
4 as given

in Fig. 5. From the figure, it follows that the colouring is an open neighbourhood
colouring of P−+−

4 so that χonc(P
−+−
4 ) ≤ 5. To conclude, χonc(P

−+−
4 ) = 5.

Figure 5: An open neighbourhood colouring of P−+−
4 .

Figure 6: An open neighbourhood colouring of P−+−
5 .
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Case (3) : Suppose n = 5. All the vertices in P−+−
5 except v4 have to be given

different colours as each such vertex is connected to every other vertex by a path of
length two. This implies that χonc(P

−+−
5 ) ≥ 8.

The reverse inequality follows from the colouring of P−+−
5 shown in Fig. 6.

Therefore χonc(P
−+−
5 ) = 8.

Case (4) : Suppose n ≥ 6. In the transformation graph P−+−
n , every two vertices

are connected by a path of length two so that each vertex has to be given a different
colour in any open neighbourhood colouring of P−+−

n .
Hence, χonc(P

−+−
n ) = |V (P−+−

n )| = 2n− 1.

Theorem 3.7. For the transformation graph P−−+
n , n ≥ 3, χonc(P

−−+
n ) = n.

Proof. We prove the result in various cases as follows.
Case (1) : Suppose n = 3. It is easy to observe that the transformation graph

P−−+
3

∼= C5. Thus, from Theorem 1.5, χonc(P
−−+
3 ) = χonc(C5) = 3.

Case (2) : Suppose n = 4. In the transformation graph P−−+
4 , it can be seen

that each of the vertices v1, v2 and e3 has to be given a different colour in any open
neighbourhood colouring of P−−+

4 . Further, out of the remaining four vertices, not
more than one vertex can be assigned a colour given to any of these three vertices.
Thus, we need at least four colours for an open neighbourhood colouring of P−−+

4 .
To prove the reverse inequality, consider a colouring of P−−+

4 as in Fig. 7. It
follows from the figure that the colouring satisfies the conditions of open neighbourhood
colouring so that χonc(P

−−+
4 ) ≤ 4.

Therefore, χonc(P
−−+
4 ) = 4.

Figure 7: An open neighbourhood colouring of P−−+
4 .

Figure 8: An open neighbourhood colouring of P−−+
5 .

Case (3) : Suppose n = 5. We first prove that in any open neighbourhood
colouring of P−−+

5 , not more than two vertices can receive the same colour. To prove
this, we take various subcases as follows.

Subcase (1): Consider any three vertices of the form vi, vj, vk. Since these are the
vertices in a path P4, we cannot give the same colour to all the three vertices.
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Subcase (2): Consider any three vertices of the form ei, ej, ek. Once again, these
vertices lie in a path P4 so that the same colour cannot be given to all three of them.

Subcase (3): Consider any three vertices of the form ei, ej, vk. Then, either ei and
ej are connected by a path of length two or the three vertices are connected by a path
P4. In either case, the same colour cannot be given to all the three vertices.

Subcase (4): Consider any three vertices of the form vi, vj, ek. Here again, either
vi and vj are connected by a path of length two or the three vertices are connected by
a path P4 so that all the three vertices cannot be given the same colour.

From the above discussion, we conclude that at least five colours are needed for an
open neighbourhood colouring of P−−+

5 .
The colouring of P−−+

5 shown in Fig. 8 can be easily verified to be an open neighbour-
hood colouring so that χonc(P

−−+
5 ) ≤ 5.

Therefore, χonc(P
−−+
5 ) = 5.

Case (4) : Suppose n = 6. In the graph P−−+
5 , we see that none of the vertices

v1, v2, v3, v4 and v6 can be given the same colour in any open neighbourhood colouring
as every two such vertices are connected by a path of length two. Further, we cannot
give the vertex v5 any of the colours assigned to the vertices v1, v3, v4 or v6. However, v5

may or may not be assigned the same colour as that of v2. Based on this, we consider
two subcases as follows.

Subcase (1): Suppose v5 is given the same colour as v2. Then, it is evident from
the figure that a sixth colour has to be assigned to at least one of the vertices e1, e2, e3, e4
and e5 to have an open neighbourhood colouring of P−−+

6 .
Subcase (2): Suppose v5 is given a new colour. Then, we need at least six colours

to have an open neighbourhood colouring of P−−+
6 .

In either case, we have χonc(P
−−+
6 ) ≥ 6.

To establish the reverse inequality, consider a colouring of P−−+
6 as c : V (P−−+

6 ) →
{1, 2, · · · , 6} as c(ei) = i for each i = 1, 2, 3, 4, 5 and c(vi) = i for each i = 1, 2, · · · , 6.
Clearly, c is an open neighbourhood colouring of P−−+

6 so that χonc(P
−−+
6 ) ≤ 6.

Therefore, χonc(P
−−+
6 ) = 6.

Case (5) : Suppose n ≥ 7. Each of the vertices v1, v2, · · · , vn in P−−+
n has to be

assigned a different colour in every open neighbourhood colouring of P−−+
n as every

two of them are connected by a path of length two. Thus, we have χonc(P
−−+
n ) ≥ n.

For the reverse inequality, define a colouring c : V (P−−+
n ) → {1, 2, · · · , n} as c(v) =

i where v = vi or ei for some i.
It is easy to verify that the colouring is an open neighbourhood colouring of P−−+

n

using n colours so that χonc(P
−−+
n ) ≤ n.

Therefore, χonc(P
−−+
n ) = n if n ≥ 7.

Theorem 3.8. For the transformation graph P−−−
n , n ≥ 3,

χonc(P
−−−
n ) =


2, if n = 3,

4, if n = 4,

7, if n = 5,

2n− 1, otherwise.



88 N.N. Swamy, B. Sooryanarayana

Proof. We prove the result in various cases as follows.
Case (1) : Suppose n = 3. Since P−−−

3 is disconnected, from Definition 6, it
follows that χonc(P

−−−
3 ) = χonc(P4) = 2.

Case (2) : Suppose n = 4. It is easy to verify that ∆(P−−−
4 ) = 4. Hence, by

Theorem 1.1, it follows that χonc(P
−−−
4 ) ≥ ∆(P−−−

4 ) = 4.
To prove the reverse inequality, consider the colouring of P−−−

4 as in Fig. 9.

Figure 9: An open neighbourhood colouring of P−−−
4 .

Figure 10: An open neighbourhood colouring of P−−−
5 .

Easily, the above colouring can be verified to be an open neighbourhood colouring of
P−−−

4 so that χonc(P
−−−
4 ) ≤ 4.

Therefore, χonc(P
−−−
4 ) = 4.

Case (3) : Suppose n = 5. In the transformation graph P−−−
5 , each of the

seven vertices e1, e2, e3, v1, v2, v3 and v5 has to be given a different colour in any open
neighbourhood colouring P−−−

5 as every two of these vertices are connected by a path
of length two so that χonc(P

−−−
5 ) ≥ 7.

The reverse inequality can be easily established by observing that the colouring in
Fig. 10 is an open neighbourhood colouring of P−−−

5 .
Therefore, χonc(P

−−−
5 ) = 7.

Case (4) : Suppose n ≥ 6. Since every two vertices of P−−−
n are connected by a

path of length two, each vertex has to be given a different colour in any open neighbour-
hood colouring of P−−−

n . Hence, we conclude that χonc(P
−−−
n ) = |V (P−−−

n )| = 2n− 1
if n ≥ 6.
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