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Abstract. The dependence of the smoothness of variational solutions to the first
boundary value problems for second order elliptic operators is studied. The results
use Sobolev-Slobodetskii and Nikolskii-Besov spaces and their properties. Methods are
based on the real interpolation technique and on generalization of the Savaré-Nirenberg
difference quotient technique.

1 Introduction

Let (M,g) be a smooth connected compact oriented Riemannian manifold without
boundary, {2 C M be a subdomain with a Hélder boundary. The aim of this paper is
to study the dependence of the smothness of the variational solutions to the equation

Au=f, ue H(Q), (1.1)

on the regularity of the right hand-side f € H~'*¢(M), ¢ > 0. By definition, the

operator A is generated by the continuous positive bilinear form ® defined on Jis 1(Q),
associated with the differential operation A’, which is locally represented as follows:

—\/m@- (\/detg a%%u) +b'0u + cu (1.2)

where @/, b*, ¢ are sufficiently regular coefficients.

By ellipticity, if the right-hand side belongs to Ls(£2), then the solution of (1)
belongs to H?.(2). One cannot replace H?,(Q2) with H%(Q) even if the boundary 9
is Lipschitz continuous [4]. However, this is possible whenever 2 is a convex set or
9Q € CH ([4], Theorems 2.2.2.3, 3.2.1.2).

Suppose  C R? is a bounded domain with a Lipschitz boundary, A = —A, and
H~'+5(Q) is the space of all functions v € H~'**(M), such that suppv C Q. It was
shown by Jerison and Kenig (in [6]) that if f € H'"(Q), s € [0,1/2), then the
solution u € H'*(Q). In [11], G. Savaré elaborated a new method to generalize this
proposition to the case of Lipschitz coefficients.
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Theorem [11]. Let Q C R be a bounded domain, 92 be a Lipschitz continuous bound-
ary, A be generated by (1.2), and a” € C%Y(Q) be a symmetric positive definite matriz
in Q, 0 =0, c=0. Then, the solution of (1.1) belongs to H'**(Q), s € [0,1/2),
whenever f € H'T5(Q).

In this paper we establish similar results in the situation when both the boundary
and the coefficients are Holder continuous. One of the results is the following (the
proof will be given in Section 5).

Theorem 1.1. Let M be a d—dimensional C**—smooth compact Riemannian manifold
without boundary, a domain @ C M be such that 02 is Holder continuous of order
Yo € (0,1]. Moreover, let A be generated by (1.2), for some ¢ > 0 the coefficients a”
and b* define a symmetric positive definite C®(M)-smooth section of T? M, L s (9)-

1—=v¢

section of T M respectively, ¢ € Wd_H%JrE(Q) with 0 < v, < 1 (¢ € Lax{a2+e () if
Ye = 1), and the form ® be positive in ]fll(Q) Then the operator

R:H7(M) — H™25(Q), s€[0,7./2),
solving problem (1.1) is continuous.

Our method is based on ideas in [12] and [13].

2 Terms and concepts

2.1 Domain (2

Further assume that (M, g) is a C!'-smooth connected oriented compact manifold
without boundary and that every coordinate mapping acts to R? with fixed Euclidean
norm | - |.

Definition 1. A non-empty open set 2 C M is called a domain with a Holder con-
tinuous boundary of order 0 < vq < 1 (briefly 9Q € C°7) if there is an atlas !
V = {(V,ky)} such that for any (V,ky) € V there eixst a unit vector &, € R? and a
function gy : & — R such that gy € C%%(&E), ky(V N IQ) is a subset of the graph
of gy and the intersection of ky (V N Q) with the epigraph of gy is empty.

2.2 Operator A

Let us suppose that a” and 0’ in (1.2) define a symmetric positive definite C%7(M)-
smooth section A of T?M, and L_a_(€)-section b of T M respectively. We shall denote

1—7¢

by G the section of T?M generated by the Riemannian structure g. Since A and G
depend on x € M, we denote them as A, and G,. The following conditions are
assumed.

A1 There exists a constant o > 0 such that

Vo € M VEE€ T M = aG,(&,€) < AL(E,€).

Here V is an open subset of M and sy : V — V C R is a diffeomorphism.
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A2 Section A belongs to C%(M), 7. € (0, 1].

We endow the space C%7(M) by the following norm:

def
1Allconean = 1 Allcwn + [Aleose ),

where

AL, .
||A||C(M) = MaXgzen MaXeeTs M E£0 ngg [A]Coﬁc(M) = ZU max;; [ag]COva(U)’

v(x) —v(y
SR 1 Co 1]
z,yeUaty |z —yl

, v:U—R,

Here U = {(U, ky)} is a fixed finite atlas for M, and a} are the coordinates of A with
respect to the maps kp. It can easily be proved that the convergence in C%7% (M) is
independent of U = {(U, ky)}.

Suppose that

(u,v) g1 /G (Vu, Vo)dp, (u,v) ) = / uvdj,

Q

are inner products in H*(€2), Ly(€2) respectively, and that the measure y is associated
with the Riemannian structure g. Let for 1 < p < oo

1/p /2 1/p
ullz,@ = lulPdu ), ulle, !G (Vu, Vu)|”“du |, pell,00)
o W (Q)

= esssup |G, (Vu, Vu)| /2.
e

iy = esssup (@) el g1 o

Further denote

vlu
T p———— HH\A” € (1,00), 1/p+ 1/q = 1.
uer(Q ), u#0 WI(Q)

A3 Assume that b, ¢ are such that the form @ is positive and continuous in i Q).

Consider the following representation of ®:
O(u,v) = Po(u,v) + D, (u,v),

Do (u,v) :/ A(Vu,Vvu)dp, ®,(u,v) :/b(Vu)vdu+/cuvdu.
M 0

Q

We consider fQ cuvdyp as the action of the functional ¢ on the product uv. Since A3 is
satisfied, this action is well defined. In the same way, one can define 7(f, v) fQ fudp.

Then a function u € Hl(Q) is a weak variational solution to (1.1) with f € H=}(Q) if
and only if

Og(u,v) + O, (u,v) =7(f,v) Vv e Ifll(Q) (2.1)
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By A3 it follows that there exists a unique operator 2 A generated by ®, such that
Au = f. The operator A has a bounded inverse operator R : H~*(Q) — Hl(Q)

In the fourth section we shall impose additional conditions on the coefficients of A
(see (4.13)—(4.14)).

Let g(-, -) be the section of T*M x T* M associated with the structure g and C,,,;, be

the embedding constant of the continuous embedding H? (Q) — L, (), 1/p+1/q=1/2.
Then, A3 holds whenever b € L,(Q), c € W, (), and

Cemp(IPlL,) + llellw, 1) <

where « is the constant in A1 and

1/p
b Loy = esssup ig(b,b)|Y2, b, = (/ \g(b,b)\p/Z) , pEl,00).
TE Q

2.3 Weak smoothness

Further we shall use the following notion. Let L be a manifold (not necessarily com-
pact), E(L) be a real Banach space of functions f : L — R. Denote

E(Q) o {ue E(L)| suppucC Q}.

Nikolskii spaces

Let us denote vj,(z) = v(z + h) for v : R? — R. We need to recall the definition of
Nikolskii spaces NFt7(R?), v € (0,1], k € Zy, p € [1,00]:

def
N RY) = {o € WERY | 0] go oy 2 Nollwg + ol }

0%, — 0%0|| L, (ma)

max sup . 7€ (0,1)
8 def lo|=k perd ho£0 g
k - .
NEHY (RA) Haav% _ 28%h + aaUHL (R4)
max sup E— y=1
lal=k herd, 0 Al
Here oo = (o, ..., aq) € Z4 are multi-indices, 9% = 951 --- 954, |a| = Z?Zl a;. Assume

that N;gv(Rd) C NF(R?), v € (0,1), is the space of all functions satisfying the

condition 3
|0%0, — 00| 1, ey

lim max
|h|—0,00 |a|=k |h|Y

Let U = {(U, ky)} be a certain fixed finite atlas of M and {¢y} be a corresponding
smooth partition of unity. We define N¥*7(M) (or u € N;i (M) as the space of all
functions u € L,(M) such that for any (U, xy) € U the product ¢y - u belongs to
N¥1(U) (or ¢y -u € NI§(U)), and

||u||NI’f+“/(M) = Z H@ZJUUHNI’?”W(U)v ||’LL||N§$«/(M) = Z ||1/}UU|IN§$W(U)'
U U

2 Friedrichs extension is meant [5].
3 In [7], it is denoted by B;f;g_ (R?) (see Proposition 2.4)
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By Lemma 4.2 in [9] it follows that the definition of the spaces N;*7(M) is independent
of atlas and partition of unity.
Let us consider a compact metric space (X, 0). For sets A, B C X let

dist(A, B) € inf 4(z,y).

reA,yeB

Proposition 2.1. For any open set 2 C M the following embedding holds

o

W(Q) — N;"(Q), m=1,2, péell, o0l

p

Moreover, for any function v € I/OV;(Q), any map (U,ky) of M, and any open set
Ve QNU the following implication holds

Vo € C(U)Vh € R:|h| < dist(V, (N U)) = [lp(vn — v)ll,0v) < lelle)Crllvl fnalth

i@ = 0l 10, < Nello Crllel g Il

Here dist is computed with respect to the metric | - | in ky(U), and partial difference is
defined with respect to the linear structure in the image of Ky .

The statement above follows by Proposition I1X.3 [2]: if v € W, (U'), p € [1, ],
U € U’ C RY then for any h € R%, |h| < dist(U, oU")

[on = vllz, @) < [RIIVOllL, @)
Furthermore, if v € W, (R?), then

lvn — vl L, ey < |A[IVV] L, R (2.2)

Besov spaces

Let us recall the definition of Besov spaces (following [14]). Propositions 2.2 and
2.3 below follow from the similar propositions for domains with Lipschitz boundaries
Q) C R? and the fact that for any simply—connected bounded domains V;, V5 C R there
is a linear homeomorphism K : folm(VQ) — Ii)[m(Vl), m = 1,2, K : Ly(Va) — Lo(V1),
K :u v uo Ky, generated by Ct1-diffeomorphism K : V; — V5. Here K| is defined
in a larger open set V 3 V.

Assume that F is the Fourier transform, My = {£ € R? | |¢] < 2}, and M; = {€ €
R? | 2771 < |¢| < 2911} for j € N, & is the space of tempered distributions.

Definition 2. Let us define for s € R, p € [1,00) the following spaces

B (R dy = {fGS’(Rd |f Zaj x); suppFa; C M;;

1/q

<o0yp, q€]l,00)

I{a;}

15(Ly) = [2(25j||aj||L,,(Rd))q

=0
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B (RY) = {fES/(]Rd ]f Za] x); suppFa; C Mj;

s i) = sup 29110y |, gy < oo} -
JELy

with the norms

/]

By RY) = inf  [[{a;}
fE=X20a5

The space Bj (M) is defined by a finite atlas & = {(U, sy)} and a subordinate
partition of unity {¢y}, suppyy C U, in the following way. We suppose u € By (M),
if Yyu € B;q(U ); and introduce the norm

By 4(M) = Z [¢vrul

ZZ(LP)'

[ul Bs ,(U)* (2.3)

By the interpolation property of B;’q(]Rd), one obtains that the norm is independent
on U and {¢Yy}, up to equivalence.

For s € R, \Z,, Nikolskii and Sobolev—-Slobodetskii spaces are the special cases of
Besov spaces:

Ny (M) = By (M), N;(Q) = B} (),
Wy (M) = B} (M), W;(Q) = B; (%),

and for any p € (1,00), g € [1,00], s > € > 0, the following chain of embeddings iholds
Bite(Q) — B51(Q) — B2, (Q) — B: . (Q) — B (Q). (2.4)
Let us denote B, () = B, (M)/ {ue By (M) | ulg = 0} with the norm

dﬁf
Bpa(@) =

0]

J(M)

Consider (-,-);, to be the real interpolation functor.
Proposition 2.2. For any s € (0,1), ¢ € [1,00], and domain* Q' C M with a Lipschitz
boundary, Besov spaces are the results of the following interpolation procedure:
B3 o() = (La(Q), H(Q))sqr Bal* () = (HY(), H* ()05
By o (Y) =(La(Q), HH(Q))s03
in the case of R the similar relations hold
B; ,(RY) = (La(R), H'(RY))sq, Byf*(RY) = (H'(RY), H*(R7))s,
By 4(RY) =(La(R), H™H(R7))s

4 Since OM = @ € C°1, in Propositions 2.2, 2.3, 2.4 one can suppose that the domain €’ coincides
with M.
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Proposition 2.3. For any t,s € (0,1), 0 < 81 < 89 < 1, ¢ € [1,00], and domain
' C M, o € C%, the following relations hold

Y

(fofl(Q'),lefgs(Q’))m = HW(Q), (HHY), By ()2 = HT(Q)
(Byg (), Byg? ()2 =H ™ 170%702(QY);
and in case of R one has
(H1(Rd)7321;s<Rd))t’2 — HYS(RY), (HY(RY), By 1+S<Rd)) — {5 (RY),
(Byg! (RY), By (RY),p =H -0 o2 (R,

Proposition 2.4. [7] Let se R, p € (1,00), q € (1,00), Q C M be a domain with a
Lipschitz boundary. Then

[K0()] = B, [Br (@] = Byy@), 1p+ 1/ =1, 1/g+1/d =1

Proposition 2.5. [11] Let Fy, E3, F' be Banach spaces, the embedding F1 — Eq be
continuous, an operator T : E1 — F be bounded. If there exists a constant L > 0 and
a number s € (0,1) such that

ITellr < Liellg, llell,, Ve € En,

then by continuity one can extend T to an operator acting from (Ey, Ey)s1 to F, and
there is a constant cs depending only on s for which

17| (Bo,E1)sq—F < CsL.

3 Estimates of solutions to problem (1.1)

Definition 3. A bilinear form ( is called Holder continuous of order v € (0,1] in
H C dom ¢ C Ly(2), Q C M, if there exists an atlas U such that for any map
(U, ky) € U and any function ¢ € CHH(M) with supp ¢ C U there are constants Cy,
C¥ such that

Yu € H Vh € R% |h| < dist(supp ¢,0U), z = p(u—uy) € H = |((2)| < Cu Cf|ullu|h],

where puy, equals ¢(x) - [u okry o(x+h)o /-T,U] for x € supp ¢, and equals zero if
T ¢ Supp .

Theorem 3.1. Assume that u is a solution to the equation (1.1), Q has a Holder
boundary of order vq € (0,1], A satisfies conditions A1-A3, the linear forms ®,.(u, -),
7(f,-) are Holder continuous of order 5y € (0,1] in H'(Q). If vo = min{~., fo}, then

+C e ] IR C R Y

||u||?§/21+wﬂ0/2(9) < C(A’ Q, M) HY(Q)

where C'(A,Q, M) > 0 depends only on A, Q, M, and C’Hf(? , C’il(iﬂg are the constants
in Definition 3.1.
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Further, if u € N3T5(Q), s € (0,1/2), and the forms ®.(u,-), 7(f,-) are Holder
continuous of order 3, € (0,1] in Ny™(Q), v, = min{y., 3}, then

N1+S(Q) N1+S(Q)
ol 2 gy < AR [l ) + lllsgeoiey (Cy @ + Caes”) |- (32)

rl+s nrl+s
where C’i\(f?)(m and Cq]:[f(u .()Q) are the constants in Definition 3.

Proof. As the N3(Q)-norm is independent of the atlas in its definition (up to equiva-
lence), we shall assume that this atlas coincides with atlas V in Definition 1. Let {¢y }
be a subordinate (with respect to V) partition of unity, supp ¢y C V. Consider the
function ¢(h) = |h|+Cq|h|*®, h € R%. Then the functions (Y )pren)e, are well defined
for |h| < ¢~ [dist(supp ¥y, V) /20].

Since for the proof it suffices to obtain (3.1)—(3.2) with the left-hand side replaced
by Yyu, (V,ky) € V, without the loss of generality, we can assume that a chart V' is
fixed and for convenience we shall write ¢, £ instead of ¢y, and &,. We estimate the
difference

o (o= )l gy < 6= )l gy + o = )y (33)

where u4; = urgn)e. One can note that it is possible to rewrite the terms in the right-
hand side of (3.3) as ||¢(u; — U)Hﬁl(v)’ where v is equal to u and uy, for the first and

the second terms respectively. The following inequality holds:

ot = 0y, = [ 0 (e = 0D = [ a9 sl = o)
+ [ alat o,V o= oD = [ ooV o= v
+ [ oV o= o) e = ).

where g(z,7) = G.(17,7). Due to smoothness of M, it is evident that

/M 8z + O(R)E, Y [bos(u — vo))dpis — / 0z, ¥ [y — v_)]) iy

M
2
< COLQ)[lovsan [l o 17,
] 869 sl = e e = di) < COL ) el ™
Thus
_ 2 _ 2 2 ole) A 2 ale)
It =l ) < =)l |+ Ol g [10® + Conpllulis, o I,
- 20 < - 2O 20 ,YQ 5 20 ’YS).
G = un)li, ) < o= ()=o), + Canllully, o 17° + Casgolllly, o 10

Let us define the following operator[12]:

TYu = Yup + (1 — P)u,
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and introduce ¢1(h) = ¢(h)E, @2(h) = h 4+ ¢1(h). Since supp(u — Ti(h)u) C Q and
H'(Q) = H'(Q) one can obtain that (u — T:fi(h)u) € H'(Q).
Hence, by condition A1 it follows that:

v v
Do (T3, gy = . T, gy = )

P P
@0 (Tmm“ — U T, mu — “) )

[(u — )
[(u = (un) )

HY(Q) —

Qo+

H(Q) —

Do (T2 gyt = 1, T gy = 1) = B(T2 10, T 10) = @, 0) + 20w, T = ).
) (3.4)
Since the linear form 7(f,-) is Holder continuous of order 3, in N, ™(Q), s € (0,1)

and in H'(Q), s = 0, we have

‘h"mﬁo’ s =0,

7(f, (U = ugm))| < CnvaCfff 5
7(f, (U = ugm))| < CQvaOT(f HuHN1+s @lh[®%, s €(0,1/2).
Similarly, as the form ®,(u, ) is Holder continuous of order 3, we obtain
@)

u,)
+s Q)
D (u, Y (u = gy m)))| < CQCWC () [ull sy 22, s € (0,1/2).

[Py (1, (U — ug,ny))| < CQCWC HUHHl Q)‘h|’mﬁo s =0,

It remains to estimate the terms <I>0(T$i(h)u, Tw () — Po(u,u) in (3.4). Let us note

that the gradient of Ti(h)u equals
VT gyt = (Vg + (1= ) V) + (V) (g, — ) = Th ) Vit (V) (g, () — ).

For a(x,n) = A.(n,n) we see that
O (T oyt T 1) — Po(u, ) (3.5)

< /M a(z, T:i(h)Vu + (V) (g, () — u))dp — /M a(z, Tso oy Vu)dp (3.6)
+/ a(z, T;i(h)Vu)du — / a(z, Vu)dpu. (3.7)
M M
Due to condition A2 and the Cauchy inequality we have
a(z, &+n)—a(z,€) < (a(z, n)a(z, 26 +n)"* < | Allcans(en)* (28, )" + a(z,m)"?).
Thus for (3.6) the following estimate holds
/M a(x,T;/’i(h)Vu + (V) (ug,(ny) — u))dp — /M a(a:,TZ_(h)Vu)du

< Coll Ao 1 — Wl zawy (190 — 0)lzay + 2T gy Vil ) -
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By Proposition 2.1 we conclude

||¢(U¢i(h) - U)HLQ < CyuCa

(@)’

and therefore we can obtain an upper estimate for (3.6) via C/, Hl(Q)

Since a is convex, we have
az, Ty, (h \Vu) — a(z, Vu) < [ f(h)a(:c,Vu)} — a(z, Vu) = ¢ [a(z, Vug,m) — a(z, Vu)] ;

thus,

/M a(x,T;i(h)Vu) —a(x, Vu)du < / Y [a(z, Vug,m) — a(z, Vu)] du,

M

so, by Hélder continuity of A we have the following estimate for sum (3.7):
| o Vo) = oo, V]
< /M V_pma(x — @i(h), Vu)dp_g,» / Y- a(z, Vu)d
< [ Wi = st = i), Ty + [ - (ol = i(h), V) = e V)

+ /M U 6o = i), Vo) di- gy — di) < [[AllcoseanCaCr Colb[ ™ ully,

4 Conditions for Holder continuity of linear forms
Lemma 4.1. We have the following inequalities

lu = wnllygr ey < Copa B> ullnge ey, w € NPRY), 0<yi<p2<l;  (4.1)

o= unllag iy < Coudlb "l we HURY, 0<qu<l (4
l|lu — uh||N21—m(Rd) < C’vhllizl“ﬂ?Hu||N21+wz(Rd), we NyTPRY, 0<y <y +72 < 1.
(4.3)
Proof. In fact, by estimate (2.2) we have
lu — unll gy < 2|\l goay; (4.4)
[ = un| ey < [A]]|wll o ray; (4.5
[ — unll ey < [R]Jul| 2ra)- (4.

By the real interpolation of (4.4), (4.5) and by Proposition 2.2 one can obtain

lu = wnll o ey = llw = unll o @ay,m @), 0 < Chpx - 2B Jullan ga).
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In the same way, by Propositions 2.2, 2.3, by real interpolation of (4.2) and (4.6) we
conclude that (4.3) is true. Indeed, for 0 < v < 1 — 75, we have

[l — ] N3t R T [l — wn |z ma), Nz (R)). oo

< Coo R Rl 2 ety 11 ety o = Crsl I ull nz-+(cy-

t,00
where t =1—17,, s =1—Z. As above, by real interpolation of (4.5) and (4.6) in the
case of 71 = 1 — 72 we infer that (4.3) is true. Since 7}, is a linear continuous operator
in N3 (R?), the following holds

Thus,
Ju — uh”N;l(Rd) < Cmt\h\(1_71)75HUH(N;l(Rd),Hl(Rd))t,w = 'Ylvt‘h|(1_’Y1)t||u||N;1(17t)+t(Rd)7
where t = 2= O

1=y °

5 /
Corollary 4.1. For any function f € [NQIBS(Q)] , s €(0,1), the linear form 7(f,-) is
Hblder continuous of order (s +t) in the space N21+t(Q), s<s+t<1, and of order s
in the space H'(Q), and

NIFH(Q) HY(Q
b =0y =

CT(f,') — [Nzl’gg(Q)]/

If f € Lo(Q), the linear form (f,") is Holder continuous of order 1 i the space H'(€),
and CT}(I;(;)) =/l

Proof. Indeed, for an arbitrary map (U, ky) of the atlas of the manifold M and a
function x € CH1(U), suppx C U, t > 0, using estimate (4.3), one can obtain:

IT(f, x(u —un))| < ||f||[N2155(Q)]'||X(U = un)|| 51500 (4.8)
< Cu(lIxlleoran + 1)||f||[N§BS(Q)]'||XU - (XU)hHNQ{gS(Q) (4.9)
< OM,x||f||[]\721?(9)]’||U||N;+f(g)|h|s+t- (4.10)

Now we must only prove that the form 7(f,-) is Hélder continuous of order s. This
follows by combining inequality (4.10) and estimate (4.2) of Lemma 4.1. H

The following embedding Theorem is proved in [1].

Theorem 4.1. Let 1 < py < p; <00, 0<s1 <s9<1. Then

d d

N3O(RY) — NSU(RY), 59— — =81 — —;
Po b1

S d d d d
Npg(R ) = Ly, (R, sg—— >——.

Do P2

One can replace in the formula above R* with M.
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It follows by Theorem 1 in [3] that

d d
NO(R?) 5 Ly, (RT), 59— — = ——.
Po P2

Lemma 4.2. Let u € N§(M), v € NJ(M), w € Ly(M), 0 < a < 3 < 1. Then for
any €' > 0 the products uv, wv belong to N& (M) and Ls_(M) respectively, where

o d
i 5

S
Proof. Since the multiplication and embedding operators
Lo(M) x La(M) — Ly (M), NQﬁ(M) — Ny (M)

are continuous, for u € N¢(M), v € NJ(M) it clearly follows that the product uv
belongs to N*(M), s = 1. Let us refine the order of summability s. Without loss of
generality, we can assume that the supports of all functions u, v are contained in a
subdomain of a fixed chart U. Hence, the shift operator is well defined. Therefore

sup luv — wpvn || L, n) [ (u — un)vnl| L) . w(v — vp)| Loan
h70 |fo] ©h#O Al h#0 |h|e ’
and by Holder’s inequality it follows that
[ (w = up)on||,ar) 1
|h]e = |h|aHU_uhHLpls(M)||Uh||qus(M); (4.11)
|u(v — vn)l L. an) 1
e = e lull L,y n v = Vil Loyoany, (4.12)

where p;,q¢; > 1, 1/p; +1/q; =1, j = 1,2. For the boundedness of the right-hand side
of (4.11) as |h| — 0 it is sufficient to consider the case p;s; = 2. By Theorem 4.1, for
any £ > 0, we have the embedding Ny (M) < Ly, (M), and

1 1 1 1 1
F— 6, +_ — = —, 5 — II]iIl 1 —c 27 Ci )
2 qs P1S1 @181 S1 {( )/2,8/d}

Similarly, by Theorem 4.1 it follows that Ny (M) < N2_ (M), N§(M) < Ly,e, (M)

q252
and

1 I pf-a 1 I« 1 1
2 s d 7 2 psy d’ pisi @5 S1
By setting s = min{sy, s2} we obtain the required, statement. O

Lemma 4.3. [4] For any function u € Ly(M), v € H' (M), and € > 0 the product uv
belongs to Ly(M), s = min{2 — ¢, 74 }.

Lemma 4.4. The linear form ®,(u,-), u € ]fll(Q), is Holder continuous of order
By =v—+te (0,1, v € (0,1], t € [0,1), in Nikolskii space NJTH(Q), 0 <t <1 (HY(Q)
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if t = 0) if for some number € > 0 the following conditions hold.
1) if v € (0,1), then

/
be L (Q), ¢ {Nl i EO(Q)] : (4.13)
and
14t o1
CN2 (Q):C«H(Q): |bL Q—|—|C ’ Ul o1 o0
- (u,) - (u,) Bl %( ) < {sz_go(ﬂ)} | HH @)
2)ify=1,1t=0, then
bec Loo(9), € Lmax(zie,ay(©), (4.14)

and

H*(Q
o™ = (18l o) + el o)

oy
(The constants Cq]jf(w_) ), C; (igi are introduced in Definition 3.)

HY(Q)

Proof. Let us set ¢, = ffi, /gy +1/py = 1, p. = 7% — ¢ and consider an arbitrary

function y € CYY(U), suppyx C U, (U, ky) is a map of the atlas of manifold M. By
condition (4.13) using Lemmas 4.1 and 4.2 one can obtain

/Qb(Vv)X(u — uh)d,u‘ < Ibllz,, @) - HG(VU,VU)1/2X(U — uh)HLpb(Q)

< Cu(L+ [Ixlleor@) Pl @10l 51 g X0 = xall 5357
< Cuybllzg, @R ol g g lullve,

where N* = N}t (Q) if t € (0,1), and N° = H'(Q). In analogous way

/chx(u - uh)du' < el @ IoxCe =l 30

< Co (1+ Ixllonsn) Nell s anp 191 s oy I = il
< cU7X||c||[N; ] ol

Hl Q)“u”Nt

As above, using Lemma 4.3 and Proposition 2.1 one can conclude that

/Q (Vo) (s — wy)dp

< Cu (L4 [Ixlleor @) Pllw@lvll 1 g e = Ocwnllzae)
< Cun bl R [0l 5

< [Ibllzoo) - HG(VU, Vo) 2y (u — uh)HLl(Q)

HI(Q HUHI?II (e}

and

[ et uh)du\ <Nl @ - loxt —w)ly, @

< Cu (L4 lIxlleor @) lellza@loll g g lIxe = (xwalla@)
< Cuxllellze. @ Bll[vll 51

HY(©)’
where 1/q. +1/p. = 1. O



On the smoothness of solutions to elliptic equations in domains with Holder boundary &9

5 Savaré-type theorems

Taking into account the Propositions of Sections 3 and 4 let us prove the following

Theorem 5.1. Assume that M is a CYt—smooth compact Riemannian manifold with-
out boundary, Q@ C M be a subdomain, 0Q € C°%, operator A satisfies A1-A3, and
for v = 7. € (0,1) and v = 7. = 1 conditions (4.13), and (4.14) respectively, are
satisfied.

Then the operator solving problem (1.1)

R : (Hl(Q), <H1(Q), [N;O%(Q)}') 1/21> — HY2(Q) t e (0,1), 7. € (0,1);

R (H@), (H), L), ), — HT(0), 1€ (0,1), 7e=1
(5.1)

18 continuous.

Proof. Let us use Theorem 3.1 and estimate the constants Cf(l;(.?), qu 1(1(?; using Corol-

lary 4.1 and Lemma 4.4. Then
2
01 s gy < el g gy (Il gy + 1 ey + Nl s )

< Ol @1l ey

On one hand, it follows from Proposition 2.5 that the operator
~ / 5
R - <H1(Q), [N2176’YC(Q>i| ) N N21+'m%/2(Q> - N21+fmfyc/2<M)
1/2,1

is bounded. On the other hand,
R:H Q) — HY(Q) c H'(M),

therefore, applying Propositions 2.2, 2.3, one can obtain that R is bounded as an
operator from the space

(H‘%QL(H‘%QLL%Q”wzJ

£,2
to the space

(Hl(M)7 BI—H/Q%N(M))tQ _ H1+79'yct/2(M)7 te (07 1).

2,00
O

Now, let us prove Theorem 1.1. Due to embedding chain (2.4), for any ¢ > 0 from
(4.13), there exists € > 0 such that the following is true:

N'e () = NI 2Q) W0 9(Q), e € (0,1),

d
d—1_ = d—l’o d—1
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and one can choose ¢ — 0 as € — 0. Thus there is a linear bounded operator

v (o) - (@)

d—1

and hence the conditions of Part 1 of Lemma 4.4 are satisfied if ¢ € W, 'H7°%(Q).
Similarly, by Proposition 2.4 it follows that the operator

~ / - !
So: Byt e(M) = [N ()| — |Nag @), e,
is well defined. Using Propositions 2.2 and 2.3 we conclude

- _ _ So _
32,11+VC/2(M) = (H(M), B3y (M) 121 = (HH (), By 77(Q) 12,1,

hence, the operator
R: (H—l(M),B;i”C/Q(M)) = H™'Wt2(0) — HYW2t2(Q) - t e (0,1).
’ t,2
is bounded.

We conclude with the following generalization of Theorem 1.1.

Theorem 5.2. Assume that M is a CYt—smooth compact Riemannian manifold with-
out boundary, Q C M is a subdomain, C°®  operator A satisfies conditions A1-A3,

/
be La-(Q), ce {Nldﬂo (Q)] Y0 € (0,7¢] -

1-v9

Then operator R solving problem (1.1) is bounded as

n— on—1_ n—1 "
R: HO b ) et () ) e 0,1 (5.2)
R: B0 - N

and n € N if v < 7.(1 = 70/2).
Moreover, if there exists N € N such that

2N_,7N
N Q%,

>
%_Q—VQ 2

then R is bounded as

N_ ~ vo 2N 1Q7e
R H—1+22N17O+TNS(M) N 70(1,8)+%3<Q)’ s€(0,1), (5.4)
ESTE LSS PV ~ 14097
R: By, = (M) - N, (@), (5.5)
where

Ye 1 2N+1 — T

1 N+1
TN:W7O+'YQ(§_2_,YQ N1 70)-
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Proof. 1t is clear that (5.2), (5.4) come from the real interpolation of (5.3), (5.5) re-
spectively. Thus we must only check the boundedness in pairs (5.3), (5.5). From the

proof of Theorem 1.1, it follows that the operator R : B, 1+70/Q(M) — N;ﬂ“w/z(fl) is
continuous. Therefore the solution of (1.1) belongs to N, HVMO/ ?(€2), moreover
ll grvanorz gy < Cull Fll graorz apy;

and we can apply Theorem 3.1. By Corollary 4.1 and Proposition 4.4 it follows that
the linear forms 7(f,-), ®,.(u, -) are Holder continuous of order 3; = 7o+ s, s = Y070/2
in the space NHVSWUQ(Q) ifue Ifll(Q) and f € B;iﬂ”(M). Thus we apply Theorem
3.1 again and for 35 < 7. we have

2
HUHNQHBMQ/Z(Q) H ” 1+70( (79)2)(9)

¢ (Iull gasmarmosa g 1 L 70 4y + ] ,;l(m|ruuwwzm))
< é||f||B£1+wo/2(M)||f||B;i+VO(M)~
Hence due to Proposition 2.5 there exists a bounded linear extension of R from
(Bo,t (M), By (M) = By (M)
to N, e/ ?(Q). Thus the following estimate holds
< Gllf H2

HUH%I-&-WO(ZQQ-Q»....Q.(Zgl)n) ( +"‘+2%)W0 ?
N, (@) By, (M)
while n < N. Therefore the boundedness of R in pairs (5.3) is obtained. To justify

(5.5), let us set s +t = Ya7e, t = Yo <“’79 +---+ (VTQ)N> and use Corollary 4.1, then

R L o B e (e M e
Using Proposition 2.5 we obtain (5.5). O
Corollary 5.1. Let the conditions from Theorem 5.2 be satisfied, vy = 27279 Ye. Then

the operator .
R HM08(M) — H95/2(Q), s €0,1)

18 continuous.
In particular, if vo =1, A1-A38 hold,

be L (), c€ B (R),e>0,

then the operator _
R : H_H_t(Q) — H1+t(Q)7 te [0770/2)7

1s bounded.
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