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Abstract. In the present paper, we establish a base of investigation of multidimen-
sional variational functionals having C'-subsmooth or C2-subsmooth integrands. First,
an estimate of the first K-variation for the multidimensional variational functional hav-
ing a C'-subsmooth integrand is obtained and numerous partial cases are studied. Sec-
ondly, we have obtained C''-subsmooth generalizations of the basic variational lemma
and Euler-Ostrogradskii equation. Finally, for the C2-subsmooth case, an estimate of
the second K-variational is obtained and a series of the partial cases is studied as well.

1 Introduction

The subdifferentials are one of the main tools of modern nonsmooth and convex anal-
ysis. Starting from the classical Rockafellar subdifferential [19], many types of the
subdifferentials were introduced aimed to research different extremal and other prob-
lems of analysis (see, e.g.,[1]-[3], [5], [16]-[18]). Last decade, by the first of the authors
jointly with F.S. Stonyakin and Z.I. Khalilova, the so-called compact subdifferentials
(or, K-subdifferentials) were introduced and studied in detail (see [8], [12]-[15], [20]).
In particular, applications to the extremal one-dimensional variational problems, for
the case so called subsmooth integrand, were investigated explicitly (see (8], [12], [13]).

So, the natural and opportune problem is the investigation of multidimensional
extremal variational problems with subsmooth integrands. In the present paper, we
establish a base of such investigation. First, an estimate of the first K-variation for
the multidimensional variational functional having C''-subsmooth integrand is obtained
and numerous partial cases are studied. Secondly, we have obtained the C'-subsmooth
generalizations of the basic variational lemma and Euler-Ostrogradskii equation. Fi-
nally, for the C2-subsmooth case, an estimate of the second K-variational is obtained,
and a series of the partial cases is studied as well. Some of these problems in the
smooth case were investigated in [11].

Let us recall the necessary definitions and facts (see [10]). In what follows, E, F
are real Banach spaces, U(y) is a neighborhood of a point y € E, & : E D U(y) — F,

{Bs}s>0 is a decreasing as § \ ;o system of closed convex subsets of F', B = ﬂ Bs,
5>0
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co is the closed convex hull of a set in F', Fx is the normalized cone of a non-empty
convex compact K C F.

Definition 1. A set B is called the K-limit of the system {Bs}sso, briefly B = K-

lim B(g, if
6—+0

(i) Ve>030(e) >0: (0<d<d(e)) = (BC BsC B+U.(0));

and (ii) B is a nonempty compact set.

Thus, the K-limit is characterized by a uniform topological contraction of the sys-
tem {Bs}s0 to its non-empty compact intersection. The concept of the K-limit is used
in the following basic definition.

Definition 2. The K -subdifferential of a mapping ® at a point y € E in the direction
h € E is the following K-limit (if it exists):

Ix®(y, h) = K — lim @{@@Hh)_@(y) |0<t<5}. (1.1)
5§—+0 t

We say that ® is weakly K —subdifferentiable at y, if Ox ®(y, h) exists for any h € E and
it is a sublinear operator Ox®(y) : £ — Fk. If, in addition, the operator Ox®(y) is
bounded, then we say that ® is K -subdifferentiable by Gato at the point y. Finally, if,
in addition, the convergence in K-limit (1.1) is uniform with respect to all directions
h satisfying ||h|| < 1, then we say that ® is K-subdifferentiable by Frechet (or, strongly
K —subdifferentiable) at the point y.

Definition 2 is easily generalized to a case of the normalized cone F'. Properties of
strongly K-subdifferentiable mappings are described in detail in [13]. Here we recall
only a simple sufficient condition of K-subdifferentiability, which is related to the
concept of subsmoothness.

Definition 3. A mapping A : E D U (y) — Fk is called subcontinuous at a point
y € E (A€ Conly)), if

dA, € Fx Ve > 030 >0 (0 < |h|| <9) = (Aly+h) C Ay + U(0)).

A mapping ® : F D U(y) — F is called subsmooth at a point y € E (® € C,(y)), if
8K<I> - Csub(y)-

Theorem 1.1. If ® € C!,(y), then ® is strongly K —subdifferentiable at the point y.

Note also that in the case of functionals f : R™ — R the subsmoothness is equivalent
to the following simple condition: all upper derivatives (0f/0y;) are upper semicontin-
uous at the point y and all lower derivaties (Of/0y;) are lower semicontinuous at the
point y.

The concept of repeated K - subdifferentiability is introduced in the usual inductive
way.

Definition 4. Let a mapping ® : £ D U(y) — F be strongly K-subdifferentiable in
U(y). If the mapping O0x® : £ D U(y) — Fk is K-subdifferentiable at the point y,
then set

%P (y) := Ok (OxP)(y).
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For the repeated K-subdifferentiability there is also a simple sufficient condition
associated with the concept of C*subsmoothness.

Definition 5. A mapping ® : £ D U(y) — F is called C*-subsmooth at a point y
( 02 ( )) if aK(I) € Csub( )

sub\Y

Theorem 1.2. If & € C?,(y) then ® is twice (strongly) K -subdifferentiable at the
point y.

Here also, in the case of functionals f : R"® — R, the C?-subsmoothness is equivalent
to the simple condition: all upper demvatzves (8 f/0y;) are upper semicontinuous at

the point y and all lower derivatives - (8f/8yl) are lower semicontinuous at the point
Y. o

2 K-subdifferential of the basic variational functional

Recently, in the works [7], [10] the following estimate of the K - subdifferential of a
one-dimensional variational functional with subsmooth integrand

b
Mw=/f@wymw(fesdwﬂxR%yGGMM)

a

was obtained:

b
IxP(y)h C / (g—i(w, y,y')h + %(% y,y’)h’) du;

a

b _ _
13) 15)
/(%(x,y,y’)h+a—£(w,y7y’)h’) dr| . (2.1)

In this section, we generalize estimate (2.1) to the case of a multidimensional variational
functional with a subsmooth integrand:

/fm%vww (f € CLy(D x ™),y € CY(D)), (2.2)

where D is a compact domain in R™ with Lipschitz boundary. Recall that in the case of
a smooth integrand f(z,y, z) the classical formula for the first variation of functional
(2.2) has the form (see [6]):

0P(y)h = / (g—i(x, y, Vy)h + (V. f(z,y, Vy), Vh)) dz. (2.3)

In the subsmooth case the estimate of the K-variation of functional (2.2) takes the
following form.
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Theorem 2.1. Let the integrand f of variational functional (2.2) be C'-subsmooth:
f el (D xR (see Definition 1.3). Then ® is strongly K-subdifferentiable ev-
erywhere in CY(D), and the following estimate holds:

ocvic | [ (%m,y, Vo) + (Vof (5,9, V), vm) dz:

/ (%(:ﬂy Vy)h + (V. f(z,y, Vy),Vh)) I

(Yh € CH(D)). (2.4)

Proof. First introduce the auxiliary linear operator
(Ay)(z) = (x,y(z), Vy(z)), A: C*(D) — R™ x CY(D) x C(D,R").

Obviously, the operator A is continuous. Let us introduce also two auxiliary mappings,
namely, the nonlinear composition operator

By(A)(y) = f(A(y)), A€ L(C*(D);R: x C'(D) x C(D,R")),
By : L(CY(D);R" x CY(D) x C(D,R")) — C(D),

and the linear integral functional

G(v) = /v(x)d:v, G:C(D)—R.

Then the variational functional ® can be written as a composition
®(y) = (GoByo A)(y). (2.5)

Applying to composition (2.5) the theorem on K-subdifferentiation of compositions
(see [10] Theorem 3.13, p. 91), we obtain

O ®(y, h) = 9x(G o Byo A)(y)h C [0k G(By o Aly)) - (05 By (A(y)) - I (A(y)]]h. (2.6)
Now consider separately all the components in right-hand side of (2.6).

1) Since A is a linear continuous operator, then it is Frechet differentiable, and
A'(y) = A. Therefore,

Ok (Ay)(x) = (2, y(x), Vy(z)).

2) For the operator By(u) = By((u1, uz, us)) we calculate K—subdifferential in us, us.
Applying Theorem 3.13 in [10], p. 91, and Corollary 3.3 in [10], p. 89, we obtain:

d% Br(A(y))h C

C %@, Y, Vy)h + (V.f(2,y,Vy), Vh); %(ﬂf, y, Vy)h + (V.f(z,y,Vy),Vh)|.
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3) Since G is a continuous linear functional, then it is Frechet differentiable, and

G'(v) =G.

Hence it follows that

e d(y)h / { (2,1, V)h + (V. f (2,9, Vy), Vh):
J Loy

19)
e T+ zf<:v,y,v.y>,w>} da

(%@:, U, V)h + (V. f (2,5, V). vm) dz:

|/
/( (x,y, Vy)h + ( Zf(:t:,y,Vy),Vh)) dx | . (2.7)

Let us consider a special case of the obtained estimate. First of all, select an obvious
case when estimate (2.4) reduces to the classical equality (2.3).

Corollary 2.1. If, under the conditions of Theorem 2.1, (x y,z) and V,f(x,y, 2)
exist for a. e. x € D and for all y and z, then there exists a classzcal first variation of
the functional ®, which is calculated by formula (2.3).

Now note, a special case of the estimate (2.4), when the integrand f is formed by
an external composition of a sub-smooth function with a smooth one.

Theorem 2.2. Let

D(y) = /90 [f(z,y, Vy)lde (p e ClyR), feC(DxR"™M) yeC'(D). (28)

D

Then the following estimate holds:

Od(y)h { [ & 7.0 99) (%@ UV + (V. (2.9, V). Vh)) dr

D

b
7 0.9 (g—g<y Vy)h + (V. f(,9. V) vm) dx] (vh € C'(D)).

(2.9)
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Proof. According to formula (2.4) we have:

O (y)h C [ / (gyww,% V)b + (Tzg(F(z. 9, V), w))da:;

/ (8% (£ VDb + (T2 9), ) . (2.10)

Here, using smoothness of f, we have:

0 0
AU 7)) = & . 9)- a—];m Vy):

0
asO(f(x, Y, Vy)) = ¢ (f(z,y,Vy)) - V. f(z,y, Vy);

0 0
S, V) = B 9) - e V)
0
5.7 (@9, Vy)) =2 (f(2,y, Vy)) - Ve[ (2, y. Vy). (2.11)
Substituting (2.11) in (2.10), we arrive at estimate (2.9). O

Let us choose a special case when the variational functional (2.8) with subsmooth
integrand possesses a classical variation.

Corollary 2.2. If, under the conditions of Theorem 2.2, the function v is differentiable
a. e. onthe set {f(xz,y, Vy)|x € D}, then the estimate (2.9) turns to the exact equality:

02w = [ (5. ) (Z—J;(x,y,vwh (V.. V), vm) de (¥he C'(D)).

Note, as a special case, the case of an integrand formed by a composition of a
smooth function and module.

Example 1. Let

o) = [ Ife.0,V9)liz (e C(D).S € DRI (212)
D
Here, under the notation of Theorem 2.2, p(t) = |t|, whence it follows
. sign t, t # 0;
t);p(t)| = 2.13
(o(t)<7(0) {[_1;1]715:0_ (2.13)

Substituting (2.13) in (2.9), after transformations, leads to the estimate

Ok ®(y)h C / sign f - (g—g(:c,y, Vy)h + (V.f(z,y,Vy), Vh)> dx
(f#0)
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0
st [ (S Tt Vs a2
(f=0)
In particular, if mes (f = 0) = 0, then estimate (2.14) reduces to the exact equality:

o)l = V()= [ sign f- (%( U,V + (V. (2.5, V). w)) dr.

D

Next, we generalize the result of Theorem 2.2.

Theorem 2.3. Let

- / F(y, Vo) (g(z,y, Vi))dz (9 € CLy(R); f.g € CDXR™),y € C(D)).

(2.15)
Then the follouing estimate is valid:
9
O B(y)h / (a—§¢< (5o T+ (V] - . 9), 91 ) do
o / oo, ) (G4 (7.0,90) ) o
s Y
9

/ o(z, 9, V) ( ht (Vzg,Vh)) dm} (2.16)
D

(Vh € CY(D)).

Proof. According to formula (2.7) we obtain:

O B(y)h [( / a%(f o9, 5, Vo))h + (Vo f - oo, 3, V), w)) dz:

(/ 9 9(z,y, Vy))h + (V.(f - e(g(x,y, Vy))),Vh)) dfﬁ}- (2.17)

In this case, using the smoothness of f, g, and sub-smoothness of ¢ we get the following
equalities:

af

%(f(:r, y, Vy)edote(g(x,y, Vy))) = a—y(x, Yy, Vy) - o(g(z,y, Vy))

, dg
+f(z,y,Vy) - ¢ (g9(z,y, Vy))a—y;

Vo(f-elg(@,y, V) = V. f-olg(z,y, Vy)) + f- &' (9(z.y, VYy)) - V.g(z,y, Vy);
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0 0 _ 0

8_y(f ~o(g(x,y, Vy))) = a—ch ~o(g(z,y, Vy)) + f - ¢ (g(z,y, Vy))a—z;
Vo (f-olg(z,y,Vy))) = Vo f-olg(x,y, Vy) + f-&'(g(x,y, Vy)) - Vag(z,y, Vy). (2.18)
Substituting (2.18) in (2.17) leads to estimate (2.16). O

Note a special case when the variational functional (2.15) has a classical variation.

Corollary 2.3. If the function ¢ is differentiable a.e. on the set {g(x,y, Vy)|x € D},
then estimate (2.16) in Theorem 2.3 reduces to the exact equality:

ov(u)i = | (%wg(x, U V)b + (Vof - olg(z.y, V). w)) dn

D

+ [ £ @ olay. V) (g—gh (Vg vm) de (Vhe C'(D)).

Corollary 2.4. Let

mw:/jwﬂa%wmm (f.g € C(D x B"™),y € C'(D)).
D
Then the following estimate takes place:

0
ocvic [ <a—§|g<x,y,Vy>|h T (.f - 9(a,y, V), vm) da
D

)
+ / f-signg(z,y,Vy)) (a—zhﬂvzg,w)) dx
(g#0)

+ [=1;1] - / I (g—gm (V.g, Vh)) dx (2.19)
(9=0)

(Vh € CY(D)).

In particular, if mes (g = 0) = 0, then estimate (2.19) reduces to the exact equality:

ov()i = | (%m(x,y,w)m (. f -l V)l vm) dx
D

. dg
+/f -signg(x,y, Vy)) (a—yh + (V.g, Vh)) dx.

D
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Corollary 2.5. Let

B(y) = / [ 1@y, Ve (f € CYD x R™),y € CY(D)).

Then the following estimate takes place:

o c [ (%|f<x,y,Vy>|h (VL f (g, V), w)) dx

D
+ / |f(z,y, Vy)| (g—“;m (V.f, Vh)) dz

(f#0)
+ [=1;1] / R (Z—chth (V.1 Vh)) dz (2.20)

(f=0)
(Vh € CH(D)).
In particular, if mes (f = 0) =0, then estimate (2.20) reduces to the exact equality:

o= | (Z—g\f(%y, Vo)l + (V.f - |fa.y, Vo), vm) dx

D
+/|f(fﬂ,y,Vy)! (%h+ (V.f, Vh)) dz.

Next, consider the case of an internal composition with a subsmooth function.

Theorem 2.4. Let

B(y) = / (a9, Vy))dze (y€ CY(D), f € CHD x R™Y),p € CLy(R).  (2.21)

Then the following estimate is valid:

aK(I)(y)h C

/f’(s@(w,y,Vy)) (Z—Z)(fc,y, Vy)h + (Vap(a,y, Vy),Vh)) dx;

/f’(s@(:v,y,Vy)) (g—j(%y, Vy)h + (V.e(z,y, Vy), Vh)) dw] (h e CY(D)).

’ (2.22)
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Proof. Using the smoothness of f and subsmoothness of ¢ we obtain:

0 0
5y #10::V) = £ (o w))a—j(x? v, V);

Vef(e(x,y, Vy)) = f'(e(x,y, Vy)) - YVzo(z,y, Vy);
0 R
57 (P00 V0) = (oo, V0) 5o, V)
Vef(p(x,y, Vy)) = f'(e(x,y, Vy)) - Vap(x,y, Vy). (2.23)
Substituting (2.23) in (2.7) leads to estimate (2.22). O

Note a special cases when a variational functional (2.21) possesses a classical vari-
ation.

Corollary 2.6. If the function ¢ is differentiable a.e. on the set {o(x,y, Vy)|lx € D},
then estimate (2.22) in Theorem 2.4 reduces to the exact equality:

02w = [ 1o ) (Z—j@,y,wm - (Vople,y, V). vm) de (¥he C'(D)).

Example 2. Let

o) = [ vyl (e CD).S e CHDRWY). (221)
D
Here, under the notation of Theorem 2.4, p(z,y, z) = ||z||, whence it follows
Vo(z) == 2#0; Ve(z)=—(1,...,1) 2=0; Vp(z) = +(1,...,1) 2 =0;
' (2.25)
here 7 is the radius vector, r = ||T||. Substituting (2.25) in (2.22), after transformations,

leads to the estimate

owotn | [ S wnlwbnds+ [ (5 Sl on ) as

D (Vy0)

+[-1;1]- / <g—£(x,y,0), Vh) dr (h € CY(D)). (2.26)

(Vy=0)
In particular, if mes (Vy = 0) = 0, then estimate (2.26) reduces to the exact equality:

0 0
owath = = [ |5 lulin+ (2 S 199l v0) | e
D

Corollary 2.7. If the functions ¢y and ¢y are differentiable almost everywhere on
Vy(D)7 go(a:,y,z) - (x7900(y)7901(z)); then

0®(y)h = /f’(Wo(y),sol(Vy)) (Lo(y)h; (Vo1 (Vy), Vh)) dz (Vh € CH(D)).
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3 K-analogues of the basic variational lemma and FEuler—
Ostrogradskii equation in a domain

With a view to obtain K-analogue of the Euler-Lagrange equation in the one-
dimensional subsmooth case, the following K-analogue of the basic variational lemma
was stated in [10] (Theorem 5.4, p. 116).
Theorem 3.1. Let @1,y € Lo[a;b]. If the inclusion:
b b
0e /gpl(x)h(x)dx;/gog(x)h(x)dx :

holds for any h € C'a;b], then 0 € [p1; pa] C Lafa; b].
Here we generalize this result to the multidimensional case.

Theorem 3.2. Let D be a compact domain in R™, o1,y € Lo(D). IfVh € CY(D) the
inclusion

0e /gpl(x)h(a:)dw;/gog(:c)h(w)dx (3.1)
D D

is satisfied, then 0 € [p1; p2] C Lo(D).
Proof. Following the scheme of the proof of Theorem 3.1 (see [10], Theorem 5.4, p.
116), we represent an arbitrary element ¢ € [p1; o] in the form ¢ = (1 —t)p1 + tpy =
01 + t(pa — 1), where 0 < ¢ < 1. Let H = Lo(D). First, suppose that (3.1) holds for

any h € Lyo(D).

1. Denote by H' = {¢s — ¢1}*. Then for any h € H! it follows that (py — 1, h) =
fg02h = fgolh Suppose that ¢; is not collinear to (g2 — ¢;). Then there

exists ho c H such that ¢; is not orthogonal to hg, i.e. (¢1,ho) # 0. Therefore,

(p2 — @1, ho) =0, (1, ho) # 0, whence it follows (@9, ho) — (¢1,ho) = 0, (1, ho) # 0.
But this is possible if and only if (@9, ho) = (¢1,ho) # 0. Hence for any ¢ € [0; 1] we

get:

D D D D
Thus, there exists hg such that 0€ f [©1; pa]hodz, which contradicts the condition of the

D
theorem. Hence, ¢ is collinear to (¢2—1), i.e. the whole of segment [p1; 2] consists of

collinear functions: [p1; 2] = {A@s}r <acrs: S0, [lo1; p2lhdr = {\ [ pshdz}y <a<r,
D D

Therefore, the condition (O € [le1; polhdx ¥ h> is satisfied if and only if the inclusion
D

0¢€ {/\/903hd$h1992
D

holds for any h € Lo(D).

Let us consider two possible cases:
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a) 0 € [A1; Ag). Then 0 € [p1;¢2] = {Aps}.
b) 0€[A1; As]. Then [ pshdz = 0 Vh,€ Ly(D) whence it follows (¢3,h) = 0Vh €
D

LQ(D) —

= 3 =0<= [p1;p2] = {0}.

Thus, the statement of Theorem in this case is proved.

2. Now consider the case in which h € C'(D), i.e. 0 € [[p1;p2]hdr for any
D
h € CY(D). Because C*(D) is continuously and densely embedded into Lo(D) it easily
follows that 0 € [[¢1; @o]hdz for any h € Ly(D). O
D

Recall now the classical Euler—Ostrogradskii equation [4]. For the variational func-
tional

- / .y, Vy)dz (f € CH(D x R™),y € C'(D), f lop= fo)

the condition ®'(y) = 0 is equivalent to the equation:

0
83]; z,y, Vy) — 8 ( (x y,Vy)) 0. (3.2)

In particular, if ® attains a local extremum at the point y, then equation (3.2) holds.
Theorem 3.2, together with estimate (2.4) for the K-subdifferential of ®, enables us
to generalize condition (3.2) to the case of a C'—subsmooth integrand; the result takes
form of an estimate. In the one-dimensional case such a generalization was obtained
in the works [10], [12].

Theorem 3.3. Let D be a compact domain in R™ with a Lipschitz boundary 0D,

= /f(x,y, Vy)dz (f € CL,(D xR f |sp= 0,y € C*(D)). (3.3)

Then the condition 0 € OxP(y) is equivalent to the "Euler—Ostrogradskii inclusion :

o) . of =
0€ [a—‘]yc(x,y, Vy) — div (V.f(2,y,Vy)) ; a—i(:ﬁ,y, Vy) — div (V. f(z,y, Vy))]
o (3.4)
almost everywhere in D, or in the coordinate form:
8f oy
OEI@xy,Vy (Za (2.9 V) - 5 Y (e, y,Vy)>
W Ay
g, VY) - (Z 5o @y V) 5 % (x,y, Vy)) (3.5)

almost everywhere in D. In particular, if ® attains a local extremum at a point y, then
inclusion (3.5) is satisfied almost everywhere in D.
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Proof. By K-Fermat’s Lemma (|9], Theorem 3.7.28, p 103); 0 € dx®(y)h (Vh €

CY(D), h |spp=0), that is,

0 € dx®P(y)h C {/(%(x y, Vy)h + (V. (x,y,Vy),Vh)) dx;

(z,y, Vy)h + (V. f(z,v, Vy),Vh)> dw}

%’I Q’I
g

(-0 wunvn e Lwnv)n

I
A

(=0 (T, V0.0 0 (ToF e 9. 90) )| o< <1

— {]1(75) L LM 0<t < 1}.

(3.6) the Green’s formula, we obtain:

(3.6)

Applying to I(t) in
u=(1-)V.f(z,y,Vy) +t-V.f(z,y, Vy);
dv=Vhdx, v=~h

L(t) =
du = (1—1)-div (sz($, Y, Vy)) +t-div (V_Zf(x, Y, Vy))dx

1 (“ —8) Vel @y, Vy) + 1 Vefloy, Vy>) s

_/{u —t)~div(V_zf(x,y,Vy)> +t.dw<vzf(x,y,vy>ﬂ hdr. (3.7)

Hence, substituting of (3.7) into (3.6) leads to:

e { [|0=0(Gotr0. 90~ div (Vs 0. 9)

+t- (g:g(x,y, Vy) — div (V_Zf(:v,y, Vy)))} -hdx) 0<t< 1}

_ { D/ %@y Vy) — div(V.f(z.y, vwﬂ -z
/ [Z:;( 0 50) = dio( 7,V ) |-t (33)

By basic Lemma (Theorem 3.2), it follows from (3.8) the inclusion (3.4).

Any solution of inclusion (3.4) will be called a subeztremal.



Multidimensional variational functionals with subsmooth integrands 67

Remark 1. The FEuler—Ostrogradskii inclusion (3.4) can be rewritten in the form of
the "Euler—Ostrogradskii equation with a parameter” :

of

1-0% U (2,4, vy)

t.
(z,y,Vy) + 2y

[&

—div [(1 — )V, f(x,y,Vy) +t- V. f(z,y, Vy)} aCq.
A subextremal y(-) is a solution of this equation for some t € [0;1].

Consider, as an important special case, the case of modulated integrand in Exam-
ple 1.

Theorem 3.4. Let

- / @y, Vy)lde (f € CH D xR™ ),y e CYD)y lop=w0).  (3.9)

For functional (3.9) the Euler—Ostrogradskii inclusion takes the form of alternative:

0 "0 (0
cther G009 =3 g (5100.90)) =0 (05 o090 £

or f(xz,y,Vy) =0 (wzthout any additional conditions).

(3.10)

In particular, if mes(f(z,y, Vy) =0), we come to the usual Euler—Ostrogradskii equa-
tion fory (almost everywhere).

Proof. Denote by p(x,y,z) = |f(z,y, 2)|. Using the result of Example 1, we get:

0 0
__f f(l' Y,z ) 07 0_f7 f($7y7z) >0
@A -2, fayz) =0, 0<a<

dy

9 — _vzf; f(xvyv Z) < 0; sz, f(ﬂ?,y, Z) >0
TV, fry2) =0, 0<p<l '

Hence, we find subLagrangian:

n 8f n 8 af
(S ) semarc (5 (E)) semo

8 n
(2A—1l— Za< ) f(z,y,2) =0, 0<A<1,0<pu<1
=1

a.

o

Lk (#)(y)

X

Thus, the Euler-Ostrogradskii inclusion takes form:

O 50 <8f):o, F(@,9,2) £ 0;

a n .
{Las(F)y) = - —i—ﬁ'z (gf)=0 “1<a,8<1}, flz,y,2) =0,
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In particular, if &« = § = 0, then the equality Loo(f)(y) = 0 is identically satisfied.
Hence the Euler-Ostrogradskii inclusion (3.10) is also identically satisfied. Thus, in
the case under consideration the Euler—Ostrogradskii equation reduces to the following
alternative:

either — — Z ;iz (021) =0, if f(z,y,z) # 0; (3.11)
or f (ZL‘, Y, 2 ) = 0 (without any additional conditions).
O
Consider a concrete example.
Example 3. Let
///‘ 2 % >2 + (@>2 — y?| dxdrodas. (3.12)
8x1 ax2 Ow3
Here condition (3.11) takes form:
[ either Ay +y =0, as (y,)* + (Yau)” + (Yay)* # y ‘ (3.13)
or  (Ya)® + (Ya)® + (Ye)” = 4%, 88 (421)* + (¥2)” + (Ys)* = 9

The first of the equations in (3.13) is the Helmholtz equation with the parameter ¢ = 1.
The solution of this equation in spherical coordinates, as is well known, has the form:

y = Ajcosr+ Agsinr.

The second equation in (3.13) according to the well known classification is an equation
of elliptic type and has an analytic solution.

Concluding this section, let us return to the variational problem with a norm in the
integrand (see. Example 2).

Theorem 3.5. Let

- / f(. . [Vyl)de (f € CY(D x B2),y € CY(D).y lop=10).  (3.14)

For functional (3.14) the Euler—Ostrogradskii inclusion takes the form of the following
alternative:

, ]
cither 5L (a4, 19 Z ~ (5 w9 (a5 vy £0),

s S0 _
or € Siwp,0)+ [—1’”‘;%(@2,( 0)) (a5 7y =0

In particular, if mes(Vy = O) = 0, we arrive to the equation

0
e 9D =3 5 ( o :cy,uvmb):o (o cinD) (319
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Proof. For simplicity, consider only the case mes(Vy = 0) = 0. In this case, the
application of Green’s formula (integration by parts) in (2.26) (Example 2) leads to
the equation

0 f f
O—l/[ayar%HVyH e (T a:%nvmo> s
D
of T Of
—1/IEZQZMHVQW‘—;'EEQ%%HVQW]hdﬂ

D
for any h € C'(D), h |sp= 0. From here the equation (3.15) follows by a standard
way. 0

4 The second K - subdifferential of basic variational functional

Recall the classical formula for the second variation [6]. If

P(y) = /f(l’yy, Vy)dz (f € C*(D xR"™),y € C'(D)), (4.1)

then functional (4.1) is twice strongly differentiable everywhere in C''(D) and, for any

h € CY(D),
" (y)(h)* = / {;];(x y, Vy)h* + (QVZ (g—lyc(x,y, Vy)) h, Vh)

+V2f(z,y,Vy) - (Vh)?] du . (4.2)

Here we generalize this condition to the case of a subsmooth integrand from the class
C?,. In this case, like the case of Ox®, exact equality (4.2) transforms to an estimate
of 9%®. In the one-dimensional case, a similar generalization was obtained in the works
10}, [12].

Theorem 4.1. Consider the variational functional

/fx%vwm (f € C2,(D x ™),y € C1(D)). (4.3)

The functional (4.3) is twice K —subdifferentiable everywhere in C*(D), and the follow-
ing estimate holds:

) < | [ (Gates. T + (3 (90,050 0. 9h) )



70 LV. Orlov, A.V. Tsygankova

/(&
+{/ (( ( (2,9, Vy)) h, Vh) +Vif(z,y,Vy)- (Vh)Q) dz:
/ (( ( @ y,vy)) h’Vh) +V2f(2.y.Vy) - (Vh)Q) dm}. (4.4)

Proof. Since the integrand f is twice K—subdifferentiable, f is differentiable once in
the usual sense, i.e. f’ exists. Then the variational functional ®(y) is also once differ-
entiable in the usual sense, and its differential is as follows

Q)‘Q‘)
—

(z,y, Vy)h? + ((% (V. f(z,y, Vy))h,Vh)) da:}

v =¥ = [ (Fen T+ (9.5 00,0 a0

Introduce the auxiliary linear operator
(Ay)(z) = (v, y(z), Vy(z)), A: C*(D) — R" x C*(D) x C(D,R™).

Obviously, the operator A is continuous. Now let us introduce the operator of compo-
sition

Aly) = BAW) = (GHAW). T-£40)) = (BAW). BoAG),

where

A:CYD)— C(D) x C(D,R")).

Let us introduce also the integral operator which is linear in u, v and h:

G(u,v)h = /[u(x)h(x) + (v(z), Vh(z))]dz, G :C(D) x C(D,R") — (C'(D))*.

D

Then the variational operator ¥ can be written in the composition form
V(y)h = G[Bi(A(y)), B2(A(y))]h. (4.6)

Applying to composition (4.6) the theorem on K-subdifferentiation of composition
(see [10], Theorem 3.13, p. 91), we obtain

Ok ¥ (y)h = Ok (GI(B(Ay)])h C [0k G(B(Ay)) - [0k B(Ay) - Ox A(y)]] h- (4.7)
Now consider individually the components in the right-hand side of (4.7).

1) Because A is a linear continuous operator, it is Frechet differentiable and A’(y) =

A. Therefore, 0k (Ay)(x) = (z,y(z), Vy(z)).
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2) For the operator B = (Bj, Bs), using the theorem on coordinate-wise K-
subdifferentiability (|10], Theorem 3.10, p. 89), we obtain:

C

l—|

B, B
oy (af (2,9, Vy)) h+V, <a—§(:€, y, Vy), Vh) ;

Q>| l

&l <

0 5
(S w0)) 0 72 (S 7. 91)

(Vaf (2,9, Vy)) h+ V(V. (f (2,5, Vy), Vh);

|

3) Because G is a continuous linear operator, it is Frechet differentiable, and
G'(u,v) = G. From here it follows:

Q| @l

(V f(z, y,Vy))h+7z(sz(:v,y,Vy),Vh)] :

owvine [ ( [f{@ 0Vt (o (9-10.0.90). 7).

o2f 0
a—y‘é(:v, y, Vy)h + (a_y (V.f(z,y,Vy)) ,Vh>

Bt {L (g—gw,y,vw) h

(z,y, vy)> h+ (v_gf(x,y, Vy),Vh)} : h) dz

= L/ <$(x y, Vy)h? + (% (V.f(2,y, Vy)) h7Vh)> dz;
/ (giyé(%y,w)h? + (8% (V.f(z,y,Vy)) h, Vh)) dl“]

+ (V2f(@,y, V1), Vi) : V2 (%

+ L[ ((E <g—£(x,y,Vy)) h, Vh) + (V_ﬁf(x,y,Vy>’v2h>> dz:
/ (( ( (x y,Vy)> h,Vh) + (v_gf(x,y, Vy),V2h>) dx] . (4.8)

]

Here, similarly to estimating 0x®, we also distinguish between the case of the
integrand formed by the external composition of a subsmooth function (now, of the
class C2,) and the case of a smooth one.
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Theorem 4.2. Let

D(y) = / olf (50, V)lde (o € C2y(R), f € CA(D x R™Y),y € C1(D)).

a

Then @ is twice K-subdifferentiable everywhere in C*(D). Moreover, the following
estimate takes place (in short):

i ®(y)(h)* C /@’(f)- ((%h+ (V2 ,Vh))2-fdx

D

: |:/ SO//( ) ’ ((fy)2h2 + (Vz ’ fyhv Vh)) dz; /30H< ) ’ ((fy)2h2 + (vz ) fyh7 Vh)) dx

D

+ [/ " (f) - (V.- fyh,VRh) + (V.f,Vh)?) dx

/gp”( ) ((Vz - fyh, Vh) + (V.f, Vh)Q) da::| ) (4.9)

D

Proof. Direct calculations give us:

o(f) , =" () - (f)* + () fozs @)y = ()"~ (£,)* + &' (f) - fe

Y

e(f) ., =" (f) - (Vo) + () Vifs o(f). = o) (Vo) + &' (f) - Vifs
§0<f)yz:Qpﬂ(f)'Vz'fy+§0,(f)'fy'vzf§ @(f)yz:(p//(f)'Vz'fy+301(f)'fy'vzf-

Substituting of these values in (4.4) leads, after transformation to estimate (4.9). O

Consider, as a concrete example, the integrand of the type f(z,y, Vy)-|f(z,y, Vy)|.
Theorem 4.3. Let

= /f(fﬁ,yﬂy) | f(@,y, Vy)lde  (f € C*H(D xR"™),y € CY(D)).
Then the following estimate takes place:

2
/\f] ( h+ (V. ,Vh)) fdz+2 / signf-(fy-h—l—(sz,Vh))2~dx
(F#0)

+ [2 / (f2h? + (V.- fyh,Vh)) dz; +2 / (f2h®+ (V.- fyh, Vh)) dz
(7=0) (/=0)
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+ -2 / (V. - f,h,Vh) + V2f - (VR)?) de;
(f=0)

+2 / (V.- fyh, Vh) + V2f - (Vh)?) dz | . (4.10)
(F=0)

In particular, if mes(f(x,y, Vy) = 0) =0, then estimate (4.10) transforms to the exact
equality:

Ok ®(y)(h)* = 0° /\f! ( h+ (V. ,Vh)>2~fd:v

2
+2/Sign f- (g—;h%— (V. ,Vh)) - fdx.

D

In conclusion, let us give a simple example of application of the last equality.

Example 4. Let
= / |divVy| - (divVy)dz.

Here the application of estimate (4.10) leads to the exact equality:

078 (y)(h)? = 0*®(y)(h)* =2 / sign (divVy) - (divVh)?*da.
(divVy#0)
In particular, if mes(divVy = 0) = 0, we get:

O*®(y)(h)? =2 / sign (divVy) - (divVh)*dz.
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