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KORDAN NAURYZKHANOVICH OSPANOV
(to the 60th birthday)

On 25 September 2015 Kordan Nauryzhanovich Ospanov,
professor of the Department "Fundamental Mathematics" of
the L.N. Gumilyov Eurasian National University, Doctor of
Physical and Mathematical Sciences (2000), a member of the
Editorial Board of our journal, celebrated his 60th birthday.

He was born on September 25, 1955, in the village Zhanata-
lap of the Zhanaarka district of the Karaganda region. In 1976
he graduated from the Kazakh State University, and in 1981
he completed his postgraduate studies at the Abay Kazakh
Pedagogical Institute.

Scientific works of K.N. Ospanov are devoted to application
of methods of functional analysis to the theory of differential
equations. On the basis of a local approach to the resolvent representation he has
found weak conditions for the solvability of the singular generalized Cauchy-Riemann
system and established coercive estimates for its solution. He has obtained a criterion
of the spectrum discreteness for the resolvent of the system and the exact in order
estimates of singular values and Kolmogorov widths. He has original research results on
the coercive solvability of the quasilinear singular generalized Cauchy-Riemann system
and degenerate Beltrami-type system. He has established important smoothness and
approximation properties of non strongly elliptic systems. K.N. Ospanov has found
separability conditions in Banach spaces for singular linear and quasi-linear second-
order differential operators with growing intermediate coefficients and established a
criterion for the compactness of its resolvent and finiteness of the resolvent type.

His results have contributed to a significant development of the theory of two-
dimensional singular elliptic systems, degenerate differential equations and non strongly
elliptic boundary value problems.

K.N. Ospanov has published more than 140 scientific papers. The list of his most
important publications one may see on the

http://mmf.enu.kz/images/stories/photo/pasport/fm /ospanov

K.N. Ospanov is an Honoured Worker of Education of the Republic of Kazakhstan,
and he was awarded the state grant "The best university teacher".

The Editorial Board of the Eurasian Mathematical Journal is happy to congratulate
Kordan Nauryzkhanovich Ospanov on occasion of his 60th birthday, wishes him good
health and further productive work in mathematics and mathematical education.
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ON CONDITIONS OF THE SOLVABILITY OF NONLOCAL
MULTI-POINT BOUNDARY VALUE PROBLEMS FOR
QUASI-LINEAR SYSTEMS OF HYPERBOLIC EQUATIONS
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Abstract. A nonlocal multi-point boundary value problem for a system of quasi-
linear hyperbolic equations is investigated. Based on the results for linear problems
coefficient conditions are established ensuring the existence of classical solutions to
nonlocal multi-point boundary value problem for a system of quasi-linear hyperbolic
equations, and algorithms of finding these solutions are suggested.

1 Introduction

We consider the following nonlocal multi-point boundary value problem on Q = [0, T] x
[0, w] for a second-order system of quasilinear hyperbolic equations

(981581; = A(t,:c)% + f(t,x,u, %), ue R", (1.1)
Z{R(x)% n si@)w + Us(z)ul(t;, x)} = o(x), zelo,w], (12
u(t,0) = v(t),  telo,T], (1.3)

where u(t,x) = col(uy(t,x),us(t, x), ..., u,(t,x)) is the unknown function, the n x n
matrices A(t,z), Pi(x), Si(z), Us(z), i = 0,m, and the n-vector function f(t,z,u, 2%)
are continuous on {2 X R™ x R" the n-vector function ¢ is continuous on [0, w], and the
n-vector function 1 is continuously differentiable on [0,7], 0 =ty < t; < ... < tp1 <
tm =T.

The study of nonlocal boundary value problems for hyperbolic-type equations was
initiated in the 1960s (see [12, 17, 19, 20, 22| and references therein). Sufficient con-
ditions for the existence and uniqueness of solutions to such problems have been ob-
tained by various methods. In the last several decades nonlocal multi-point problems
for hyperbolic equations appeared to be of great interest to specialists [11, 18, 20,

24]. Motivated by this, in [9, 10| the linear problem corresponding to (1.1)—(1.3) has
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been inestigated. Necessary and sufficient conditions for the well-posedness of linear
problem were found in terms of the initial data. The main results of [9] were based
on the equivalence of the well-posedness of nonlocal multi-point boundary value prob-
lem for a system of hyperbolic equations and a family of multi-point boundary value
problems for the systems of ordinary differential equations. Using the parametrization
method [14] necessary and sufficient conditions of the unique solvability of a family of
multi-point boundary value problems for a system of ordinary differential equations are
established in terms of the initial data. The coefficient criteria of unique solvability of
the corresponding linear nonlocal multi-point boundary value problem (1.1)-(1.3) are
obtained.

In [2,3] a nonlocal boundary value problem with data on the characteristics of
the corresponding system of hyperbolic equations is considered for to = 0, t; = T.
Sufficient conditions are given for the existence and uniqueness of a classical solution
to problem (1.1)—(1.3), when m = 1, in terms of the initial data. In [4-6, 8, 13]
this problem, by introducing new functions, was reduced to a family of the two-point
boundary value problems for ordinary differential equations and functional relations.
Coeflicient criteria of well-posedness of the considered problem were obtained. Problem
(1.1)—(1.3), when m = 1, is investigated by this method in [7].

In this paper, we establish sufficient coefficient conditions of the unique solvability
of problem (1.1)—(1.3) by introducing some additional functions and applying related
results for families of multi-point boundary value problems for systems of ordinary
differential equations; we suggest an algorithm for finding a solution.

Let C(Q, R") be the space of all continuous functions u : Q2 — R™ on Q with the
norm

[lullo = max |u(t, )],

(t,z)EQ

and C“'(Q,R") be the space of all continuous functions u : @ — R" on

) continuously differentiable with respect to ¢ and x with the norm |[|ull; =
. (|| I 8u’ ou )
max ( ||u — —1l ).

O 1oz llo 11 ot o
: ~ : ... Ou(t,x) ~
A function u(t,z) € C(2, R"), that has partial derivatives 5 e C(Q,R"),
T

u(t - D*ult

M e C(92, R™), % € C(Q, R") is called a classical solution to problem
x

(1.1)—(1.3) if it satisfies system (1.1) for all (¢,2) € Q and meets boundary conditions
(1.2) and (1.3).

2 Family of multi-point boundary value problem for systems of
ordinary differential equations. Main result

t t
We introduce new unknown functions v(¢,z) = dult, z) and w(t,z) = (9u(at, z) and
reduce problem (1.1)—(1.3) to the equivalent problem
ov -
= A(t,z)v+ f(t,z,u,w), (t,x) € Q, (2.1)

i
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> Blayo(tia) = o) = Y_{Siult,o) + Ulehultio) ), ae0w]  (22)
u(t, ) = ¥(t) + /Oxv(t,f)dé‘, w(t,z) = ¥(t) + /O %d&, (2.3)

where (t,z) € Q.
A triple {v(t,z),u(t,z), w(t,r)} of continuous on Q functions is called a solution to
problem (2.1)—(2.3) if the function v(t, z) € C(Q, R") has a continuous derivative with
respect to t on  and satisfies the one-parametered family of multi-point boundary
value problems for the system of ordinary differential equations (2.1), (2.2), where the
ov(t, )
ot

functions u(t,z) and w(t,z) are connected to v(t,z) and according to the

functional relations (2.3).

Let u*(t, z) be a classical solution to problem (1.1)—(1.3). Then the triple {v*(¢, z),
u*(t, x), w*(t,z)}, where v*(t,x) = W, w*(t,z) = dult, z)
to problem (2.1)—(2.3). Conversely, if a triple {v(¢, x), u(t,x),w(t,x)} is a solution to
problem (2.1)—(2.3), then u(t, z) becomes a classical solution to problem (1.1)—(1.3).

For fixed w(t, x), u(t, z) in problem (2.1)—(2.3) it is necessary to find a solution to a
one-parametered family of multi-point boundary value problems for system of ordinary
differential equations.

Consider the family of multi-point boundary value problems for the system of or-
dinary differential equations

, becomes a solution

% = A(t,z)v+ F(t,x), tel0,7], ze€l0,w], veR" (2.4)
Z Pi(z)v(t;, z) = ®(z), z€[0,w], (2.5)

where F(t,r) € C(Q, R") and ®(z) € C([0,w], R").

Continuous function v : Q — R™ which has a continuous derivative with respect to
t on € is called a solution to the family of multi-point boundary value problems (2.4)-
(2.5) if it satisfies system (2.4) and condition (2.5) for all (¢,z) € Q and x € [0,w],
respectively.

For fixed € [0,w] problem (2.4)-(2.5) is a linear multi-point boundary value
problem for the system of ordinary differential equations. The different types of multi-
point boundary value problems for differential equations have been investigated by
various methods [1, 15, 16, 21, 23|. Suppose a variable z is changed on [0,w]; then
we obtain a family of multi-point boundary value problems for ordinary differential
equations.

Definition 1. A family of multi-point boundary value problems (2.4)-(2.5) is called
well-posed solvable with a constant K if for arbitrary F(t,x) € C(Q, R") and ®(x) €
C([0,w], R") it has a unique solution v(¢t,z) € C(2, R") and for this solution the
following estimate holds

)| < K ( F(t, )], ||® )
ma (o1, )] < K s (1 2] [0
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where the constant K is independent of F(t,z), ®(x) and z € [0,w].

Consider the sets '
GW%%P) = {(t,x,u,wl: (t,l’) € Qa Hu - ¢(t)” <p; Hw - ¢(t)|’ < p}a
S((t),p) ={u € CHH(Q, R") : [[u — ¥[[1 < p}. _
Condition Lip. Function f(t,z,u,w) is continuous in (¢,x) € Q for fixed v and w
and satisfies the Lipschitz condition with respect to w and w on the set G(%, U, p), i.e

Hf(t,.ﬁ[,u,ll)) o f(t,l’,’lj,u_))H < l1<t,$)Hu—ﬂH +l?(t7$)”w _U_JHa

where [;(t, z) > 0 are functions continuous on ) for i = 1,2.
m

We set FO(t,) = f(t,2,0(1), 9(0)),  #(r) = o) = LA S)d(6) + Uilw)u(ts) |
S{Is@)l+ w1}

L(t Lt z), L } _ At
maX{tg%g;S] 1(t, I)+tgax] ot ), L(x) ¢, afz) = tg}%!l (o)l

p1(x) = max(K, a(z)K + 1)ly(x),
p2(z) = max(K, a(z)K +1) maX{tfeI}g% |[FO(t, @)l H‘PO(%)H},

(m

)
)

lo(z

and p3(z) = po(x) exp{z xrél[%)i] p1(x)}.

To find conditions for the existence of a unique classical solution to problem (1.1)-
(1.3), we consider the equivalent problem (2.1)—(2.3) and suggest an algorithm for
solving it.

Step 0. Solving the family of multi-point boundary value problems (2.1)-(2.2) for
u(t,z) = ¥(t) and w(t,z) = ¥(t), we obtain vO(t,z) for (t,z) € Q. Functional
8v(t,x) OO (t, x)

Ox Ox

relations (2.3) with v(¢,z) = v (¢,2) and

and w® (¢, z) for (t,7) € Q.

Step 1. Solving the family of multi-point boundary value problems (2.1)-(2.2) for
u(t,r) = u(t,r) and w(t, z) = w® (¢, x), we obtain vV (¢, z) for (t,z) € . Functional

1

relations (2.3) with v(¢,z) = v (¢, 2) and 81}((9722:) = 811(8(;5, ?) determine u™M (¢, z) and
wW (t, z) for (t,z) € Q.

Continuing in this way, we obtain v® (¢, z), u®(¢,z) and w® (¢, z) for (t,z) € Q
at the kth step, where £k =0,1,2, ....

Sufficient conditions for the implementation and convergence of the algorithm and
the existence of a unique classical solution to problem (1.1)—(1.3) are ensured by the
following theorem.

determine u(0 (¢, x)

Theorem 2.1. Suppose that

(i) f(t,z,u,w) is a function satisfying Condition Lip;

(ii) the family of multi-point boundary value problems (2.4), (2.5) is well-posed
solvable with the constant g{(,’

(111) for some p >0 / p3(£)dE < p for all x € [0,w].

0
Then, problem (1.1)—(1.3) has a unique classical solution u*(t,z) belonging to
S@(), p).
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Proof. Consider problem (2.1)—(2.3) which is equivalent to problem (1.1)—(1.3). Using
the method of successive approximations, we find a solution v(¢,z). For the initial
approximation of u(t,x) and w(t,x) we take ¥(t), w(t) respectively, and then find
v© (¢, 2) from the problem

ov 0
5 = A(t,z)v + F(t, x), (2.6)
Zg(x)v(t,-,x) =d%x), zel0,uw) (2.7)

Problem (2.6)—(2.7) is a family of multi-point boundary value problems for a system of
ordinary differential equations. This problem is investigated in [9] by the parametriza-
tion method [14]. Necessary and sufficient conditions of unique and well-posed solv-
ability of the family of boundary value problems (2.4)—(2.5) were established in terms
of initial data. An estimate of the solution to investigated problem in terms of the
initial data was also obtained.

By assumption (i) of the theorem, problem (2.6)—(2.7) is well-posed solvable.
Therefore, problem (2.6)—(2.7) has a unique solution v¥(¢,z) and the following es-
timates hold

max |[o” (¢,2)]| < K max( max 1E°(¢, )], [12°(2)]]),

t€[0,T
O (t
o || 2T < ) -+ 1) mas s 1200 )] 19701,

Using relations (2.3) we find v(9 (¢, x) and w©® (¢, z):

uO(t,x) = v(t) + / vO(t,€)de,  wO(t,z) = (L) + / —8“(0;t’5>d5,

0 0
The following estimates are satisfied:

masx [[u® (¢, 2) — (1)]] < / e [0 (1,1

t€[0,T

v [0 (0,2) — <t>rrsfmax MHds

te[0,T] t€[0,T)
0
Then, we have
t — (¢
maX(tren[g;]Hu J(t,z) — ()], trg%Hw J(t,z) — (b))

(0,7 t€[0,T]

001,
)%

< /max(max [0 (t,€)]|, max
0
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T

< [ max(K,a(©)K + 1) max(ma [7°(6 ) [9°©IDde = [ pa()ic

0
Suppose u*~Y (¢, x) and w*~ (¢, x) are known. Then v(*) (¢, x) can be found from the
problem (2.1)-(2.2), where w(t,z) = w* (¢, z), u(t,z) = u*V(t,z), m = 1,2, ...,
namely
o _ At )™ + f(t, 2, u*V(t, 2), wk (¢, 1)) (2.8)
ot V7 T Y Y '
ZP M(t;, x) = Z{ w4, 2) 4+ Ug(z)ul® )(ti,x)}, (2.9)
=0

where z € [0,w].
By assumption (i) of the theorem, problem (2.8)—(2.9) is well-posed solvable.
Therefore, problem (2.8)-(2.9) has a unique solution v(¥(¢, 2) and there hold the esti-

mates
(k) t < K Fk l)t CI)(k 1)
max [|o®(t,2)|| < K max(max [|[FE0 (¢ 2)]],[[ 04D (@)]),
ov(t, x)
ot

max
te[0,T7]

<l + max(a [0 [ @)

where
F(’“*U(t r) = f(t,x u(kfl)(t x)aw(kil)(tv z)),

D (g Zm:{ w*V(t;, z) + Uy(z)u®~ 1)(151-,95)}.

=0

Once v®) (¢, z) is found, the successive approximations for u(t,z) and w(t,z) are
found from relations (2.3):

ub (¢, x) = P(t) + /90 v B (¢, &)de, wP(t,x) = P(t) + /x %df (2.10)
0 0

The functions u® (¢, 2) and w® (¢, z) satisfy the following inequalities

_ < (k)
trer%(z)%cﬂu (t,x) — ()| < i trerfggg]llv (t, Il dg,

mase [[w® (¢, z) — (t)\\g/oxmax(‘%”dg.

t€[0,T] te[0,T)

Then, we get
max( max ([ (¢, 2) — ¥(1)]|, max [0t 2) — (1)

t€[0,7] t€[0,T)
k) (t g)de)

: (k=1) (k=1)
< [ max [, a@)1 + 1] maxmase P48 €)1 |00

§/ max(maXHv (t,€)ll, max’ dv
0

t€[0,T] t€[0,T]
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T
ie. ut) € S(Y(t), p).

We consider the differences

AW (t, ) = "D (¢, v (t, ),

x)
Au®(t,z) = (1 2) —uW (1, 2),
Aw® (t, z) = wk (¢, z) — wb (¢, 2),

and using the well-posedness of problem (2.4)—(2.5) we establish the following estimates

Av®) (¢ < Kl ( A, , Aw* (¢, ),
trerﬁ?)T(]H v ( 2l o) max trerf(%gr(]” “ Gl E&%H v Gl
(2.11)

max
te[0,T]

< (a(:z:)K+1>l0( )max(max | Au®=D (¢, 2)||, max HAw(k_l)(t,x)H), (2.12)

t€[0,T) t€[0,T)

HMH<

max\|Au'f>tx\|</ max || Ao® (¢, €)]|d,

te[0,T] te[0,T]

max ||Aw™®™(t, :E)H</I maXHMHdﬁ

t€[0,T) o t€[0,1]

This implies the main inequality

max max | Au® (, 2)|], max [|Aw® (t, z)]|
t€[0,T]

t€]0,T
< ’ (k—1) (k—1) . '
< / pu (€ mase e (|80, )1, ma (|80 (2, de (2.13)

As inequality (2.13) is fair for k£ = 1,2..., then consistently substituting the correspond-
ing differences in the right-hand side, we will get

max(max 1Au® (8, 2)||, max \|Aw(k)(t,x)|]>
t€[0,T] t€[0,T]

1 T
< o /1€ e (1 (€

Hereof, we get that at k — oo the sequences u®(t,x), wh(t,x) converge uniformly
to u*(t,z), w*(t,z) on Q. Then from relations (2.11)—(2.12) it follows that sequences

(k)
ot 7). ov\(t, x) ov*(t, x)

This means that the triple of functions {v*(¢,z)u*(¢t,z)w*(t,z)} is a solution to
problem (2.1)—(2.3) and the following inequalities hold

also converge uniformly on Q to v*(t, ), , Tespectively.

(a0 (6,2) = (O, s [0 (,2) = 500)) < [ pa(€)ac <.

te[0,T] t€[0,T]
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ov*(t, )
ot

max | max ||v*(¢, )|, max’
t€[0,T] t€[0,T)

D < /Ow p3(§)dE < p,

ie. u* € S((t),p).
As problems (2.1)-(2.3) and (1.1)-(1.3) are equivalent, the function u*(¢, z) belong-

ing to S(¢(t), p), will be a classical solution to problem (1.1)—(1.3). The uniqueness of
the solution is proved by the contradiction method. O]
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