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Abstract. In this paper, embedding theorems for reduced weighted Sobolev classes
W;}Q(Q) in Lebesgue spaces L,,(f2) are obtained. Here weight functions have singu-
larity at the origin and v ¢ L,(£2). For some special weight functions order estimates
for Kolmogorov, Gelfand and linear widths are obtained.

Let (X, || - ||x) be a normed space, let X* be its dual, and let £, (X), n € Z,, be
the family of subspaces of X of dimension at most n. Denote by L(X, Y') the space
of continuous linear operators from X to a normed space Y. Also, by rk A denote the
dimension of the image of an operator A € L(X, Y'), and by ||A| x—y, its norm.

By the Kolmogorov n-width of a set M C X in the space X, we mean the quantity

d.(M, X)= inf inf ||z — yl| x,
W= At e e vl

by the linear n-width, the quantity
An(Mu X) = inf sup ||$—A$||X,

AeL(X,X),rkA<n ze M
and by the Gelfand n-width, the quantity
d"(M, X)=_ inf N sup{||z]| : # € M, zj(z) =0, 1 <j <n}.
rheX™

The problem of estimating the widths of Sobolev classes in the Lebesgue space and
finite-dimensional balls was studied in the 1960s-1980s (see, e.g., [3, 4, 5, 12, 13]). At
the same time, the first results on estimates of n-widths of weighted Sobolev classes in
weighted Lebesgue spaces were obtained |2, 14]. The extensive study of this problem
began in the 1990s (for details, see [17]).

In [17] estimates for n-widths of the weighted Sobolev class W (€2) in the weighted

Lebesgue space L, ,(€2) were obtained, where 2 C (—%, 3

definitions below) and 0 € . The weights were defined by
I ][ po ([ Inf]]); (1)

d .
) was a John domain (see

g(x) = |a| 7| In |z|| 7 py(| In |]]),  v(@) = |o|
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here

d d 1 1
By + By =1+—-—-=>0, ag—l—ozv>(———) , (2)
q p ¢ p),

Py, Pv (0, 00) — (0, 0o) were absolutely continuous functions such that

/ /
-~ uPy(y) _ i 22 W) 3)

v—oo pg(y) v py(y)

(the case p = ¢ was considered by Triebel [15] and Mieth [7], [8] as well). In addition,
0, satisfied the condition (3, < g. For d = 1, in [16] similar results were obtained for

By € R\ {%, % +1,..., % +r— 1}; here estimates for norms of two-weighted Riemann

— Liouville operators [11] and their compositions 6] were applied.

In this paper we present estimates of n-widths for d > 2, 3, > %, By ¢
{&441, der—1)

Let Q C R? be a bounded domain (an open connected set), and let g, v :  — (0, o0)
be measurable functions. For each measurable vector-valued function ¢ : Q — R,
Y = (Yx)1<k<i, and for each p € [1, oo], we put

1/p
_ _ p
ey = || max o] = | [ max one)p d
Q
(modifications in the case p = oo are clear). Let 8= (3, ..., 1) € Z% := (NU{0})¢,

|B| = B1+...+ B4 For any distribution f defined on Q we write V'f = (8”f/8x5) 5

(here the partial derivatives are taken in the sense of distributions), and denote by I, 4
the number of components of the vector-valued distribution V'f. We set

Wy (Q)={f: Q—>R\ Fp: Q=R WY <1, ViF=g-¢)}
V'f
g )

(we denote the corresponding function v by

Iy o= llgo=lfolly@),  Law(@) ={f: Q&= R[] |[fllgo < o0}.

We call the set W) (€2) a weighted Sobolev class.

Denote by ACty, t1] the space of absolutely continuous functions on an interval
[to, t1]. For x € R? and a > 0 we shall denote by B,(x) the closed Euclidean ball of
radius a in R? centered at the point x.

Definition 1. Let Q@ C R? be a bounded domain, and let ¢ > 0. We say that
2 € FC(a) if there exists a point z, € Q such that, for any = € 2, there exist a
number T'(x) > 0 and a curve v, : [0, T'(x)] — Q with the following properties:

1) v, € AC[0, T'(x)], ‘dvg—t(t)‘ =1ae.,

2) 790(0) =, 7$<T(x)> = Ty,
3) Ba(72(t)) C Q for any t € [0, T'(x)].
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Definition 2. We say that 2 satisfies the John condition (and call €2 a John domain)
if Q € FC(a) for some a > 0.

In [9, 10|, Reshetnyak found an integral representation for smooth functions on a
John domain €2 in terms of their rth order derivatives. This integral representation
implies that for p > 1, 1 < ¢ < oo and g—%—%—% > 0 (correspondingly g—i—é—% > 0) the
class W) (€2) is continuously (correspondingly, compactly) embedded in L,(2); i.e., the
conditions of a continuous and compact embedding are the same as for Q = [0, 1]%).

Given nonnegative sequences u = (u;);>0, w = (w;)j>0, 1 < p, ¢ < 0o, we denote
by &54, and éﬁ:‘jﬂ the minimal constants C' in the inequalities

1

0o i a\ ¢ oo 1
(Z w? <Z wﬁ) ) <C <Z |fj’p) ;o (fi)iZo €y f3 20,
=0 =0 im0

and

hSA

(ij (Zuzfz) ) <C (Zlfj|p) . ()0 €l f 20,
J=0 i=j j=0

correspondingly. Two-sided sharp estimates for &97 and éﬁ:‘{u were obtained by Ben-
nett [1].

We use the following notation for order inequalities. Let X, Y be sets, and let
fofot X XY — Ry Wewrite fi(z, y) S faol. y) (o ol y) 2 file, ) if for

y y
any y € Y there exists c¢(y) > 0 such that fi(z, y) < c(y)fa(z, y) for any z € X
f1($7 y) ? f2<£L‘, y) if fl(xa y) 5 f2($7 Z/) and f2<x7 y) S fl(xa y)
Yy )

Theorem A. [1]. Let 1 <p < oo, 1 < g < oo, and let u = {up}nez,, W = {Wn}nez,
be nonnegative sequences. We set

o0 1om 1
M, ., = sup< wg>q< uﬁ/>p,<oo if 1<p<gq<oo,

3=

_pq 1
o] [e ] 1 m 1 pP—q ?
My = Z((ng)p(Zuﬁ)p> w, < 00
n=m n=0

if 1<qg<p<oo,
1

m 1 (0.0 1
]\qu,w:: sup <ng>q<2uﬁ,>p <oo if 1<p<g<oo,
=0

n=m

11
00 0o 1om 1\ p—q .

~ , 7 q /

M, = E (E uﬁ)q (g wg) ub, < 0

n=m n=0

if 1<g<p<oo.
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Let a > 0, Q € FC(a), 0 € Q. Consider the weight functions
9(x) = pq(lz]), v(z) = @u(lz]), (4)

where ¢,, ¢, : (0, 00) — (0, 00). Suppose that there exists ¢y > 1 such that

‘Pg(t) ‘Pv(t) i1 o—j+1 .
< ¢y, <cy, t,se2777,2797, j€EZ. 5
S5 S o) S | | ®)

S

Let r € N, 1 <p<o0, 1< g <oo Weset u=(u;)2,, w= (W),

_d

ﬂj — QOQ(Q_‘?) . 2_(T_%>‘j7 E] — QO”L)<2_]) . 2 q .,

Denote by P,_;(R?) the space of polynomials on R? of degree not exceeding r — 1.
For a measurable set F C R? we put P,_1(E) = {f|g: f € Pro1(RY)}.

If 2% < oo, r + %l — % > 0, then W) () C L,,(Q) and there exists a linear
continuous projection P : Ly ,(2) — P,_1(£2) such that for each function f € W] (€2)

\%

If=Pflle,e S Gig 7

p,q,7,d,a,co

Lp(©)

(see [17, proofs of Lemmas 5, 6]). Observe that by Theorem A it follows that in this

case y Wi < oo; ie., v € L,(Q) (the last property follows from [17, formula (37),
=0
Corollary 1]).
In this paper we consider the case v ¢ L (). Since W) () D P,_1(Q), the
inclusion W (2) C L, (2) fails. Therefore, instead of W (£2) we consider the reduced

Sobolev class W; ().
Definition 3. We denote by W; ,(€2) the completion of the set

Wi, (Q)N{feC>*(Q): FJe>0: f|p.(0) =0}

. T

under the norm || flw; (o) 9 @

Proposition 1. Let the functions ¢y, ¢, satisfy (5), and let 3 3(277) - 2777 = oo.
i=0

Then there exists a John domain ) such that for any n € Z
4 (W7,(9). L, (2)) = oo.

Therefore, there exists a John domain €2 such that for any finite-dimensional sub-
space L C Lg,(Q2) and for any bounded subset M C L, (2) we get W) (Q) & L+ M;

i.e., the class VV; ,(€2) cannot be imbedded continuously in L,,(£2). For this reason we
need to impose some more assumptions on domains €2.
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Definition 4. Let b > 0, ¢ > 1. We say that Q € FC'(b, ¢) if for any 2 € Q there
exists a curve 7, : [0, T'(z)] — QU {0} with the following properties:
1) 4, is absolutely continuous, ’—‘ =1a.e,

2) 7.(0) = 0, 7.(T(2)) = =,
; ‘1!x|<T( ) < clal,

By mingt, 7(z)—1y (Y=(t)) C € for any t € (0, T(x)).

Suppose that Q € FC(a) NFC'({0}; b, ¢) and the weights g, v : Q — (0, co) satisfy
(4), (5). Let 1 < p < o0, 1§q<oo,7‘€N,5::r+§—%>0.

Denote 3 = (p, ¢, 7, d, a, b, ¢, c).

For each 0 < k <17 — 1 we set Uy = {TUr,;}jez. , W) = {Wk,;}jez, , Where

Uy, = Q—j(’“—k—%)%(z—j), Wy = 21 (k5) , (279).

Theorem 1. Let ég’g_l)@(riw < 00. Then W;’g(Q) C Lg(R2) and for any function
fewr ()

N \Via
£l 825 |12
3 9 Ly @)
Theorem 2. Let 0 < k < r — 2, &1 < oo, 621 < 00. Then W’ (Q) C
(k) W (k) U(k41) W (k4 1) p:g

L,,(Q2) and there ezists a linear continuous projection P : Lg,(2) — Pr_1(2) such
that for any function f € W, ()

||f Pf”Lq ’U(Q) SJ maX{GU(k) w(k>7 6%7(i+1),ﬁ(k+1>} g

5

Lp(Q)

Let © € FC(a) N FC'({0}; b, ¢), @ C (=1, 1)*, R = diam Q, and let the weights g
and v be defined by (1). We set 3, = (p, ¢, 1, d, a, b, ¢, g, v, R). Denote o = oy + v,

P(y) = pg(y)pu(y)-
In estimating the Kolmogorov, linear, and Gelfand widths we set, respectively,

ﬁl(M7 X) = dl(M7 X) and é = g, ﬁl(Mv X) = )\I(Ma X) and q = min{Q? p,}v

H(M, X) = d'(M, X) and g = p

Theorem 3. Letr € N, 1 < p < o0, 1§q<oo,(5::r—|—§—;—f>0,Q€FC(a)ﬂ

FC'({0}; b, ¢). Suppose that (1), (2) and (3) hold, 3, € R\ {g, §+ 1, ..., g—i—r - 1}.
s

1. Let either p > q orp < q, ¢ < 2. Suppose that o #* g. We set 0, = 5, 0, = «,
o1 =0, 09 =1. Let j. € {1, 2} be such that 0;, = min{6,, 65}. Then

ul

1T - —0;.. o;
0 (W7, (©), Lyo(@)) 5 nlo™ 7] (o),

*

2. Letp < q, ¢ > 2. Weset@lz——%min{%—%,l—l}, 9223—2, 03 = a+

2 4¢p g
exists j. € {1, 2, 3, 4} such that 0;, < min;; 0;. Then

ﬂn(Wlig(Q)a Lq,v(Q)) BX nfej* p(naj*)_

*

min{— — =, == —}, Oy =5, 00=00=0,03=1, 04 = g. Suppose that there



98 A.A. Vasil’eva

Acknowledgments

This work was supported by the Russian Science Foundation (project 14-11-00443).



(1]

2]

131

4]

5]

[6]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

Embeddings and widths of weighted Sobolev classes 99

References

G. Bennett, Some elementary inequalities. III. Quart. J. Math. Oxford Ser. 42 (1991), no. 166,
149-174.

M.Sh. Birman, M.Z. Solomyak, Piecewise polynomial approzimations of functions of classes Wy'.
Math. USSR-Sb. 2 (1967), no. 3, 295-317.

R.A. DeVore, R.C. Sharpley, S.D. Riemenschneider, n-widths for C;} spaces. Anniversary vol-
ume on approximation theory and functional analysis (Oberwolfach, 1983), 213-222. Internat.
Schriftenreihe Numer. Math., 65, Birkh&user, Basel, 1984.

E.D. Gluskin, Norms of random matrices and diameters of finite-dimensional sets. Math. USSR~
Sh. 48 (1984), no. 1, 173-182.

B.S. Kashin, The widths of certain finite-dimensional sets and classes of smooth functions. Math.

USSR-Izv. 11 (1977), no. 2, 317—333.

A. Kufner, H.P. Heinig, The Hardy inequality for higher-order derivatives. Trudy Mat. Inst.
Steklov 192 (1990), 105-113 (in Russian).

T. Mieth, Entropy and approximation numbers of embeddings of weighted Sobolev spaces. J. Appr.
Theory 192 (2015), 250-272.

T. Mieth, Entropy and approzimation numbers of weighted Sobolev spaces wvia bracketing.
arXiv:1509.00661v1.

Yu.G. Reshetnyak, Integral representations of differentiable functions in domains with a nons-
mooth boundary. Sibirsk. Mat. Zh. 21 (1980), no. 6, 108-116 (in Russian).

Yu.G. Reshetnyak, A remark on integral representations of differentiable functions of several
variables. Sibirsk. Mat. Zh. 25 (1984), 5, 198-200 (in Russian).

V.D. Stepanov, Weighted norm inequalities of Hardy type for a class of integral operators. J.
London Math. Soc. 50 (1994), no. 1, 105-120.

V.M. Tikhomirov, Diameters of sets in functional spaces and the theory of best approximations.
Russian Math. Surveys 15 (1960), no. 3, 75-111.

V.M. Tikhomirov, Theory of approrimations. In: Contemporary problems in mathematics. Fun-
damental directions. vol. 14. Itogi Nauki i Tekhniki (Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn.
i Tekhn. Inform., Moscow, 1987), 103—260.

H. Triebel, Interpolation theory. Function spaces. Differential operators (Dtsch. Verl. Wiss.,
Berlin, 1978; Mir, Moscow, 1980).

H. Triebel, Entropy and approzimation numbers of limiting embeddings, an approach via Hardy
inequalities and quadratic forms. J. Approx. Theory 164 (2012), no. 1, 31-46.

A.A. Vasil’eva, Kolmogorov widths and approximation numbers of Sobolev classes with singular
weights. Algebra i Analiz. 24 (2012), no. 1, 3-39 (in Russian).

A.A. Vasil’eva, Widths of weighted Sobolev classes on a John domain: strong singularity at a
point. Rev. Mat. Compl. 27 (2014), no. 1, 167-212.



100

Anastasia Andreevna Vasil’eva
Steklov Mathematical Institute
Russian Academy of Sciences

8 Gubkina St

Moscow 119991, Russia

E-mail: vasilyeva nastya@inbox.ru

A .A. Vasil’eva

Received: 17.09.2015



