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Abstract. By definition, in chiral model the field takes values in some homogeneous
space G/H. For example, in the Skyrme model (SM) the field is given by the unitary
matrix U ∈ SU(2), and in the Faddeev model (FM) — by the unit 3-vector n ∈
S2. Physically interesting configurations in chiral models are endowed with nontrivial
topological invariants (charges) Q taking integer values and serving as generators of
corresponding homotopic groups. For SM Q = deg(S3 → S3) and is interpreted as the
baryon charge B. For FM it coincides with the Hopf invariant QH of the map S3 → S2

and is interpreted as the lepton charge. The energy E in SM and FM is estimated from
below by some powers of charges: ES > const|Q|, EF > const|QH |3/4.

We consider static axially-symmetric topological configurations in these models
realizing the minimal values of energy in some homotopic classes. As is well-known,
for Q = 1 in SM the absolute minimum of energy is attained by the so-called hedgehog
ansatz (Skyrmion): U = exp[ıΘ(r)σ], σ = (σr)/r, r = |r|, where σ stands for Pauli
matrices. We prove via the variational method the existence of axially-symmetric
configurations (torons) in SM with |Q| > 1 and in FM with |QH | ≥ 1, the corresponding
minimizing sequences being constructed, with the property of ∗ weak convergence in
W 1
∞.

1 Introduction. G-invariant functionals and principle of sym-
metric criticality

In various physical problems arising in nuclear physics, nonlinear optics, condensed
matter physics etc. there appears a necessity of searching for localized structures
(solitons) realizing minimums of some G-invariant functionals (Hamiltonians H). Let
us consider the field ϕ(x) : R3 → M taking values in some compact manifold M , e.
g. sphere, group or homogeneous space, with the natural boundary condition at space
infinity:

lim
x→∞

ϕ(x) = ϕ∞ (1.1)

motivated by boundedness of H[ϕ]. As is well-known [4], due to (1.1) the fields ϕ(x)
can be classified according to homotopy group π3(M), i. e. ϕ(x) is endowed with the



topological charge Q serving as the generator of π3(M). If the energy E of the field is
bounded from below by some monotonically increasing function of the charge Q:

E ≥ f(|Q|), (1.2)

then one can search for ϕ(x) as the minimum of the Hamiltonian

H[ϕ] = E[ϕ]− f(|Q|), (1.3)

with Q being fixed. Thus, in some homotopic class the configuration ϕ(x) should be
realized as the minimum critical point of the Hamiltonian H[ϕ].

Let us consider the class of G-invariant functionals H[ϕ], which are invariant under
the action of some group G, that is H[ϕg] = H[ϕ], with ϕg denoting the field ϕ(x)
transformed by some element g ∈ G. Let us now introduce the notion of the equivariant
field ϕ0 = ϕ0g defined by the condition

ϕ0(x) = Tgϕ0(g−1x), (1.4)

where Tg stands for the representation operator.
In physics the so-called reduction problem is very popular, when the G-invariant

functional H[ϕ] is restricted to the equivariant class Φ0 = {ϕ0(x)}, i. e. H[ϕ] =⇒
H[ϕ0]. Then the question arises, whether the critical points of H[ϕ] and H[ϕ0] coincide
(the principle of symmetric criticality). The answer was given by R. Palais [6], who
found a sufficient condition for such a coincidence. To sketch his idea, let us denote by
X the Frechet derivative of H[ϕ] at the point ϕ0:

X = (δH/δϕ)[ϕ0] (1.5)

and write down the extremum condition for H[ϕ0] in the set Φ0:

(X, δϕ0) = 0 ∀ δϕ0 ∈ Φ0, (1.6)

signifying that X ∈ Φ⊥0 , where Φ⊥0 is the annulator of Φ0. On the other hand, the
G-invariance of H[ϕ] yields

δH = (X, δϕ) = (Xg, δϕg) = (X, δϕg), (1.7)

the property ϕ0 = ϕ0g being taken into account. Due to arbitrariness of δϕg one
concludes from (1.7) that

Xg = X. (1.8)

Let us denote by Φ̃0 the class of equivariant Frechet fields (1.8): X ∈ Φ̃0. Then the
Palais condition

Φ̃0 ∩ Φ⊥0 = ∅, (1.9)

in view of (1.6) and (1.8), amounts to X = 0. Condition (1.9) is known as a sufficient
condition for the validity of the principle of symmetric criticality. Let us apply this
principle to the Skyrme and Faddeev chiral models, for which condition (1.9) is satisfied
due to the compactness of the invariance group G [6].



2 Topological solitons in the Skyrme model

In the Skyrme model the energy E reads

E =

∫
dx
(
−1

4
tr(`i)2 − 1

16
tr[`i, `k]2

)
, (2.1)

where `i = U+∂iU , U ∈ SU(2), the integration is performed over R3 and the Einstein
summation rule is used (i, k = 1, 2, 3). The topological charge Q in SM reads:

Q = − 1

24π2
εijk
∫
dx tr(`i`j`k). (2.2)

Using the inequality

−`2
i −

(
εikj[`k, `j]

)2

≥ 2|εikj`i[`k, `j]|,

one easily finds the estimate
E > 6π2

√
2|Q|

that allows to introduce the Hamiltonian

H = E − 6π2
√

2|Q|, (2.3)

which is invariant under the group

G = SO(3)S ⊗ SO(3)I (2.4)

including coordinate space rotations SO(3)S and isotopic rotations SO(3)I realized as
transformations U → V UV −1, V ∈ SU(2).

As can be easily verified, G-equivariant fields are trivial, and therefore we consider
the two evident subgroups:

G1 = diag [SO(3)S ⊗ SO(3)I ] , (2.5)
G2 = diag [SO(2)S ⊗ SO(2)I ] , (2.6)

which include combined rotations in coordinate and isotopic spaces. As for G1-
equivariance, condition (1.4) reads

−ı[r5]U +
1

2
[σ, U ] = 0 (2.7)

and leads to the well-known hedgehog configuration

U = cos Θ(r) + ı sin Θ(r)(σn), n = r/r, (2.8)

first proposed by Skyrme [9]. G1-equivariant hedgehog configurations are known as
spherically-symmetric ones, for which the chiral angle Θ(r) is given by the monotoni-
cally decreasing function satisfying the following boundary conditions:

Θ(0) = Nπ, Θ(∞) = 0, N ∈ Z. (2.9)



Using (2.2) and (2.9), one can easily find that Q = N . The existence of such structures
can be proved by the variational method [3, 8], N = 1-configuration realizing the
absolute minimum of the Hamiltonian (2.3). The latter property can be seen as follows.

First of all, for unitary matrix we use the representation U = exp[ı(σn)Θ] and also
polar coordinates β, γ for the unit vector n. Then we introduce the three vector fields:

X = 5Θ, Y = sin Θ5 β, Z = sin Θ sin β 5 γ (2.10)

and represent Hamiltonian (2.3) in the form:

H =

∫
dx
{(

X/
√

2 + [YZ]
)2

+
(
Y/
√

2 + [ZX]
)2

+
(
Z/
√

2 + [XY]
)2}

. (2.11)

As follows from (2.11), the minimum of H corresponds to the anticollinearity of the
correspondent pairs of vectors: X, [YZ], etc. that results in the orthogonality of
vectors (2.10) and the dependence of H only on modules |X|, |Y|, |Z|. This fact
together with the spherical rearrangement procedure [7] yields the spherical symmetry
of |X|, |Y| and |Z| and finally one gets the hedgehog ansatz:

Θ = Θ(r), β = ϑ, γ = α, (2.12)

where the spherical coordinates r, ϑ, α are used.

3 Axially-symmetric configurations in the Skyrme model

Let us now consider G2-equivariant configurations in SM with |Q| ≥ 2. As the group
G2 includes the combined rotations around the third axes in coordinate and isotopic
spaces, condition (1.4) reads

−ı∂αU +
k

2
[σ3, U ] = 0, k ∈ Z, (3.1)

with the solution

Θ = Θ(r, ϑ), β = β(r, ϑ), γ = kα + v(r, ϑ). (3.2)

As follows from (2.11), the absolute minimum of H in this class coresponds to the
conditions

(XZ) = (YZ) = 0,

which are fulfilled if v = 0 in (3.2). For this choice we can exclude the α-coordinate
and perform the minimization of the two-dimensional functional (2.11):

I[Θ, β] =
1

2

∞∫
0

dr r2

π∫
0

dϑ sinϑ
[1

2
Z2 + 3

√
2ZJ + J2 +

(
1

2
+ Z2

)
(X2 + Y2)

]
, (3.3)

where the following denotations for the components of two-dimensional vectors X =
{X1, X2}, Y = {Y1, Y2} are used:

X1 = ∂rΘ; X2 =
1

r
∂ϑΘ; Y1 = ∂rβ; Y2 =

1

r
∂ϑβ;

Z =
k

r sinϑ
sin Θ sin β; J = X1Y2 −X2Y1.



Let us now obtain some apriori estimates taking into account the Legendre—
Hadamard necessary condition for the minimum of functional (3.3) with respect to
variations δX = x, δY = y:

A(x2 + y2) +B[xy]3 + ([xY] + [Xy])2 ≥ 0, (3.4)

where A = Z2 + 1/2, B = J + 3Z/
√

2. As follows from (3.4), one gets |B| ≤ A, i. e.
the boundedness of | 5Θ| and | 5 β| in the domain Ω ∈ R3:

Ω = {| sin Θ| ≥ δ, r sinϑ ≥ δ1, | sin β| ≥ δ2, r ≤ R} (3.5)

for some constants δ > 0, δ1 > 0, δ2 > 0, R < ∞. Therefore, after restricting the
functional I to the domain Ω: I ↘ IΩ, one can construct the minimizing sequence
{Θn, βn} ∈ W 1

∞(Ω) with ∗ weak convergence. Moreover, one finds that sequences
{sin Θn, sin βn} strongly converge in C(Ω) and sequences {Xn,Yn} ∗ weakly converge
in L∞(Ω), with {Yn} being weakly converging in L2(Ω).

Now one can use Mazur’s lemma [1], which states that due to the convexity of IΩ

with respect to Y one can construct a minimizing convex combination of sequences:

conYn =
N∑
k=n

λkYk,
N∑
k=n

λk = 1,

strongly converging in L2(Ω). As a result one gets the product {Jn} = {[XnconYn]3}
of two sequences. The first one {Xn} ∗ weakly converges in L∞(Ω) and the second one
{conYn} strongly converges in L2(Ω). Therefore, the product {Jn} weakly converges
in L2(Ω).

Functional (3.3) having the structure of the squared norm in L2(Ω), one concludes
that IΩ is weakly semicontinuous from below and inf IΩ is attainable.

4 Topological solitons in the Faddeev model

In FM the field is given by the unit 3-vector:

na(x) : R3 → S2, a = 1, 2, 3, |n| = 1, (4.1)

with the boundary condition
na(∞) = δa3 . (4.2)

In view of (4.2) there are no spherically-symmetric configurations in FM, and we con-
sider only axially-symmetric ones. To describe the topological properties of Faddeev
solitons, we introduce the auxilliary 3-vector ai, i = 1, 2, 3, defined as follows:

∂iak − ∂kai = 2εabc∂in
a∂kn

bnc. (4.3)

The topological invariant classifying configurations (4.1), (4.2) and serving as the gener-
ator of π3(S2) is the so-called Hopf invariant (Hopf index) QH defined by the Whitehead
integral

QH = −(8π)−2

∫
dx (ab), b = rota, (4.4)



which represents the degree of knottedness of tangled b-lines [5] having the analogy
with the hydrodynamics. In FM the energy reads

E =

∫
dx
[1

2
b2 + (∂in

a)2
]

(4.5)

and can be estimated from below through the Hopf index [10]:

E > (4π)2
√

2 33/8|QH |3/4 ≡ µ|QH |3/4. (4.6)

Therefore, in view of (4.6), the Hamiltonian H in FM can be defined as follows:

H[n] = E − µ|QH |3/4. (4.7)

However, for the G2 -equivariant or axially-symmetric configurations we find struc-
ture (3.2), i. e. for the polar angles β, γ of n one has

β = β(ρ, z), γ = kα + v(ρ, z), k ∈ Z, (4.8)

with ρ, α, z being cylindrical coordinates. In this case [8] the Hopf invariant can be
transformed into:

QH =
k

4π

∞∫
0

dρ

∞∫
−∞

dz sin β (∂ρβ∂zv − ∂zβ∂ρv) , (4.9)

that allows to improve estimate (4.6). As can be shown [8], QH 6= 0 if and only if the
function v has the step structure, with the jump [v] = 2nπ, n ∈ Z, on some line in
ρ, z-plane. In this case QH = kn. Since b = 2 sin β[5β 5 γ], the surface β = const
is homeomorphic to torus T 2, with b -line being tangent to it and making k windings
along T 2 and n transverse windings. This fact allows one to improve estimate (4.6), if
we consider the energy functional in the form E = 4π

√
2I, I = I0 + I1, where

I0[β] =
1

2

∞∫
0

ρ dρ

∞∫
−∞

dz
[
(5β)2 +

k2

ρ2
sin2 β

(
1 + (5β)2

)]
,

I1[β, v] =
1

2

∞∫
0

ρ dρ

∞∫
−∞

dz sin2 β
[
(5v)2 + [5β 5 v]2

]
.

Using simple inequalities:

(5β)2
[
1 +

k2

ρ2
sin2 β

]
+ sin2 β(5v)2 ≥ 2 sin β|[5β 5 v]|

[
1 +

k2

ρ2
sin2 β

]1/2

,

k2

ρ2
+ [5β 5 v]2 ≥ 2

|k|
ρ
|[5β 5 v]|,

one immediately gets that

I > 2|k| |
∞∫

0

dρ

∞∫
−∞

dz sin2 β[5β 5 v]| = 2π2|kn|. (4.10)



Now we intend to prove the existence of such configurations via the variational
method in plain analogy with SM. Denoting X = 5β, Y = sin β5 v, we rewrite H for
k > 0 in the form:

H =

∞∫
0

ρ dρ

∞∫
−∞

dz

[
X2
[
1+

k2

ρ2
sin2 β

]
+Y2+[XY]2+

k2

ρ2
sin2 β−4k

ρ
sin β[XY]3

]
. (4.11)

Then the necessary condition of minimum for (4.11) implies the inequality

x2
[
1 +

k2

ρ2
sin2 β

]
+ y2 + ([Xy] + [xY])2 + 2[XY] · [xy]− 4k

ρ
sin β[xy]3 > 0,

where x = δx, y = δY, or equivalently

1 +
k2

ρ2
sin2 β >

(2k

ρ
sin β − [XY]3

)2

. (4.12)

Condition (4.12) is equivalent to the boundedness of derivatives 5β and 5v in the
domain Ω, where sin β > δ > 0, ρ > δ1 > 0. Restricting the functional H to Ω, one
finds the similarity of the functionals IΩ in SM and HΩ. Therefore, one can construct
the minimizing sequence βn, vn ∈ W 1

∞(Ω) with the ∗ weak convergence and prove the
weak semicontinuity of HΩ from below.

The final step in studying axially-symmetric configurations in SM and FM includes
the extension of the domain Ω =⇒ R3. To this end it should be remarked that in
the complementary domain Ω′ = R3\Ω the corresponding Lagrange equations become
linear and can be solved through separating variables. In view of regular behavior
of these solutions in Ω′ one can prove the continuous dependence of HΩ and IΩ on
the domain Ω, the latter fact implying the attainability of infH and infI for axially-
symmetric topological configurations in SM and FM.

5 Conclusion

Using the variational method and lower estimates of the energy functionals in axially-
symmetric case through the topological charges in SM and FM, one can prove the
existence of localized topological configurations in these models. Corresponding mini-
mizing sequences have the property of ∗ weak convergence inW 1

∞, that is in the topology
σ(W 1

∞,W
1
1 ). The similarity of the Skyrme and Faddeev models based on the inverse

Hopf mapping S3 → S2 was often used in physics for estimating masses of topological
solitons [2].
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