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Abstract. The present paper extends and refines some results on the connectedness
of suns in finite-dimensional normed linear spaces. In particular, a sun in a finite-
dimensional (BM )-space is shown to be monotone path-connected and having a con-
tinuous multiplicative (additive) e-selection from the operator of nearly best approxi-
mation for any £ > 0. New properties of (BM)-space are put forward.

1 Introduction

In what follows X is a normed linear space, X, is an X of finite dimension n. Through-
out, given x € X and r > 0, the open ball, closed ball and sphere centred at x of
radius r will be denoted by B(x,r), J}O?(x,r) and S(z,r), respectively. For brevity,
B :=B(0,1) and S = S(0, 1) will denote the unit ball and the unit sphere.

The best approximation, that is, the distance from a given element = of a normed
linear space X to a given nonempty set M C X is, by definition,

M) := inf ||z —y]|.
pla, M) = inf ||z —y]

The set of all nearest points (elements of best approximation) in M for a given element x
is denoted by Py;x. In other words,

Paz = {y € M | p(a, M) = |z — ||}

Given a subset () # M C X, a point € X \ M is called a solar point if there exists
a point y € Pyx # (0 (a luminosity point) such that

Yy € PM((l — Ny + )\x) forall A>0 (1.1)

(geometrically, this means that there is a ‘sun’ ray emanating from y and passing
through x such that y is a nearest point in M for any point from the ray).

A point x € X \ M is called a strict solar point if Pyx # () and if condition (1.1)
is satisfied for any point y € Pyx. A closed set M C X is called a sun (respectively,
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a strict sun) if any point x € X \ M is a solar point (respectively, a strict solar point)
of M. The concept of a ‘sun’ was introduced by N.V. Efimov and S.B. Stechkin.
For a recent survey on suns and approximative and geometrical properties thereof,
consult [9].

Throughout we shall be concerned with structural characteristics of ‘suns’ with focus
mainly on connectedness, acyclicity, cell-likeness, contractibility and the existence of
a continuous e-selections for any € > 0 from the operator of nearly best approximation.

2 Definitions and notation

A bar is, by definition, an intersection of extreme hyperstrips of the form
{reX|a< flz)<b}, —00<a<b< 4oo, f€extS

which are generated in the space X by extreme functionals from the dual unit sphere S*;
see, for example, [8] for more on bars and their separation properties. By Krein—
Milman’s theorem it follows that any closed unit ball is a bar. If S* = extS* (i.e., if
the norm of the dual space is rotund), then any bar is a closed convex set, and vice
versa. In C(Q), @ is a metrizable compact set, any bar is of the form

= [fv, fl = A{f € C(Q) | f(t) € [1(1), fa(1)], T € Q},

where fi,fo : @ — R, fi < fo, f1 is upper semicontinuous on @, and f, is lower
semicontinuous (see [8], |9, §7]).

Following Vlasov [25] if Q denotes some property (for example, ‘connected’) we say
that a closed set M is:

e P-Q) if for all x € X the set Pyx is nonempty and has property Q;

e B-Q if M N B(x,r) has property Q for all z € X, r > 0;

e B-Qif M N é(m,r) has property Q for all z € X, r > 0;

e cxtremally Q if M NII has property Q for any bar II in X.

For example, a closed subset of a finite-dimensional space is P-nonempty or is an
existence (proximinal) set.

Remark. B-connected subsets are sometimes called V-connected (here the letter
‘V’ comes from L.P. Vlasov’s works, who denoted balls by V(z,r)). Our term B-
connectedness is in line with more familiar notation B(x,r) for balls and also with the
concept of ‘bounded connectedness’, which was introduced by D. Wulbert in the 1960s.

We shall require below two types of connectedness of sets: the m-connectedness (or
the Menger connectedness [14]) and the monotone path-connectedness [1], the latter
is a sharpening of the path-connectedness—as distinct from the path-connectedness,
two points of a monotone path-connected set can be joined by a monotone continuous
curve (see below).

Following Brown [14], given a bounded set () # M C X we let m(M) denote
the Banach-Mazur hull (or the ball hull) of M, which is the intersection of all closed
balls containing M. A set M C X is called m-connected (Menger-connected) (see
Brown [14]) if m({z,y}) N M # {z,y} for any distinct points z,y € M. For brevity, we
write m({z,y}) = m(z,y). Menger-connected sets are frequently found to be metri-
cally convex with respect to the so-called Brown-associated norm (see [14], [1]), which
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enables one to use the machinery of metric convexity in this context. This important
observation had evolved from the pioneering paper by Berens and Hetzelt [11]|, who
characterized the suns in £>°(n) in terms of ¢!-convexity. Thus, Berens and Hetzelt
were first to find a nontrivial example of a Banach space of dimension > 2 in which
any sun is P-acyclic, thereby reversing for ¢>°(n) the famous Vlasov’s theorem (|25,
Theorem 4.4]) that states that any P-acyclic boundedly compact subset of a Banach
space is a sun. As of now, only few nontrivial examples are known of spaces in which
the conversion of Vlasov’s theorem holds.

An account of some properties of m-connected sets may be found in Brown [14],
[15], Franchetti and Roversi [18], and Alimov [1], 2], [3].

Let k(7), 0 < 7 < 1, be a continuous curve in a normed linear space X. A curve
k(-) is said to be monotone [7] if f(k(7)) is a monotone function in 7 for any f € ext S*.

A closed subset M C X is called monotone path-connected |7] if any two points
in M can be joined by a continuous monotone curve (arc) k(-) C M. We note that
a monotone path-connected set is always B-monotone path-connected. In particular,
a monotone path-connected set is always m-connected [9]; a closed m-connected set
may fail to be connected [18] (but only if dim X = co). For more on monotone path-
connected and m-connected sets, see |9, §8| and [1].

We need to recall a few more definitions. Let A be a nontrivial arbitrary abelian
group. A space (throughout, all spaces are assumed to be metrizable) is called acyclic
if its Cech cohomology group with coefficients from A is trivial (it has no cycles besides
the boundary). Thus, the definition of acyclicity depends on the group of coefficients
in question. However, if a (co)homology has compact support (satisfying the compact
supports axiom) and if the coefficients of the (co)homology group lie in a filed, then the
notions of homological and cohomological acyclicity coincide. Below, unless otherwise
stated, the acyclicity will be understood in the sense of Cech cohomology with coeffi-
cients in an arbitrary abelian group (c¢f. also Brown [14], the comment after Theorem
2.5).

A compact space Y is called cell-like (or having the shape of a point) if there exists
an ANR-space (absolute neighbouring retract) Z and an embedding ¢ : Y — Z such
that the image i(Y") is contractible in any of its neighbourhoods U C Z; a cell-like set
needs not be contractible. From the well-known Hyman’s characterization of Rs-sets
it readily follows that an Rs-set is always cell-like (see [1] for the references). But
since any mapping of a compact of trivial shape into an ANR is homotopically trivial,
a compact of trivial shape (cell-like) is contractible in each of its neighbourhoods in
any ambient ANR. As a cor, we have that the classes of Rs-sets and cell-like (having
the shape of a point) compact spaces coincide. Finally, we note that the cell-likeness
implies the acyclicity (with respect to any continuous (co)homology theory).

3 Synopsis

By the geometric form of the Hahn-Banach theorem it easily follows that any convex
proximinal set is a strict sun. In the 1960s V. Klee and independently N. V. Efimov and
S. B. Stechkin proved a partial converse to this result, namely: in a smooth normed
linear space any sun is convex (this result was proved originally for strict suns, the
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extension to the case of suns is trivial; for more details see [9]). Consequently, the
problem of connectedness of suns is vacuous in any smooth space.

The study of the problem of connectedness (and in particular, the B-connectedness)
of suns in arbitrary normed spaces was initiated, as is natural, in the case dim X = 2.
As distinct from the case of spaces of dimension > 3, the two-dimensional setting is
fairly transparent: if M is a sun in a two-dimensional X, and x ¢ M, then Py x is either
a point, a closed interval or a union of two intervals with ends at one point (Berens
and Hetzelt [19]; for the general asymmetric case see Alimov, see e.g. [9]). In other
words, in the two-dimensional setting the suns are P- and B-contractible). Moreover,
for any M in X, there is a ray selection of the nearest point mapping P; which is
strongly contractive with respect to the so-called Radon transformed norm [19]| (or
with respect to the Brown associated norm |- |; see [9]). Note that in view of Lemma 1
of [5] a similar result also holds in an arbitrary normed linear space X: any sun lying
in a two-dimensional subspace of X is B-contractible.

Unlike the case of X5, a sun in X3 may fail to be a B-retract. Indeed, Berens and
Hetzelt [11, p. 284] have constructed an example of a sun in £*°(3) which fails to have
a continuous selection from the metric projection. Clearly, such a set is not a B-retract.
One may also easily construct an example of a strict sun (a Kolmogorov set) in £*°(3)
on which the metric projection is not lower semi-continuous.

Open problem. It is a long-standing open question whether a sun in X,,, n > 3, is
B-connected. For the strict suns the answer here is affirmative—a boundedly compact
strict sun in a normed linear space is B-path-connected (see Theorem 7.10 of [9]).
However, it is unclear whether a strict sun in X,,, n > 4, is B-contractible (the author
has recently shown that this is so in X3) or even P-acyclic.

In the general finite-dimensional setting, the first results on the connectedness of
suns were obtained by D. Braess, B. Brosowski and F. Deutsch, Ch. Dunham, and
V. A. Koshcheev in the 1970s (see [9]). In particular, Koshcheev [20, Theorem 6| proved
that in a finite-dimensional normed linear space every sun is connected. Brown [15]
extended this result by showing that suns in X, are path-connected and locally path-
connected. In an infinite-dimensional normed space a compact sun is known to be
connected (Koshcheev [20]).

In their attempt to solve the problem of B-connectedness of suns in the multivariate
setting, Berens and Hetzelt [11] put forward the first nontrivial example of a (‘non-
nonsquare’) space of arbitrary finite dimension > 3 in which any sun is B-cell-like
(and even B-contractible, as follows from Theorem 5.1). Namely, they proved [11]
the ¢'-connectedness (in the sense of Menger) of an arbitrary sun in ¢*°(n), which
implies its bounded cell-likeness [11], P- and B-acyclicity [14], and moreover, extreme
monotone path-connectedness, and extreme bounded cell-likeness [1]. Subsequently,
the problem of B-connectedness and B-acyclicity of suns was studied by A.L. Brown
and A.R. Alimov (see, e.g., [14], [13], [7], 1] and the recent survey [9]).

Pursuing the aim of reverting the aforementioned Vlasov’s theorem on solarity of
P-acyclic sets, Brown [14] introduced the class of finite-dimensional (BM )-spaces (to
be defined later) and showed that a sun in a finite-dimensional (BM )-space is m-
connected (Menger-connected) and | - |-convex with respect to the so-called Brown
associated norm | - |. Later Brown [15] showed that a closed m-connected subset of
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a finite-dimensional Banach space is infinitely connected (and hence B-cell-like and
B-acyclic (relative to any continuous theory of (co)homologies)).

The author [1] has partially extended this result by showing that a boundedly com-
pact m-connected subset of a separable Banach space is monotone path-connected, and
moreover, B-cell-like and boundedly extremally cell-like (and hence a sun). A slightly
weaker result in this direction was obtained earlier by Franchetti and Roversi who
showed that a boundedly compact m-connected set in a certain class of infinite-
dimensional Banach spaces is P-acyclic [18, Theorem 6.3] and hence a sun [18, Theorem
7.4]. In ¢q the following ‘almost complete’ result holds [4]: 1) a sun in ¢y is monotone
path-connected; 2) an approximatively compact m-connected subset of ¢q is a sun.

Not much is known about disconnected suns in infinite-dimensional spaces. The
only example of a disconnected sun in some renormed infinite-dimensional subspace of
the space C[0,1] was constructed by Koshcheev (see |9, §7.3]). Observe that the sun
in Koshcheev’s example is not a strict sun and is not approximatively compact.

We also note that there exist examples of finite-dimensional spaces in which there
are non-m-connected (and hence, non-monotone path-connected) suns (see Brown
[14, Theorem 4.3|, Franchetti and Roversi [18, p. 19|, and even non-monotone path-
connected Chebyshev suns (Alimov [1])).

Many classical nonlinear families of functions in C'(Q)) have solar properties (see, for
example, [9]): these include the (generalized) rational functions, sums of exponentials
with (nonnegative or arbitrary) coefficients, y-polynomials, etc.

4 (BM)-spaces

In this section we recall the definition of (BM )-spaces and present some new properties
thereof.

The concept of (BM )-spaces, which were introduced by Brown [14], proved instru-
mental in studying connectedness properties of suns. For such spaces it was found
possible to carry over a number of nontrivial results on geometrical and topological
properties of suns from the space X = ¢*°(n) to more abstract spaces. For example,
any sun in a finite-dimensional (BM)-space is known to be m-connected [14]. More-
over, polyhedral finite-dimensional (BM )-spaces are characterized by the fact that any
sun in such a space is m-connected [13].

A point z € S will be said a (BM )-point [18] if it has the property that:

BN (m(z,y) \ {z}) #0, whenever [z,z—y]N B=0. (%)

A space X is said to be a (BM)-space if every = € S is a (BM)-point.

The class of (BM )-spaces contains the smooth spaces, the two-dimensional polyhe-
dral spaces, the space £°°(n), and more generally, any space of the form (4.1) (see [14],
[13]). The space ¢*(n), n > 3, is not a (BM )-space.

An equivalent formulation of the (BM )-property (x) in terms of tangent functionals
is as follows [18, Lemma 8.1]:

BN (m(z,y)\ {z}) #0, whenever |jy||>1 and 7 (z,y) = 0. (%)
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Here,

7 (z,y) ;= lim

e tyl =zl
Jim ; = nf f()

T (2,y) =

are the tangent functionals on X x X, J, :={f € X* | ||[fll=1, f(z) = ||=| }.

It is also worth noting that if 77 (z,y) < 1, then BN (z,y] # 0. As aresult, ifz € S
is a smooth point, then 77 (x,-) = 77 (z,-), and hence z is a (BM)-point, because
(z,y) C m(z,y). Moreover, the following result holds (|18, Theorem 8.1]): if = is not
a smooth point of S, then z is a (BM )-point if and only if

BN (M(x,y)\ {z}) # 0, whenever y € Xsuch that 7 (x,y) =0 and 7%(z,y) > 1.

Franchetti and Roversi [18] showed that the sublattices with unity and the closed ideals
of C(Q) are (BM)-spaces and also that the cy-sum of (BM )-spaces is a (BM )-space.
A characterization of two-dimensional (BM )-spaces was obtained by Brown [14]. In [13]
Brown has shown that the polyhedral (BM )-spaces of finite dimension are exactly the
¢>-direct sums

X=X D Do X, (4.1)

of a finite number of symmetric polyhedral spaces X, ..., X, of dimension 1 or 2 (the
equality is understood to mean isometric isomorphism). Three-dimensional (BM )-
spaces were characterized by Brown [16]: any such a space is either smooth or is of the
form Y @ R for some (BM)-space Y of dimension two.

In the following two results we establish two more properties of polyhedral (BM)-
spaces. We first give necessary definitions.

Let n,k € N, n > k > 2. By definition, a normed linear space X has the n.k-
intersection property (X € (n.k.I.P)) if, for any n closed balls B(a;,7;), i = 1,...,n,
such that N*_, B(a;,, a;,) # 0 whenever 1 <i; < ...i, <n, we have N?_, B(a;, ;) # 0.
In recent years there has been a considerable interest in the study of (n.k.I.P)-spaces
in connection with problems of minimal filling of subsets of Banach spaces and optimal
networks (P. A. Borodin, B. B. Bednov, N. P. Strelkova, A.Yu. Eremin, A.O. Ivanov,
A. A. Tuzhilin, Z. N. Ovsyannikov, O.V. Rubleva; see, for example, [10]).

By classical Helly’s theorem if dim X = n, then X € ((n+2).(n+1).I.P); as
a result, any one- or two-dimensional space lies in (4.3.1.P). Hence, @4-sums of such
spaces also have the (4.3.1.P) property. The converse result is due to Lima [21]. This
being so,

X €(43.LP) <— X =XB P X,, where dimX; <2 (4.2)

(the equality on the right is understood in the sense of isometrical isometry).
The following result now follows from (4.1).

Proposition 4.1. The following statements are equivalent in the class of finite-
dimensional polyhedral spaces X:

a) X € (BM);
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b) X € (4.3.LP).

The condition of polyhedrality here is essential. Being smooth, the Euclidean space
R3 is a (BM)-space, but in view of (4.2) it fails to have the 4.3 intersection property
(the corresponding counterexample is simple: 4 balls centred at the vertices of a regular
tetrahedron).

Note that if X € (4.3.1.P), dim X < oo, then X € (00.3.1.P) (see, for example, [12],
§ VIII, Theorem 5). Consequently, if X € (BM) is finite-dimensional and polyhedral,
then X € (00.3.1LP).

It is also worth mentioning that the space X = £>°(n) lies in the class (BM) and
satisfies the more strong (4.2.1.P) intersection property (as any L'-predual space is
characterized by the 4.2 intersection property).

We point out another property of finite-dimensional polyhedral (BM )-spaces.

Recall that a bounded closed convex set M is a Mazur set (see [17], [22]) if the
following separation property holds: given any hyperplane H with positive distance
from M, there is a ball B’ such that M C B’ and H N B’ = (). Spaces in which the
class of Mazur sets coincides with the class Mx of intersections of closed balls are
called Mazur spaces (see [17], [22]). For example, C(Q), is a Mazur space if and only
if ) is extremally disconnected; every two-dimensional normed linear space is a Mazur
space. Mazur spaces appear naturally in the context of stability of intersections of
convex subsets of Banach spaces.

Proposition 4.2. The following statements are equivalent in the class of finite-
dimensional polyhedral spaces X:

a) X € (BM);

b) X is a Mazur space.

Proof. of Proposition 4.2. By [22, Corollary 4.2| a finite-dimensional polyhedral space
X is a Mazur space if and only if the family M x of intersections of closed balls in X is
stable—this means by definition that C' + D € M x (the closure of the vector sum of sets
C and D) whenever C, D € My. Next (see |22, Theorem 3.2]), in a finite-dimensional
polyhedral space the family M x is stable if and only of X has representation (4.1). To
conclude the proof it remains to recall that finite-dimensional polyhedral (BM )-spaces
are characterized by the property (4.1). O

Since the space ¢! (n), n > 3, is not a (BM )-space, we have in view of Proposition 4.2
the following result, which is in full agreement with the result of Granero, Moreno, and
Phelps [17] to the effect that the only Mazur sets of the spaces ¢!(n), n > 3, are points
and closed balls.

Corollary 4.1. The space (*(n), n > 3, is not a Mazur space.

5 The main result

The main result of the paper (Theorem 5.1) puts forward new structural and stability
properties of suns in finite-dimensional (BM)-spaces. In Theorem 5.1 there is a deal
of emphasis on the existence of a continuous e-selection on suns for any € > 0. Here
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it is again worth mentioning that Berens and Hetzelt [11]| presented a simple example
of a sun in ¢>°(3) which fails to have a continuous selection (i.e., 0-selection) from the
metric projection. Accordingly, a few words on the stability of the approximation are
appropriate here. The best approximation operator is known to be poorly stable even
for Chebyshev subspaces, not to speak of nonlinear sets. For example, the (single-
valued) metric projection operator onto the subspace of polynomials of degree < n
in C0,1] is not uniformly continuous on the unit ball. Moreover, it has long been
known that the metric projection onto a Chebyshev subspace may be discontinuous; in
nondegenerate cases the metric projection onto the set of rational fractions in C|0, 1]
always has points of discontinuity. In order to improve the situation and enhance the
stability of best approximation it was proposed to appropriately associate one of the
almost best approximations to an element being approximated. This has led to the
concept of e-selection.

There are many interesting results on the stability of the nearly best approximation
operator for many classical objects in approximation theory (classical and generalized
rational functions, splines with free knots, exponential sums), we mention the works of
R. Wegmann, S. V.Konyagin, G. Niirnberger, I. G. Tsar’kov, H. Berens, A. V. Marinov,
D. Repovs, P. V. Semenov, K. S. Ryutin, E. D. Livshtis, and others.

Theorem 5.1. Let X,, € (BM). Then the following equivalent conditions hold for any
sun M C X,,:
a) M is (extremally) monotone path-connected;
b) M is extremally contractible (in particular, M is B-contractible);
c) M is extremally sunny (that is, the intersection of M with any bar and, in par-
ticular, with any closed ball, is a sun or empty);
d) there exists a continuous multiplicative (additive) e-selection on M for any e > 0.
e) for any bar Il C X,, there exists a continuous multiplicative (additive) e-selection
on the set M NII for any € > 0.

Remark 5.1. One may easily construct a non-(BM)-space, even two-dimensional, in
which any sun is m-connected (and even monotone path-connected). Indeed, if By is any
nontrivial intersection of two Euclidean balls (‘a planar lens’), then the space X, with
the unit ball By is not a (BM)-space (see [14, Theorem 5.5]). On the other hand, a sun
in any X, is m-connected [14, Theorem 4.1], and hence is monotone path-connected

1].

Theorem 5.2. In a polyhedral (BM)-space X,, a set M is a sun if and only if any of
the conditions a)—e) of Theorem 5.1 is satisfied.

This result follows from Theorem 5.1 and the aforementioned result of Brown [13]
stating, in particular, that the polyhedral finite-dimensional (BM)-spaces X,, are char-
acterized by the property that any sun in X, is m-connected.

We shall repeatedly use the following celebrated general result by Tsar’kov [24],
which characterizes the closed subsets of Banach spaces for which for any ¢ > 0 there
exists a continuous e-selection.

Theorem A. Let X be a Banach space and let M C X be nonempty and closed. Then
following conditions are equivalent:
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a) Pla:= B(x,plz, M)+ 0) N M is a retract of the ball B(z, p(x, M) + &) for any
r € X and d > 0;

b) Pj@w 1s contractible in itself to a point for any x € X and § > 0;

c) M is é—inﬁm’tely connected;

d) M is B-contractible;

e) for any e > 0 there exists a continuous additive e-selection for M ;

f) for any positive lower semicontinuous function v : X — (0,400), ¥(z) >
plx, M), x € X, there exists a mapping p € C(X, M) such that ||o(x) — x| < ¢(x
for all x € X

g) for any lower semicontinuous function 0 : X — (1,4+00) there ezists a mapping

v € C(X, M) such that ||p(z) — x| < 6(z)p(x, M) for all z € X.

This result shows that the existence of a continuous e-selection for all € > 0 is fairly
restrictive in terms of the structure of a set.

Remark 5.2. Any assertion in Theorem 5.1 involving an additive (multiplicative)
selection can be replaced by the corresponding assertion involving a selection ¢ from
Theorem A.

Proof of Theorem 5.1 A sun in a (BM)-space is m-connected (Brown [14]). That
a boundedly compact m-connected set is (extremally) monotone path-connected is
established in [6, Theorem 2|. This proves assertion a). The implication a)=b) is
secured by Theorem 4.1 of [1].

The implication b)=-a). If M is B-contractible, then M is B-acyclic (relative to any
continuous theory of (co)homologies)) and hence, by Vlasov’s theorem [25, Theorem
4.4] is a sun. Finally, any sun in X,, € (BM) is known to be (extremally) monotone
path-connected |6, Theorem 2].

The implication a)=-c) is contained in [6, Theorem 2|. The converse assertion is
again secured by the fact that any sun in X,, € (BM) is (extremally) monotone path-
connected [1].

To prove d) we first employ one result of Tsar’kov [24] to the effect that, for a
closed set M, the existence of a continuous additive e-selection on M for any ¢ >
0 is equivalent to the existence of a continuous multiplicative e-selection on M for
any € > 0. Now d) follows from Theorem A, because by assertion a) the set M is
monotone path-connected, and hence is B-contractible [1], which in turn implies that
M is B-contractible [9, Theorem 6.6], and hence, B-infinitely connected. To prove
the implication d)=-a) we shall use the following result of Tsar’kov [23]: Suppose that
X is a Banach space, M C X, x is a point of approximative compactness of M,
K := cone{x, Pyx}, and for any € > 0 there exists an upper semicontinuous acyclic
e-selection from the nearly best approximation operator P5,x := B(z, p(z, M)+e)N M
onto the set M with respect to K, then the set Py is acyclic. In our setting the
selection is single-valued and hence acyclic. So, if d) holds, then Py is acyclic for
any z. By the aforementioned Vlasov’s theorem [25, Theorem 4.4], M is a sun, and
hence (|6, Theorem 2|) is (extreme) monotone path-connected.

Assertion e) follows from d) in view of the fact that a sun in a (BM)-space is
extremally sunny (assertion c)). O
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Remark 5.3. As was noted above (see also |6, Remark 3|), for any n > 3 there is an
example of a space X,, which contains an non-monotone path-connected Chebyshev
set M’ (a Chebyshev sun). Note that in any X5 any sun is monotone path-connected.
Clearly, such an M’ is B-retract (and hence B-contractible). In view of Theorem 5.1
any such a space X, isnot a (BM)-space. The problem of characterization of spaces X,
in which any (bounded) Chebyshev set (sun, strict sun) is monotone path-connected
(or, equally, m-connected) remains open.
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