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Abstract. We consider a singularly perturbed Steklov—type problem for the second
order linear elliptic equation in a bounded two—dimensional domain. We assume that
the Steklov spectral condition rapidly alternates with the homogeneous Dirichlet con-
dition on the boundary. The alternating parts of the boundary with the Dirichlet and
Steklov conditions have the same small length of order . It is proved that when the
small parameter tends to zero the eigenvalues of this problem degenerate, i.e. they
tend to infinity. Moreover, it is proved that the eigenvalues of the initial problem are
of order 7! when ¢ tends to zero.

1 Introduction

Problems with boundary conditions of rapidly changing type of has been attracting
the attention of mathematicians for approximately thirty years. There exist papers
with pure mathematical problems as well as applied problems with such perturbation
of boundary conditions. In such problems it is supposed that the boundary of the
domain is divided into two parts with different boundary conditions. Moreover it is
supposed that both parts have a microinhomogeneous structure. It means that in the
two—dimensional case both sets are unions of a large number of nonintersecting small
curve segments with vanishing lengths as the small parameter tends to zero. And in a
multi-dimensional case one of the parts is a union of a large number of spots with the
sizes depending on the small parameter. One studies an asymptotic behavior of the
solutions and the eigenelements of a boundary—value problem in this domain with such
boundary conditions as the small parameter tends to zero. Note that the works, where
the authors studied the problems of this type, appeared in the 80-s (see for example
[13], [14], [33], [34], and [43]). Then, one can find many other papers of 90-th, 2000-th
and 2010-th which continue investigations of such problems (see, for instance, [1] —
3], [6] — [12], [15] — [29], [35], [37] — [40], [44], and [56] ). The main idea of these
papers could be formulated in the following way: a solution of the boundary—value
problem with rapidly alternating type of boundary conditions converges as the small



14 A.G. Chechkina, V.A. Sadovnichy

parameter characterizing the size of the microstructure, tends to zero, to a solution of
the problem with so-called effective boundary conditions not depending on the small
parameter. In the limit (homogenized) problems (with effective boundary conditions)
the solution depends on the ratio between the sizes of the parts of the boundary with
different types of boundary conditions in the initial problem. In papers [15], [22],
[23] and [25] the authors consider the alternation of the Dirichlet boundary conditions
and the Neumann or Fourier (Robin or third type) boundary conditions. Under the
assumption of periodicity of the microstructure there were proved some estimates of
the rate of convergence. In [15] the author gives a complete classification of all the
cases depending on different ratios of the small parameters (the length of the parts
of the boundary in the given problem). In the paper there are the estimates of the
deviation of the solutions to the initial problem from the solution to the respective
homogenized problem. Moreover the author studied the spectral properties of these
problems. In [23] it are considered problems with rapidly changing type of boundary
conditions in multi-dimensional domains. Namely, it was proved that the structure
of the homogenized problem depends on the asymptotics of the first eigenvalue the
respective spectral cell problem. This asymptotics was constructed by the authors
and it was applied for the estimation of the rate of convergence of solutions to the
initial problem to the respective solution of the homogenized problem as the small
parameter tens to zero. In [24] the authors studied boundary-value problems for the
Laplacian in three—dimensional domain. It is assumed that the boundary of the domain
consists of two parts, one of which has a periodic micro structure. For instance, it
consists of periodically situated spots or holes. In the first case there is a bounded
domain with a microinhomogeneous structure of the boundary, in the second case
there are two domains connected by these holes. In the second case the authors obtain
two different limit problems (in two subdomains). The authors provide the complete
classification of the homogenized problems by their dependance on the size of the
small parameters characterizing the periodical changing of conditions rate. Moreover
the respecting spectral problems are considered. The convergence theorems for their
eigenvalues and eigenfunctions are proved. The asymptotic expansions of the solutions
to some boundary value problems with rapidly changing type of boundary conditions
was constructed in [6] — [8], [12], [16], [22], [35], and [38] — [40]. In the papers
6], [9], [38] — [40], and [56] two—dimensional problems are considered. In [16] the
author constructs a complete asymptotic expansion for the solution to the Poisson
equation in multi-dimensional layer with rapidly changing type of boundary conditions.
In addition, the complete expansion of the eigenvalues to the Laplace operator in a
cylinder with rapidly alternating boundary conditions of the Dirichlet and Neumann
types was constructed in [8] and [10]. In [10] the author considers the case of alternating
Neumann and Fourier boundary conditions. The special case of the Dirichlet boundary
conditions on the lateral part of the boundary was considered in [8]. The author
assumes that the size of the parts of the boundary with the Dirichlet conditions has
the same order as the size of the parts with the Neumann conditions. In these papers
the author proves that the eigenvalues of the initial problem has the multiplicity less
than or equal to two (i.e. either they are simple or double). In addition in [10] the
author constructed the leading terms of the asymptotic expansions of the eigenvalues
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and eigenfunctions in the case of other boundary conditions on the lateral part of the
boundary in more general situation. Also it was proved that these eigenvalues converge
to the respective simple eigenvalues of the limit (homogenized) problem. In [11] the
author studies a singularly perturbed spectral problem for the Laplacian in a cylinder
with rapidly changing boundary conditions on a lateral surface, divided into many
stripes with the alternation of Dirichlet and Neumann boundary conditions on them.
The leading terms of the asymptotic expansion of the eigenvalues was constructed in the
case of slow deformation of the width of the strips. In addition for rapidly changing
width of the strips the author derived the estimates of the rate of convergence of
eigenelements to the initial problem. In [11] the author generalized the results of the
paper [7]. Also it should be noted that there exist a number of papers with rapidly
alternating boundary conditions and singularly perturbed density (see, for instance, [17]
— [21], [28], and [29]). Papers [28] and [29] are devoted to aperiodic case. It is assumed
that the Dirichlet boundary condition is set on the parts of the outer boundary in a
neighborhood of concentrated masses and it rapidly alternates with Neumann boundary
condition. In addition, these concentrated masses has aperiodic structure. The authors
proved the homogenization theorem and estimated the rate of convergence of respective
eigenelements. In the papers [17] — [21]| the authors considered the periodic case.
They assumed that concentrated masses are situated periodically along flat part of
the boundary. In these papers it was also proved the homogenization theorem and
constructed asymptotic expansions of the respective eigenpairs.

Next, we discuss a little bit the Steklov—type spectral problems. One can find
papers devoted to different aspects of investigations of this problem starting from [54],
[55] (see, for example [4], 5], [31], [36], [41], [42], [45], [46], [50], and also a close
work [53]). The paper [41] is devoted to the investigations of a spectral Steklov—
type problem in a thin domain with a nonsmooth boundary. The authors constructed
leading terms of the asymptotic expansion of eigenvalues and eigenfunctions. In paper
[5] the authors derive the formula showing the connection of the first eigenvalue to a
Steklov—type problem in the domain with micro perforation and the constant in the
Sobolev inequality for traces. In the paper one can find the finite elements method for
the approximation of the optimal shape of the cavities. In [50] the author considers a
domain ©Q C R? and studies the asymptotic behavior of the eigenvalues and respective
eigenfunctions to the Steklov—type spectral problem depending on the small parameter
e, as € — 0. It is assumed that the Steklov condition is set on the small periodically
alternating parts of the boundary having the length of order €. The Dirichlet condition
is set on the leftover part of the boundary. To prove the homogenization theorem for
this problem the author studies the local spectral problem in the cell of periodicity,
also the author describes low frequencies of the homogenized (limit) problem. In [36]
the author considers the Steklov-type problem for the p-Laplacian. The existence is
proved of infinite number of eigenvalues. In [46] the authors investigate the Steklov
spectral problem in a domain with a degenerate corner point on the boundary. They
state that the spectrum on the real nonnegative semi-axis can be discrete as well as
continuous, depending on the characteristics of sharpening. The elliptic problem with
critical growth with Steklov—type conditions in a bounded domain was considered in [4].
The existence of a nontrivial nodal solution is proved. The authors used the estimates
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for the accumulation (concentration) of Sobolev minimizers on the boundary. In the
paper [31]| the author proved the homogenization result for the problem with rapidly
alternating boundary conditions (the Dirichlet and the Steklov conditions) in the case of
the Steklov spectral condition in the limit, i.e. the limit (homogenized) problem has the
classical Steklov condition without the alternation. In the paper [52| we estimated the
eigenfunctions of singularly perturbed Steklov-type problem and proved an inequality
for traces of functions from the Sobolev space Wj.

In the present paper we study the behavior of the eigenelements to the singularly
perturbed Steklov-type problem in the case of the absence of the spectral parameter
at the limit, i.e. at the limit we get the degenerate Dirichlet boundary-value problem
for a homogeneous elliptic equation of the second order. Hence, the limit (homoge-
nized) problem has the classical homogeneous Dirichlet boundary condition without
the alternation and only trivial solution.

In Section 2 we formulate the main Theorem. Section 3 is devoted to auxiliary
propositions. In Section 4 we prove the main result.

Some of the results of this paper are formulated in [32].

2 Setting of problem and main theorem

We assume that the domain Q C R? is situated in the upper halfplane (see Figure 1)
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Figure 1: Domain ).
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and the parts 7' and '’ rapidly alternate.
Suppose that for any i the following conditions:

Ce<|IL<Cte, Ce<|<Cte, where 0<C <C" < +o0,
hold. Here and throughout ¢ is a positive small parameter.
Remark 1. It is easy to calculate that N. is of order %

In the domain 2 we consider the following Steklov—type spectral problem:

( 2
0 o OU.
Lu]=5 2 (@)= ) =0 inQ
U] P o, (a (x) (%zzi) 0 in
u. =0 on 'y UT, (2.1)
OU. _ <~ i, U
€ = ij €y =

\ 0 _mz:la (x) o Vi = AcUe on 7e.

Definition 1. A function u. € H*(Q, T2UT'.)\{0} is called an eigenfunction of problem
(2.1), corresponding to the eigenvalue )., if for any function v € H'(2,Ty UT.) the
following integral identity:

2

. Oue Ov

%] € 77 —
/Za Iz, 91, dx )\E/usvds (2.2)
Q

1,5=1

Ve

holds true.

ug h

Figure 2: Normalized eigenfunction with “hoods”.
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It is known (see for example [57]) that all eigenvalues of problem (2.1) are real and,
moreover, positive numbers and they satisfy the following inequality:

og)\;g)@g..., /\f—>ooask:—>oo.

Here we enumerate the eigenvalues A\* taking into account their multiplicity.

Theorem 2.1. The first eigenvalue to problem (2.1) is of order é, 1.e. it satisfies the
following relation:

ﬁ < )\; < @’

€ €
where Cy and Cy are positive constants. Moreover, the first eigenfunction ul normalized
by the condition /(u;)2ds = 1 converges to zero strongly in Ly(Q) and weakly in H'(Q)

Iy
as € tends to zero.

3 Auxiliary propositions

We introduce the following notation:

2 ijov v
g{ D=1 07 5 o d
fe = inf

vEH(Q,UT )\ {0} [v2ds
Ye

Now we prove the following lemma (an analogous lemma was proved in [15]).
Lemma 3.1. The number p. is the first eigenvalue \! of problem (2.1).

Proof. Tt is sufficient to show that there exists an eigenfunction u' of problem (2.1)
corresponding to the first eigenvalue A!, which satisfies the relation:

2 ij dul Ju'
s{ =107 5o Ga; A

i (u')* ds

Ye

=L

He

Suppose that {v(™} is a minimizing sequence for (3.1), i.e.
o™ e HY(Q,ToUTL), [[v™[,, ., =1,

and
2

i ov™ gy
Za . Dr. dr — ., as n — oo.
i J

q i=1

It is clear that {v(™} is bounded in H'(Q,T'y UT.). Hence, by the Rellich theorem
there exists a subsequence {v*)} weakly convergent in H'(€2,I'y UT.) and strongly in
Ls(7:). Consequently for any 1 > 0 there exists such K = K(7), that

o) — U(Z)HQLQ(%) <n as k,l> K.
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Using the parallelogram equality written in the following form
2

LR, e B [
—_— = —|lv —llv — || — ,
2 Lo(re) 2 La(ve) 2 La(ve) 2 Lo(re)
we get
RN ONE
1{;1- >1—Z (3.2)
La(7e)

Due to the definition of u. we conclude that for all functions v € H'(Q, Ty, UT.) we

have
2

™ gy
> a¥ dr > pel|v)l? . (3.3)

9] /L’]Zl

Inequalities (3.2) and (3.3) lead to the following estimate:

£t

o ig=1

Since {v(®} is a minimizing sequence, there exists K; = K;(n) such that

S0 gul®) ;O oo
/Z v dr < p.+n, /Z vy d:v<ua+n as k,l > K,

= Ox; Ox; = Ox; Ox;

for any n. Without loss of generality we assume that K; = K does not depend on €.

Then,
v(k) v g ((2®=o® k)
/Za< >(a) /Z %%j

(9] )= 1 )=

8MD&N 2 £2ﬁ9>a<¢g¥9)

7J_ 17]:
ua+-n fe +1 ( n) ( us)
< o (1=1 1 , .
N 4 t3) 70 =0

Finally, due to the completeness of the space H'(2,T'y UT.), we conclude that there
exists a function v* € H*(Q, 'y UT.) such that the sequence {v*)} converges to this
function in the space H'(2,T'y UT.) and

2

;. O™ Ov* -
/ Z CLJ al‘z aIJ T = He ||U || La(ve) =L

(9] Z7j:1

Given an arbitrary function v € H'(Q, Ty U I’E) we define the following function:

O(v*+tv) O(v* +tv)
f > ij=1 4" "oz, oz, Lo

g(t) =2
[v* + [,
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The function g(t) is continuously differentiable in a neighborhood of the point ¢ = 0.
This expression has the minimum equals to pu. as ¢t = 0. By the Fermat theorem we
have

2 j ov* 0 2 ov* 9
QHU*Hsz(%))S{ 2=t awaLa;i%Ujdx =2 [vivds b[ 2 =14 a’ ds: 827 dx
Ye

[0 ]1* y00) (= 1)

v — 2. | vtvds.
81’18:6] u/vvds

Ye

0= g/‘t:O =
2

2/Za

Q 1,7=1

Thus, we showed that

/Za 8:cza_xjdx /vvds

o =t Ve

for any v € H'(Q,~.), that is v* satisfies the integral identity of the problem (2.1), and
in addition

2 ij Ov* Ov* 2 ij Ov Ov
J Yima do; 0z, 4T [ Xia 9w, 9w, AT
2 = inf & =i
= = L.
Jv2ds vEH(Q,T5Ur:)\ {0} [v2ds
Ye Ye
Consequently, v* = u! and A\! = .. Lemma is proved. O

Let us consider the boundary value problem corresponding to spectral problem
(2.1), namely
LU.J=0 in
U.=0 on r,ury, (3.4)
8U5 =g\x ( ) on Ve

The following statement can be found in [52].

Lemma 3.2. The family of solutions u. to problem (3.4) converges in the norm Ls((2)
and weakly in H () as € — 0, to the unique zero solution of the problem

{L[U]:() in  Q,

U=0 on 09 (3.5)

4 Proof of Theorem 2.1 on convergence of eigenelements

Proof. By Lemma 3.1 and the ellipticity of the matrix a* we get that for any function
u e H'(Q,T.) satisfying / u?ds = 1, the following inequality holds:

It
2 ’L v v
({ Zi,j:l ]aazz 8836] dx 2 8u ou
A= inf < a’ —dx < s Vul? dz.
©  WeHL(Q,TUT)\{0} [ v?ds _/ ]21 Ox; Ox; 1/‘ |
Ye Q HI= Q
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e In order to obtain an upper bound for the eigenvalue A! of the spectral problem
(2.1), keeping in mind the variational definition of eigenvalues (see, for instance, [51]),
we construct the following function u. Assume that on the segments ¢ (of order O(¢))
in the plane (z;,u) we have isosceles triangle with the height equals to one. Then,
instead of smooth “hoods” (see Figure 2) we construct tetrahedrons with the e-height
of the lower base (see Figure 3).

Figure 3: The function w.

Let us estimate [ |Vu|*dz.
0

Figure 4: The section of tetrahedrons.

Note that tana = O (1) and tan3 = O (1) (see Fig. 4). Also it should be noted
that tana and tan § are independent of the position of the respective parallel cross-
sections.
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Consequently, we have
1

The area of the lower base of constructed tetrahedrons equals to % - coe - €. Hence,
bearing in mind Remark 1 and estimate (4.1), we get

c; 1 c
/|Vu|2dx < —; CZepe? N < =

g’ 2 €
Q

Thus,
Cy

C
A<= <2
g g

e In order to obtain the lower bound for A\! we literally follow the steps of the proof of
Theorem 2 from [52]. We split the domain € in the strips 2. having the width of order
of €, parallel to the axis 5, with boundaries in points p; (the centers of the segments

s Ne . .
I'Y) (see Figure 5). We use the notation Y :=T. N QL and H} := |J H'(QL, TY).
i=1

(@,

XA

Figure 5: Strips in the domain.

Consider the strip Q2. We show that

2
- Ou. Ou
W= dr > C. 2d 4.2
/2@ 92: 9 m_C/uas (4.2)

o YT 7

for normalized functions u. in the following sense: [wu2ds = e. Suppose also that
vé
T! =~ UYL We transform the strip Q. by means of the change of variables x +— &,
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where § = £ are the fast variables. Consider the following auxiliary boundary value

problem:

(Av. =0 in O,
v, = on i,
Ve = on 7,
ov, 0 o0\ T (4.3)
= on
7 ’
\ ||90||L2(71) =1,

where $(€) := ¢(£€) and ¢ is the trace of the function u. on ~*, Q' is the transformed
domain in fast variables, and for the transformed parts of the boundary we use the
same notation but without the index e.

Then, we use the statement from [52, Lemma 1].

Lemma 4.1. The following formula

[ o = const = [ g . (1.4)
Ti Ti
holds true.
By Lemma 4.1 and the conditions of problem (4.3) it follows that

cz = / Fdey < NI, 00 = VI (4.5)

Ti

By the maximum principle and using the Hopf-Oleinik Lemma (see, for instance,
[48]) the maximum (minimum) of the function v. can be only on T°. It is easy to

verify that the function M (&) = max v.(§) monotonically decreases on &5, and the
i§2=E5
function m(&) = min v.(£) monotonically increases.
Q€a=E5
Consider the difference oscyy1(v:) = M(N + 1) — m(N + 1). Without loss of
generality we assume that m(N) = 0. Further, by using the Harnack theorem on

sequence of harmonic functions in the following form (see [49])
m(N+1)>aM(N+1), 0<a<l
and the approach of [52] we get the estimate
oscyi1(v:) < e ™ oscy(v.), > 0.
Due to the elliptic estimates (see, for example, [49]) we have
Josci(ve)] < Kol BII7, (0)-

Thus,
oscyi1(v:) < K0||<,5||%2(7i)e_0N, 6 > 0. (4.6)

From (4.6) we derive that for any 6 > 0 there exists such Ny that oscy,(v.) = 6.
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Let us write the following evident inequality:

2

No
ov ov.\ 2
(va(61, No) — (1)) = “dey | < Ny ( ) a6, (4.7)
0/5 O/ 0,

Integrating (4.7) over T", we obtain

/(E’il (e(, No) = %)—6(51))2%

T

£ \2 S 2
(S-S / (%(gl,zvo)—%;j) aé + / F(E)Pde,

|

ce, Cs,
i) (6300~ 7y - |Tr/ s

_2/@(51) (%(517]\70) T |> a6y < NO// (g@

T

(4.8)

Using (4.3) and (4.4), we rewrite (4.8) in the form

(C5)? | s (C5)?
+0°+14+0-2
| |

+a®<%//wﬁm§ (4.9)

T'L

Hence
1- %

|T1 //|v£v5| d < /|v5v5| 3

Bearing in mind (4.3) u ( .5), finally we get

Tl TZ o
= d Ve |od
NO / 51 /| £U| 5

Transforming variables in the reverse order (from the fast to the initial variables), we
derive the inequality
K 1
— / ©idr, < —282 / |V u. 2 d.
3 3
e QL

Thus, we proved inequality (4.2) with the constant C. = g, and the lower bound for
Al is obtained.

The convergence of the function u! to zero weak in H'(Q2) and strong in Ly(f2)
follows by Lemma 3.2, bearing in mind the scheme of O.A.Oleinik, G.A. Yosifian and
A.S. Shamaev from [47, Ch. III, §1.2].

Now we completed the proof of Theorem 2.1. n
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