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Abstract. In this paper, embedding theorems for reduced weighted Sobolev classes
Ŵ r
p,g(Ω) in Lebesgue spaces Lq,v(Ω) are obtained. Here weight functions have singu-

larity at the origin and v /∈ Lq(Ω). For some special weight functions order estimates
for Kolmogorov, Gelfand and linear widths are obtained.

Let (X, ‖ · ‖X) be a normed space, let X∗ be its dual, and let Ln(X), n ∈ Z+, be
the family of subspaces of X of dimension at most n. Denote by L(X, Y ) the space
of continuous linear operators from X to a normed space Y . Also, by rkA denote the
dimension of the image of an operator A ∈ L(X, Y ), and by ‖A‖X→Y , its norm.

By the Kolmogorov n-width of a set M ⊂ X in the space X, we mean the quantity

dn(M, X) = inf
L∈Ln(X)

sup
x∈M

inf
y∈L

‖x− y‖X ,

by the linear n-width, the quantity

λn(M, X) = inf
A∈L(X,X), rkA≤n

sup
x∈M

‖x− Ax‖X ,

and by the Gelfand n-width, the quantity

dn(M, X) = inf
x∗1, ..., x

∗
n∈X∗

sup{‖x‖ : x ∈M, x∗j(x) = 0, 1 ≤ j ≤ n}.

The problem of estimating the widths of Sobolev classes in the Lebesgue space and
finite-dimensional balls was studied in the 1960s–1980s (see, e.g., [3, 4, 5, 12, 13]). At
the same time, the first results on estimates of n-widths of weighted Sobolev classes in
weighted Lebesgue spaces were obtained [2, 14]. The extensive study of this problem
began in the 1990s (for details, see [17]).

In [17] estimates for n-widths of the weighted Sobolev class W r
p,g(Ω) in the weighted

Lebesgue space Lq,v(Ω) were obtained, where Ω ⊂
(
−1

2
, 1

2

)d was a John domain (see
definitions below) and 0 ∈ Ω. The weights were defined by

g(x) = |x|−βg | ln |x||−αgρg(| ln |x||), v(x) = |x|−βv | ln |x||−αvρv(| ln |x||); (1)
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here
βg + βv = r +

d

q
− d

p
> 0, αg + αv >

(
1

q
− 1

p

)
+

, (2)

ρg, ρv : (0, ∞) → (0, ∞) were absolutely continuous functions such that

lim
y→∞

yρ′g(y)

ρg(y)
= lim

y→∞

yρ′v(y)

ρv(y)
= 0 (3)

(the case p = q was considered by Triebel [15] and Mieth [7], [8] as well). In addition,
βv satisfied the condition βv <

d
q
. For d = 1, in [16] similar results were obtained for

βv ∈ R\
{

1
q
, 1
q

+ 1, . . . , 1
q

+ r − 1
}

; here estimates for norms of two-weighted Riemann
– Liouville operators [11] and their compositions [6] were applied.

In this paper we present estimates of n-widths for d ≥ 2, βv ≥ d
q
, βv /∈{

d
q
, d
q

+ 1, . . . , d
q

+ r − 1
}

.
Let Ω ⊂ Rd be a bounded domain (an open connected set), and let g, v : Ω → (0, ∞)

be measurable functions. For each measurable vector-valued function ψ : Ω → Rl,
ψ = (ψk)1≤k≤l, and for each p ∈ [1, ∞], we put

‖ψ‖Lp(Ω) =
∥∥∥ max

1≤k≤l
|ψk|

∥∥∥
p

=

∫
Ω

max
1≤k≤l

|ψk(x)|p dx

1/p

(modifications in the case p = ∞ are clear). Let β = (β1, . . . , βd) ∈ Zd
+ := (N ∪ {0})d,

|β| = β1 + . . .+βd. For any distribution f defined on Ω we write ∇rf =
(
∂rf/∂xβ

)
|β|=r

(here the partial derivatives are taken in the sense of distributions), and denote by lr,d
the number of components of the vector-valued distribution ∇rf . We set

W r
p,g(Ω) =

{
f : Ω → R

∣∣ ∃ψ : Ω → Rlr,d : ‖ψ‖Lp(Ω) ≤ 1, ∇rf = g · ψ
}

(
we denote the corresponding function ψ by

∇rf

g

)
,

‖f‖Lq,v(Ω)=‖f‖q,v=‖fv‖Lq(Ω), Lq,v(Ω) = {f : Ω → R| ‖f‖q,v <∞} .

We call the set W r
p,g(Ω) a weighted Sobolev class.

Denote by AC[t0, t1] the space of absolutely continuous functions on an interval
[t0, t1]. For x ∈ Rd and a > 0 we shall denote by Ba(x) the closed Euclidean ball of
radius a in Rd centered at the point x.

Definition 1. Let Ω ⊂ Rd be a bounded domain, and let a > 0. We say that
Ω ∈ FC(a) if there exists a point x∗ ∈ Ω such that, for any x ∈ Ω, there exist a
number T (x) > 0 and a curve γx : [0, T (x)] → Ω with the following properties:
1) γx ∈ AC[0, T (x)],

∣∣∣dγx(t)
dt

∣∣∣ = 1 a.e.,
2) γx(0) = x, γx(T (x)) = x∗,
3) Bat(γx(t)) ⊂ Ω for any t ∈ [0, T (x)].
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Definition 2. We say that Ω satisfies the John condition (and call Ω a John domain)
if Ω ∈ FC(a) for some a > 0.

In [9, 10], Reshetnyak found an integral representation for smooth functions on a
John domain Ω in terms of their rth order derivatives. This integral representation
implies that for p > 1, 1 ≤ q <∞ and r

d
+ 1

q
− 1

p
≥ 0 (correspondingly r

d
+ 1

q
− 1

p
> 0) the

class W r
p (Ω) is continuously (correspondingly, compactly) embedded in Lq(Ω); i.e., the

conditions of a continuous and compact embedding are the same as for Ω = [0, 1]d).
Given nonnegative sequences u = (uj)j≥0, w = (wj)j≥0, 1 ≤ p, q ≤ ∞, we denote

by Sp,q
u,w and S̃p,q

u,w the minimal constants C in the inequalities(
∞∑
j=0

wqj

(
j∑
i=0

uifi

)q) 1
q

≤ C

(
∞∑
j=0

|fj|p
) 1

p

, (fj)
∞
j=0 ∈ lp, fj ≥ 0,

and (
∞∑
j=0

wqj

(
∞∑
i=j

uifi

)q) 1
q

≤ C

(
∞∑
j=0

|fj|p
) 1

p

, (fj)
∞
j=0 ∈ lp, fj ≥ 0,

correspondingly. Two-sided sharp estimates for Sp,q
u,w and S̃p,q

u,w were obtained by Ben-
nett [1].

We use the following notation for order inequalities. Let X, Y be sets, and let
f1, f2 : X × Y → R+. We write f1(x, y) .

y
f2(x, y) (or f2(x, y) &

y
f1(x, y)) if for

any y ∈ Y there exists c(y) > 0 such that f1(x, y) ≤ c(y)f2(x, y) for any x ∈ X;
f1(x, y) �

y
f2(x, y) if f1(x, y) .

y
f2(x, y) and f2(x, y) .

y
f1(x, y).

Theorem A. [1]. Let 1 < p ≤ ∞, 1 ≤ q < ∞, and let u = {un}n∈Z+, w = {wn}n∈Z+

be nonnegative sequences. We set

Mu,w := sup
m∈Z+

( ∞∑
n=m

wqn

) 1
q
( m∑
n=0

up
′

n

) 1
p′
<∞ if 1 < p ≤ q <∞,

Mu,w :=

 ∞∑
m=0

(( ∞∑
n=m

wqn

) 1
p
( m∑
n=0

up
′

n

) 1
p′

) pq
p−q

wqm

 1
q
− 1

p

<∞

if 1 ≤ q < p ≤ ∞,

M̃u,w := sup
m∈Z+

( m∑
n=0

wqn

) 1
q
( ∞∑
n=m

up
′

n

) 1
p′
<∞ if 1 < p ≤ q <∞,

M̃u,w :=

 ∞∑
m=0

(( ∞∑
n=m

up
′

n

) 1
q′
( m∑
n=0

wqn

) 1
q

) pq
p−q

up
′

m

 1
q
− 1

p

<∞

if 1 ≤ q < p ≤ ∞.

Then Sp,q
u,w �

p,q
Mu,w, S̃p,q

u,w �
p,q
M̃u,w.
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Let a > 0, Ω ∈ FC(a), 0 ∈ Ω. Consider the weight functions

g(x) = ϕg(|x|), v(x) = ϕv(|x|), (4)

where ϕg, ϕv : (0, ∞) → (0, ∞). Suppose that there exists c0 ≥ 1 such that

ϕg(t)

ϕg(s)
≤ c0,

ϕv(t)

ϕv(s)
≤ c0, t, s ∈ [2−j−1, 2−j+1], j ∈ Z. (5)

Let r ∈ N, 1 < p ≤ ∞, 1 ≤ q <∞. We set u = (uj)
∞
j=0, w = (wj)

∞
j=0,

uj = ϕg(2
−j) · 2−(r− d

p)j, wj = ϕv(2
−j) · 2−

dj
q .

Denote by Pr−1(Rd) the space of polynomials on Rd of degree not exceeding r − 1.
For a measurable set E ⊂ Rd we put Pr−1(E) = {f |E : f ∈ Pr−1(Rd)}.

If Sp,q
u,w < ∞, r + d

q
− d

p
> 0, then W r

p,g(Ω) ⊂ Lq,v(Ω) and there exists a linear
continuous projection P : Lq,v(Ω) → Pr−1(Ω) such that for each function f ∈ W r

p,g(Ω)

‖f − Pf‖Lq,v(Ω) .
p,q,r,d,a,c0

Sp,q
u,w

∥∥∥∥∇rf

g

∥∥∥∥
Lp(Ω)

(see [17, proofs of Lemmas 5, 6]). Observe that by Theorem A it follows that in this

case
∞∑
j=0

wqj < ∞; i.e., v ∈ Lq(Ω) (the last property follows from [17, formula (37),

Corollary 1]).
In this paper we consider the case v /∈ Lq(Ω). Since W r

p,g(Ω) ⊃ Pr−1(Ω), the
inclusionW r

p,g(Ω) ⊂ Lq,v(Ω) fails. Therefore, instead ofW r
p,g(Ω) we consider the reduced

Sobolev class Ŵ r
p,g(Ω).

Definition 3. We denote by Ŵ r
p,g(Ω) the completion of the set

W r
p,g(Ω) ∩ {f ∈ C∞(Ω) : ∃ε > 0 : f |Bε(0) = 0}

under the norm ‖f‖W r
p,g(Ω) :=

∥∥∥∇rf
g

∥∥∥
Lp(Ω)

.

Proposition 1. Let the functions ϕg, ϕv satisfy (5), and let
∞∑
j=0

ϕqv(2
−j) · 2−jd = ∞.

Then there exists a John domain Ω such that for any n ∈ Z+

dn(Ŵ
r
p,g(Ω), Lq,v(Ω)) = ∞.

Therefore, there exists a John domain Ω such that for any finite-dimensional sub-
space L ⊂ Lq,v(Ω) and for any bounded subset M ⊂ Lq,v(Ω) we get Ŵ r

p,g(Ω) 6⊂ L+M ;
i.e., the class Ŵ r

p,g(Ω) cannot be imbedded continuously in Lq,v(Ω). For this reason we
need to impose some more assumptions on domains Ω.
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Definition 4. Let b > 0, c ≥ 1. We say that Ω ∈ FC′( b, c) if for any x ∈ Ω there
exists a curve γ̃x : [0, T̃ (x)] → Ω ∪ {0} with the following properties:
1) γ̃x is absolutely continuous,

∣∣dγ̃x

dt

∣∣ = 1 a.e.,
2) γ̃x(0) = 0, γ̃x(T̃ (x)) = x,
3) c−1|x| ≤ T̃ (x) ≤ c|x|,
4) Bb·min{t, T̃ (x)−t}(γ̃x(t)) ⊂ Ω for any t ∈ (0, T̃ (x)).

Suppose that Ω ∈ FC(a)∩FC′({0}; b, c) and the weights g, v : Ω → (0, ∞) satisfy
(4), (5). Let 1 < p ≤ ∞, 1 ≤ q <∞, r ∈ N, δ := r + d

q
− d

p
> 0.

Denote Z = (p, q, r, d, a, b, c, c0).
For each 0 ≤ k ≤ r − 1 we set u(k) = {uk,j}j∈Z+ , w(k) = {wk,j}j∈Z+ , where

uk,j = 2−j(r−k−
d
p)ϕg(2

−j), wk,j = 2−j(k+
d
q )ϕv(2

−j).

Theorem 1. Let S̃p,q
u(r−1),w(r−1)

< ∞. Then Ŵ r
p,g(Ω) ⊂ Lq,v(Ω) and for any function

f ∈ Ŵ r
p,g(Ω)

‖f‖Lq,v(Ω) .
Z

S̃p,q
u,w

∥∥∥∥∇rf

g

∥∥∥∥
Lp(Ω)

.

Theorem 2. Let 0 ≤ k ≤ r − 2, S̃p,q
u(k),w(k)

< ∞, Sp,q
u(k+1),w(k+1)

< ∞. Then Ŵ r
p,g(Ω) ⊂

Lq,v(Ω) and there exists a linear continuous projection P : Lq,v(Ω) → Pr−1(Ω) such
that for any function f ∈ Ŵ r

p,g(Ω)

‖f − Pf‖Lq,v(Ω) .
Z

max{S̃p,q
u(k),w(k)

, Sp,q
u(k+1),w(k+1)

}
∥∥∥∥∇rf

g

∥∥∥∥
Lp(Ω)

.

Let Ω ∈ FC(a) ∩ FC′({0}; b, c), Ω ⊂
(
−1

2
, 1

2

)d, R = diam Ω, and let the weights g
and v be defined by (1). We set Z∗ = (p, q, r, d, a, b, c, g, v, R). Denote α = αg +αv,
ρ(y) = ρg(y)ρv(y).

In estimating the Kolmogorov, linear, and Gelfand widths we set, respectively,
ϑl(M, X) = dl(M, X) and q̂ = q, ϑl(M, X) = λl(M, X) and q̂ = min{q, p′},
ϑl(M, X) = dl(M, X) and q̂ = p′.

Theorem 3. Let r ∈ N, 1 < p ≤ ∞, 1 ≤ q < ∞, δ := r + d
q
− d

p
> 0, Ω ∈ FC(a) ∩

FC′({0}; b, c). Suppose that (1), (2) and (3) hold, βv ∈ R\
{
d
q
, d
q

+ 1, . . . , d
q

+ r − 1
}
.

1. Let either p ≥ q or p < q, q̂ ≤ 2. Suppose that α 6= δ
d
. We set θ1 = δ

d
, θ2 = α,

σ1 = 0, σ2 = 1. Let j∗ ∈ {1, 2} be such that θj∗ = min{θ1, θ2}. Then

ϑn(Ŵ
r
p,g(Ω), Lq,v(Ω)) �

Z∗
n( 1

q
− 1

p)+
−θj∗ρ(nσj∗ ).

2. Let p < q, q̂ > 2. We set θ1 = δ
d

+ min
{

1
2
− 1

q̂
, 1
p
− 1

q

}
, θ2 = q̂δ

2d
, θ3 = α +

min
{

1
2
− 1

q̂
, 1
p
− 1

q

}
, θ4 = q̂α

2
, σ1 = σ2 = 0, σ3 = 1, σ4 = q̂

2
. Suppose that there

exists j∗ ∈ {1, 2, 3, 4} such that θj∗ < minj 6=j∗ θj. Then

ϑn(Ŵ
r
p,g(Ω), Lq,v(Ω)) �

Z∗
n−θj∗ρ(nσj∗ ).
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