Eurasian Mathematical Journal

2015, Volume 6, Number 4

Founded in 2010 by
the L.N. Gumilyov Eurasian National University
in cooperation with
the M.V. Lomonosov Moscow State University
the Peoples' Friendship University of Russia
the University of Padua

Supported by the ISAAC (International Society for Analysis, its Applications and Computation) and by the Kazakhstan Mathematical Society

Published by

the L.N. Gumilyov Eurasian National University Astana, Kazakhstan

EURASIAN MATHEMATICAL JOURNAL

Editorial Board

Editors-in-Chief

V.I. Burenkov, M. Otelbaev, V.A. Sadovnichy

Editors

Sh.A. Alimov (Uzbekistan), H. Begehr (Germany), T. Bekjan (China), O.V. Besov (Russia), N.A. Bokayev (Kazakhstan), A.A. Borubaev (Kyrgyzstan), G. Bourdaud (France), A. Caetano (Portugal), M. Carro (Spain), A.D.R. Choudary (Pakistan), V.N. Chubarikov (Russia), A.S. Dzumadildaev (Kazakhstan), V.M. Filippov (Russia), H. Ghazaryan (Armenia), M.L. Goldman (Russia), V. Goldshtein (Israel), V. Guliyev (Azerbaijan), D.D. Haroske (Germany), A. Hasanoglu (Turkey), M. Huxley (Great Britain), M. Imanaliev (Kyrgyzstan), P. Jain (India), T.Sh. Kalmenov (Kazakhstan), B.E. Kangyzhin (Kazakhstan), K.K. Kenzhibaev (Kazakhstan), S.N. Kharin (Kazakhstan), E. Kissin (Great Britain), V. Kokilashvili (Georgia), V.I. Korzyuk (Belarus), A. Kufner (Czech Republic), L.K. Kussainova (Kazakhstan), P.D. Lamberti (Italy), M. Lanza de Cristoforis (Italy), V.G. Maz'ya (Sweden), E.D. Nursultanov (Kazakhstan), R. Oinarov (Kazakhstan), K.N. Ospanov (Kazakhstan), I.N. Parasidis (Greece), J. Pečarić (Croatia), S.A. Plaksa (Ukraine), L.-E. Persson (Sweden), E.L. Presman (Russia), M.A. Ragusa (Italy), M.D. Ramazanov (Russia), M. Reissig (Germany), M. Ruzhansky (Great Britain), S. Sagitov (Sweden), T.O. Shaposhnikova (Sweden), A.A. Shkalikov (Russia), V.A. Skvortsov (Poland), G. Sinnamon (Canada), E.S. Smailov (Kazakhstan), V.D. Stepanov (Russia), Ya.T. Sultanaev (Russia) sia), I.A. Taimanov (Russia), T.V. Tararykova (Great Britain), J.A. Tussupov (Kazakhstan), U.U. Umirbaev (Kazakhstan), Z.D. Usmanov (Tajikistan), N. Vasilevski (Mexico), Dachun Yang (China), B.T. Zhumagulov (Kazakhstan)

Managing Editor

A.M. Temirkhanova

Executive Editor

D.T. Matin

Aims and Scope

The Eurasian Mathematical Journal (EMJ) publishes carefully selected original research papers in all areas of mathematics written by mathematicians, principally from Europe and Asia. However papers by mathematicians from other continents are also welcome.

From time to time the EMJ publishes survey papers.

The EMJ publishes 4 issues in a year.

The language of the paper must be English only.

The contents of EMJ are indexed in Scopus, Mathematical Reviews, MathSciNet, Zentralblatt Math (ZMATH), Referativnyi Zhurnal – Matematika, Math-Net.Ru.

The EMJ is included in the list of journals recommended by the Committee for Control of Education and Science (Ministry of Education and Science of the Republic of Kazakhstan).

Information for the Authors

<u>Submission.</u> Manuscripts should be written in LaTeX and should be submitted electronically in DVI, PostScript or PDF format to the EMJ Editorial Office via e-mail (eurasianmj@yandex.kz).

When the paper is accepted, the authors will be asked to send the tex-file of the paper to the Editorial Office.

The author who submitted an article for publication will be considered as a corresponding author. Authors may nominate a member of the Editorial Board whom they consider appropriate for the article. However, assignment to that particular editor is not guaranteed.

Copyright. When the paper is accepted, the copyright is automatically transferred to the EMJ. Manuscripts are accepted for review on the understanding that the same work has not been already published (except in the form of an abstract), that it is not under consideration for publication elsewhere, and that it has been approved by all authors.

Title page. The title page should start with the title of the paper and authors' names (no degrees). It should contain the Keywords (no more than 10), the Subject Classification (AMS Mathematics Subject Classification (2010) with primary (and secondary) subject classification codes), and the Abstract (no more than 150 words with minimal use of mathematical symbols).

<u>Figures</u>. Figures should be prepared in a digital form which is suitable for direct reproduction.

<u>References</u>. Bibliographical references should be listed alphabetically at the end of the article. The authors should consult the Mathematical Reviews for the standard abbreviations of journals' names.

<u>Authors' data.</u> The authors' affiliations, addresses and e-mail addresses should be placed after the References.

<u>Proofs.</u> The authors will receive proofs only once. The late return of proofs may result in the paper being published in a later issue.

Offprints. The authors will receive offprints in electronic form.

Publication Ethics and Publication Malpractice

For information on Ethics in publishing and Ethical guidelines for journal publication see http://www.elsevier.com/publishingethics and http://www.elsevier.com/journal-authors/ethics.

Submission of an article to the EMJ implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see http://www.elsevier.com/postingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. In particular, translations into English of papers already published in another language are not accepted.

No other forms of scientific misconduct are allowed, such as plagiarism, falsification, fraudulent data, incorrect interpretation of other works, incorrect citations, etc. The EMJ follows the Code of Conduct of the Committee on Publication Ethics (COPE), and follows the COPE Flowcharts for Resolving Cases of Suspected Misconduct (http://publicationethics.org/files/u2/New_Code.pdf). To verify originality, your article may be checked by the originality detection service CrossCheck http://www.elsevier.com/editors/plagdetect.

The authors are obliged to participate in peer review process and be ready to provide corrections, clarifications, retractions and apologies when needed. All authors of a paper should have significantly contributed to the research.

The reviewers should provide objective judgments and should point out relevant published works which are not yet cited. Reviewed articles should be treated confidentially. The reviewers will be chosen in such a way that there is no conflict of interests with respect to the research, the authors and/or the research funders.

The editors have complete responsibility and authority to reject or accept a paper, and they will only accept a paper when reasonably certain. They will preserve anonymity of reviewers and promote publication of corrections, clarifications, retractions and apologies when needed. The acceptance of a paper automatically implies the copyright transfer to the EMJ.

The Editorial Board of the EMJ will monitor and safeguard publishing ethics.

Web-page

The web-page of EMJ is www.emj.enu.kz. One can enter the web-page by typing Eurasian Mathematical Journal in any search engine (Google, Yandex, etc.). The archive of the web-page contains all papers published in EMJ (free access).

Subscription

For Institutions

- US\$ 200 (or equivalent) for one volume (4 issues)
- US\$ 60 (or equivalent) for one issue

For Individuals

- US\$ 160 (or equivalent) for one volume (4 issues)
- US\$ 50 (or equivalent) for one issue.

The price includes handling and postage.

The Subscription Form for subscribers can be obtained by e-mail:

eurasianmj@yandex.kz

The Eurasian Mathematical Journal (EMJ)

The Editorial Office

The L.N. Gumilyov Eurasian National University

Building no. 3

Room 306a

Tel.: +7-7172-709500 extension 33312

13 Kazhymukan St

010008 Astana

Kazakhstan

KORDAN NAURYZKHANOVICH OSPANOV

(to the 60th birthday)

On 25 September 2015 Kordan Nauryzhanovich Ospanov, professor of the Department "Fundamental Mathematics" of the L.N. Gumilyov Eurasian National University, Doctor of Physical and Mathematical Sciences (2000), a member of the Editorial Board of our journal, celebrated his 60th birthday.

He was born on September 25, 1955, in the village Zhanatalap of the Zhanaarka district of the Karaganda region. In 1976 he graduated from the Kazakh State University, and in 1981 he completed his postgraduate studies at the Abay Kazakh Pedagogical Institute.

Scientific works of K.N. Ospanov are devoted to application of methods of functional analysis to the theory of differential

equations. On the basis of a local approach to the resolvent representation he has found weak conditions for the solvability of the singular generalized Cauchy-Riemann system and established coercive estimates for its solution. He has obtained a criterion of the spectrum discreteness for the resolvent of the system and the exact in order estimates of singular values and Kolmogorov widths. He has original research results on the coercive solvability of the quasilinear singular generalized Cauchy-Riemann system and degenerate Beltrami-type system. He has established important smoothness and approximation properties of non strongly elliptic systems. K.N. Ospanov has found separability conditions in Banach spaces for singular linear and quasi-linear second-order differential operators with growing intermediate coefficients and established a criterion for the compactness of its resolvent and finiteness of the resolvent type.

His results have contributed to a significant development of the theory of twodimensional singular elliptic systems, degenerate differential equations and non strongly elliptic boundary value problems.

K.N. Ospanov has published more than 140 scientific papers. The list of his most important publications one may see on the

http://mmf.enu.kz/images/stories/photo/pasport/fm/ospanov

K.N. Ospanov is an Honoured Worker of Education of the Republic of Kazakhstan, and he was awarded the state grant "The best university teacher".

The Editorial Board of the Eurasian Mathematical Journal is happy to congratulate Kordan Nauryzkhanovich Ospanov on occasion of his 60th birthday, wishes him good health and further productive work in mathematics and mathematical education.

EURASIAN MATHEMATICAL JOURNAL

ISSN 2077-9879

Volume 6, Number 4 (2015), 59 - 76

ON MONOTONICITY OF SOLUTIONS OF DIRICHLET PROBLEM FOR SOME QUASILINEAR ELLIPTIC EQUATIONS IN HALF-SPACES

O.A. Salieva

Communicated by V.I. Burenkov

Key words: quasilinear equations, monotonicity, nonexistence of solutions.

AMS Mathematics Subject Classification: 35J60, 35J70, 35J92.

Abstract. We prove the monotonicity of nonnegative bounded solutions to the Dirichlet problem for a quasilinear elliptic equation of the form $-\Delta_p u = f(u)g(x_n)$ with $p \geq 3$ in a half-space, where x_n is the normal coordinate of the argument. This assertion implies new nonexistence results for the case $f(u) = u^q$ with the appropriate values of q.

1 Introduction

Let $n \ge 2$. Denote $\mathbb{R}^n_+ = \{x = (x_1, \dots, x_n) : x_n > 0\}, \ \partial \mathbb{R}^n_+ = \{x = (x_1, \dots, x_n) : x_n = 0\}.$

Consider the following Dirichlet problem:

$$\begin{cases}
-\Delta_p u = f(u)g(x_n) & (x \in \mathbb{R}^n_+), \\
u = 0 & (x \in \partial \mathbb{R}^n_+),
\end{cases}$$
(1.1)

where $\Delta_p u := \operatorname{div}(|Du|^{p-2}Du)$ is the *p*-Laplacian, and *f* is a nonnegative function satisfying the following condition:

 $f \in C^1(\mathbb{R}_+ \cup \{0\}) \cap C^2(\mathbb{R}_+)$ and for any M > 0 there exist a = a(M) > 0 and A = A(M) > 0 such that

$$as^{q} \le f(s) \le As^{q} \text{ and } |f'(s)| \le As^{q-1} \text{ in } [0, M]$$
 (F₁)

for some q > p - 1.

A typical example of a function f satisfying (F_1) is $f(u) = u^q$ with q > p - 1.

As for $g(x_n)$, we suppose that it is a nonnegative non-decreasing continuous function such that

$$g(tx_n) \le ct^{\alpha} g(x_n) \tag{G_1}$$

for all (at least sufficiently small) t > 0 and $x_n > 0$ with some constants c > 0 and $\alpha > -p$ independent of t. Further, in Theorem 1.2, we require in addition that there exists the limit

$$g_0 := \lim_{x_n \to 0} g(x_n) \in (0, +\infty).$$
 (G₂)

As an example one can take $g(x_n) = \frac{x_n^{\alpha}}{1 + x_n^{\alpha}}$ with $\alpha \ge 0$.

We study the problems of existence and monotonicity of nonnegative bounded solutions of problem (1.1) in the case $p \geq 3$.

For $1 and <math>g(x_n) \equiv 1$ the problem was studied by a number of authors. In particular, the semilinear case (i.e., p=2) was considered in the pioneering papers of H. Berestycki, L. Caffarelli, and L. Nirenberg [2], [3] for n=2 and in those of E.N. Dancer (see [8]) for general n. For $p \neq 2$, the operator Δ_p becomes nonlinear and either singular (for 1) or degenerate (for <math>p > 2), which leads to various additional difficulties. The monotonicity of nonnegative bounded solutions to (1.1) with general n and $g(x_n) \equiv 1$ was shown by A. Farina, L. Montoro, and B. Sciunzi in [11] for $\frac{2n+2}{n+2} and in [12] for <math>2 (see also the development of this approach in [10]). We also mention the paper of H. Zou [21] where a nonexistence result for problem (1.1) is obtained in the functional class <math>W^{1,p}(\mathbb{R}^n_+) \cap L^q_{loc}(\mathbb{R}^n_+)$ under more restrictive assumptions on f. A detailed treatment of the case q was given recently by E.N. Dancer, Y. Du, and M. Efendiev in [9]. For problems with singular coefficients, nonexistence results were obtained by M.F. Bidaut-Véron and S.I. Pohozaev in [4] and by E.I. Galakhov and the author in [14].

The case $p \geq 3$ and $g(x_n) \equiv 1$ was considered in another recent paper of E.I. Galakhov and the author [15]. Here we extend the methods of this paper to more general functions g.

The main statements of the present paper are as follows.

Theorem 1.1. Let p > 2. Assume that f satisfies (F_1) and g satisfies (G_1) . Then any nonnegative nontrivial solution $u(x', x_n) \in W^{1,p}(\mathbb{R}^n_+) \cap L^{\infty}(\mathbb{R}^n_+)$ of problem (1.1) is strictly monotonically increasing in x_n on \mathbb{R}_+ for each fixed $x' \in \mathbb{R}^{n-1}$.

Theorem 1.2. Problem (1.1) with $f(u) = u^q$ and g satisfying (G_1) and (G_2) has no nontrivial nonnegative bounded solutions if p > 2 and either

$$n-1 \le \frac{p(p+3)}{p-1}, \quad q > p-1$$

or

$$n-1 > \frac{p(p+3)}{p-1}, \quad p-1 < q < q_c(n-1,p),$$

where

$$q_c(n,p) = \frac{[(p-1)n-p]^2 + p^2(p-2) - p^2(p-1)n + 2p^2\sqrt{(p-1)(n-1)}}{(n-p)((p-1)n - p(p+3))}.$$

Note that for $g(x_n) \equiv 1$ these results coincide with those of [15].

The method of proof is based on certain rescaling techniques and on the weak comparison principle in unbounded narrow domains, similarly to [13], [11], [12]. This allows us to apply the moving plane method due to A.D. Alexandrov and J. Serrin [1], [18].

We note that for p > 2 the comparison principle can be derived from the weighted Poincaré inequality proven in [5], but one must cope with the possible blow-up of the

constant in this inequality as the functions under comparison (i.e., the solution u and its reflection with respect to a moving plane) approach zero. In [12], this blow-up is balanced by the power-like decay of f, but such an argument works only for 2 . Therefore we modify the approach used in [12] as follows:

- 1. First, we use a scaling argument to show that u is monotonic in some layer near the boundary. In fact, the boundary maximum principle due to J.L. Vázquez [20] implies that for each $x' = (x_1, \ldots, x_{n-1}) \in \mathbb{R}^{n-1}$ there exists a constant $\delta(x') > 0$ such that the function $u(x', \cdot)$ is strictly increasing in x_n for all $x_n \in (0, \delta(x'))$. We show that such $\delta > 0$ can be chosen independently of x'. Hence the moving plane process can get started.
- 2. In order to be able to continue this process for any x_n , we formulate the comparison principle for the solution u and its reflection u_{λ} with respect to a moving plane $x_n = \lambda$ rather than for generic u and v. This allows us to use the specific properties of u_{λ} .
- 3. In the proof of the comparison principle, we estimate $(u u_{\lambda})_{+}$ on a narrow unbounded set $A_{\lambda,\delta}$ such that $u(x) \leq u_{\lambda}(x)$ on its boundary, as in [11] and [12]. By another scaling argument, we show that u and u_{λ} are uniformly bounded away from zero on the set $\sup(u-u_{\lambda})_{+} \cap A_{\lambda,\delta}$. Therefore we can apply to $u-u_{\lambda}$ the weighted Poincaré inequality with a uniformly bounded constant in any set from a sufficiently fine covering of $A_{\lambda,\delta}$, which implies that $(u-u_{\lambda})_{+} \equiv 0$, that is, $u(x) \leq u_{\lambda}(x)$ in $A_{\lambda,\delta}$, and hence the moving plane process can be continued. Thus we obtain the monotonicity of $u(x', x_n)$ in $x_n \in \mathbb{R}_+$ for any $x' \in \mathbb{R}^{n-1}$.

Since monotonic solutions of (1.1) are necessarily stable, this implies nonexistence of positive bounded solutions to (1.1) with $f(u) = u^q$ for any $q \in (p-1, q_{\rm cr}(n, p))$, where $q_{\rm cr}(n, p)$ is the critical exponent for stable solutions of (1.1) obtained in [6]. By passing to the limit as $x_n \to \infty$, we can extend this result to the case $q_{\rm cr}(n, p) \le q < q_{\rm cr}(n-1, p)$.

The rest of the paper consists of three sections. Section 2 contains some known results, which we will use in the sequel. In Section 3, we formulate our preliminary results, namely, lower estimates on δ and u based on scaling arguments. In Section 4, we prove Theorems 1.1 and 1.2.

2 Some known results

In the sequel we will make use of the following results in [12]. Let Ω be an open set in \mathbb{R}^n . For a nonnegative weight function $\rho \in L^1(\Omega)$, we denote

$$L^{2}_{\rho}(\Omega) = \{ u : \Omega \to \mathbb{R}, \int_{\Omega} \rho u^{2} dx < \infty \},$$

$$H^{1,2}_{\rho}(\Omega) = \{ u : \Omega \to \mathbb{R}, \|u\|_{H^{1,2}_{\rho}(\Omega)}^{2} = \int_{\Omega} \rho (u^{2} + |\nabla u|^{2}) dx < \infty \},$$

 $H^{1,2}_{0,\rho}(\Omega)$ - the closure of $C_0^\infty(\Omega)$ with respect to the norm of $H^{1,2}_\rho(\Omega)$.

Theorem 2.1. Let $C^* > 0$. Assume that ρ is a weight function such that

$$\int_{\Omega} \frac{dy}{\rho^t |x - y|^{\gamma}} \le C^*,\tag{2.1}$$

with $t = \frac{p-1}{p-2}r$, $\frac{p-1}{p-2} < r < 1$, and $n-2t < \gamma < n-2$ if $n \ge 3$ (or $\gamma = 0$ if n = 2). Then, for any $w \in H^{1,2}_{0,\rho}(\Omega) \cap W^{1,1}_0(\Omega)$,

$$||w||_{L^{q}(\Omega)} \le C_{\rho} ||\nabla w||_{L^{2}_{\rho}(\Omega)}$$
 (2.2)

for any $1 \le q < 2^*(t)$, where

$$\frac{1}{2^*(t)} = \frac{1}{2} - \frac{1}{n} + \frac{1}{t} \left(\frac{1}{2} - \frac{\gamma}{2n} \right), \tag{2.3}$$

$$C_{\rho} = \hat{C}(C^*)^{\frac{1}{2t}}(C_{\eta})^{1-\frac{1}{2t}},$$
 (2.4)

 $\hat{C} = \frac{1}{n\omega_n}$, where ω_n is the volume of the unit ball in \mathbb{R}^n , and

$$C_{\eta} = \left(\frac{1-\eta}{\frac{\alpha}{n}-\eta}\right)^{1-\eta} \omega_n^{1-\frac{\alpha}{n}} |\Omega|^{\frac{\alpha}{n}-\eta}$$

with

$$\eta = 1 - \frac{1}{2t} - \frac{1}{q}$$

and

$$\alpha = n - \left(n - 1 - \frac{\gamma}{2t}\right) \frac{2t}{2t - 1}.$$

Proof. See Theorem 5.1, [12], with $\Omega_1 = \Omega$ and $\Omega_2 = \emptyset$.

Corollary 2.1. Assume that $w \in H^{1,2}_{0,\rho}(\Omega)$. If the weight ρ fulfils (2.1), then

$$||w||_{L^2(\Omega)} \le K_p C_\rho |\nabla w||_{L^2_\rho(\Omega)},$$

and there exists $0 < \theta < 1$ such that

$$K_p = C|\Omega|^{\frac{\theta}{(p-1)n}} \tag{2.5}$$

and C > 0 depends only on the numerical parameters.

Proof. See Corollary 5.3, [12], with
$$\Omega_1 = \Omega$$
 and $\Omega_2 = \emptyset$.

Proposition 2.1. Let $u \in C^1(\mathbb{R}^n_+)$ be a solution to problem (1.1) with p > 1. Assume that f satisfies (F_1) and that $|\nabla u|$ is uniformly bounded on \mathbb{R}^n_+ . Let $\Omega' \subset \mathbb{R}^n_+$ and $0 < \delta < \operatorname{dist}(\Omega', \partial \mathbb{R}^n_+)$ be such that f(u(x)) > 0 in $\overline{\Omega'_\delta}$, where

$$\Omega'_{\delta} = \{ x \in \mathbb{R}^n_+ : d(x, \Omega') < \delta \} \subset \mathbb{R}^n_+.$$

Consider a finite covering $\Omega' \subset \bigcup_{i=1}^S B_{\delta}(x^i)$ with $x^i \in \Omega'$ and $S = S(\delta)$. Then there exists C(n) > 0 such that

$$\int_{\Omega'} \frac{dy}{|\nabla u(y)|^{\tau} |x - y|^{\gamma}} \le C(n) \frac{S(\delta)}{a^2 \delta^2 (\inf_{x \in \Omega'_{\delta}} u(x))^{2q}}$$
(2.6)

where γ is as in Theorem 2.1, a = a(M) with $M = \sup_{x \in \Omega'_{\delta}} u(x)$ as in (F_1) , and

$$\max\{p-2,0\} \le \tau \le p-1.$$

Proof. See Proposition 4.2 and Corollary 4.3, [12], and references therein. \Box

Remark 6. In particular, if in Proposition 2.1 Ω' is a cube of diameter d, then (2.6) holds with

$$S(\delta) = \left(\left\lceil \frac{d}{\delta} \right\rceil + 1 \right)^n$$

(see Remark 4.4, [12]).

3 Preliminary results

For our auxiliary results, we will need the condition

$$(F) \qquad \sup_{x \in \mathbb{R}^n_+} \frac{f(u(x))}{u^{p-1}(x)} < \infty$$

or a stronger one

$$(F')$$
 $\lim_{u \to 0^+} \frac{f(u)}{u^{p-1}} = 0.$

For $x' \in \mathbb{R}^{n-1}$, we denote

$$z(x') = \inf \left\{ x_n > 0 : \frac{\partial u(x', x_n)}{\partial x_n} = 0 \right\}.$$
 (3.1)

Remark 7. One necessarily has z(x') > 0 for any $x' \in \mathbb{R}^{n-1}$ due to the boundary maximum principle for quasi-linear operators [20].

Lemma 3.1. Let p > 1. Suppose that f satisfies (F_1) , g satisfies (G_1) , $u \in W^{1,p}(\mathbb{R}^n_+) \cap L^{\infty}(\mathbb{R}^n_+)$ is a nonnegative nontrivial solution of problem (1.1), and the pair (f,u) satisfies (F).

Then there exists $\varkappa > 0$ such that $u(x', x_n) \ge u(x', y_n)$ for all x_n, y_n such that

$$0 \le y_n \le x_n < \varkappa.$$

Proof. If $\inf_{x' \in \mathbb{R}^{n-1}} z(x') > 0$, the assertion obviously holds, since u = 0 on $\partial \mathbb{R}^n_+$ and $u \geq 0$ in \mathbb{R}^n_+ . Hence we suppose that

$$\inf_{x' \in \mathbb{R}^{n-1}} z(x') = 0. \tag{3.2}$$

By Remark 7, z(0) > 0. Define

$$Z_0 = \{ x' \in \mathbb{R}^{n-1} : z(x') \ge z(0) \},$$

$$Z_k = \{ x' \in \mathbb{R}^{n-1} : 2^{-k} z(0) \le z(x') \le 2^{1-k} z(0) \} \quad (k \in \mathbb{N}).$$
(3.3)

Evidently, $\mathbb{R}^{n-1} = \bigcup_{k=0}^{\infty} Z_k$. Some of the sets Z_k may be empty.

We claim that there exists a sequence $\{x'_m\}$ of points $x'_m \in \mathbb{R}^{n-1}$ with the following properties.

1. For each $m \in \mathbb{N}$, there exists $k_m \in \mathbb{N}$ such that $x_m' \in Z_{k_m}$ and $k_m \to \infty$ as $m \to \infty$.

2. Define
$$r_m = \operatorname{dist}\left(x'_m, \bigcup_{j=k_m+1}^{\infty} Z_j\right)$$
. Then
$$\lim_{m \to \infty} \sup 2^{k_m} r_m = \infty. \tag{3.4}$$

In fact, a sequence with property 1 does exist, since otherwise the number of nonempty sets Z_k would be finite, say K, and hence

$$\inf_{x' \in \mathbb{R}^{n-1}} z(x') \ge 2^{-K} z(0),$$

which would contradict (3.2).

Now assume that each sequence with property 1 does not satisfy 2, that is, for each such sequence one has

$$\lim_{m \to \infty} \sup 2^{k_m} r_m < \infty. \tag{3.5}$$

We construct a sequence $\{x'_m\}$ such that $x'_1 = 0$ and $x'_{m+1} \in \bigcup_{j=k_m+1}^{\infty} Z_j$ is chosen so that

$$|x'_{m+1} - x'_m| \le 2 \operatorname{dist}\left(x'_m, \bigcup_{j=k_m+1}^{\infty} Z_j\right) = 2r_m.$$

We show that the series $\sum_{m=0}^{\infty} |x'_{m+1} - x'_m|$ necessarily diverges. In fact, otherwise one would have

$$|x'_{m}| \le |x'_{0}| + \sum_{j=0}^{m-1} |x'_{j+1} - x'_{j}| \le 0 + \sum_{j=0}^{\infty} |x'_{j+1} - x'_{j}| \le 2c \sum_{j=0}^{\infty} r_{j} \le 2c \sum_{j=0}^{\infty} 2^{-k_{j}} < \infty \quad (m \in \mathbb{N}),$$

where $c := \lim_{j \to \infty} \sup 2^{k_j} r_j < \infty$ due to (3.5).

Thus the sequence $\{x'_m\}$ is bounded and therefore converges to a point $x'_* \in \mathbb{R}^{n-1}$ up to a subsequence. Denote $z_m = z(x'_m)$. Since $u \in C^{1,\beta}(\mathbb{R}^n_+)$ and $\frac{\partial u(x'_m, z_m)}{\partial x_n} = 0$ by (3.2), for some constant c > 0 we have

$$\frac{\partial u(x_m',0)}{\partial x_n} = \frac{\partial u(x_m',0)}{\partial x_n} - \frac{\partial u(x_m',z_m)}{\partial x_n} \le cz_m^{\beta} \to 0 \text{ as } m \to \infty$$

and by continuity

$$\frac{\partial u(x_*',0)}{\partial x_n} = 0,$$

which is impossible due to the boundary maximum principle.

Hence claim (3.4) holds, i. e. there exists a sequence $\{x'_m\}$ with elements in \mathbb{R}^{n-1} such that

$$x'_m \in Z_{k_m}, \quad B_{r_m/2}(x'_m) \subset \bigcup_{j=0}^{k_m} Z_j,$$

that is,

$$z(x') \ge 2^{-k_m} z(0) \ge z(x'_m)/2 = z_m/2 \text{ for all } x' \in B_{r_m/2}(x'_m).$$
 (3.6)

Now for each $m \in \mathbb{N}$ we introduce a rescaled function

$$u_m(x) = \frac{1}{u(x'_m, z_m)} \cdot u(\tilde{x}_m), \text{ where } \tilde{x}_m = (z_m x_1 + x_1^m, \dots, z_m x_{n-1} + x_{n-1}^m, z_m x_n).$$

By (1.1) and (F), one has

$$-\Delta_p u_m(x) = -\frac{z_m^p}{u^{p-1}(x_m', z_m)} \Delta_p u(\tilde{x}_m) = d_m u_m^{p-1}(x) g(x_n), \tag{3.7}$$

where

$$0 \le d_m = z_m^p \frac{f(u(\tilde{x}_m))g(z_m x_n)}{u^{p-1}(\tilde{x}_m)g(x_n)} \le z_m^{p+\alpha} \cdot \sup_{x \in \mathbb{R}^n} \frac{f(u(x))}{u^{p-1}(x)}.$$
 (3.8)

Evidently, one has $u_m(0,\ldots,0,1)=1$ and $\frac{\partial u_m(0,\ldots,0,1)}{\partial x_n}=0$. Due to (3.1) and (3.6), u is monotonic in the cylinder

$$Z_m := \left\{ (x', x_n) : 0 \le |x' - x'_m| \le \frac{r_m}{2}, \ 0 \le x_n \le \frac{z_m}{2} \right\},$$

and therefore the rescaled functions u_m are monotonic in the respective cylinders

$$Z'_m := \left\{ (x', x_n) : 0 \le |x'| \le \frac{r_m}{2z_m}, 0 \le x_n \le \frac{1}{2} \right\}.$$

Note that by (3.3) and the definition $z_m = z(x'_m)$ with $x'_m \in Z_{k_m}$ we have

$$2^{-k_m}z(0) \le z_m \le 2^{1-k_m}z(0),$$

which by (3.4) implies

$$\lim_{m \to \infty} \frac{r_m}{2z_m} \ge \lim_{m \to \infty} \frac{2^{k_m - 1} r_m}{z(0)} = \infty. \tag{3.9}$$

Being a solution of the equation

$$-\Delta_p u_m(x) = d_m(x) u_m^{p-1}(x) g(x_n)$$
(3.10)

obtained in (3.7), u_m satisfies the Harnack inequality (see, e.g., Theorem 7.2, [17]), i.e., for some constant $c_1 > 0$, each $\delta > 0$, and each compact set $X \subset \overline{\mathbb{R}^n_+}$ containing $(0, \ldots, 0, 1)$ we get

$$\sup_{x \in X_{\delta}} u_m(x) \le c_1 \inf_{x \in X_{\delta}} u_m(x) \le c_1,$$

where $X_{\delta} = \{x = (x_1, \dots, x_n) \in X : x_n \geq \delta\}$. Due to the monotonicity of $u_m(x', x_n)$ in $x_n \in [0, 1/2]$ in Z'_m , for $X \subset Z'_m$ this implies

$$\sup_{x \in X} u_m(x) \le c_1.$$

By standard estimates (see [19]) for the solution u_m of (3.10) with d_m satisfying (3.8) we have

$$||u_m||_{C^{1,\beta}(X)} \le c_2(X)$$

with some $\beta > 0$ and $c_2(X) > 0$.

Due to (3.9), the sequence of cylinders Z'_m covers the whole layer $\mathbb{R}^{n-1} \times [0, 1/2]$. Hence, by the Arzela–Ascoli Theorem, there exists a subsequence of $\{u_m\}$ converging to some function

$$u_0 \in C^{1,\beta'}_{\mathrm{loc}}(\mathbb{R}^n_+)$$

with $\beta' > 0$. Moreover, by the fact that $\lim_{m \to \infty} z_m = 0$, (3.7)–(3.8), and the boundedness of u it follows that u_0 satisfies

$$\begin{cases}
-\Delta_p u_0 = 0 & (x \in \mathbb{R}^n_+), \\
u_0 = 0 & (x \in \partial \mathbb{R}^n_+).
\end{cases}$$
(3.11)

Hence $u_0(x', x_n) = c_2 x_n$ with some $c_2 \in \mathbb{R}$ by Theorem 3.1 [16]. Furthermore, one has $c_2 = 1$, since $u_0(0, \dots, 0, 1) = \lim_{k \to \infty} u_m(0, \dots, 0, 1) = 1$. On the other hand,

$$\frac{\partial u_0(0,\ldots,0,1)}{\partial x_n} = \lim_{m \to \infty} \frac{\partial u_m(0,\ldots,0,1)}{\partial x_n} = 0,$$

which contradicts $u_0(x', x_n) = x_n$. Thus the assumption (3.2) cannot hold. This completes the proof.

Now define $u_{\lambda}(x', x_n) = u(x', 2\lambda - x_n)$ for $\lambda > 0, x' \in \mathbb{R}^{n-1}$, and $x_n \in [0, \lambda]$.

Lemma 3.2. Let p > 1. Suppose that f satisfies (F'), g satisfies (G_1) and (G_2) , and $u \in W^{1,p}(\mathbb{R}^n_+) \cap L^{\infty}(\mathbb{R}^n_+)$ is a nonnegative nontrivial solution of problem (1.1). Denote

$$A_{\lambda} = \{(x', x_n) : u_{\lambda}(x', x_n) < u(x', x_n), 0 \le x_n \le \lambda\}.$$

Then for each u such that $u(x', x_n)$ monotonically increases in $x_n \in [0, y]$ for each fixed $x' \in \mathbb{R}^{n-1}$ and some $y \in (0, \lambda)$ one has

$$c_{\lambda} := \inf_{x \in A_{\lambda}} u(x) > 0. \tag{3.12}$$

Proof. Suppose, to the contrary, that $\inf_{x \in A_{\lambda}} u(x) = 0$. Then there exists a sequence $\{(x'_k, y_k)\}$ such that

$$\lim_{k \to \infty} u(x_k', y_k) = 0 \tag{3.13}$$

and $(x'_k, y_k) \in A_{\lambda}$, that is, for some $z(x'_k) \in [0, \lambda)$ one has

$$u_{\lambda}(x'_{k}, z(x'_{k})) = u(2\lambda - x'_{k}, z(x'_{k})) < u(x'_{k}, z(x'_{k})).$$

Since $u(x'_k, x_n)$ monotonically increases in $x_n \in [0, y]$, for some $t(x'_k) \in [y, z(x'_k))$ one has $\frac{\partial u(x'_k, x_n)}{\partial x_n}\Big|_{x_n = t(x'_k)} = 0$, and the sequence $\{t(x'_k)\}$ converges to some $t_0 \in [y, \lambda]$ up to a subsequence. Now introduce the family of functions

$$u_k(x', x_n) = \frac{u(x' + x'_k, x_n)}{u(x'_k, x_n)}.$$

Note that

$$\left. \frac{\partial u_k(0, x_n)}{\partial x_n} \right|_{x_n = t(x_k')} = 0. \tag{3.14}$$

Similarly to (3.7), due to (1.1) one has

$$-\Delta_{p}u_{k}(x) = -\frac{1}{u^{p-1}(x'_{k}, x_{n})} \Delta_{p}u(x' + x'_{k}, x_{n}) =$$

$$= \frac{1}{u^{p-1}(x'_{k}, x_{n})} u^{p-1}(x' + x'_{k}, x_{n}) \cdot \frac{f(u(x' + x'_{k}, x_{n}))g(x_{n})}{u^{p-1}(x' + x'_{k}, x_{n})} = d_{k}u_{k}^{p-1}(x)g(x_{n}),$$
(3.15)

where $d_k := \frac{f(u(x'+x_k',x_n))}{u^{p-1}(x'+x_k',x_n)}$ tends to zero as $k \to \infty$ due to (3.13) and (F'). Repeating the argument of the proof of Lemma 3.1, we obtain that there exists $u_0(x) := \lim_{k \to \infty} u_k(x) = cx_n$ with c > 0. But (3.14) implies

$$\frac{\partial u_0(0,\dots,0,x_n)}{\partial x_n}\Big|_{x_n=t_0}=0.$$

This contradiction proves the claim.

To prove the central results of the present paper, we will also need the following statement on passing to the limit.

Lemma 3.3. Let a function $u \in C^{1,\beta}_{loc}(\mathbb{R}^n_+;\mathbb{R}_+)$ with $\beta > 0$ be a weak solution of the equation

$$-\Delta_p u(x) = u^q(x)g(x_n) \quad (x = (x', x_n) \in \mathbb{R}^n_+ = \mathbb{R}^{n-1} \times \mathbb{R}_+), \tag{3.16}$$

where p, q > 1 and g satisfies (G_1) , (G_2) . Suppose also that for any $x' \in \mathbb{R}^{n-1}$ there exists a positive bounded limit

$$U(x') := \lim_{x_n \to \infty} u(x', x_n), \tag{3.17}$$

where the convergence in (3.17) is uniform in $C^1(G)$ for any compact subset $G \subset \mathbb{R}^{n-1}$. Then U is a weak solution of the equation

$$-\Delta_p U(x') = g_0 U^q(x') \quad (x' \in \mathbb{R}^{n-1}), \tag{3.18}$$

where g_0 is the limit in hypothesis (G_2) .

Proof. The locally uniform convergence of (3.17) in C^1 means, in particular, that

$$\frac{\partial u(x', x_n)}{\partial x_i} \to \frac{\partial U(x')}{\partial x_i} \quad (i = 1, \dots, n - 1),$$

$$\frac{\partial u(x', x_n)}{\partial x_n} \to 0$$
(3.19)

uniformly on any compact subset $G \subset \mathbb{R}^{n-1}$. Introduce test functions $\varphi \in \mathcal{D}(\mathbb{R}^{n-1})$ and $\psi \in \mathcal{D}(\mathbb{R})$ with supp $\psi \subset (0,1)$ and $\int_0^1 \psi(x_n) dx_n = 1$. Multiplying equation (3.16) by $\psi(x_n - k)\varphi(x')$ $(k \in \mathbb{N})$ and integrating by parts, we get

$$\int_{\mathbb{R}} \int_{\mathbb{R}^{n-1}} u^{q}(x', x_{n}) g(x_{n}) \psi(x_{n} - k) \varphi(x') dx_{n} dx' =
= \int_{\mathbb{R}} \int_{\mathbb{R}^{n-1}} |Du(x', x_{n})|^{p-2} \frac{\partial u(x', x_{n})}{\partial x_{n}} \cdot \frac{\partial \psi(x_{n} - k)}{\partial x_{n}} \varphi(x') dx_{n} dx' +
+ \int_{\mathbb{R}} \int_{\mathbb{R}^{n-1}} |Du(x', x_{n})|^{p-2} \sum_{i=2}^{n} \frac{\partial u(x', x_{n})}{\partial x_{i}} \cdot \frac{\partial \varphi(x')}{\partial x_{i}} \psi(x_{n} - k) dx_{n} dx'.$$
(3.20)

Change of variables and passing to the limit as $k \to \infty$ result in

$$\int_{\mathbb{R}} \int_{\mathbb{R}^{n-1}} u^{q}(x', x_{n}) g(x_{n}) \psi(x_{n} - k) \varphi(x') dx_{n} dx' = \int_{\mathbb{R}} \int_{\mathbb{R}^{n-1}} u^{q}(x', s + k) g(s + k) \psi(s) \varphi(x') ds dx' \rightarrow g_{0} \int_{\mathbb{R}} \psi(s) ds \int_{\mathbb{R}^{n-1}} U^{q}(x') \varphi(x') dx' = g_{0} \int_{\mathbb{R}^{n-1}} U^{q}(x') \varphi(x') dx', \tag{3.21}$$

$$\int_{\mathbb{R}} \int_{\mathbb{R}^{n-1}} |Du(x', x_n)|^{p-2} \frac{\partial u(x', x_n)}{\partial x_n} \cdot \frac{\partial \psi(x_n - k)}{\partial x_n} \varphi(x') \, dx_n \, dx' =$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}^{n-1}} |Du(s + k, x')|^{p-2} \frac{\partial u(s + k, x')}{\partial s} \cdot \frac{\partial \psi(s)}{\partial s} \varphi(x') \, ds \, dx' \to$$

$$\to \int_{\mathbb{R}} \int_{\mathbb{R}^{n-1}} |DU(x')|^{p-2} \frac{\partial U(x')}{\partial s} \cdot \frac{\partial \psi(s)}{\partial s} \varphi(x') \, ds \, dx' = 0.$$
(3.22)

Similarly

$$\int_{\mathbb{R}} \int_{\mathbb{R}^{n-1}} |Du(x', x_n)|^{p-2} \sum_{i=1}^{n-1} \frac{\partial u(x', x_n)}{\partial x_i} \cdot \frac{\partial \varphi(x')}{\partial x_i} \psi(x_n - k) dx_n dx' =$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}^{n-1}} |Du(s + k, x')|^{p-2} \sum_{i=1}^{n-1} \frac{\partial u(s + k, x')}{\partial x_i} \cdot \frac{\partial \varphi(x')}{\partial x_i} \psi(s) ds dx' \to$$

$$\to \int_{\mathbb{R}} \psi(s) ds \int_{\mathbb{R}^{n-1}} |DU(x')|^{p-2} \sum_{i=1}^{n-1} \frac{\partial U(x')}{\partial x_i} \cdot \frac{\partial \varphi(x')}{\partial x_i} dx' =$$

$$= \int_{\mathbb{R}^{n-1}} |DU(x')|^{p-2} \sum_{i=1}^{n-1} \frac{\partial U(x')}{\partial x_i} \cdot \frac{\partial \varphi(x')}{\partial x_i} dx'.$$
(3.23)

Combining (3.20)–(3.23), we get

$$g_0 \int_{\mathbb{R}^{n-1}} U^q(x')\varphi(x') \, dx' = \int_{\mathbb{R}^{n-1}} |DU(x')|^{p-2} (DU, D\varphi) \, dx'$$
 (3.24)

for any $\varphi \in C_0^1(\mathbb{R}^{n-1})$. Thus U is a positive weak solution of equation (3.18).

4 Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Now denote

$$\Lambda = \{ \lambda \ge 0 : u(x) \le u_{\lambda}(x) \text{ for all } x' \in \mathbb{R}^{n-1}, x_n \in [0, \lambda] \}$$

and $\lambda_0 = \sup \Lambda$. By Lemma 3.1, $(0, \varkappa/2) \subset \Lambda$ and hence $\lambda_0 \ge \varkappa/2 > 0$. To prove Theorem 1.1, we must show that $\lambda_0 = \infty$, that is, $\Lambda = \overline{\mathbb{R}_+}$. Since Λ is closed by the continuity of u and non-empty, it suffices to show that it is relatively open in the topology of $\overline{\mathbb{R}_+}$.

Suppose the converse. Similarly to the proof of Theorem 1.1 in [12], we multiply (1.1) and the corresponding equation for u_{λ} by the test function

$$\Psi = (u - u_{\lambda})^{\alpha}_{+} \varphi_{R}^{2} \chi_{\mathbb{R}^{n-1} \times [\delta; +\infty)},$$

where $\alpha > 0$ and $\delta > 0$ will be specified later. Here $\varphi_R \in C_0^{\infty}(\mathbb{R}^{n-1})$ is a nonnegative function such that

$$\begin{cases}
\varphi_R \equiv 1 & \text{in } B_R(0) \subset \mathbb{R}^{n-1}, \\
\varphi_R \equiv 0 & \text{in } \mathbb{R}^{n-1} \setminus B_{2R}(0), \\
|D\varphi_R| \le cR^{-1} & \text{in } B_{2R}(0) \setminus B_R(0) \text{ with some } c > 0.
\end{cases} (4.1)$$

After subtraction, for each $\lambda > 0$ we obtain in a standard way (see [12])

$$\alpha c_{1} \int_{\mathcal{C}(2R)} (|Du|^{p-2} + |Du_{\lambda}|^{p-2})|D(u - u_{\lambda})_{+}|^{2}(u - u_{\lambda})_{+}^{\alpha+1}\varphi_{R}^{2} dx \leq$$

$$\leq c_{2} \int_{\mathcal{C}(2R)} (|Du|^{p-2} + |Du_{\lambda}|^{p-2})|D(u - u_{\lambda})_{+}| \cdot |D\varphi_{R}^{2}|(u - u_{\lambda})_{+}^{\alpha} dx +$$

$$+ \int_{\mathcal{C}(2R)} (f(u)g(x_{n}) - f(u_{\lambda})g(x_{n,\lambda}))(u - u_{\lambda})_{+}^{\alpha}\varphi_{R}^{2} dx := I_{1} + I_{2},$$

$$(4.2)$$

where $C(2R) = \{(x', x_n) : |x'| \le 2R, \ \delta \le x_n \le \lambda\}, \ x_{n,\lambda} = 2\lambda - x_n \ge x_n \text{ for } 0 < x_n \le \lambda.$ Setting

$$I_1 := c_2 \int_{\mathcal{C}(2R)} (|Du|^{p-2} + |Du_\lambda|^{p-2})|D(u - u_\lambda)_+| \cdot |D\varphi_R^2| (u - u_\lambda)_+^{\alpha} dx$$
 (4.3)

and

$$I_2 := \int_{\mathcal{C}(2R)} (f(u) - f(u_\lambda))(u - u_\lambda)_+^{\alpha} \varphi_R^2 \, dx, \tag{4.4}$$

we can rewrite inequality (4.2) as

$$\alpha c_1 \int_{\mathcal{C}(2R)} (|Du|^{p-2} + |Du_{\lambda}|^{p-2})|D(u - u_{\lambda})_+|^2 (u - u_{\lambda})_+^{\alpha+1} \varphi_R^2 dx \le I_1 + I_2. \tag{4.5}$$

We proceed in two steps:

Step 1: Estimation of I_1 .

We use the argument from [12] (Section 6, step 1), simplifying it by means of Lemma 3.1. Namely, by (4.3), using the parametric Young inequality, we obtain

$$I_1 \le I_1^a + I_1^b, \tag{4.6}$$

where

$$I_1^a := \delta' \hat{C} \int_{\mathcal{C}(2R)} (|Du|^{p-2} + |Du_\lambda|^{p-2}) |D(u - u_\lambda)_+|^2 \varphi_R^2 (u - u_\lambda)_+^{\alpha - 1} dx$$
 (4.7)

and

$$I_1^b := \hat{C}\delta' \int_{\mathcal{C}(2R)} (|Du|^{p-2} + |Du_\lambda|^{p-2})|D\varphi_R|^2 (u - u_\lambda)_+^{\alpha+1} dx. \tag{4.8}$$

For sufficiently small $\delta' > 0$, I_1^a can be estimated from above by the left-hand side of (4.5). It remains to estimate I_2^b .

Note that by Proposition 4.2 [11], for any $\varepsilon > 0$, if $\lambda - y < \varepsilon$, one can find $\delta = \delta(\varepsilon) > 0$ such that $\operatorname{supp}(u - u_{\lambda})_{+} \subset A_{\lambda,\delta}$, where $A_{\lambda,\delta} = \mathbb{R}^{n-1} \times [y - \delta, \lambda]$ and $\delta(\varepsilon) \to 0^{+}$ as $\varepsilon \to 0^{+}$. Here the case $\operatorname{supp}(u - u_{\lambda})_{+} \cap (\mathbb{R}^{n-1} \times [0, \delta]) \neq \emptyset$ is excluded

due to the factor $\chi_{\mathbb{R}^{n-1}\times[\delta;+\infty)}$ in the test function, where $\delta=\delta(\varepsilon)$ and $\varepsilon>0$ is still to be fixed. Thus, if we denote the width of $\sup(u-u_{\lambda})_+$ in the direction x_n by d_{λ} :

$$d_{\lambda} := \sup_{(x',z_1) \in \text{supp } (u-u_{\lambda})_+} \sup_{(x',z_2) \in \text{supp } (u-u_{\lambda})_+} |z_1 - z_2|,$$

we have $d_{\lambda} \leq d(\varepsilon) := \varepsilon + \delta(\varepsilon)$, where $d(\varepsilon) \to 0$ as $\varepsilon \to 0$.

Now consider a family $\{Q_i\}_{i=1}^N$ of N=N(R) disjoint cubes Q_i with edge $d(\varepsilon)$ and with the x_n coordinate of the center, say y_C , such that $y_C=\frac{y-\delta(\varepsilon)+\lambda}{2}$ and

$$C(2R) \subset \bigcup_{i=1} \overline{Q_i}.$$
 (4.9)

It follows that the diameter of each cube Q_i is

$$\operatorname{diam} Q_i = \sqrt{n}d(\varepsilon), \quad i = 1, \dots, N. \tag{4.10}$$

By (4.1) and (4.8), since $\nabla u, \nabla u_{\lambda} \in L^{\infty}(\mathbb{R}^{n}_{+})$, we get

$$I_b^1 \le \sum_{i=1}^N \frac{C}{\delta' R^2} \int_{\mathcal{C}(2R) \cap Q_i} \left(\left[(u - u_\lambda)_+ \right]^{\frac{\alpha+1}{2}} \right)^2 dx. \tag{4.11}$$

Similarly to [12], due to Proposition 2.1 we can use in each cube Q_i the weighted Poincaré inequality of Corollary 2.1 with $\rho \equiv |Du|^{p-2}$ and take advantage of the constant \hat{C} that turns to be independent of the index i in (4.9). Thus we obtain

$$I_b^1 \le \sum_{i=1}^N C_i^* \frac{C}{\delta' R^2} \int_{Q_i} |Du|^{p-2} [(u - u_\lambda)_+]^{\alpha - 1} |D(u - v)_+|^2 dx. \tag{4.12}$$

We estimate the constant C_i^* by Proposition 2.3 and Remark 2.4. Denote

$$C := \sup_{x \in \mathbb{R}_+^n} \frac{|u(x) - u(z)|}{|x - z|},$$

which is finite due to the fact that $u \in L^{\infty}(\mathbb{R}^n_+)$ and standard elliptic estimates. By Lemma 3.2, we have

$$\inf_{x \in \text{supp}(u-u_{\lambda})_{+}} u(x) = c_{\lambda} > 0, \tag{4.13}$$

where c_{λ} is the constant defined in (3.12), whence one has

$$\inf_{x \in (Q_i)_{\delta}} u(x) \ge c_{\lambda}/2 > 0 \quad (i = 1, \dots, N).$$
(4.14)

Moreover, by Lemma 3.1 we have $y \ge \varkappa > 0$ and thus $x_n > \varkappa - \delta > 0$ in supp $(u - u_\lambda)_+$, whence

$$dist(Q_i, \{u = 0\}) \ge \varkappa - \delta > 0 \quad (i = 1, ..., N).$$
 (4.15)

Combining Proposition 2.1 and Remark 6 with (4.14) and (4.15), we deduce that the constants C_i^* in (4.12) are in fact independent of i and (unlike the argument in [12]) of R. Hence,

$$I_{1} \leq \delta' \hat{C} \int_{C(2R)} (|Du|^{p-2} + |Du_{\lambda}|^{p-2})|D(u - u_{\lambda})_{+}|^{2} \varphi_{R}^{2} (u - u_{\lambda})_{+}^{\alpha - 1} dx +$$

$$+ \frac{C(d_{Q}, \delta')}{R^{2}} \int_{C(2R)} (|Du|^{p-2} + |Du_{\lambda}|^{p-2})|D(u - u_{\lambda})_{+}|^{2} (u - u_{\lambda})_{+}^{\alpha - 1} dx,$$

$$(4.16)$$

where $\delta' > 0$ can be chosen arbitrarily small and

$$C_1(d_Q, \delta') \to 0 \text{ as } d_Q \to 0.$$

Step 2. Estimation of I_2 in (4.5).

We can assume that $p \ge 3$ and therefore $q > p-1 \ge 2$, since the case 2 was considered in [12]. Note that

$$f(u)g(x_n) - f(u_{\lambda})g(x_{n,\lambda}) = (f(u) - f(u_{\lambda}))g(x_n) + f(u_{\lambda}(g(x_n) - g(x_{n,\lambda}))$$

$$\leq c(\lambda)(f(u) - f(u_{\lambda}))$$

with some constant $c(\lambda) > 0$ by the assumptions on the continuity and monotonicity of $g(x_n)$. By the Taylor expansion of $f(\cdot)$, we obtain

$$f(u) = f(u_{\lambda}) + f'(\xi)(u - u_{\lambda})$$

with $u_{\lambda}(x) \leq \xi(x) \leq u(x)$ for $x \in \text{supp}(u - u_{\lambda})_+$. For x = (x', y) such that $x' \in \mathbb{R}^{n-1}$ and

$$0 < \delta < \min\left\{\varkappa, \frac{c_{\lambda}}{2C} - (\lambda - y)\right\}$$

with \varkappa defined in Lemma 3.1, the Lipschitz continuity of u and (4.13) imply

$$\inf_{x \in \text{supp}(u - u_{\lambda})_{+}} u_{\lambda}(x) \ge \frac{c_{\lambda}}{2} > 0$$

and consequently

$$\xi_0 := \inf_{x \in \text{supp}(u - u_\lambda)_+} \min\{u(x), u_\lambda(x)\} > \frac{c_\lambda}{2} > 0.$$
 (4.17)

On the other hand,

$$\xi_1 := \sup_{x \in \text{supp}(u - u_\lambda)_+} \max \{ u(x), u_\lambda(x) \} \le ||u||_{L^{\infty}(\mathbb{R}^n)}^{q - 1} < \infty.$$
 (4.18)

Therefore, similarly to the previous step (see (4.11) and (4.12), we can apply to I_2 the weighted Poincaré inequality given in Corollary 2.1:

$$I_{2} \leq C \|\xi_{1}\|^{q-1} \sum_{i=1}^{N} \int_{\mathcal{C}(2R)\cap Q_{i}} [(u-u_{\lambda})_{+}^{\frac{\alpha+1}{2}}]^{2} dx \leq$$

$$\leq C_{3}(d_{Q})C_{4} \sum_{i=1}^{N} \int_{\mathcal{C}(2R)\cap Q_{i}} |Du|^{p-2} |D(u-u_{\lambda})_{+}|^{2} (u-u_{\lambda})_{+}^{\alpha-1} dx \leq$$

$$\leq C_{3}(d_{Q})C_{4}(y-\delta,\xi_{0}) \sum_{i=1}^{N} \int_{\mathcal{C}(2R)\cap Q_{i}} (|Du|^{p-2} + |Du_{\lambda}|^{p-2}) |D(u-u_{\lambda})_{+}|^{2} (u-u_{\lambda})_{+}^{\alpha-1} dx,$$

$$(4.19)$$

where $C_3(d_Q) \to 0$ as $d_Q \to 0$, and

$$C_4(y - \delta, \xi) \le C(y - \delta)^{[n-2p+(p-1)r-\gamma]\frac{p-2}{(p-1)r}} \sup_{x \in Q_i} \xi^s(x),$$

with $\frac{p-2}{p-1} < r < 1$, $s = s(p,q,r) = [2p-2-(p-1)r-2q]\frac{p-2}{(p-1)r}$, and $\gamma = 0$ if n = 2 or any $\gamma > n-2$ if $n \geq 3$. If $s \geq 0$, we have $\sup_{x \in Q_i} \xi^s(x) \leq \xi_1^s$ with ξ_1 defined in (4.18), while for s < 0, we obtain $\sup_{x \in Q_i} \xi^s(x) \leq \xi_0^s$, where ξ_0 is defined in (4.17). In both cases the quantity $C_4(y-\delta,\xi)$ is uniformly bounded by some $C_5(y)$ for small $\delta > 0$.

Hence, combining (4.2)–(4.19), we get

$$\alpha c_{1} \int_{C(2R)} (|Du|^{p-2} + |Du_{\lambda}|^{p-2})|D(u - u_{\lambda})_{+}|^{2}(u - u_{\lambda})_{+}^{\alpha+1}\varphi^{2} dx \leq$$

$$\leq \delta' c_{3} \int_{C(2R)} (|Du|^{p-2} + |Du_{\lambda}|^{p-2})|D(u - u_{\lambda})_{+}|^{2}\varphi^{2}(u - u_{\lambda})_{+}^{\alpha-1} dx +$$

$$+ \frac{C_{1}(d_{Q}, \delta')}{R} \int_{C(2R)} (|Du|^{p-2} + |Du_{\lambda}|^{p-2})|D(u - u_{\lambda})_{+}|^{2}(u - u_{\lambda})_{+}^{\alpha-1} dx + \frac{C_{2}(d_{Q}, \delta')}{R} +$$

$$+ C_{3}(d_{Q})C_{5}(y) \int_{C(2R)} (|Du|^{p-2} + |Du_{\lambda}|^{p-2})|D(u - u_{\lambda})_{+}|^{2}(u - u_{\lambda})_{+}^{\alpha-1} dx.$$

$$(4.26)$$

Choosing $\delta' > 0$ and $\varepsilon > 0$ to be sufficiently small (recall that $0 \le d_Q \le \varepsilon + \delta_{\varepsilon}$, and hence $d_Q \to 0$ as $\varepsilon \to 0$), we can pass to the limit as $R \to \infty$ and complete the proof similarly to that of Theorem 1.1 in [12].

Proof of Theorem 1.2. Since monotonic solutions of (1.1) are stable (see [12], Theorem 1.4), Theorem 1.1 and Proposition 2.3 [6] imply the assertion of Theorem 1.2 for $p-1 < q < q_c(n,p)$. For $q_c(n,p) \le q < q_c(n-1,p)$, by Lemma 3.3 one can reduce the dimension of the problem by one, passing to the limit as $x_n \to +\infty$ and using once more Proposition 2.3 [6], which leads to the same result.

${\bf Acknowledgments}$

This work was partially supported by the Russian Foundation for Basic Research, projects 13-01-12460-ofi-m and 14-01-00736.

References

- [1] A.D. Alexandrov, A characteristic property of the spheres. Ann. Mat. Pura Appl. 58 (1962), 303–354.
- [2] H. Berestycki, L. Caffarelli, L. Nirenberg, Further qualitative properties for elliptic equations in unbounded domains. Ann. Sc. Norm. Sup. Pisa, Cl. Sci. Ser. 4, 25 (1997), 69–94.
- [3] H. Berestycki, L. Nirenberg, On the method of moving planes and the sliding method. Bol. Soc. Brasil. Mat. (N. S.) 22 (1991), 1–37.
- [4] M.F. Bidaut-Véron, S.I. Pohozaev, Nonexistence results and estimates for some nonlinear elliptic problems. Journ. Anal. Math. 84 (2001), 1–49.
- [5] L. Damascelli, B. Sciunzi, Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of m-Laplace equations. Calc. Var. 25 (2006), 139–159.
- [6] L. Damascelli, A. Farina, B. Sciunzi, E. Valdinoci, Liouville results for m-Laplace equation of Lane-Emden-Fowler type. Ann. Inst. H. Poincaré, 26 (2009), 1099–1119.
- [7] L. Damascelli, B. Sciunzi, Liouville results for m-Laplace equations in a half-plane in \mathbb{R}^2 . Diff. Int. Eq. 23 (2010), 419–434.
- [8] E.N. Dancer, Some notes on the method of moving planes. Bull. Austral. Math. Soc. 46 (1992), 425–434.
- [9] E.N. Dancer, Y. Du, M. Efendiev, Quasilinear elliptic equations on half- and quarter-spaces. Adv. Nonlinear Stud. 13 (2013), 115–136.
- [10] A. Farina, L. Montoro, G. Riey, B. Sciunzi, Monotonicity of solutions to quasilinear problems with a first-order term in half-spaces. Ann. Inst. Henri Poincare (C) Non Linear Analysis, 32 (2015), 1–22.
- [11] A. Farina, L. Montoro, B. Sciunzi, Monotonicity and one-dimensional symmetry for solutions of $-\Delta_p u = f(u)$ in half-spaces. Calc. Var. and PDE, 43 (2012), 123–145.
- [12] A. Farina, L. Montoro, B. Sciunzi, Monotonicity of solutions of quasilinear degenerate elliptic equation in half-spaces. Math. Annalen, 357 (2013), 855–893.
- [13] E.I. Galakhov, A comparison principle for quasilinear operators in unbounded domains. Nonl. Anal. 70 (2009), 4190–4194.
- [14] E.I. Galakhov, O.A. Salieva, On blow-up of solutions to differential inequalities with singularities on unbounded sets. JMAA, 408 (2013), 102–113.
- [15] E.I. Galakhov, O.A. Salieva, On nonexistence of solutions to Dirichlet problems for some quasilinear elliptic equations in a half-space. To appear in Diff. Eq. (2016).
- [16] T. Kilpeläinen, H. Shahgholian, X. Zhong, Growth estimates through scaling for quasilinear partial differential equations. Ann. Acad. Sci. Fennicae, Mathematica. 32 (2007), 595–599.
- [17] P. Pucci, J. Serrin, *The maximum principle*. Progress in Nonlinear Differential Equations and Their Applications, 73, Birkhäuser Verlag, Basel, 2007, x+235 pp.
- [18] J. Serrin, A symmetry problem in potential theory. Arch. Rational Mech. Anal. 43 (1971), 304–318.
- [19] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations. J. Diff. Eq. 51 (1984), 126–150.

- [20] J.L. Vàzquez, A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12 (1984), 191–202.
- [21] H. Zou, A priori estimates and existence for quasi-linear elliptic equations. Calc. Var. 33 (2008), 417–437.

Olga Alekseevna Salieva Department of Applied Mathematics Moscow State Technological University "Stankin" 3a Vadkovsky pereulok 127993 Moscow, Russia E-mail: olga.a.salieva@gmail.com

Received: 14.10.2015