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Abstract. The dynamical systems method (DSM) is justified for solving operator
equations F (u) = f , where F is a nonlinear operator in a Hilbert space H. It is
assumed that F is a global homeomorphism of H onto H, that F ∈ C1

loc, that is, it has
the Fréchet derivative F ′(u) continuous with respect to u, that the operator [F ′(u)]−1

exists for all u ∈ H and is bounded, ||[F ′(u)]−1|| ≤ m(u), where m(u) > 0 depends on
u, and is not necessarily uniformly bounded with respect to u. It is proved under these
assumptions that the continuous analogue of the Newton’s method

u̇ = −[F ′(u)]−1(F (u)− f), u(0) = u0, (∗)

converges strongly to the solution of the equation F (u) = f for any f ∈ H and any
u0 ∈ H. The global (and even local) existence of the solution to the Cauchy problem
(∗) was not established earlier without assuming that F ′(u) is Lipschitz-continuous.
The case when F is not a global homeomorphism but a monotone operator in H is also
considered.

1 Introduction

Consider an operator equation:
F (u) = f, (1.1)

where F is a nonlinear operator in a Hilbert space H.
We assume in this Section that F is a global homeomorphism.
For instance, F may be a hemicontinuous monotone operator such that a coercivity

condition is satisfied, for example, the following condition:

lim
||u||→∞

(F (u), u)

||u||
= ∞, (1.2)

where (·, ·) denotes the inner product in H (see [1]). We assume that F ∈ C1
loc, i.e.,

the Fréchet derivative of F , F ′(u), exists for every u and depends continuously on u.
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Furthermore, we assume that [F ′(u)]−1 exists and is bounded for all u ∈ H,

||[F ′(u)]−1|| ≤ m(u), (1.3)

where m(u) > 0 depends on u and is not necessarily uniformly bounded with respect to
u.

This assumption implies that F is a local homeomorphism, but it does not imply,
in general, that F is a global homeomorphism. If m(u) < m, where m > 0 is a constant
independent of u, then it was proved in [6] that F is a global homeomorphism.

While our main result in Section 1, Theorem 1, does not require the monotonicity
of F , the result in Section 2, Theorem 2, will use the monotonicity of F .

We assume in Section 2 that F is monotone:

F ′(u) ≥ 0 ∀u ∈ H. (1.4)

This means that (F ′(u)v, v) ≥ 0 for all v ∈ H.
In Remark 2, at the end of the paper, the following condition is mentioned:

‖F (u)‖ < c⇒ ‖u‖ < c1, c, c1 = const > 0, (1.5)

which means that the preimages of bounded sets under the map F are bounded sets.
This condition does not hold for the operator F (u) := eu, u ∈ R, H = R, and that
is why this monotone operator F is not surjective: equation eu = 0 does not have a
solution in H.

By c > 0 we denote in this paper various constants.
Our first main result, Theorem 1, says that if F ∈ C1

loc is a global homeomorphism
and condition (1.3) holds, then a continuous analogue of the Newton’s method (see
equation (1.6) below) converges globally, that is, it converges for any initial approxi-
mation u0 ∈ H and any right-hand side f ∈ H.

One of the novel features of our result is the absence of any smoothness assumptions
on F ′(u): only the continuity of F ′(u) with respect to u is assumed.

In the earlier work (see [5], [6]- [11], [3], and references therein, except for [2]
and [10], [4]) it was often assumed that F ′(u) is Lipschitz continuous, or, at least,
Hölder-continuous.

Our approach can be generalized to the case when F is a local homeomorphism, if
one uses the results in [12].

In this paper for the first time no assumptions on the smoothness of F ′(u) are
made, only the continuity of F ′(u) is assumed in a proof of the global existence of
the solution to the Cauchy problem (6), see Theorem 1 below. The author does not
know any way to prove even the local existence of the solution to (6) without using the
novel idea and new method of the proof, given in the proof of Theorem 1. The known
methods do not seem to give any results even on the local existence of the solution
to problem (6) if F ′(u) is assumed to be only continuous. Recall that the known
Peano theorem fails in infinite-dimensional Banach spaces. The standard assumption,
that guarantees the local existence of the unique solution to the Cauchy problem (6)
in an infinite-dimensional Banach space, is the Lipschitz condition for the operator
[F ′(u)]−1(F (u)− f), which holds, in general, only if F ′(u) is Lipschitz-continuous.
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In our second result, in Theorem 2 in Section 2, the operator F is not assumed to
be a global homeomorphism, and it is not assumed to be invertible (injective), but it
is assumed to be a monotone operator, and it is assumed that equation (1.1) has a
solution, possibly non-unique.

We give a Dynamical Systems Method (DSM) version for constructing the (unique)
minimal-norm solution to equation (1.1) with monotone operator F . This DSM version
is a regularized continuous analogue of the Newton’s method. We make no smoothness
assumptions about F ′(u), and assume only the continuity of F ′(u) with respect to u.

Since we do not assume in Section 2 that the operator F ′(u) is invertible in any
sense, the problem, studied in this Section can be considered an ill-posed one.

Our proof of Theorem 2 contains new ideas and uses the ideas from the proof of
Theorem 1.

Let us formulate our first result:

Theorem 1. If F ∈ C1
loc is a global homeomorphism and condition (1.3) holds, then

the problem

u̇ = −[F ′(u)]−1(F (u)− f), u(0) = u0; u̇ =
du

dt
, (1.6)

is globally solvable for any f and u0 in H, there exists the limit u(∞) = limt→∞ u(t),
and F (u(∞)) = f .

Proof. Denote
v := F (u(t))− f. (1.7)

Then
v̇ = F ′(u(t))u̇ = −v.

Thus, problem (1.6) is reduced to the following problem:

v̇ = −v, v(0) = F (u0)− f. (1.8)

Problem (1.8) obviously has a unique global solution:

v(t) = (F (u0)− f)e−t, lim
t→∞

v(t) := v(∞) = 0. (1.9)

Therefore, problem (1.6) has a unique global solution.
Let us explain the above statement in detail. Consider an interval [0, T ], where

T > 0 is arbitrarily large. The equation

F (u(t))− f = v(t) 0 ≤ t ≤ T, (1.10)

is uniquely solvable for u(t) for any v(t) because F is a global homeomorphism. As-
sumption (1.3), the continuity of F ′(u) with respect to u, and the abstract inverse
function theorem, imply that the solution u(t) to equation (1.10) is continuously dif-
ferentiable with respect to t, because v is continuously differentiable with respect to t
and F is continuously Fréchet differentiable with respect to u.

Differentiating (1.10) and using relations (1.8) and (1.7), one gets the following
equation:

F ′(u(t))u̇ = v̇ = −v = −(F (u(t))− f). (1.11)



Justification of the dynamical systems method for global homeomorphism . . . 119

Using assumption (1.3), one concludes from (1.11) that u = u(t) solves (1.6) in the
interval t ∈ [0, T ]. Since T > 0 is arbitrary, u = u(t) is a global solution to (1.6).

Since limt→∞ v(t) := v(∞) exists, and F is a global homeomorphism, one concludes
that the limit limt→∞ u(t) := u(∞) does exist.

Since v(∞) = 0, it follows that F (u(∞)) = f .
Theorem 1 is proved. �

Remark 1. Theorem 1 implies that any equation (1.1) with F being a global home-
omorphism and F ∈ C1

loc, such that condition (1.3) holds, can be solved by the DSM
method (1.6), which is a continuous analogue of the Newton’s method.

2 Finding the minimal-norm solution

Assumptions: In this Section we assume that F ∈ C1
loc is monotone, that is, F ′(u) ≥

0, and assumptions (1.3)- (1.5) hold, but F is not a global homeomorphism, so that
equation (1.1) may have many solutions. We assume that (1.1) has a solution.

Since F is monotone and continuous, and the set of of solutions to (1.1) is non-
empty, this set is closed and convex, so it has a unique element with minimal norm
(see [5]). This element is called the minimal-norm solution to (1.1), and is denoted by
y.

Our aim is to give a method for finding this element by a version of the DSM.
Consider the problem

u̇ = −[F ′(u) + a(t)I]−1[F (u) + a(t)u− f ], u(0) = u0, (2.1)

where a ∈ C1([0,∞)), ȧ < 0,

a(t) > 0 ∀t ≥ 0, lim
t→∞

ȧ

a
= 0, lim

t→∞
a(t) = 0. (2.2)

The assumptions of Theorem 1 do not hold for the operator F (·) + a(t)I in the
sense that the quantity 1

a(t)
in the estimate (14), see below, tends to infinity as t→∞.

Let us explain this statement.
Under our Assumptions, the operator F (·) + a(t)I for every t > 0 is a global

homeomorphism because F is a monotone continuous operator and a(t) > 0. One has

‖[F ′(u) + a(t)]−1‖ ≤ 1

a(t)
. (2.3)

Therefore, the constant m(u) for the operator F (u) + a(t)u is 1
a(t)

. As t → ∞, this
constant tends to infinity because limt→∞ a(t) = 0.

Let us state our result:

Theorem 2. Assume that F ∈ C1
loc is a monotone operator, equation (1.1) has a

solution for the given f , and conditions (2.2) hold. Then problem (2.1) has a unique
global solution u(t), there exists u(∞), and u(∞) = y, where y is the minimal-norm
solution to (1.1).
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Proof. Let
v(t) = F (u(t)) + a(t)u(t)− f. (2.4)

Then
v̇ = −v + ȧ(t)u(t), v(0) = F (u0) + a(0)u0 − f. (2.5)

The map u = G(v), where

v(t) = G−1(u) := F (u) + a(t)u− f,

is a local diffeomorphism for any t ≥ 0, because a(t) > 0 ∀t ≥ 0 and (2.3) holds.
As in the proof of Theorem 1 one concludes that the solution to (2.1) exists locally

because the solution v = v(t) to (2.5) exists locally.
The solution to (2.5) exists locally by the standard result, because the map u = G(v)

is C1
loc local diffeomorphism. The solution to (2.5) exists globally (see, e.g., [5], p. 248)

if
sup
t≥0

‖v(t)‖ < c, (2.6)

where c > 0 here and below denote various estimation constants.
Let us briefly recall the proof of this statement.
Assume that inequality (2.6) holds, but the maximal interval of the existence of v

is finite, say, [0, T ), T < ∞. The length ` of the interval of the local existence of the
solution to the Cauchy problem (2.5) depends only on the Lipschitz constant of G(v)
and on the norm of the right hand side of (2.5). Both these quantities depend only
on the constant c. One solves the Cauchy problem for equation (2.5) with the initial
data v(T − 0.5`) at the initial point t = T − 0.5`. The unique solution to this problem
exists on the interval [T − 0.5`, T − 0.5` + `). Consequently, v exists on the interval
[0, T + 0.5`) greater than [0, T ). This is a contradiction which proves that T = ∞.

The map u = G(v) is C1
loc because it is inverse to the C1

loc map v = F (u) + a(t)u−
f := G−1(u) := Q(u), and ‖[Q′(u)]−1‖ ≤ 1

a(t)
<∞ for every t ≥ 0.

Therefore, the estimate supt≥0 ‖v(t)‖ < c holds if and only if

sup
t≥0

‖u(t)‖ < c, (2.7)

where c > 0 stands for various constants.
Thus, to prove that u(t) exists globally it is sufficient to prove inequality (2.7).
We prove this inequality, the existence of u(∞), and the relation u(∞) = y, by

establishing two facts:
a) the following inequality:

‖u(t)− w(t)‖ ≤ ‖v(t)‖
a(t)

, (2.8)

and
b) the limiting relation:

lim
t→∞

‖v(t)‖
a(t)

= 0. (2.9)
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In formula (2.8) w(t) solves the problem

F (w) + a(t)w − f = 0, (2.10)

and a(t) satisfies (2.2). It is proved in [5] that if F is a monotone hemicontinuous
operator and equation (1.1) has a solution, then equation (2.10) has a unique solution
for any f if a(t) > 0, the limit w(∞) exists, and w(∞) = y. This, (2.8), and (2.9)
imply the existence of u(∞) and the relation u(∞) = y.

Let us prove inequality (2.8). Since F is monotone, one has

(F (u)− F (w), u− w) ≥ 0,

so
(v, u− w) = (F (u)− F (w) + a(t)(u− w), u− w) ≥ a(t)‖u− w‖2. (2.11)

Applying the Cauchy inequality to the left side of (2.11), one gets (2.8).
Let us prove (2.9). Denote

h(t) := ‖v(t)‖. (2.12)

Multiply equation (2.5) by v and get

hḣ ≤ −h2 + |ȧ|‖u(t)‖h. (2.13)

If h(t) > 0, one obtains from (2.13) the following inequality

ḣ(t) ≤ −h(t) + |ȧ(t)|(‖u(t)− w(t)‖+ ‖w(t)‖). (2.14)

If h(t) = 0 on some interval t ∈ (a, b), then ḣ = 0 on this interval, and the above
inequality holds trivially. If h(t) = 0 at an isolated point t = s, i.e., h(s) = 0, then
(2.14) holds by continuity at s+0. The existence of the derivative ḣ(s+0) at the point
s at which h(s) = 0 can be checked using the definition of the one-sided derivative:

ḣ(s+ 0) = lim
τ→+0

[h(s+ τ)− h(s)]/τ = lim
τ→+0

h(s+ τ)/τ. (2.15)

Since v(t) is continuously differentiable, one has h(s+τ) := ||v(s+τ)|| = ||τ v̇(s)+o(τ)||.
Therefore the limit in (2.15) exists and is equal to ||v̇(s)||. This limit is denoted ḣ(s).
Thus, inequality (2.14) holds for all t ≥ 0.

Since w(∞) exists, one has
sup
t≥0

‖w(t)‖ < c. (2.16)

Using (2.16) and (2.8), one gets from (2.14) the inequality

ḣ ≤ −h+
|ȧ(t)|
a(t)

h(t) + |ȧ(t)|c. (2.17)

Let us derive from inequality (2.17) the desired conclusion (2.9).
Fix an arbitrary small δ > 0. The first assumption (2.2) implies that

|ȧ(t)|
a(t)

≤ δ for t ≥ tδ. (2.18)
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Using the well-known Gronwall inequality, one obtains from (2.17) the following in-
equality

h(t) ≤ h(tδ)e
−(1−δ)(t−tδ) + c

∫ t

tδ

e−(1−δ)(t−s)|ȧ(s)|ds. (2.19)

Let us divide both sides of (2.19) by a(t) and prove that the following two relations
hold:

lim
t→∞

e−(1−δ)t

a(t)
= 0, (2.20)

and

lim
t→∞

∫ t
tδ
e(1−δ)s|ȧ(s)|ds
e(1−δ)ta(t)

= 0. (2.21)

This will complete the proof of Theorem 2.
From inequality (2.18) one gets

ce−δt ≤ a(t). (2.22)

This implies relation (2.20) if δ < 1
2
.

Applying the L’Hospital rule one proves relation (2.21) because

lim
t→∞

|ȧ(t)|
(1− δ)a(t) + ȧ(t)

= 0,

as follows from the second assumption (2.2) provided that δ < 1.
Theorem 2 is proved. �

Remark 2. The equation eu = 0, u ∈ R, H = R, does not have a solution, although
F (u) = eu is monotone, F ′(u) = eu > 0 is boundedly invertible for every u ∈ R and
‖[eu]−1‖ = e−u ≤ m(u) <∞ for every u ∈ R. Assumption (1.5) is not satisfied in this
example, and this is the reason for the unsolvability of the equation ex = 0. Note that
ex ≤ c as x→ −∞, so assumption (1.5) does not hold.

In recent papers [13] and [14] some nonlinear differential inequalities are derived
and used for a study of the large time behavior of solutions to evolution problems.
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