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KORDAN NAURYZKHANOVICH OSPANOV

(to the 60th birthday)

On 25 September 2015 Kordan Nauryzhanovich Ospanov,
professor of the Department "Fundamental Mathematics" of
the L.N. Gumilyov Eurasian National University, Doctor of
Physical and Mathematical Sciences (2000), a member of the
Editorial Board of our journal, celebrated his 60th birthday.

He was born on September 25, 1955, in the village Zhanata-
lap of the Zhanaarka district of the Karaganda region. In 1976
he graduated from the Kazakh State University, and in 1981
he completed his postgraduate studies at the Abay Kazakh
Pedagogical Institute.

Scientific works of K.N. Ospanov are devoted to application
of methods of functional analysis to the theory of differential

equations. On the basis of a local approach to the resolvent representation he has
found weak conditions for the solvability of the singular generalized Cauchy-Riemann
system and established coercive estimates for its solution. He has obtained a criterion
of the spectrum discreteness for the resolvent of the system and the exact in order
estimates of singular values and Kolmogorov widths. He has original research results on
the coercive solvability of the quasilinear singular generalized Cauchy-Riemann system
and degenerate Beltrami-type system. He has established important smoothness and
approximation properties of non strongly elliptic systems. K.N. Ospanov has found
separability conditions in Banach spaces for singular linear and quasi-linear second-
order differential operators with growing intermediate coefficients and established a
criterion for the compactness of its resolvent and finiteness of the resolvent type.

His results have contributed to a significant development of the theory of two-
dimensional singular elliptic systems, degenerate differential equations and non strongly
elliptic boundary value problems.

K.N. Ospanov has published more than 140 scientific papers. The list of his most
important publications one may see on the

http://mmf.enu.kz/images/stories/photo/pasport/fm/ospanov
K.N. Ospanov is an Honoured Worker of Education of the Republic of Kazakhstan,

and he was awarded the state grant "The best university teacher".
The Editorial Board of the Eurasian Mathematical Journal is happy to congratulate

Kordan Nauryzkhanovich Ospanov on occasion of his 60th birthday, wishes him good
health and further productive work in mathematics and mathematical education.
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Abstract. We consider the representation of a compact-valued sublinear operator
(K–operator) by means of the compact convex packet of single-valued so-called basis
selectors. Such representation makes it possible to introduce the concept of an invertible
K–operator via invertible selectors. The extremal points of direct and inverse selector
representations are described, an analogue of the von Neumann theorem is obtained.
A series of examples is considered.

1 Introduction

In the problems of modern nonsmooth analysis and nonsmooth optimization, the mul-
tivalued sublinear operators play, as is known, ever more important role (see, e.g.,
[2],[4],[6]–[7],[9],[10],[17]–[18]). In particular, the concepts of the subdifferential and
the subsmoothness, which were researched in the series of our works (see [13]–[16]), are
jointly connected to multivalued sublinear operators, that take convex compact values.

The questions on the nonsmooth form of the implicite function and on the inverse
function theorems are very actual for any kind of subdifferential calculus and this ques-
tion was researched long ago in the nonsmooth analysis (see [1],[8],[11]–[12]). However,
in order to obtain developed tools of the nonsmooth invertibility, it seems that first an
adequate invertibility theory for multivalued operators should be constructed.

The present work represents an outline of such theory. We describe the compact-
valued sublinear operators by means of the packets of single-valued so-called basis
selectors. This makes it possible to introduce a concept of the multivalued invertibility
through the concept of the corresponding selectors. The construction and the properties
of invertible multioperators are described explicitly. Special attention is given to the
problem of extremal points of selector representation and corresponding application of
the Krein–Milman theorem.
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2 Preliminaries. Sublinear K–operators and their simplest
properties

Definition 1. Let F be a real normed space. Denote by FK the convex cone consisting
of all non-empty convex compacts in F , equipped with element-wise addition, non-
negative scalar multiplication and the cone-norm:

‖C‖ = sup
y∈C

‖y‖ (C ⊂ F ).

This norm generates in FK a locally convex cone-topology (see [14]) by means of
the following ε–neighborhoods:

Uε = {C ′|C ⊂ C ′ ⊂ C +D,where ‖D‖ < ε}.

Remark 1. Note that the cone-norm introduced above is coordinated with the inductive
order in FK by embedding and the corresponding cone-topology determines a unilateral
cone-uniformity in FK (see [14]). This makes it possible to introduce the concept of the
quasi–completeness (or cone–completeness) in FK. A quasi–complete normed cone FK

is called a Banach cone.

Let us mention a useful result (see [14]).

Theorem 2.1. If F is a real Banach space then the cone FK is also a Banach one.

Let us pass to description of sublinear multivalued operators that take compact
convex values.

Definition 2. Let E and F be the real normed spaces, A : E → FK . We say that A
is a sublinear K–operator if the following properties

(i) A(h+ k) ⊂ Ah+ Ak (subadditivity);

(ii) A(λh) = λ · Ah (λ ≥ 0) (positive homogeneity);

are satisfied. The cone–norm for a K–operator is introduced in the standard way:

‖A‖ = sup
‖h‖≤1

‖Ah‖.

We say that the K–operator A is bounded if ‖A‖ <∞. The normed cone of all bounded
K–operators A : E → EK is denoted by LK(E;F ).

Remark 2. Note, first of all, the standard properties of the K–operator norm:

‖A1 + A2‖ ≤ ‖A1‖+ ‖A2‖, ‖λ · A‖ = λ · ‖A‖ (λ ≥ 0), ‖Ah‖ ≤ ‖A‖ · ‖h‖.

Next, it is possible to introduce in FK a multiplication for the negative scalars. In this
case, ‖λ ·A‖ = |λ| · ‖A‖ (λ ∈ R). Note also that any bounded K–operator is continuous
at zero, but, in general, not at an arbitrary point of E.
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Let us mention an important statement on quasi-completeness of LK(E;F ) (see
[14]).

Theorem 2.2. If F is a real Banach space then the cone LK(E;F ) is also a Banach
one.

For our purposes it is more appropriate to use totally homogeneous K–operators
(A(λh) = λ · Ah (∀λ ∈ R)). Therefore let us describe briefly a symmetrization proce-
dure, which makes it possible to pass to the total homogeneity from the positive one
(see [14]).

Definition 3. Let A ∈ LK(E;F ). We introduce a symmetrized K–operator As in the
following way:

Ash = co((Ah) ∪ (−A(−h))) (h ∈ E),

here co is the closed convex hull. Let us keep the previous notation LK(E;F ) for the
normed cone of symmetrized K–operators As : E → FK .

Theorem 2.3. If A ∈ LK(E;F ) then As ∈ LK(E;F ), moreover

As(λh) = λ · Ash (∀λ ∈ R) and ‖As‖ = ‖A‖.

3 Constructing of the packet of basis selectors for a given K–
operator

In what follows, H = {hi}i∈I is a fixed normed Hamel basis in a real Banach space E.

Definition 4. Let A ∈ LK(E;F ). Choose an arbitrary element ai ∈ Ahi for each i ∈ I
and set

Ashi = ai (∀ i ∈ I), Ash =
n∑

k=1

λkaik

(
h =

n∑
k=1

λkhik ∈ E

)
.

Let us call the set AK = {As} the packet of basis selectors (or s–representation) of a
sublinear K–operator A.

Note that s–representation depends on the choice of the Hamel basis H in E. First,
we explain that all basis selectors are linear continuous operators.

Theorem 3.1. Let E and F be the real Banach spaces, H be a Hamel basis in E and
A ∈ LK(E;F ). Then for every selector As ∈ AK the following properties:

As ∈ L(E;F ); ‖A‖ ≤ sup
As∈AK

‖As‖ ≤ C · ‖A‖; (3.1)

are valid. Here the constant C = C(H) in the right-hand side of (3.1) depends only on
the choice of a Hamel basis H in E.
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Proof. 1) Let us check first the homogeneity of As. Let h =
n∑

k=1

λkhik ∈ E, µ ∈ R.

Then:

As(µh) = As

(
n∑

k=1

(µλk)hik

)
=

n∑
k=1

(µλk) · Ahik = µ ·
n∑

k=1

λk · Ahik = µ · Ash.

2) Next, check the additivity of As. Let h1 =
n∑

k=1

λkhik ∈ E and h2 =
m∑

l=1

µlhjl
∈ E.

Denote by {h̃q}p
q=1 the set of all mutual vectors in the expansions of h1 and h2 above.

Without loss of generality they can be considered as hik (k = n− p+ 1, n) and hjl

(l = m− p+ 1,m), respectively. The corresponding scalar multipliers are denoted by
λ̃q and µ̃q (q = 1, p). Then we obtain

As(h1 + h2) = As

(
n∑

k=1

λkhik +
m∑

l=1

µlhjl

)

= As

(
n−p+1∑

k=1

λkhik +

m−p+1∑
l=1

µlhjl
+

p∑
q=1

(λ̃q + µ̃q)h̃q

)

=

n−p+1∑
k=1

λkAhik +

m−p+1∑
l=1

µlAhjl
+

(
p∑

q=1

λ̃qAh̃q +

p∑
q=1

µ̃qAh̃q

)

=
n∑

k=1

λkAhk +
m∑

l=1

µlAhjl
= Ah1 + Ah2.

3) Now, let us estimate of the selector norms. First, because Ahi = {Ashi|As ∈ AK}
for each hi ∈ H, then(

h =
n∑

k=1

λkhik ∈ E

)
⇒

(
Ah ⊂

n∑
k=1

λkAhik =
n∑

k=1

λk · {Askhik |Ask ∈ AK}

)
.

From here, setting Ashik = Askhik (k = 1, n), we obtain:

Ah ⊂ {
n∑

k=1

λk · Ashik |As ∈ AK} = {Ash|As ∈ AK}.

Hence, (
‖Ah‖ ≤ sup

As∈AK

‖Ash‖ (∀h ∈ E)

)
⇒
(
‖A‖ ≤ sup

As∈AK

‖As‖
)
.

Secondly, since
E = spanH =

⋃
λ>0

(λ · coH),
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it easily follows by the Baire theorem on categories that each set λ · coH has the
second Baire category everywhere in its closure. Hence, the set coH is dense in some
ball Br(0) ⊂ E. From here it follows ∀As ∈ AK :

‖As‖ ≤ 1

r
sup

h∈coH
‖Ash‖ =

1

r
sup{‖As(

n∑
k=1

λkhik)‖ | 0 ≤ λk ≤ 1,
n∑

k=1

λk = 1, hik ∈ H}

≤ 1

r
sup{

n∑
k=1

λk · ‖Ashik)‖ | 0 ≤ λk ≤ 1,
n∑

k=1

λk = 1, hik ∈ H}

≤ 1

r
sup{‖A‖ ·

n∑
k=1

λk | 0 ≤ λk ≤ 1,
n∑

k=1

λk = 1} =
1

r
· ‖A‖.

So, As ∈ L(E;F ) and the bilateral estimate (3.1) with C = 1/r, r = r(H) holds.

Remark 3. It is possible to identify the packet of basis selectors AK = {As} and the
K–operator AKh = {Ash|As ∈ AK}. Then estimate (3.1) can be rewritten in the form
of norm equivalence for the K–operators A and AK:

‖A‖ ≤ ‖AK‖ ≤ CH · ‖A‖ (∀A ∈ LK(E;F )), (3.2)

where the constant CH depends only on the choice of a Hamel basis H. In addition,
Ah ⊂ AKh (∀h ∈ E) and the correspondence A 7→ AK is sublinear. Note that, under
such representation, AK ∈ LK(E;F ).

Theorem 3.2. For every K–operator A ∈ LK(E;F ) its s–representation AK is also a
sublinear bounded K–operator.

Proof. First, let us check the homogeneity of AK :

AK(λh) = {As(λh)|As ∈ AK} = {λ · Ash|As ∈ AK} = λ · {Ash|As ∈ AK} = λ · AKh.

Next, we check the subadditivity of AK :

AK(h+ k) = {As(h+ k)|As ∈ AK} = {Ash+ Ask|As ∈ AK} ⊂

⊂ {Ash|As ∈ AK}+ {As′k|As′ ∈ AK} = AKh+ AKk.

Finally, as is shown above, ‖AK‖ ≤ CH · ‖A‖.

Note also that the packet of basis selectors AK forms a convex compact.

Theorem 3.3. For every K–operator AK ∈ LK(E;F ) its packet of basis selectors AK

is a convex compact in L(E;F ).
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Proof. First, let us check the convexity of AK . Let As, Bs ∈ AK , 0 ≤ λ ≤ 1, hi ∈ H.
Then:

[(1− λ)As + λBs]hi = (1− λ) · Ashi + λ ·Bshi ∈ Ahi,

in view of convexity of the set Ahi. Hence, by the definition of AK , it follows that
(1− λ)As + λBs ∈ AK .

Next, we check the compactness of Ak. Let {As
n}∞n=1 ⊂ AK . Note that the property

of sequential compactness can be formulated as follows: in any subsequence {As
nk
}∞k=1

a convergent (to an element of AK) subsubsequence {As
nkj
}∞j=1 can be chosen. In

addition, by virtue of the Banach–Steinhaus theorem, we can consider only the point-
wise convergence.

Suppose, to the contrary, that there exists such subsequence {As
nk
}∞k=1 that for any

subsubsequence {As
nkj
}∞j=1 there exists such h ∈ E so that As

nkj
h does not converge. On

the other hand, by virtue of compactness of the set Ah, in the sequence {As
nk
h}∞k=1 ⊂ Ah

a convergent subsequence {As
nkj
h}∞j=1 can be chosen, that leads to a contradiction.

It remains to check the belonging of the limit operator to AK . Let Ash = lim
j→∞

As
nkj
h.

Then, for some hi ∈ H, in view of compactness of Ahi we obtain:

(As
nkj
hi ∈ Ahi, j ∈ N) ⇒ (Ashi ∈ Ahi).

It follows, in view of the obvious linearity of As, that As ∈ AK .

Corollary 3.1. The following bounded sublinear (but not injective) embedding:

LK(E;F ) ↪→ (L(E;F ))K (A 7→ AK)

takes place.

Finally, if the Banach space E possesses a topological basis then, it is possible to
describe the K–operator AK by means of its values on the basis in E.

Corollary 3.2. Let a real Banach space have a topological basis {hn}∞n=1, A ∈
LK(E;F ). Then, under a suitable choice of a Hamel basis E:

(h =
∞∑

n=1

λnhn ∈ E) ⇒ (AKh =
∞∑

n=1

λn · Ahn| distH).

Here we denote by distH the Hausdorff metric in the set of all compacts contained in
E.

Proof. As is known [19], the set {hn}∞n=1 can be included as a part in some Hamel basis
in E. By constructing an s–representation AK with respect to such a Hamel basis we
obtain Ahn = AKhn (n = 1, 2, . . .).

Next, let h =
∞∑

n=1

λnhn ∈ E. For very N ∈ N denote hN =
N∑

n=1

hn; then hN→Eh as

N →∞. By the definition of AK it follows:

AKh
N =

{
N∑

n=1

λnA
shn|As ∈ AK

}
=

{
N∑

n=1

λna
s
n| as

n ∈ Ahn

}
=

N∑
n=1

λn · Ahn. (3.3)
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The set AK = {As}, in view of its compactness in L(E;F ), is equicontinuous. Hence,

∀ ε > 0∃N(ε) (N > N(ε)) ⇒ (∀As ∈ AK : ‖AshN − Ash‖ < ε). (3.4)

So, using (3.3) and (3.4) implies for N > N(ε) (in terms of the Hausdorff metric):

(AKh
N ⊂ Uε(AKh), AKh ∈ Uε(AKh

N)) ⇒ (distH(AKh
N , AKh) < ε).

Hence,

AKh= lim
N→∞

AKh
N = lim

N→∞

N∑
n=1

λnAhn =
∞∑

n=1

λnAhn (distH).

4 K–invertibility of K–operators

In what follows, E and F are real Banach spaces, E ∼= F , Isom(E;F ) is the set of all
isomorphisms between E and F , A ∈ LK(E;F ), H is a fixed Hamel basis in E and all
s–representations of the K–operators E → FK are considered with respect to H.

Definition 5. We say that the K–operator A is K–invertible if AK ⊂ Isom(E;F ). In
this case, we introduce K–inverse K–operator A−1

K as follows:

A−1
K = co

{
(As)−1|As ∈ AK

} (
A−1

K k =
{
Bσk|Bσ ∈ A−1

K

})
.

The set of the all K–invertible K–operators A : E → FK is denoted by IsomK(E;F ).

Consider some properties of K–invertible K–operators.

Theorem 4.1. If a K–operator A is K–invertible, then A−1
K forms a convex compact

in L(E;F ).

Proof. The set {(As)−1|As ∈ AK} is compact by virtue of compactness of AK and
continuity of the mapping As 7→ (As)−1 (see [3]). From here, in view of the Krein
theorem (see [19]), the compactness follows of its closed convex hull A−1

K .

Theorem 4.2. If a K–operator A is K–invertible, then

IEh ∈ [A−1
K · AK ]h (h ∈ E); IFk ∈ [AK · A−1

K ]k (k ∈ F ). (4.1)

Proof. Let us remind that by the definition of the K–composition of K–operators
A ∈ LK(E;F ) and B ∈ LK(F ;G) (see [14]),

[B · A]h = co

( ⋃
k∈Ah

Bk

)
.

Hence,

[A−1
K · AK ]h = co

( ⋃
k∈AKh

A−1
K k

)
. (4.2)
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Next, since A−1
K ⊃ {(As)−1|As ∈ AK}, it follows from (4.2) that:

[A−1
K · AK ]h ⊃ {(As)−1 · (Ash)|As ∈ AK} = {h} = {IEh}.

So, the first of estimates (4.1) is satisfied. The second estimate can be checked in
an analogous way.

Now, let us consider a simple example.

Example 4.1. Let E = F = R. As is shown in ([14]), the cone LK(R,R) = R∗
K

consisting of real K–functionals can be identified with the half-plane

{(k1, k2)| k1 ≤ k2}, A = [k1; k2].

Moreover, a K–functional A is K–invertible if and only if 0 /∈ [k1; k2]. In this case,
AK = A = [k1; k2],

1 ∈ [A−1
K · AK ] = [AK · A−1

K ] =


[

k1

k2
; k2

k1

]
, 0 < k1 ≤ k2;[

k2

k1
; k1

k2

]
, k1 ≤ k2 < 0.

Next, let us explain the structure of the operator which is K–inverse to a K–
composition.

Theorem 4.3. If A ∈ IsomK(E;F ), B ∈ IsomK(F ;G), then

[B · A]−1
K (l) ⊂ [BK · AK ]−1

K (l) ⊂ [A−1
K ·B−1

K ](l) (∀ l ∈ G).

Proof. Let AK = {As}, BK = {Bs}. As Ah ⊂ AKh, Bh ⊂ BKh, then

[B · A]Kh ⊂ [BK · AK ]h = {Bσ · Ash} (h ∈ E).

From here it follows:

[B · A]−1
K (l) = co {(Bσ · As)−1} · (l) = co {(As)−1 · (Bσ)−1} · (l)

⊂ [co {(As)−1} · co {(Bσ)−1}] · (l) = [A−1
K ·B−1

K ](l).

Finally, let us explain the question on the repeated K–invertibility.

Theorem 4.4. If A ∈ IsomK(E;F ) then A−1
K ∈ IsomK(F ;E). Moreover

AKh ⊂ (A−1
K )−1

K · h (∀h ∈ E). (4.3)

Proof. Let AK = {As}. Then A−1
K ⊃ {(As)−1}, whence it follows

(A−1
K )−1

K h ⊃ {((As)−1)−1h} = {Ash} = AKh.
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Remark 4. For the case E = F = R (i.e., the cone R∗
K, see example 3.4) the precise

equality AK = (A−1
K )−1

K takes place:

(AK = [k1; k2]) ⇒
(
A−1

K =

[
1

k2

;
1

k1

])
⇒ ((A−1

K )−1
K = [k1; k2] = AK).

However, in general case the precise equality in (4.3) is not fulfilled.

Example 4.2. Let us consider the following K–operator R2 → R2
K:

A = AK =

{
Ax =

(
x 0
0 1− x

)}
δ≤x≤1−δ

.

Obviously, the set {Ax}δ≤x≤1−δ is convex and compact, A = AK ∈ IsomK(R2; R). Here
the set of basis selectors of A can be identified with the linear segment {(x, y)|x+ y =
1, δ ≤ x ≤ 1− δ}. In this case the set{

(Ax)−1 =

(
1/x 0
0 1/1− x

)}
δ≤x≤1−δ

can be identified with the hyperbolic arc:

γ = {(u, v)| 1
u

+
1

v
= 1,

1

1− δ
≤ u ≤ 1

δ
}.

Obviously, the set γ is not convex. Hence, the set A−1
K = co {(Ax)−1}δ≤x≤1 (the corre-

sponding hyperbolic section) does not coincide with γ. From here it follows:

(A−1
K )−1

K 6=⊃γ−1 = AK .

5 Extremal points of the packets of linear selectors

Compactness and convexity of the packets AK and A−1
K leads to the actual problem of

describing the extremal points of these sets. Such description, undoubtedly, will make
it possible to apply the Krein-Milman theorem effectively.

In what follows, we denote by Extr(C) the set of all extremal points of C; here C is
a convex compact set either from F , or from L(E;F ), E and F are real Banach spaces,
H = {hi}i∈I is a Hamel basis in E. First, let us obtain a description of Extr(AK).

Theorem 5.1. Let A ∈ LK(E;F ), AK = {As} be its s–representation. Then

(As ∈ Extr(AK)) ⇔ (∀hi ∈ H : Ashi ∈ Extr(Ahi)). (5.1)

Proof. First, let us suppose the condition in the right-hand side of (5.1) not to be
satisfied:

∃hi ∈ H : Ashi /∈ Extr(Ahi).

Hence, Ashi is a C–inner point (see [5]) of some segment in AK :

As
hi

= (1− λ)a1
i + λ · a2

i (0 < λ < 1; a1
i , a

2
i ∈ A

hi
K ; a1

i 6= a2
i ).
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Set:

As
1hj =

{
a1

i , j = i;
Ashj, j 6= i,

As
2hj =

{
a1

i , j = i;
Ashj, j 6= i,

(As
1, A

s
2 ∈ AK)

Then Ashj = (1−λ)As
1hj +λ ·As

2hj (∀hj ∈ H), whence As = (1−λ)As
1 +λ ·As

2 follows.
So, As /∈ Extr(AK).

Conversely, suppose As /∈ Extr(AK). Then As is a C–inner point of some segment
in AK :

As = (1− λ)As
1 + λ · As

2 (0 < λ < 1; As
1, A

s
2 ∈ AK ; As

1 6= As
2).

Since As
1 6= As

2 then As
1hi 6= As

2hi for some hi ∈ H. Then from the equality Ashi =
(1−λ)As

1hi+λ·As
2hi it follows that Ashi is a C–inner point of the segment [As

1hi;A
s
2hi] ⊂

Ahi. Thus, Ashi /∈ Extr(Ahi) and the condition from the right in (5.1) is not satisfied.

Now, applying the Krein-Milman theorem immediately yields

Corollary 5.1. Denote by Ae
K the set of all basis selectors from AK, that satisfy the

condition in the right-hand side of (5.1). Then

AK = co(Ae
K).

Now, let’s pass to the case of the K–invertible K–operator A ∈ IsomK(E;F ). Thus,
AK ∈ IsomK(E;F ), A−1

K ∈ IsomK(F ;E). Above all, we are interested in the question
on the connection between the sets Extr(AK) and Extr(A−1

K ).

Theorem 5.2. If A ∈ Isom(E;F ), then the following inclusion

(ExtrAK)−1 ⊂ Extr(A−1
K ). (5.2)

takes place.

Proof. Let Ae be an extremal point of AK , H be a closed hyperplane of support in
L(E;F ), that passes through Ae, H+ be a corresponding half-space in L(E;F ), con-
taining AK . Without loss of generality, it can be assumed 0 /∈ H. First, prove that the
set (H+)−1 is a convex in some neighborhood of A−1

e . Take the notation H̃+ = H+\H,
H̃−1

+ = H−1
+ \H−1.

Let A1, A2 ∈ H ∩ Isom(E;F ), A1 6= A2. Now, let’s join the points A−1
1 , A−1

2 ∈
H−1 ∩ Isom(F ;E) by a segment and prove that (A−1

1 ;A−1
2 ) ⊂ H−1

+ .
Let, on the contrary, some point B−1 ∈ (A−1

1 ;A−1
2 ) ∩H−1 exist. Hence,

B ∈ (A−1
1 ;A−1

2 ) ∩ (A1;A2).

Thus, for some 0 ≤ λ, µ ≤ 1 the following equality holds:

(λA−1
1 + (1− λ)A−1

2 )−1 = (µA1 + (1− µ)A2),

whence it follows

IF = (µA1 + (1− µ)A2)(λA
−1
1 + (1− λ)A−1

2 )
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= (2λµ+ 1− λµ) · IF + µ(1− λ)A1A
−1
2 + λ(1− µ)A2A

−1
1 .

From here, denoting T = A1A
−1
2 , we come to the operator square equation:

µ(1− λ)T 2 + (2λµ− λ− µ)T + λ(1− µ)IF = 0,

that has solutions T1 = IF and T2 = (λ(1−µ)/µ(1−λ)) · IF (which coincide if λ = µ).
Denote by t = λ(1− µ)/µ(1− λ) and consider both cases.

(a). T = A1A
−1
2 = IF . Then A1 = A2 and we arrive at a contradiction.

(b). T = A1A
−1
2 = t · IF , t 6= 1. Then A1 = t · A2 whence it follows 0 ∈ H, that

contradicts our hypothesis.

Thus, the set H−1
+ is a convex (locally, near A−1

e ) and contains A−1
K .

Now, let us pass some hyperplane of support P to the set H−1
+ through the point

A−1
e . Since A−1

K ⊂ H̃−1
+ ∪ {A−1

e }, P is a hyperplane of support to A−1
K and P ∩ A−1

K =
{A−1

e }. So, A−1
e ∈ Extr(A−1

K ).

Remark 5. Estimate (5.2) assumes a strong inclusion. So, for example, in Example
4.2 considered above, the set (ExtrAK)−1 consists of two endpoints of the hyperbolic
arc γ : 1

u
+ 1

v
= 1, 1

1−δ
≤ u ≤ 1

δ
. At the same time, the set Extr(A−1

K ) is the whole
hyperbolic arc γ, including all intermediate points.

Corollary 5.2. Under the assumptions of Theorem 5.2 the following inclusion

co (ExtrAK)−1 ⊂ A−1
K

takes place.

Proof. It suffices to pass to the operation co in estimate (5.2) and then to apply the
Krein-Milman theorem to the right-hand side of the obtained estimate.

Corollary 5.3. Under the assumptions of Theorem 5.2 the following inclusion

AK ⊂ co (ExtrA−1
K )−1

takes place.

Proof. Here, before application of the Krein-Milman theorem, to the left-hand side of
(5.2) it is necessary to pass to the inverse values in (5.2).

Now let us consider a question on sufficient condition of K–invertibility, namely, on
K–analogue of the classical von Neumann theorem (see, e.g., [3]).

Theorem 5.3. Let A ∈ LK(E). If A = I−B, where ‖BK‖ < 1, then A is K–invertible.
Moreover, the following estimate

A−1
K h ⊂ (I +

∞∑
n=1

Bn
K)h (∀h ∈ E) (5.3)

takes place. Here in (5.3) the power of the K–operator is meant with respect to the
K–product (see [14]), and the convergence of the power series in (5.3) is meant with
respect to the cone-norm in LK(E).
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Proof. 1) Since (A = I −B) ⇒ (AK = I −BK), denoting by AK = {As}, BK = {Bs},
we obtain:

As = I −Bs, ‖Bs‖ ≤ 1− ε.

From here, using the classical von Neumann theorem implies invertibility for all the
selectors As ∈ AK and validity of the equalities

(As)−1 = (I −Bs)−1 =
∞∑

n=0

(Bs)n (As ∈ AK , B
s ∈ BK).

Hence,

A−1
K h = co{(As)−1h} = co

{
∞∑

k=0

(Bs)nh

}
⊂

∞∑
n=0

co{(Bs)nh}. (5.4)

2) Next, let us obtain an estimate of the right-hand side of (5.4) via the powers Bn
K .

In the case n = 2 we have:

B2
Kh = co(

⋃
BKh

BKk) = co{Bs1(Bs2h)} ⊃ co{(Bs)2h}.

From here, it easily follows by induction that

Bn
Kh ⊃ co{(Bs)nh} ⊃ (co{(Bs)n}) · h. (5.5)

Finally, (5.4) and (5.5) imply

A−1
K h ⊂

∞∑
n=0

Bn
Kh ⊂ (

∞∑
n=0

Bn
K)h,

whence the estimate (5.2) follows.

By applying the Krein-Milman theorem, now it is easy to obtain

Theorem 5.4. Let, under the assumptions of Theorem 5.3, the inequality

‖Ae − I‖ ≤ 1− ε

hold for all extremal points Ae ∈ ExtrAK. Then A is K–invertible.

Proof. Let As ∈ co(Extr(AK)). Then As =
n∑

k=1

λk · Ask
e , where λk ≥ 0,

n∑
k=1

λk = 1,

Ask
e ∈ Extr(AK). Hence,

‖As − I‖ = ‖
∞∑

k=1

λk(A
sk
e − I)‖ ≤

n∑
k=1

λk · ‖Ask
e − I‖ ≤

(
n∑

k=1

λk

)
· (1− ε) = 1− ε.

Thus, the inequality ‖As − I‖ ≤ 1 − ε holds for all As ∈ co(ExtrAK). From here,
by continuity of the operator norm, it follows the validity of this inequality for all
As ∈ co(ExtrAK) = AK , by virtue of the Krein-Milman theorem. It remains to apply
Theorem 5.3.
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In conclusion, let us give an example of an „incomplete” packet of invertible basis
selectors, the s–representation of which contains an irreversible selector.

Example 5.1. Let E = F = R2. For (x, y) ∈ E the K–operator B : E → FK is
defined as follows:

B(x, y) =

{
1

2
((1 + λ− λµ)x, (1 + λµ)y)| 0 ≤ λ, µ ≤ 1

}
; A = I −B.

Geometrically A(x, y) represents a right triangle with the right angle vertex (x/2; y/2)
and legs x/2 and y/2. The operator A = I − B can be represented as a set of the
invertible linear selectors A = {I − Bλµ| 0 ≤ λ, µ ≤ 1}, with Bλµ(x, y) = 1

2
((1 + λ −

λµ)x, (1 + λµ)y), where all (I −Bλµ) are invertible.
At the same time, s-representation AK takes form AK = {I − Cλµ| 0 ≤, µ ≤ 1},

where
Cλµ(x, y) =

1

2
((1 + λ)x, (1 + µ)y).

Geometrically Cλµ(x, y) represents a rectangle with the south-western vertex (x/2, y/2)
and sides x/2 and y/2. Here the selector I − C11 is irreversible, hence AK is not
K–invertible.

6 Conclusion

Thus, in the paper a sufficiently complete description was exposed of the packet of
basis selectors for an arbitrary sublinear compact-valued operator. It enabled us to
give a rather complete description of the inverse selector representation.

It appears that a base has been built that will allow, by using the concepts of
compact subdifferentiability and subsmoothness, to obtain the appropriate form of
inverse function and implicit function theorems. The authors expect to investigate this
problem in a reasonable time.
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