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and he was awarded the state grant "The best university teacher".
The Editorial Board of the Eurasian Mathematical Journal is happy to congratulate

Kordan Nauryzkhanovich Ospanov on occasion of his 60th birthday, wishes him good
health and further productive work in mathematics and mathematical education.



EURASIAN MATHEMATICAL JOURNAL
ISSN 2077-9879
Volume 6, Number 4 (2015), 59 – 76

ON MONOTONICITY OF SOLUTIONS OF DIRICHLET PROBLEM
FOR SOME QUASILINEAR ELLIPTIC EQUATIONS IN HALF-SPACES

O.A. Salieva

Communicated by V.I. Burenkov

Key words: quasilinear equations, monotonicity, nonexistence of solutions.

AMS Mathematics Subject Classification: 35J60, 35J70, 35J92.

Abstract. We prove the monotonicity of nonnegative bounded solutions to the Dirich-
let problem for a quasilinear elliptic equation of the form −∆pu = f(u)g(xn) with p ≥ 3
in a half-space, where xn is the normal coordinate of the argument. This assertion im-
plies new nonexistence results for the case f(u) = uq with the appropriate values of
q.

1 Introduction

Let n ≥ 2. Denote Rn
+ = {x = (x1, . . . , xn) : xn > 0}, ∂Rn

+ = {x = (x1, . . . , xn) : xn =
0}.

Consider the following Dirichlet problem:{
−∆pu = f(u)g(xn) (x ∈ Rn

+),
u = 0 (x ∈ ∂Rn

+),
(1.1)

where ∆pu := div(|Du|p−2Du) is the p-Laplacian, and f is a nonnegative function
satisfying the following condition:

f ∈ C1(R+ ∪ {0}) ∩ C2(R+) and for any M > 0 there exist a = a(M) > 0 and
A = A(M) > 0 such that

asq ≤ f(s) ≤ Asq and |f ′(s)| ≤ Asq−1 in [0,M ] (F1)

for some q > p− 1.

A typical example of a function f satisfying (F1) is f(u) = uq with q > p− 1.
As for g(xn), we suppose that it is a nonnegative non-decreasing continuous function

such that
g(txn) ≤ ctαg(xn) (G1)

for all (at least sufficiently small) t > 0 and xn > 0 with some constants c > 0 and
α > −p independent of t. Further, in Theorem 1.2, we require in addition that there
exists the limit

g0 := lim
xn→0

g(xn) ∈ (0,+∞). (G2)
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As an example one can take g(xn) =
xα

n

1 + xα
n

with α ≥ 0.

We study the problems of existence and monotonicity of nonnegative bounded so-
lutions of problem (1.1) in the case p ≥ 3.

For 1 < p < 3 and g(xn) ≡ 1 the problem was studied by a number of authors.
In particular, the semilinear case (i.e., p = 2) was considered in the pioneering papers
of H. Berestycki, L. Caffarelli, and L. Nirenberg [2], [3] for n = 2 and in those of
E.N. Dancer (see [8]) for general n. For p 6= 2, the operator ∆p becomes nonlinear
and either singular (for 1 < p < 2) or degenerate (for p > 2), which leads to various
additional difficulties. The monotonicity of nonnegative bounded solutions to (1.1)
with general n and g(xn) ≡ 1 was shown by A. Farina, L. Montoro, and B. Sciunzi

in [11] for
2n+ 2

n+ 2
< p < 2 and in [12] for 2 < p < 3 (see also the development of this

approach in [10]). We also mention the paper of H. Zou [21] where a nonexistence
result for problem (1.1) is obtained in the functional class W 1,p(Rn

+) ∩ Lq
loc(Rn

+) under
more restrictive assumptions on f . A detailed treatment of the case q < p − 1 was
given recently by E.N. Dancer, Y. Du, and M. Efendiev in [9]. For problems with
singular coefficients, nonexistence results were obtained by M.F. Bidaut-Véron and
S.I. Pohozaev in [4] and by E.I. Galakhov and the author in [14].

The case p ≥ 3 and g(xn) ≡ 1 was considered in another recent paper of E.I.
Galakhov and the author [15]. Here we extend the methods of this paper to more
general functions g.

The main statements of the present paper are as follows.

Theorem 1.1. Let p > 2. Assume that f satisfies (F1) and g satisfies (G1). Then
any nonnegative nontrivial solution u(x′, xn) ∈ W 1,p(Rn

+) ∩ L∞(Rn
+) of problem (1.1)

is strictly monotonically increasing in xn on R+ for each fixed x′ ∈ Rn−1.

Theorem 1.2. Problem (1.1) with f(u) = uq and g satisfying (G1) and (G2) has no
nontrivial nonnegative bounded solutions if p > 2 and either

n− 1 ≤ p(p+ 3)

p− 1
, q > p− 1

or
n− 1 >

p(p+ 3)

p− 1
, p− 1 < q < qc(n− 1, p),

where

qc(n, p) =
[(p− 1)n− p]2 + p2(p− 2)− p2(p− 1)n+ 2p2

√
(p− 1)(n− 1)

(n− p)((p− 1)n− p(p+ 3))
.

Note that for g(xn) ≡ 1 these results coincide with those of [15].
The method of proof is based on certain rescaling techniques and on the weak

comparison principle in unbounded narrow domains, similarly to [13], [11], [12]. This
allows us to apply the moving plane method due to A.D. Alexandrov and J. Serrin [1],
[18].

We note that for p > 2 the comparison principle can be derived from the weighted
Poincaré inequality proven in [5], but one must cope with the possible blow-up of the
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constant in this inequality as the functions under comparison (i.e., the solution u and
its reflection with respect to a moving plane) approach zero. In [12], this blow-up is
balanced by the power-like decay of f , but such an argument works only for 2 < p < 3.
Therefore we modify the approach used in [12] as follows:

1. First, we use a scaling argument to show that u is monotonic in some layer near
the boundary. In fact, the boundary maximum principle due to J.L. Vázquez [20]
implies that for each x′ = (x1, . . . , xn−1) ∈ Rn−1 there exists a constant δ(x′) > 0
such that the function u(x′, ·) is strictly increasing in xn for all xn ∈ (0, δ(x′)).
We show that such δ > 0 can be chosen independently of x′. Hence the moving
plane process can get started.

2. In order to be able to continue this process for any xn, we formulate the com-
parison principle for the solution u and its reflection uλ with respect to a moving
plane xn = λ rather than for generic u and v. This allows us to use the specific
properties of uλ.

3. In the proof of the comparison principle, we estimate (u − uλ)+ on a narrow
unbounded set Aλ,δ such that u(x) ≤ uλ(x) on its boundary, as in [11] and [12].
By another scaling argument, we show that u and uλ are uniformly bounded
away from zero on the set supp(u−uλ)+∩Aλ,δ. Therefore we can apply to u−uλ

the weighted Poincaré inequality with a uniformly bounded constant in any set
from a sufficiently fine covering of Aλ,δ, which implies that (u − uλ)+ ≡ 0, that
is, u(x) ≤ uλ(x) in Aλ,δ, and hence the moving plane process can be continued.
Thus we obtain the monotonicity of u(x′, xn) in xn ∈ R+ for any x′ ∈ Rn−1.

Since monotonic solutions of (1.1) are necessarily stable, this implies nonexistence
of positive bounded solutions to (1.1) with f(u) = uq for any q ∈ (p−1, qcr(n, p)), where
qcr(n, p) is the critical exponent for stable solutions of (1.1) obtained in [6]. By passing
to the limit as xn →∞, we can extend this result to the case qcr(n, p) ≤ q < qcr(n−1, p).

The rest of the paper consists of three sections. Section 2 contains some known
results, which we will use in the sequel. In Section 3, we formulate our preliminary
results, namely, lower estimates on δ and u based on scaling arguments. In Section 4,
we prove Theorems 1.1 and 1.2.

2 Some known results

In the sequel we will make use of the following results in [12]. Let Ω be an open set in
Rn. For a nonnegative weight function ρ ∈ L1(Ω), we denote

L2
ρ(Ω) = {u : Ω → R,

∫
Ω

ρu2 dx <∞},

H1,2
ρ (Ω) = {u : Ω → R, ‖u‖2

H1,2
ρ (Ω)

=

∫
Ω

ρ(u2 + |∇u|2) dx <∞},

H1,2
0,ρ(Ω) - the closure of C∞

0 (Ω) with respect to the norm of H1,2
ρ (Ω).
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Theorem 2.1. Let C∗ > 0. Assume that ρ is a weight function such that∫
Ω

dy

ρt|x− y|γ
≤ C∗, (2.1)

with t = p−1
p−2

r, p−1
p−2

< r < 1, and n− 2t < γ < n− 2 if n ≥ 3 (or γ = 0 if n = 2).
Then, for any w ∈ H1,2

0,ρ(Ω) ∩W 1,1
0 (Ω),

‖w‖Lq(Ω) ≤ Cρ‖∇w‖L2
ρ(Ω) (2.2)

for any 1 ≤ q < 2∗(t), where

1

2∗(t)
=

1

2
− 1

n
+

1

t

(
1

2
− γ

2n

)
, (2.3)

Cρ = Ĉ(C∗)
1
2t (Cη)

1− 1
2t , (2.4)

Ĉ = 1
nωn

, where ωn is the volume of the unit ball in Rn, and

Cη =

(
1− η
α
n
− η

)1−η

ω
1−α

n
n |Ω|

α
n
−η

with
η = 1− 1

2t
− 1

q

and
α = n−

(
n− 1− γ

2t

) 2t

2t− 1
.

Proof. See Theorem 5.1, [12], with Ω1 = Ω and Ω2 = ∅.

Corollary 2.1. Assume that w ∈ H1,2
0,ρ(Ω). If the weight ρ fulfils (2.1), then

‖w‖L2(Ω) ≤ KpCρ|∇w‖L2
ρ(Ω),

and there exists 0 < θ < 1 such that

Kp = C|Ω|
θ

(p−1)n (2.5)

and C > 0 depends only on the numerical parameters.

Proof. See Corollary 5.3, [12], with Ω1 = Ω and Ω2 = ∅.

Proposition 2.1. Let u ∈ C1(Rn
+) be a solution to problem (1.1) with p > 1. Assume

that f satisfies (F1) and that |∇u| is uniformly bounded on Rn
+. Let Ω′ ⊂⊂ Rn

+ and
0 < δ < dist(Ω′, ∂Rn

+) be such that f(u(x)) > 0 in Ω′
δ, where

Ω′
δ = {x ∈ Rn

+ : d(x,Ω′) < δ} ⊂⊂ Rn
+.
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Consider a finite covering Ω′ ⊂
S⋃

i=1

Bδ(x
i) with xi ∈ Ω′ and S = S(δ). Then there

exists C(n) > 0 such that∫
Ω′

dy

|∇u(y)|τ |x− y|γ
≤ C(n)

S(δ)

a2δ2( inf
x∈Ω′δ

u(x))2q
(2.6)

where γ is as in Theorem 2.1, a = a(M) with M = sup
x∈Ω′δ

u(x) as in (F1), and

max{p− 2, 0} ≤ τ ≤ p− 1.

Proof. See Proposition 4.2 and Corollary 4.3, [12], and references therein.

Remark 6. In particular, if in Proposition 2.1 Ω′ is a cube of diameter d, then (2.6)
holds with

S(δ) =

([
d

δ

]
+ 1

)n

(see Remark 4.4, [12]).

3 Preliminary results

For our auxiliary results, we will need the condition

(F ) sup
x∈Rn

+

f(u(x))

up−1(x)
<∞

or a stronger one

(F ′) lim
u→0+

f(u)

up−1
= 0.

For x′ ∈ Rn−1, we denote

z(x′) = inf

{
xn > 0 :

∂u(x′, xn)

∂xn

= 0

}
. (3.1)

Remark 7. One necessarily has z(x′) > 0 for any x′ ∈ Rn−1 due to the boundary
maximum principle for quasi-linear operators [20].

Lemma 3.1. Let p > 1. Suppose that f satisfies (F1), g satisfies (G1), u ∈
W 1,p(Rn

+) ∩ L∞(Rn
+) is a nonnegative nontrivial solution of problem (1.1), and the

pair (f, u) satisfies (F ).
Then there exists κ > 0 such that u(x′, xn) ≥ u(x′, yn) for all xn, yn such that

0 ≤ yn ≤ xn < κ.
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Proof. If inf
x′∈Rn−1

z(x′) > 0, the assertion obviously holds, since u = 0 on ∂Rn
+ and u ≥ 0

in Rn
+. Hence we suppose that

inf
x′∈Rn−1

z(x′) = 0. (3.2)

By Remark 7, z(0) > 0. Define

Z0 = {x′ ∈ Rn−1 : z(x′) ≥ z(0)},
Zk = {x′ ∈ Rn−1 : 2−kz(0) ≤ z(x′) ≤ 21−kz(0)} (k ∈ N).

(3.3)

Evidently, Rn−1 =
∞⋃

k=0

Zk. Some of the sets Zk may be empty.

We claim that there exists a sequence {x′m} of points x′m ∈ Rn−1 with the following
properties.

1. For each m ∈ N, there exists km ∈ N such that x′m ∈ Zkm and km → ∞ as
m→∞.

2. Define rm = dist

(
x′m,

∞⋃
j=km+1

Zj

)
. Then

lim
m→∞

sup 2kmrm = ∞. (3.4)

In fact, a sequence with property 1 does exist, since otherwise the number of non-
empty sets Zk would be finite, say K, and hence

inf
x′∈Rn−1

z(x′) ≥ 2−Kz(0),

which would contradict (3.2).
Now assume that each sequence with property 1 does not satisfy 2, that is, for each

such sequence one has
lim

m→∞
sup 2kmrm <∞. (3.5)

We construct a sequence {x′m} such that x′1 = 0 and x′m+1 ∈
∞⋃

j=km+1

Zj is chosen so

that

|x′m+1 − x′m| ≤ 2dist

(
x′m,

∞⋃
j=km+1

Zj

)
= 2rm.

We show that the series
∞∑

m=0

|x′m+1 − x′m| necessarily diverges. In fact, otherwise

one would have

|x′m| ≤ |x′0|+
m−1∑
j=0

|x′j+1 − x′j| ≤ 0 +
∞∑

j=0

|x′j+1 − x′j| ≤

≤ 2
∞∑

j=0

rj ≤ 2c
∞∑

j=0

2−kj <∞ (m ∈ N),
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where c := lim
j→∞

sup 2kjrj <∞ due to (3.5).

Thus the sequence {x′m} is bounded and therefore converges to a point x′∗ ∈ Rn−1

up to a subsequence. Denote zm = z(x′m). Since u ∈ C1,β(Rn
+) and

∂u(x′m, zm)

∂xn

= 0 by

(3.2), for some constant c > 0 we have

∂u(x′m, 0)

∂xn

=
∂u(x′m, 0)

∂xn

− ∂u(x′m, zm)

∂xn

≤ czβ
m → 0 as m→∞

and by continuity
∂u(x′∗, 0)

∂xn

= 0,

which is impossible due to the boundary maximum principle.
Hence claim (3.4) holds, i. e. there exists a sequence {x′m} with elements in Rn−1

such that

x′m ∈ Zkm , Brm/2(x
′
m) ⊂

km⋃
j=0

Zj,

that is,
z(x′) ≥ 2−kmz(0) ≥ z(x′m)/2 = zm/2 for all x′ ∈ Brm/2(x

′
m). (3.6)

Now for each m ∈ N we introduce a rescaled function

um(x) =
1

u(x′m, zm)
· u(x̃m), where x̃m = (zmx1 + xm

1 , . . . , zmxn−1 + xm
n−1, zmxn).

By (1.1) and (F ), one has

−∆pum(x) = − zp
m

up−1(x′m, zm)
∆pu(x̃m) = dmu

p−1
m (x)g(xn), (3.7)

where
0 ≤ dm = zp

m

f(u(x̃m))g(zmxn)

up−1(x̃m)g(xn)
≤ zp+α

m · sup
x∈Rn

+

f(u(x))

up−1(x)
. (3.8)

Evidently, one has um(0, . . . , 0, 1) = 1 and
∂um(0, . . . , 0, 1)

∂xn

= 0. Due to (3.1) and (3.6),

u is monotonic in the cylinder

Zm :=
{

(x′, xn) : 0 ≤ |x′ − x′m| ≤
rm

2
, 0 ≤ xn ≤

zm

2

}
,

and therefore the rescaled functions um are monotonic in the respective cylinders

Z ′
m :=

{
(x′, xn) : 0 ≤ |x′| ≤ rm

2zm

, 0 ≤ xn ≤
1

2

}
.

Note that by (3.3) and the definition zm = z(x′m) with x′m ∈ Zkm we have

2−kmz(0) ≤ zm ≤ 21−kmz(0),
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which by (3.4) implies

lim
m→∞

rm

2zm

≥ lim
m→∞

2km−1rm

z(0)
= ∞. (3.9)

Being a solution of the equation

−∆pum(x) = dm(x)up−1
m (x)g(xn) (3.10)

obtained in (3.7), um satisfies the Harnack inequality (see, e.g., Theorem 7.2, [17]),
i.e., for some constant c1 > 0, each δ > 0, and each compact set X ⊂ Rn

+ containing
(0, . . . , 0, 1) we get

sup
x∈Xδ

um(x) ≤ c1 inf
x∈Xδ

um(x) ≤ c1,

where Xδ = {x = (x1, . . . , xn) ∈ X : xn ≥ δ}. Due to the monotonicity of um(x′, xn)
in xn ∈ [0, 1/2] in Z ′

m, for X ⊂ Z ′
m this implies

sup
x∈X

um(x) ≤ c1.

By standard estimates (see [19]) for the solution um of (3.10) with dm satisfying (3.8)
we have

‖um‖C1,β(X) ≤ c2(X)

with some β > 0 and c2(X) > 0.
Due to (3.9), the sequence of cylinders Z ′

m covers the whole layer Rn−1 × [0, 1/2].
Hence, by the Arzela–Ascoli Theorem, there exists a subsequence of {um} converging
to some function

u0 ∈ C1,β′

loc (Rn
+)

with β′ > 0. Moreover, by the fact that lim
m→∞

zm = 0, (3.7)–(3.8), and the boundedness
of u it follows that u0 satisfies{

−∆pu0 = 0 (x ∈ Rn
+),

u0 = 0 (x ∈ ∂Rn
+).

(3.11)

Hence u0(x
′, xn) = c2xn with some c2 ∈ R by Theorem 3.1 [16]. Furthermore, one has

c2 = 1, since u0(0, . . . , 0, 1) = lim
k→∞

um(0, . . . , 0, 1) = 1. On the other hand,

∂u0(0, . . . , 0, 1)

∂xn

= lim
m→∞

∂um(0, . . . , 0, 1)

∂xn

= 0,

which contradicts u0(x
′, xn) = xn. Thus the assumption (3.2) cannot hold. This

completes the proof.

Now define uλ(x
′, xn) = u(x′, 2λ− xn) for λ > 0, x′ ∈ Rn−1, and xn ∈ [0, λ].
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Lemma 3.2. Let p > 1. Suppose that f satisfies (F ′), g satisfies (G1) and (G2), and
u ∈ W 1,p(Rn

+)∩L∞(Rn
+) is a nonnegative nontrivial solution of problem (1.1). Denote

Aλ = {(x′, xn) : uλ(x
′, xn) < u(x′, xn), 0 ≤ xn ≤ λ}.

Then for each u such that u(x′, xn) monotonically increases in xn ∈ [0, y] for each
fixed x′ ∈ Rn−1 and some y ∈ (0, λ) one has

cλ := inf
x∈Aλ

u(x) > 0. (3.12)

Proof. Suppose, to the contrary, that inf
x∈Aλ

u(x) = 0. Then there exists a sequence

{(x′k, yk)} such that
lim
k→∞

u(x′k, yk) = 0 (3.13)

and (x′k, yk) ∈ Aλ, that is, for some z(x′k) ∈ [0, λ) one has

uλ(x
′
k, z(x

′
k)) = u(2λ− x′k, z(x

′
k)) < u(x′k, z(x

′
k)).

Since u(x′k, xn) monotonically increases in xn ∈ [0, y], for some t(x′k) ∈ [y, z(x′k)) one

has
∂u(x′k, xn)

∂xn

∣∣∣
xn=t(x′k)

= 0, and the sequence {t(x′k)} converges to some t0 ∈ [y, λ] up

to a subsequence. Now introduce the family of functions

uk(x
′, xn) =

u(x′ + x′k, xn)

u(x′k, xn)
.

Note that
∂uk(0, xn)

∂xn

∣∣∣
xn=t(x′k)

= 0. (3.14)

Similarly to (3.7), due to (1.1) one has

−∆puk(x) = − 1

up−1(x′k, xn)
∆pu(x

′ + x′k, xn) =

=
1

up−1(x′k, xn)
up−1(x′ + x′k, xn) · f(u(x′ + x′k, xn))g(xn)

up−1(x′ + x′k, xn)
= dku

p−1
k (x)g(xn),

(3.15)

where dk :=
f(u(x′ + x′k, xn))

up−1(x′ + x′k, xn)
tends to zero as k → ∞ due to (3.13) and (F ′).

Repeating the argument of the proof of Lemma 3.1, we obtain that there exists
u0(x) := lim

k→∞
uk(x) = cxn with c > 0. But (3.14) implies

∂u0(0, . . . , 0, xn)

∂xn

∣∣∣
xn=t0

= 0.

This contradiction proves the claim.

To prove the central results of the present paper, we will also need the following
statement on passing to the limit.
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Lemma 3.3. Let a function u ∈ C1,β
loc (Rn

+; R+) with β > 0 be a weak solution of the
equation

−∆pu(x) = uq(x)g(xn) (x = (x′, xn) ∈ Rn
+ = Rn−1 × R+), (3.16)

where p, q > 1 and g satisfies (G1), (G2). Suppose also that for any x′ ∈ Rn−1 there
exists a positive bounded limit

U(x′) := lim
xn→∞

u(x′, xn), (3.17)

where the convergence in (3.17) is uniform in C1(G) for any compact subset G ⊂ Rn−1.
Then U is a weak solution of the equation

−∆pU(x′) = g0U
q(x′) (x′ ∈ Rn−1), (3.18)

where g0 is the limit in hypothesis (G2).

Proof. The locally uniform convergence of (3.17) in C1 means, in particular, that

∂u(x′, xn)

∂xi

→ ∂U(x′)

∂xi

(i = 1, . . . , n− 1),

∂u(x′, xn)

∂xn

→ 0

(3.19)

uniformly on any compact subset G ⊂ Rn−1. Introduce test functions ϕ ∈ D(Rn−1)

and ψ ∈ D(R) with suppψ ⊂ (0, 1) and
1∫
0

ψ(xn) dxn = 1. Multiplying equation (3.16)

by ψ(xn − k)ϕ(x′) (k ∈ N) and integrating by parts, we get∫
R

∫
Rn−1

uq(x′, xn)g(xn)ψ(xn − k)ϕ(x′) dxn dx
′ =

=

∫
R

∫
Rn−1

|Du(x′, xn)|p−2∂u(x
′, xn)

∂xn

· ∂ψ(xn − k)

∂xn

ϕ(x′) dxn dx
′+

+

∫
R

∫
Rn−1

|Du(x′, xn)|p−2

n∑
i=2

∂u(x′, xn)

∂xi

· ∂ϕ(x′)

∂xi

ψ(xn − k) dxn dx
′.

(3.20)

Change of variables and passing to the limit as k →∞ result in∫
R

∫
Rn−1

uq(x′, xn)g(xn)ψ(xn − k)ϕ(x′) dxn dx
′ =

∫
R

∫
Rn−1

uq(x′, s+ k)g(s+ k)ψ(s)ϕ(x′) ds dx′ →

→ g0

∫
R

ψ(s) ds

∫
Rn−1

U q(x′)ϕ(x′) dx′ = g0

∫
Rn−1

U q(x′)ϕ(x′) dx′,

(3.21)
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∫
R

∫
Rn−1

|Du(x′, xn)|p−2∂u(x
′, xn)

∂xn

· ∂ψ(xn − k)

∂xn

ϕ(x′) dxn dx
′ =

=

∫
R

∫
Rn−1

|Du(s+ k, x′)|p−2∂u(s+ k, x′)

∂s
· ∂ψ(s)

∂s
ϕ(x′) ds dx′ →

→
∫
R

∫
Rn−1

|DU(x′)|p−2∂U(x′)

∂s
· ∂ψ(s)

∂s
ϕ(x′) ds dx′ = 0.

(3.22)

Similarly∫
R

∫
Rn−1

|Du(x′, xn)|p−2

n−1∑
i=1

∂u(x′, xn)

∂xi

· ∂ϕ(x′)

∂xi

ψ(xn − k) dxn dx
′ =

=

∫
R

∫
Rn−1

|Du(s+ k, x′)|p−2

n−1∑
i=1

∂u(s+ k, x′)

∂xi

· ∂ϕ(x′)

∂xi

ψ(s) ds dx′ →

→
∫
R

ψ(s) ds

∫
Rn−1

|DU(x′)|p−2

n−1∑
i=1

∂U(x′)

∂xi

· ∂ϕ(x′)

∂xi

dx′ =

=

∫
Rn−1

|DU(x′)|p−2

n−1∑
i=1

∂U(x′)

∂xi

· ∂ϕ(x′)

∂xi

dx′.

(3.23)

Combining (3.20)–(3.23), we get

g0

∫
Rn−1

U q(x′)ϕ(x′) dx′ =

∫
Rn−1

|DU(x′)|p−2(DU,Dϕ) dx′ (3.24)

for any ϕ ∈ C1
0(Rn−1). Thus U is a positive weak solution of equation (3.18).

4 Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Now denote

Λ = {λ ≥ 0 : u(x) ≤ uλ(x) for all x′ ∈ Rn−1, xn ∈ [0, λ]}

and λ0 = sup Λ. By Lemma 3.1, (0,κ/2) ⊂ Λ and hence λ0 ≥ κ/2 > 0. To prove
Theorem 1.1, we must show that λ0 = ∞, that is, Λ = R+. Since Λ is closed by
the continuity of u and non-empty, it suffices to show that it is relatively open in the
topology of R+.

Suppose the converse. Similarly to the proof of Theorem 1.1 in [12], we multiply
(1.1) and the corresponding equation for uλ by the test function

Ψ = (u− uλ)
α
+ϕ

2
RχRn−1×[δ;+∞),

where α > 0 and δ > 0 will be specified later. Here ϕR ∈ C∞
0 (Rn−1) is a nonnegative

function such that
ϕR ≡ 1 in BR(0) ⊂ Rn−1,
ϕR ≡ 0 in Rn−1 \B2R(0),
|DϕR| ≤ cR−1 in B2R(0) \BR(0) with some c > 0.

(4.1)
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After subtraction, for each λ > 0 we obtain in a standard way (see [12])

αc1

∫
C(2R)

(|Du|p−2 + |Duλ|p−2)|D(u− uλ)+|2(u− uλ)
α+1
+ ϕ2

R dx ≤

≤ c2

∫
C(2R)

(|Du|p−2 + |Duλ|p−2)|D(u− uλ)+| · |Dϕ2
R|(u− uλ)

α
+ dx+

+

∫
C(2R)

(f(u)g(xn)− f(uλ)g(xn,λ))(u− uλ)
α
+ϕ

2
R dx := I1 + I2,

(4.2)

where C(2R) = {(x′, xn) : |x′| ≤ 2R, δ ≤ xn ≤ λ}, xn,λ = 2λ−xn ≥ xn for 0 < xn ≤ λ.
Setting

I1 := c2

∫
C(2R)

(|Du|p−2 + |Duλ|p−2)|D(u− uλ)+| · |Dϕ2
R|(u− uλ)

α
+ dx (4.3)

and
I2 :=

∫
C(2R)

(f(u)− f(uλ))(u− uλ)
α
+ϕ

2
R dx, (4.4)

we can rewrite inequality (4.2) as

αc1

∫
C(2R)

(|Du|p−2 + |Duλ|p−2)|D(u− uλ)+|2(u− uλ)
α+1
+ ϕ2

R dx ≤ I1 + I2. (4.5)

We proceed in two steps:

Step 1: Estimation of I1.
We use the argument from [12] (Section 6, step 1), simplifying it by means of Lemma

3.1. Namely, by (4.3), using the parametric Young inequality, we obtain

I1 ≤ Ia
1 + Ib

1, (4.6)

where

Ia
1 := δ′Ĉ

∫
C(2R)

(|Du|p−2 + |Duλ|p−2)|D(u− uλ)+|2ϕ2
R(u− uλ)

α−1
+ dx (4.7)

and
Ib
1 := Ĉδ′

∫
C(2R)

(|Du|p−2 + |Duλ|p−2)|DϕR|2(u− uλ)
α+1
+ dx. (4.8)

For sufficiently small δ′ > 0, Ia
1 can be estimated from above by the left-hand side

of (4.5). It remains to estimate Ib
2.

Note that by Proposition 4.2 [11], for any ε > 0, if λ − y < ε, one can find
δ = δ(ε) > 0 such that supp(u − uλ)+ ⊂ Aλ,δ, where Aλ,δ = Rn−1 × [y − δ, λ] and
δ(ε) → 0+ as ε → 0+. Here the case supp(u − uλ)+ ∩ (Rn−1 × [0, δ]) 6= ∅ is excluded
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due to the factor χRn−1×[δ;+∞) in the test function, where δ = δ(ε) and ε > 0 is still to
be fixed. Thus, if we denote the width of supp(u− uλ)+ in the direction xn by dλ:

dλ := sup
(x′,z1)∈supp (u−uλ)+

sup
(x′,z2)∈supp (u−uλ)+

|z1 − z2|,

we have dλ ≤ d(ε) := ε+ δ(ε), where d(ε) → 0 as ε→ 0.
Now consider a family {Qi}N

i=1 of N = N(R) disjoint cubes Qi with edge d(ε) and
with the xn coordinate of the center, say yC , such that yC = y−δ(ε)+λ

2
and

C(2R) ⊂
⋃
i=1

Qi. (4.9)

It follows that the diameter of each cube Qi is

diamQi =
√
nd(ε), i = 1, . . . , N. (4.10)

By (4.1) and (4.8), since ∇u,∇uλ ∈ L∞(Rn
+), we get

I1
b ≤

N∑
i=1

C

δ′R2

∫
C(2R)∩Qi

(
[(u− uλ)+]

α+1
2

)2

dx. (4.11)

Similarly to [12], due to Proposition 2.1 we can use in each cube Qi the weighted
Poincaré inequality of Corollary 2.1 with ρ ≡ |Du|p−2 and take advantage of the con-
stant Ĉ that turns to be independent of the index i in (4.9). Thus we obtain

I1
b ≤

N∑
i=1

C∗
i

C

δ′R2

∫
Qi

|Du|p−2[(u− uλ)+]α−1|D(u− v)+|2 dx. (4.12)

We estimate the constant C∗
i by Proposition 2.3 and Remark 2.4. Denote

C := sup
x∈Rn

+

|u(x)− u(z)|
|x− z|

,

which is finite due to the fact that u ∈ L∞(Rn
+) and standard elliptic estimates. By

Lemma 3.2, we have
inf

x∈supp(u−uλ)+
u(x) = cλ > 0, (4.13)

where cλ is the constant defined in (3.12), whence one has

inf
x∈(Qi)δ

u(x) ≥ cλ/2 > 0 (i = 1, . . . , N). (4.14)

Moreover, by Lemma 3.1 we have y ≥ κ > 0 and thus xn > κ−δ > 0 in supp(u−uλ)+,
whence

dist(Qi, {u = 0}) ≥ κ − δ > 0 (i = 1, . . . , N). (4.15)
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Combining Proposition 2.1 and Remark 6 with (4.14) and (4.15), we deduce that
the constants C∗

i in (4.12) are in fact independent of i and (unlike the argument in
[12]) of R. Hence,

I1 ≤ δ′Ĉ

∫
C(2R)

(|Du|p−2 + |Duλ|p−2)|D(u− uλ)+|2ϕ2
R(u− uλ)

α−1
+ dx+

+
C(dQ, δ

′)

R2

∫
C(2R)

(|Du|p−2 + |Duλ|p−2)|D(u− uλ)+|2(u− uλ)
α−1
+ dx,

(4.16)

where δ′ > 0 can be chosen arbitrarily small and

C1(dQ, δ
′) → 0 as dQ → 0.

Step 2. Estimation of I2 in (4.5).
We can assume that p ≥ 3 and therefore q > p − 1 ≥ 2, since the case 2 < p < 3

was considered in [12]. Note that

f(u)g(xn)− f(uλ)g(xn,λ) = (f(u)− f(uλ))g(xn) + f(uλ(g(xn)− g(xn,λ))
≤ c(λ)(f(u)− f(uλ))

with some constant c(λ) > 0 by the assumptions on the continuity and monotonicity
of g(xn). By the Taylor expansion of f(·), we obtain

f(u) = f(uλ) + f ′(ξ)(u− uλ)

with uλ(x) ≤ ξ(x) ≤ u(x) for x ∈ supp(u− uλ)+.
For x = (x′, y) such that x′ ∈ Rn−1 and

0 < δ < min
{

κ,
cλ
2C

− (λ− y)
}

with κ defined in Lemma 3.1, the Lipschitz continuity of u and (4.13) imply

inf
x∈supp(u−uλ)+

uλ(x) ≥
cλ
2
> 0

and consequently

ξ0 := inf
x∈supp(u−uλ)+

min{u(x), uλ(x)} >
cλ
2
> 0. (4.17)

On the other hand,

ξ1 := sup
x∈supp(u−uλ)+

max{u(x), uλ(x)} ≤ ‖u‖q−1
L∞(Rn) <∞. (4.18)
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Therefore, similarly to the previous step (see (4.11) and (4.12), we can apply to I2
the weighted Poincaré inequality given in Corollary 2.1:

I2 ≤ C‖ξ1‖q−1

N∑
i=1

∫
C(2R)∩Qi

[(u− uλ)
α+1

2
+ ]2dx ≤

≤ C3(dQ)C4

N∑
i=1

∫
C(2R)∩Qi

|Du|p−2|D(u− uλ)+|2(u− uλ)
α−1
+ dx ≤

≤ C3(dQ)C4(y − δ, ξ0)
N∑

i=1

∫
C(2R)∩Qi

(|Du|p−2 + |Duλ|p−2)|D(u− uλ)+|2(u− uλ)
α−1
+ dx,

(4.19)
where C3(dQ) → 0 as dQ → 0, and

C4(y − δ, ξ) ≤ C(y − δ)[n−2p+(p−1)r−γ] p−2
(p−1)r sup

x∈Qi

ξs(x),

with p−2
p−1

< r < 1, s = s(p, q, r) = [2p − 2 − (p − 1)r − 2q] p−2
(p−1)r

, and γ = 0 if n = 2

or any γ > n− 2 if n ≥ 3. If s ≥ 0, we have sup
x∈Qi

ξs(x) ≤ ξs
1 with ξ1 defined in (4.18),

while for s < 0, we obtain sup
x∈Qi

ξs(x) ≤ ξs
0, where ξ0 is defined in (4.17). In both cases

the quantity C4(y − δ, ξ) is uniformly bounded by some C5(y) for small δ > 0.
Hence, combining (4.2)–(4.19), we get

αc1

∫
C(2R)

(|Du|p−2 + |Duλ|p−2)|D(u− uλ)+|2(u− uλ)
α+1
+ ϕ2 dx ≤

≤ δ′c3

∫
C(2R)

(|Du|p−2 + |Duλ|p−2)|D(u− uλ)+|2ϕ2(u− uλ)
α−1
+ dx+

+
C1(dQ, δ

′)

R

∫
C(2R)

(|Du|p−2 + |Duλ|p−2)|D(u− uλ)+|2(u− uλ)
α−1
+ dx+

C2(dQ, δ
′)

R
+

+C3(dQ)C5(y)

∫
C(2R)

(|Du|p−2 + |Duλ|p−2)|D(u− uλ)+|2(u− uλ)
α−1
+ dx.

(4.20)
Choosing δ′ > 0 and ε > 0 to be sufficiently small (recall that 0 ≤ dQ ≤ ε+ δε, and

hence dQ → 0 as ε → 0), we can pass to the limit as R → ∞ and complete the proof
similarly to that of Theorem 1.1 in [12].

Proof of Theorem 1.2. Since monotonic solutions of (1.1) are stable (see [12], Theorem
1.4), Theorem 1.1 and Proposition 2.3 [6] imply the assertion of Theorem 1.2 for p−1 <
q < qc(n, p). For qc(n, p) ≤ q < qc(n − 1, p), by Lemma 3.3 one can reduce the
dimension of the problem by one, passing to the limit as xn → +∞ and using once
more Proposition 2.3 [6], which leads to the same result.
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