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KORDAN NAURYZKHANOVICH OSPANOV

(to the 60th birthday)

On 25 September 2015 Kordan Nauryzhanovich Ospanov,
professor of the Department "Fundamental Mathematics" of
the L.N. Gumilyov Eurasian National University, Doctor of
Physical and Mathematical Sciences (2000), a member of the
Editorial Board of our journal, celebrated his 60th birthday.

He was born on September 25, 1955, in the village Zhanata-
lap of the Zhanaarka district of the Karaganda region. In 1976
he graduated from the Kazakh State University, and in 1981
he completed his postgraduate studies at the Abay Kazakh
Pedagogical Institute.

Scientific works of K.N. Ospanov are devoted to application
of methods of functional analysis to the theory of differential

equations. On the basis of a local approach to the resolvent representation he has
found weak conditions for the solvability of the singular generalized Cauchy-Riemann
system and established coercive estimates for its solution. He has obtained a criterion
of the spectrum discreteness for the resolvent of the system and the exact in order
estimates of singular values and Kolmogorov widths. He has original research results on
the coercive solvability of the quasilinear singular generalized Cauchy-Riemann system
and degenerate Beltrami-type system. He has established important smoothness and
approximation properties of non strongly elliptic systems. K.N. Ospanov has found
separability conditions in Banach spaces for singular linear and quasi-linear second-
order differential operators with growing intermediate coefficients and established a
criterion for the compactness of its resolvent and finiteness of the resolvent type.

His results have contributed to a significant development of the theory of two-
dimensional singular elliptic systems, degenerate differential equations and non strongly
elliptic boundary value problems.

K.N. Ospanov has published more than 140 scientific papers. The list of his most
important publications one may see on the web-page

http://mmf.enu.kz/images/stories/photo/pasport/fm/ospanov
K.N. Ospanov is an Honoured Worker of Education of the Republic of Kazakhstan,

and he was awarded the state grant "The best university teacher".
The Editorial Board of the Eurasian Mathematical Journal is happy to congratulate

Kordan Nauryzkhanovich Ospanov on occasion of his 60th birthday, wishes him good
health and further productive work in mathematics and mathematical education.
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ALMOST HYPOELLIPTIC OPERATORS WITH CONSTANT POWERS
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Abstract. The concept of a formally almost hypoelliptic operator with constant power
and the concept of weighted Sobolev spaces generated by such operators are introduced.
We prove some properties of such operators, establish some estimates for functions in
those spaces, in particular, the density of smooth functions in those spaces. We intend,
in another work, using the results of this paper, to select a set of infinitely differentiable
solutions for a class of almost hypoelliptic equations having constant power.

1 Weitghted function spaces generated by differential operators
with constant coefficients

We use the following standard notation: N is the set of all natural numbers, N0 =
N ∪ 0, Nn

0 = N0 × ... × N0 - the set of all n− dimensional multi-indices, Rn and Cn

- the n - dimensional euclidian spaces of real points (vectors) ξ = (ξ1, ..., ξn) and
complex points (vectors) ζ = (ζ1, ..., ζn) respectively. For ξ ∈ Rn and α ∈ Nn

0 we put
|ξ| =

√
ξ2
1 + ...+ ξ2

n, |α| = α1+...+αn. Finally we put Rn,0 = {ξ ∈ Rn : ξ1 ·...·ξn 6= 0}
and Rn,+ = {ξ ∈ Rn : ξj ≥ 0 (j = 1, ..., n)}.

Let g ∈ C∞ = C∞(Rn) be any positive function such that
a) for any α ∈ Nn

0 there exist positive numbers κ and κα such that for all x ∈ Rn

κ−1 e−δ |x| ≤ gδ(x) ≤ κ e−δ |x|; |Dαgδ(x)| ≤ κα δ
|α| gδ(x), (1.1)

where gδ(x) = g(δ x).
b) there exist positive numbers σ1 and σ2 such that for any δ > 0, x ∈ Rn and

T > 0
sup
y∈ST

gδ(x+ y) ≤ σ1 gδ(x); sup
y∈ST

|gδ(x+ y)− gδ(x)| ≤ σ2 T gδ(x), (1.2)

where ST = {x ∈ Rn; |x| < T }.
As a function g one can take the regularization of the function H(x) = e−|x| when

|x| > 1 and H(x) = e−1 when |x| ≤ 1.
Denote by L2, δ = L2, δ(Rn) the set of all measurable functions u with finite norms
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||u e−δ |x|||L2(Rn)

and for any k ∈ N by W k
δ the set of all functions with finite norms∑

|α|≤k

||(Dαu)||L2, δ
,

where Dαu are weak derivatives of the function u.
Note that these norm are equivalent to

||u||L2, δ
=

[∫
Rn

|u(x)|2gδ(x)dx

]1/2

(1.3)

and to

||u||W k
δ

=
∑
|α|≤k

||(Dαu)gδ(x)||L2 . (1.4)

Let ϕ ∈ C∞
0 (Rn), ϕ ≥ 0,

∫
ϕ(x)dx = 1, ε > 0, ϕε(x) = ε−n ϕ(x/ε),

fε(x) = (f ∗ ϕε)(x) :

Lemma 1.1. For any δ > 0, f ∈ L2, δ, and α ∈ Nn
0

1) for any ε > 0, Dαfε ∈ L2, δ,
2) ||fε − f ||L2, δ

→ 0 as ε→ +0.
Proof. Since for any α ∈ Nn

0

||Dαfε||L2, δ
= ||f ∗Dαϕε||L2, δ

= ε−|α|||f ∗ (Dαϕ)ε||L2, δ

= ε−|α|
∥∥∥∥∫ f(x− y)(Dαϕ)ε(y) gδ(x)dy

∥∥∥∥
L2

= ε−|α|
∥∥∥∥∫ (f gδ)(x− y)Dαϕε(y)dy +

∫
f(x− y)[gδ(x)− gδ(x− y)] (Dαϕ)ε(y)dy

∥∥∥∥
L2

,

by the properties of the function gδ and by Young’s inequality for some positive con-
stants C1 and C2 we have

||Dαfε||L2, δ
≤ ε−|α|

[
||(f gδ) ∗ (Dαϕ)ε||L2 + C1

∥∥∥∥∫ |f(x− y) gδ(x− y)| |(Dαϕ)ε| dy
∥∥∥∥

L2

]

≤ ε−|α| [||f gδ||L2 + C1 ||f gδ||L2 ] ||(Dαϕ)ε ||L1 ≤ C2 ε
−|α| ||f gδ||L2 <∞ ∀ε > 0,

which proves Statement 1). To prove Statement 2) note that

||fε − f ||L2, δ
= ||[(f ∗ ϕε)− f ] gδ||L2

=

∥∥∥∥∫ f(x− y)ϕε(y) gδ(x)dy −
∫
f(x) gδ(x)ϕε(y)dy

∥∥∥∥
L2
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=

∥∥∥∥∫ [(f gδ)(x− y)− (f gδ)(x)]ϕε(y)dy

+

∫
f(x− y) [gδ(x)− gδ(x− y)]ϕε(y)dy

∥∥∥∥
L2

. (1.5)

Since f gδ ∈ L2, by mean continuity of functions from L2 and by generalized
Minkowski’s inequality we have as ε→ +0∥∥∥∥∫ [(f gδ)(x− y)− (f gδ)(x)]ϕε(y)dy

∥∥∥∥
L2

≤ sup
y∈suppϕε

||(f gδ)(· − y)− (f gδ)(·)||L2 → 0.

Since (f gδ) ∈ L2, by the properties of the function gδ and by Young’s inequality,
for the second term of (1.5) we have with a positive constant C3 = C3(g)∥∥∥∥∫ f(x− y) [gδ(x)− gδ(x− y)]ϕε(y)dy

∥∥∥∥
L2

≤ C3 ε

∥∥∥∥∫ |(f gδ)(x− y)|ϕε(y)dy

∥∥∥∥
L2

≤ C3 ε ||f gδ||L2 → 0

as ε→ +0 , which proves the lemma. �
Let

Q(D) =
∑
|ν|≤m

γνD
ν

be a linear differential operator with constant coefficients and

Q(ξ) =
∑
|ν|≤m

γνξ
ν

be its characteristic polynomial (symbol), where for x ∈ Rn, ξ ∈ Rn and α ∈ Nn
0 :

Dj := 1
i

∂
∂xj

(j = 1, ..., n), Dα := Dα1
1 , ..., Dαn

n , ξα = ξα1
1 · ... · ξαn

n .

For a multi-index α we denote by Q(α)(D) the operator with characteristic polyno-
mial Q(α)(ξ) := DαQ(ξ).

Let us introduce the following Sobolev-type weighted spaces generated by the op-
erator Q(D)

H1(Q, δ) := {u; ||u||H1(Q, δ) := ||u||L2, δ
+ ||Q(D)u||L2, δ

<∞},

H2(Q, δ) := {u; ||u||H2(Q, δ) := ||u||L2, δ
+ ||Q(D)(u gδ)||L2 <∞},

H3(Q, δ) := {u; ||u||H3(Q, δ) :=
∑
|α|≤m

||Q(α)(D)(u gδ)||L2 <∞},

H4(Q, δ) := {u; ||u||H4(Q, δ) :=
∑
|α|≤m

||Q(α)(D)u||L2, δ
<∞}.
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Lemma 1.2. Let ordQ = m. Then for any δ0 > 0 there exists a constant c = c(δ0) > 0
such that for all δ ∈ (0, δ0) and u ∈ Wm

δ

c−1 ||u||H4(Q, δ) ≤ ||u||H3(Q, δ) ≤ c ||u||H4(Q, δ). (1.6)

Proof. By applying the Leibnitz formula and the properties of the function g, we obtain
with some positive constants C1, C2 = C2(δ0,m) for all u ∈ Wm

δ

||u||H3(Q,δ) =
∑

α

||Q(α)(D)(u gδ)||L2 =
∑

α

||
∑

β

1

β!
[Q(α+β)(D)u]Dβgδ||L2

≤
∑

α

∑
β

δ|β|

β!
||[Q(α+β)(D)u] (Dβg)δ||L2

≤ C1

∑
α

∑
β

δ|β|

β!
||[Q(α+β)(D)u] gδ||L2 ≤ C2 ||u||H4(Q,δ),

which proves the right-hand-side inequality in (1.6). To prove the left-hand-side
inequality it suffices to prove that for each k = 0, 1, ...,m there exists a number
Ck

3 = Ck
3 (δ0,m) > 0 such that for all δ ∈ (0, δ0) and u ∈ Wm

δ∑
m−k≤|α|≤m

||Q(α)(D)u||L2, δ
≤ Ck

3

∑
m−k≤|α|≤m

||Q(α)(D)(u gδ)||L2 . (1.7k)

We prove by induction in k. Since Q(α)(ξ) ≡ const for any α ∈ Nn
0 : |α| = m,

inequality (1.70) is obvious. Assume that inequalities (1.7k) hold for all k ≤ k0 < m;
we will prove it for k = k0 + 1. By applying the Leibnitz formula, the properties of the
function g and the induction hypothesis we have with a constant Ck0

4 = Ck0
4 (δ0,m) > 0∑

m−(k0+1)≤|α|≤m

||Q(α)(D)u||L2, δ
=

∑
m−k0≤|α|≤m

||[Q(α)(D)u]||L2, δ

+
∑

|α|=m−(k0+1)

||[Q(α)(D)u]||L2, δ
=

∑
m−k0≤|α|≤m

||[Q(α)(D)u]||L2, δ

+
∑

|α|=m−(k0+1)

||[Q(α)(D)(u gδ)−
∑
β 6=0

1

β!
[Q(α+β)(D)u] [Dβgδ]||L2

≤ Ck0
3

∑
|α|≥m−k0

||[Q(α)(D)(u gδ)||L2 +
∑

|α|=m−(k0+1)

||Q(α)(D)(ugδ)||L2

+
∑

|α|=m−(k0+1)

∑
β 6=0

δ|β|

β!
||[Q(α+β)(D)u] (Dβg)δ||L2

≤ Ck0
4

∑
m−(k0+1)≤|α|≤m

||[Q(α)(D)(u gδ)||L2 ,

which proves (1.7k) and completes the proof. �
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Definition 1. We say that the differential operator R1(D) (the polynomial R1(ξ))
with constant coefficients is more powerful than the differential operator R2(D) (the
polynomial R2(ξ)) and write R2 < R1 if for some C > 0

|R2(ξ) | ≤ C[ |R1(ξ) |+ 1] ∀ξ ∈ Rn.

If |R2(ξ)|/[|R1(ξ) |+ 1] → 0 as |ξ| → ∞ we write R2 << R1

Definition 2. The differential operator R(D) (the polynomial R(ξ)) with constant
coefficients is called almost hypoelliptic (see [10] or [5]) if DαR < R for all α ∈ Nn

0 .

Lemma 1.3. Let Q(D) be an almost hypoelliptic operator with constant coefficients of
order m . There exist numbers δ0 = δ0(Q) ∈ (0, 1) and c = c(Q) > 0 such that for any
δ ∈ (0, δ0) and all u ∈ Wm

δ

c−1 ||u||H2(Q,δ) ≤ ||u||H1(Q,δ) ≤ c ||u||H2(Q,δ) (1.8)

Proof. It is obvious that ||u||H1(Q,δ) ≤ ||u||H4(Q,δ) for any u ∈ Wm
δ , hence by Lemma

1.2 ||u||H1(Q,δ) ≤ C1 ||u||H3(Q,δ) with a constant C1 > 0 .
From this, applying the Fourier transform, Parseval’s equality and almost hypoel-

lipticity of Q(D), we have with a constant C2 > 0 for all u ∈ Wm
δ

||u||H1(Q,δ) ≤ C1 ||u||H3(Q,δ) = C1

∑
α

||Q(α)(ξ)F (u gδ)||L2 ≤ C2 ||[|Q(ξ)|

+1]F (u gδ)||L2 ≤ C2 [|||Q(D)(u gδ)||L2 + ||F (u gδ)||L2 ] = C2 ||u||H2(Q,δ),

where F (f) is the Fourier transform of a function f ∈ L2. This proves the right - hand
side of (1.8).

To prove the left-hand side of (1.8), we apply the Leibnitz formula and properties
(1.1) of the function g. We have with a constant C3 > 0 for all u ∈ Wm

δ

||u||H2(Q,δ) = ||u gδ||L2 + ||Q(D)(u gδ)||L2 ≤ ||u gδ||L2 + ||[Q(D)u] gδ)||L2

+
∑
α 6=0

1

α!
||[Q(α)(D)u]Dαgδ)||L2 ≤ ||u||H1(Q,δ)

+C3

∑
α 6=0

δ|α|

α!
||[Q(α)(D)u] gδ)||L2 . (1.9)

By Lemma 1.2 from here we have with a constant C4 > 0 for any δ ∈ (0, 1) and
for all u ∈ Wm

δ

||u||H2(Q,δ) ≤ ||u||H1(Q,δ) + δC3

∑
α 6=0

||[Q(α)(D)u] gδ)||L2

≤ ||u||H1(Q,δ) + δ C3 ||u||H4(Q,δ) ≤ ||u||H1(Q,δ) + δ C4 ||u||H3(Q,δ)

= ||u||H1(Q,δ) + δ C4 [
∑

α

||[Q(α)(D)(u g)||L2 + ||u g||L2 ].
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From here, applying the Fourier transform, Parseval’s equality and almost hypoel-
lipticity of Q(D), we have with a positive constant C5 for all u ∈ Wm

δ

||u||H2(Q,δ) ≤ ||u||H1(Q,δ) + δ C4

[∑
α

||Q(α)(ξ)F (u gδ)(ξ)||L2 + ||u gδ||L2

]

≤ ||u||H1(Q,δ) + δ C5 [||Q(ξ)F (u gδ)||L2 + ||F (u gδ)||L2 + δ C4 ||u gδ||L2

= ||u||H1(Q,δ) + δ C5 [||Q(D)(u gδ)||L2 + δ (C4 + C5) ||u gδ||L2 .

Hence for any δ ∈ (0, 1/2C5) we have with a constant C6 > 0 for all u ∈ Wm
δ

||u||H2(Q,δ) ≤ 2 ||u||H1(Q,δ) +
C4

C5

||u gδ||L2 ≤ C6 ||u||H1(Q,δ),

from which the left-hand side of (1.8) immediately follows. �

For any δ > 0 we denote W∞
δ =

∞⋂
k=0

W k
δ .

Lemma 1.4. 1) For any δ > 0 and any linear differential operator Q(D) with constant
coefficients the set W∞

δ is dense in Hj(Q, δ) (j = 1, 3, 4).
2) For almost hypoelliptic operator Q(D) there exist a number δ0 > 0 such that

W∞
δ is dense in H2(Q, δ) for any δ ∈ (0, δ0).

Proof. Since the density W∞
δ in Hj(Q, δ) j = 1, 3, 4 is proved by the same method, we

prove this density only in H1.
Let u ∈ H1(Q, δ), i.e. u ∈ L2, δ and Q(D)u ∈ L2, δ. Then by Statement 1) of

Lemma 1.1 uε ∈ W∞
δ and (see. Lemma 5.2 in [1] ) Q(D)uε = (Q(D)u)ε ∈ W∞

δ for
any ε > 0. Therefore by statement 2) of Lemma 1.1 we obtain

||uε − u||H1(Q,δ) = ||uε − u||L2, δ
+ ||Q(D)uε −Q(D)u||L2, δ

→ 0

as ε→ 0, which proves the first part of the lemma.
The second part of the lemma is proved similarly by applying Lemma 1.3. �
As an immediate corollary of Lemmas 1.2 - 1.4 and L. Hörmander’s theorem (see

[8] or [12, Theorem 12.2 and Corollary 2]) we get
Corollary 1.1. Let Q(D) be an almost hypoelliptic operator. There exists a number
δ0 = δ0(Q) > 0 such that all spaces Hj(Q, δ) (j = 1, ..., 4) coincide for any δ ∈ (0, δ0).
�

2 Some properties of almost hypoelliptic polynomials with con-
stant coefficients

We begin with some results on almost hypoelliptic polynomials with real constant
coefficients. Denote by Pol(n,m) the set of all polynomials P in n variables of deg
P ≤ m and by In = In,m the set of all polynomials P ∈ Pol(n,m) satisfying the
condition:

|P (ξ)| → ∞ as |ξ| → ∞.
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For any P ∈ In with n > 1, up to multiplying by -1, there exist positive constants
ε0 = ε0(P ) and M0 = M0(P ) such that

P (ξ) ≥ ε0 ∀ξ ∈ Rn : | ξ| ≥M0. (2.1)

Therefore, in the sequel, without loss of generality, we can assume that any poly-
nomial P ∈ In satisfies condition (2.1).

Let P ∈ Pol(n,m), ξ ∈ Rn and dP (ξ) denote the distance from ξ to the surface
D(P ) = {ζ ∈ Cn : P (ζ) = 0}. Then there exists a constant c = c(m,n) > 0 such that
for all polynomials P ∈ Pol(n,m) and for all ξ ∈ Rn such that P (ξ) 6= 0 we have

c−1 ≤ dP (ξ)
∑
α 6=0

|P (α)(ξ)/P (ξ)|1/|α| ≤ c (2.2)

(see [8], Lemma 11.1.4). Hence for any almost hypoelliptic polynomial P ∈ In there
exists a positive constant ε1 = ε1(P ) such that

dP (ξ) ≥ ε1 ∀ξ ∈ Rn : | ξ| ≥M0. (2.3)

Lemma 2.1 Let P ∈ In be an almost hypoelliptic polynomial and let P < Q < P.
Then

1) Q ∈ In and Q is almost hypoelliptic,
2) there exists a number θ > 0 such that

θ−1 ≤ dP (ξ)/dQ(ξ) ≤ θ ∀ξ ∈ Rn : | ξ| ≥M0, (2.4)

3) there exist positive numbers c1, c2, and δ1 such that for any δ ∈ (0, δ1)

||Q(D)u||L2, δ
= ||[Q(D)u] gδ||L2 ≤ c1 ||u||H2(P,δ) ∀u ∈ H2(P, δ), (2.5)

||Q(D)(u gδ)||L2 ≤ c2 ||u||H2(P,δ) ∀u ∈ H2(P, δ). (2.6)

Proof. The first part of Statement 1) is obvious. To prove the second part of Statement
1) note that by Lemma 10.4.2 in [8] there exsists a constant C1 > 0 such that for every
polynomial R ∈ Pol(n,m),

C−1
1 R̃(ξ, t) ≤ sup

|η|<t

|R(ξ + η)| ≤ C1 R̃(ξ, t) ∀ξ ∈ Rn, t > 0, (2.7)

where we have used the Hörmander function

R̃(ξ, t) = [
∑

α

|Rα(ξ)|2t2 |α|]1/2, R̃(ξ) = R̃(ξ, 1).

Since the polynomial P ∈ In is almost hypoelliptic and the function dP (ξ) satisfies
inequality (2.3), hence one can rewrite inequality (2.7) for polynomial P as

C−1
1 P̃ (ξ, t) ≤ sup

|η|<t

|P (ξ + η)| ≤ C1 P̃ (ξ, t) ∀ξ ∈ Rn (2.7′)

for any t = dP (ξ) ≥ ε with some ε > 0.
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Hence by the assumptions of the lemma we have with some constants Cj > 0 (j =
2, ..., 7) for all ξ ∈ Rn : |ξ| ≥M0 + 1

Q̃(ξ) ≤ C2 sup
|η|<1

|Q(ξ + η)| ≤ C3 sup
|η|<1

[|P (ξ + η)|+ 1] ≤ C4 P̃ (ξ) ≤

≤ C5 (|P (ξ)|+ 1) ≤ C6 |P (ξ)| ≤ C7 [|Q(ξ)|+ 1],

which proves almost hypoellipticity of Q.
Since by (2.3) dP (ξ) ≥ ε1 for | ξ| ≥M0, to prove inequality (2.4) we can once more

use inequality (2.7’) for t = dP (ξ). We obtain with some constants Cj > 0 (j = 8, ..., 13)
for | ξ| ≥M0

Q̃(ξ, dP (ξ)) ≤ C8 sup
|η|<dP (ξ)

|Q(ξ + η)| ≤ C9 sup
|η|<dP (ξ)

[|P (ξ + η)|+ 1] ≤

≤ C10 [P̃ (ξ, dP (ξ)) + 1] ≤ C11 [|P (ξ)|+ 1] ≤ C12 |P (ξ)| ≤

≤ C13 |Q(ξ)| ∀ξ ∈ Rn : |ξ| ≥M0.

Since the functions Q̃(ξ, t) and
∑
α

|Q(α)(ξ)|t|α| are equivalent, we can rewrite the

last inequality as∑
α

|Q(α)(ξ)| d|α|P (ξ) ≤ C13 |Q(ξ)| ∀ξ ∈ Rn : | ξ| ≥M0.

Then for any 0 6= α ∈ Nn
0 and for these ξ we have

d
|α|
P (ξ) |Q(α)(ξ)/Q(ξ)| ≤ C13.

This implies that

dP (ξ)
∑
α 6=0

|Q(α)(ξ)/Q(ξ)|1/|α| ≤ C14 ∀ξ ∈ Rn : | ξ| ≥M0

for a constant C14 > 0.
Applying inequality (2.2) for the polynomial Q from here we get for any ξ ∈ Rn :

| ξ| ≥M0 with the constant C15 = 1/(cC14)

dQ(ξ) ≥ 1

c

[∑
α 6=0

|Q(α)(ξ)/Q(ξ)|1/|α|

] ≥ C15 dP (ξ).

In this connection note that for any polynomial Q with degree Q ≥ 1∑
α 6=0

|Q(α)(ξ)/Q(ξ)|1/|α| 6= 0 for ξ ∈ Rn.

In the same manner we can see that dP (ξ) ≥ C16 dQ(ξ) with a constant C16 > 0
and for the same ξ ∈ Rn. Last inequalities lead to inequality (2.4).
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Inequality (2.6) immediately follows by the condition Q < P by applying Parseval’s
equality. To prove inequality (2.5) first note that by (2.7) for t = 1 we have with some
positive constants Cj (j = 17, ..., 20)

Q̃(ξ) ≤ C17 sup
|η|≤1

|Q(ξ + η)| ≤ C18 sup
|η|≤1

[|P (ξ + η)|+ 1] ≤

≤ C19 P̃ (ξ) ≤ C20 [|P (ξ)|+ 1] ∀ξ ∈ Rn. (2.8)

Let number δ0 ∈ (0, 1) be as in Corollary 1.1. Applying Corollary 1.1, Parseval’s
equality and inequality (2.8) we get with some positive constants C21, C22 for all δ ∈
(0, δ0)

||Q(D)u||L2, δ
≤ ||u||H4(Q,δ) ≤ C21 ||u||H3(Q,δ) = C21

∑
α

||Q(α)(D)(u gδ)||L2

= C21

∑
α

||Q(α)(ξ)F (u gδ)||L2 ≤ C21 [||P (ξ)F (u gδ)||L2 + ||F (u gδ)||L2 ]

= C22 ||u||H2(P,δ) ∀u ∈ H2(P, δ).

�
Lemma 2.2. Let a polynomial Q(ξ) satisfy the condition

|ξ| ≤ c[|Q(ξ)|+ 1] ∀ξ ∈ Rn (2.9)

with a number c = c(Q) > 0. Then for any ∆ > 0 and k ∈ N there exists a number
C = C(Q,∆, k) > 0 such that for any δ ∈ (0,∆) and for all u ∈ W∞

δ

∑
|α|=k

||Dαu||L2, δ
≤ C

 ∑
|β|=k−1

||Dβu||H2(Q,δ) +
∑

|γ|=k−1

||Dγu||L2, δ

 . (2.10)

Proof. Let α ∈ Nn
0 , |α| = k. Represent α as α = µα + να, where |µα| = k− 1, |να| = 1.

Then using the properties of the function g, we get with a constant C1 > 0∑
|α|=k

||Dαu||L2, δ
=
∑
|α|=k

||(Dµα+ναu) gδ||L2 ≤
∑
|α|=k

||Dνα [(Dµαu) gδ]

−(Dµαu)Dνα gδ||L2 ≤
∑
|α|=k

||Dνα [(Dµαu) gδ]||L2 + C1 δ
∑

|α|=k−1

||Dµαu||L2, δ
.

Applying the Fourier transform and the Parseval equality, by the properties of the
polynomial Q(ξ) we get with some positive constants C2 and C3∑

|α|=k

||Dαu||L2, δ
≤
∑
|α|=k

|||ξνα |F [(Dµαu) gδ]| ||L2 + C1 δ
∑
|α|=k

||Dγαu||L2, δ

≤ C2

∑
|α|=k

||[|Q(ξ)|+ 1] |F [(Dµαu) gδ]| ||L2 + C1 δ
∑

|α|=k−1

||Dµαu||L2, δ

≤ C3 [
∑

|β|=k−1

||Dβu||H2(Q,δ) +
∑

|µ|=k−1

||Dµu||L2, δ
] ∀u ∈ W∞

δ .
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3 Differential operators with variable coefficients

Let
P (x,D) =

∑
α∈(P,x)

γα(x)Dα

be a linear differential operator with coefficients, defined on a domain Ω ⊂ Rn and

P (x, ξ) =
∑

α∈(P,x)

γα(x)ξα

be its characteristic polynomial (complete symbol), where (P, x) is a finite set in Nn
0 .

It is assumed that for any α ∈ (P, x) there exists x ∈ Ω such that γα(x) 6= 0.

Definition 3. A linear differential operator P (x,D) (and the corresponding poly-
nomial P (x, ξ) in ξ) with the coefficients defined in Ω ⊂ Rn is said to have constant
power in Ω (see [16] or [11]) if for arbitrary x, y ∈ Ω there exists a constant C(x, y) > 0
such that

|P (x, ξ)|/[|P (y, ξ)|+ 1] ≤ C(x, y)

for all ξ ∈ Rn, or, which is the same, the polynomials P (x, ·) and P (y, ·) have the same
power:

P (x, ·) < P (y, ·) < P (x, ·).

If there exists a constant C > 0 such that

C−1 ≤ [|P (x, ξ)|+ 1]/[|P (y, ξ)|+ 1] ≤ C

for all x, y ∈ Ω and ξ ∈ Rn, we say that the operator P (x,D) (polynomial P (x, ξ)) has
uniformly constant power in Ω.

In [3] and [11] there were found some conditions under which a polynomial P (x, ξ)
has (uniformly) constant power in Ω.

An operator P (x,D) (a polynomial P (x, ξ))) with constant power we call formally
almost hypoelliptic in Ω, if the operator P (x0, D) with constant coefficients is almost
hypoelliptic (see Definition 1.2) for any x0 ∈ Ω.

We begin with a simple but general result on linear differential operators with
constant powers (for operators with constant strength in the sense of Hörmander see
[9], Lemma 11.3.2. and [2] )

Lemma 3.1. Let P (x,D) have constant power in Ω. With a fixed x0 ∈ Ω set P0(D) =
P (x0, D) and let Pj(D) (j = 0, 1, ..., r) be a basis in the finite dimensional vector space
of operators with constant coefficients which are less powerful than P0(D). Then for all
x ∈ Ω we have

P (x,D) = P0(D) +
r∑

j=0

aj(x)Pj(D), (3.1′)

where the coefficients aj(x) = aj(x
0, x) are uniquely determined, vanish at x0, and

have the same differentiability and continuity properties as the coefficients of P (x,D).



Almost hypoelliptic operators with constant powers 39

Let as above In denote the set of polynomials R(ξ) = R(ξ1, ..., ξn) such that
|R(ξ)| → ∞ as |ξ| → ∞ , and let In(Ω) be the set of polynomials R(x, ξ) =
R(x, ξ1, ..., ξn) with coefficients defined in Ω, such that R(x, ·) ∈ In for all x ∈ Ω
(see, for instanse [14], [15], or [6])

In [6] there were found some conditions under which an almost hypoelliptic poly-
nomial R ∈ In.

Consider the class A = A(Rn) of all formally almost hypoelliptic operators
P (x,D) =

∑
α

γα(x)Dα (polynomials P (x, ξ)) with coefficients in C∞ = C∞(Rn) and

with constant power in Rn, satisfying the following conditions: there exists a point
x0 ∈ Rn such that in representation (3.1’):

1) P0 ∈ In, and Pj << P0 (j = 1, ..., r), (see Definition 1.1),
2) a0(x) ≡ 0, i.e. the operator P has the form

P (x,D) = P0(D) +
r∑

j=1

aj(x)Pj(D), (3.1)

3) for any α ∈ Nn
0 there exists a number cα > 0 such that

|Dαaj(x)| ≤ cα ∀x ∈ Rn (j = 1, ..., r). (3.2)

4) there exists a number c > 0 such that

|ξ| ≤ c [1 + |P0(ξ)| ∀ξ ∈ Rn. (3.3)

To give an example of such operator (polynomial) we present some futher concepts:

Definition 4. (see [13] or [7]) The Newton polyhedron <(ℵ) of a given collection
of multi-indices ℵ = {αj}N

1 is the smallest convex polyhedron in Rn,+ containing all
multi-indices αj (j = 1, ..., N). The Newton polyhedron <(x, P ) of an operator P (x,D)
(and a polynomial P (x, ξ)) is, by definition, the Newton polyhedron of the collection
(P, x) (see [13] or [11]).

A polyhedron < with vertices in Nn
0 is called complete, if < has a vertex at the

origin and also it has vertices on each coordinate axis.
Let < be a complete polyhedron. A set Γ ⊂ < is called a face of <, if there

exist a unit vector λ = (λ1, ..., λn) and a number d = d(λ,Γ) ≥ 0 such that
(λ, α) = (λ1α1 + ... + λnαn) = d for all points α ∈ Γ, while (λ, β) < d for β ∈ < \ Γ.
The unit vector λ is called an outword normal (< - normal) of the face Γ. The set of
all < - normals of Γ we denote by Λ(Γ).

Definition 5. A face Γ of a complete polyhedron < is called principal, if there
exists a λ ∈ Λ(Γ) with at least one positive coordinate. If in Λ(Γ) there exists a λ
with nonnegative (positive) coordinates, then we call the face Γ regular (completely
regular). A point α ∈ < is called principal (regular, completely regular) if α belongs
to a principal (regular, completely regular) face of <. A complete polyhedron < is
called regular (completely regular) if all its (n − 1)−dimensiomal non-coordinate
faces are regular (completely regular). The set of all principal points α ∈ < ∩ Nn

0 is
denoted by <′.
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It is proved in [4] that
1) the Newton polyhedron <(x, P ) of an operator P (x,D) (and a polynomial

P (x, ξ)) with constant power in Ω does not depend on the point x ∈ Ω : <(x, P ) =
<(P ) ∀x ∈ Ω,

2) if an operator P (x,D) with constant power in Ω is formally almost hypoelliptic
in Ω then <(P ) is regular.

Example 3.1 Let < = <(P0) be the regular Newton polyhedron of a polynomial
P0. Let there exist a set of multi-indices B ⊂ < ∩ Nn

0 and a number σ = σ(<, B) > 0
such that ∑

ν∈B

|ξν | ≤ σ[|P0(ξ)|+ 1] ∀ξ ∈ Rn. (3.4)

Estimate (3.4) for B = < have been proved by V.P. Mikhailov in [13] for so-called
non-degenerate polynomials. In [3], for degenerate polynomials, conditions were found
under which estimate (3.4) is true for a set B ⊂⊂ < with the complete Newton poly-
hedron <(B) and conditions under which P0 is almost hypoelliptic.

When the Newton polyhedron <(B) is complete (see, for instance [11], or [3])
and <(Pj) ⊂ <′(B) (j = 1, ..., r) then is easy to verify that P0 ∈ In and Pj <<
P0 (j = 1, ..., r). Thus, any formally almost hypoelliptic in Ω operator P (x,D),
satisfying estimate (3.4) and the conditions <(Pj) ⊂ <′(B) (j = 1, ..., r), with complete
polyhedrons <(P ) and <(B), and represented in form (3.1) belongs to A.

In the sequel we assume (see Corollary 1.1) that the number δ0 := δ0(P0) is fixed, so
that all spaces Hj(P0, δ) (j = 1, ..., 4) coincide for any δ ∈ (0, δ0) and denote H(P0, δ) ≡
Hj(P0, δ) (j = 1, ..., 4).
Theorem 3.1. Let P ∈ A be an operator, represented in form (2.1). There exists a
number c > 0 such that for any δ ∈ (0, δ0) and for all u ∈ H(P0, δ)

c−1 ||u||H(P0, δ) ≤ ||P (x,D)u||L2, δ
+ ||u||L2, δ

≤ c ||u||H(P0, δ), (3.5)

c−1 ||u||H(P0, δ) ≤ ||P (x,D)(u gδ)||L2 + ||u gδ||L2 ≤ c ||u||H(P0, δ). (3.6)

Proof. By Corollary 1.1 it suffices to prove estimates (3.5) - (3.6) for H2(P0, δ). The
right-hand sides of (3.5) - (3.6) immediately follow by uniform boundedness of the co-
efficients {aj(x)} and Corollary 1.1. Let us prove the left-hand sides of these estimates.

Since Pj << P0 (j = 1, ..., r), for any ε > 0 there exists a constant C1 =
C1(ε,max

j
sup

x
|aj(x)|) > 0 such that for any δ ∈ (0, δ0) and for all u ∈ H2(P0, δ)

r∑
j=1

||aj(x)Pj(D)(u gδ)||L2 ≤ ε ||P0(D)(u gδ)||L2 + C1 ||(u gδ)||L2 .

Therefore for all u ∈ H2(P0, δ)

||P (x,D)(u gδ)||L2 ≥ ||P0(D)(u gδ)||L2 − ε ||P0(D)(u gδ)||L2 − C1 ||(u gδ)||L2 .

This implies the left-hand side of (3.6) if we take ε < 1. Let us prove the left-hand
sides of (3.5).

By assumption of the theorem Pj << P0 (j = 1, ..., r), consequently DαPj <<
P0 (j = 1, ..., r) for any α ∈ Nn

0 , and we have that with some constant C2 > 0
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r∑
j=1

||aj(x)Pj(D)u||L2, δ
≤ C2

r∑
j=1

||Pj(D)u||L2, δ

≤ C2

r∑
j=1

||u||H3(Pj , δ) ∀u ∈ W,

hence for any ε > 0 there is a number C3 = C3(ε) > 0 such that for all u ∈ W∞
δ we

have (see Corollary 1.1 )

||P (x,D)u||L2, δ
≥ ||P0(D)u||L2, δ − C2

r∑
j=1

||u||H3(Pj , δ)

≥ ||P0(D)u||L2, δ
− ε r C2 ||P0(D)(u gδ)||L2, δ

− r C2C3||u gδ||L2 .

Applying once more Corollary 1.1, with a constant C4 > 0 we have that for all
u ∈ W∞

δ

||P (x,D)u||L2, δ
≥ ||P0(D)u||L2, δ − εC4 ||P0(D)u||L2, δ − C4C3 ||u gδ||L2 .

Since by Lemma 1.4 the set W∞
δ is dense in W (P0, δ), taking ε ∈ (0, 1/(2C4)), from

here we get the left-hand side of (3.5). �
Theorem 3.2. Let P0 be an operator, satisfying the assumptions of Teorem 3.1, and
α ∈ Nn

0 . Then there exist numbers δ1 ∈ (0, δ0) and C = C(α, δ0) > 0 such that for any
δ ∈ (0, δ1)

||Dαu||H(P0, δ) ≤ C [||Dα[P (x,D)u]||L2, δ
+
∑
γ≤α

||Dαu||L2, δ

+
∑

0 6=γ≤α

||Dα−γu||H(P0, δ)] ∀u ∈ W∞
δ . (3.7)

Proof. By Corollary 1.1 we can prove this inequality for H(P0, δ) = H2(P0, δ). Esti-
mate (3.7) for α = 0 immediately follows from estimate ( 3.5). Let 0 6= α ∈ Nn

0 . Since
Dαu ∈ W∞

δ by (3.5) we have with a constant C1 > 0

||P (x,D)[(Dαu)gδ]||L2 + ||Dαu||L2, δ
≥ C1 ||Dαu||H2(P0, δ) ∀u ∈ W∞

δ . (3.8)

On the other hand, applying the properties of the function g and representation
(3.1), by the Leibnitz formula we get with a constant C2 > 0 for all u ∈ W∞

δ

||P (x,D)[(Dαu)gδ]||L2 + ||Dαu||L2, δ
≤ ||[P (x,D)(Dαu)]gδ]||L2

+
∑
β 6=0

1

β!
||[P (β)(x,D)Dαu]Dβgδ||L2 + ||Dαu gδ||L2
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≤ ||Dα[P (x,D)u] gδ||L2 +
r∑

j=1

∑
0 6=γ≤α

||[aγ
j (x)D

α−γPj(D)u] gδ||L2

+C2

∑
β 6=0

δ|β|

β!
||[P (β)(x,D)Dαu] gδ||L2 + ||(Dαu) gδ||L2 . (3.8′)

Applying properties (3.2) of the coefficients {aj}, and Lemma 1.4, for the second
term of the right-hand side of (3.8’) we get with a constant C3 = C3(α) > 0 for all
u ∈ W∞

δ

r∑
j=1

∑
0 6=γ≤α

||a(γ)
j (x)[Pj(D)Dα−γu] gδ||L2 ≤ C3

∑
0 6=γ≤α

||Dα−γu||H2(P0, δ). (3.9)

Since P
(β)
j < P0 (j = 1, ..., r) for any β ∈ Nn

0 , by Lemma 1.5 and by properties
(3.2) of the coefficients {aj}, for the third term of right-hand side of (3.8’) we have
with a constant C4 > 0 for all u ∈ W∞

δ

C2

∑
β 6=0

δ|β|

β!
||[P (β)(x,D)Dαu] gδ||L2 ≤ C2 δ

∑
β 6=0

[
1

β!
{[P β

0 (D)Dαu] gδ||L2

+
r∑

j=1

||P β
j (D)Dαu] gδ||L2} ≤ C4 δ [||Dαu||H2(P0,δ) + ||Dαu||L2, δ

]. (3.10)

From (3.8) - (3.10) we get

||P (x,D)[(Dαu)gδ]||L2 + ||Dαu||L2, δ
≤ ||Dα[P (x,D)u] gδ||L2

+C3

∑
0 6=γ≤α

||Dα−γu||H2(P0,δ) + C4 δ [||Dαu||H2(P0,δ) + ||Dαu||L2, δ
] + ||Dαu||L2, δ

.

Choose a number δ1 > 0 so that δ1C4 < C1/2, from here and (3.8) we get for any
δ ∈ (0, δ1) and for all u ∈ W∞

δ

C1

2
||Dαu||H2(P0,δ) ≤ ||Dα[P (x,D)u] gδ||L2

+C3

∑
0 6=γ≤α

||Dα−γu||H2(P0,δ) + (
C1

2
+ 1)

∑
γ≤α

||Dαu||L2, δ
.

This implies estimate (3.7) and Theorem 2.2 is proved. �
By this theorem and Lemma 2.2 we get

Corollary 3.1. Let P be an operator, satisfying the assunptions of Teorem 3.1, and
k ∈ N. Then there exist positive numbers δ1 and C such that for any δ ∈ (0, δ1)∑

|α|≤k

||Dαu||H(P0, δ) ≤ C [||Dα[P (x,D)u]||L2, δ

+
∑

|γ|≤k−1

||Dγu||H(P0, δ) ∀u ∈ W∞
δ .
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