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Abstract. We investigate an inverse extremal problem for the variational functionals:
to describe, under certain conditions, all types of variational functionals having a local
extremum (in case of the space C1[a; b]) or a compact extremum (in case of the Sobolev
space W 1,2[a; b] = H1[a; b]) at a given point of the corresponding function space. The
non-locality conditions for a compact extrema of variational functionals are described
as well.

1 Introduction. Preliminaries

The classical scheme of proving the existence of a local extremum for the one-
dimensional Euler-Lagrange variational functional

Φ(y) =

b∫
a

f(x, y, y′)dx 7→ extr (y ∈ C1[a; b])

at an extremal point y assumes [5], [4] checking the strengthened Legendre condition
fy′y′(x, y, y

′) 6= 0 and the Jacobi condition U(x) 6= 0 (a < x ≤ b) for the Hamilton–
Jacobi equation:

− d

dx

[
fy′y′(x, y, y

′)U ′
]

+

[
− d

dx

(
fyy′(x, y, y

′)
)

+ fy2(x, y, y
′)

]
U = 0

(U(a) = 0, U ′(a) = 1).

The second step is the most laborious, it requires to solve a rather complicated
equation in order to get, in fact, a very small information about the behaviour of the
solution U .

Moreover, the initial conditions U(a) = 0, U ′(a) = 1, have as a consequence auto-
matical fulfilment of the Jacobi condition near a. The only question is – how long is
the appropriate interval?
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In the recent author’s paper [8], it was shown that the interval satisfying the Ja-
cobi condition can be chosen depending only on the form of the integrand f and not
depending on a concrete extremal. More precisely, the main result distinguishes two
cases depending on the range of the coefficients in the Hamilton-Jacobi equation. In
the first case, an extremum is guaranteed without any restriction on the length of [a; b],
in the second one, such a restriction is present. This result remains valid also for the
case of a compact extremum in the Sobolev space H1[a; b].

Let us formulate these results considering first the classical C1–case.

Theorem 1. Let the variational functional

Φ(y) =

b∫
a

f(x, y, y′)dx (y ∈ C1[a; b], y(a) = y(b) = 0, f ∈ C2, fyz ∈ C1) (1.1)

satisfy at a point y0(·) ∈ C2[a; b] the Euler-Lagrange equation

fy(x, y0, y
′
0)−

d

dx

[
fz(x, y0, y

′
0)
]

= 0 . (1.2)

Denote
p := min

a≤x≤b
fz2(x, y0(x), y

′
0(x));

q := min
a≤x≤b

[
fy2(x, y0(x), y

′
0(x))−

d

dx

(
fyz(x, y0(x), y

′
0(x))

)]
.

Then, under the boundary conditions y(a) = y0(a), y(b) = y0(b),

1) for p > 0, q ≥ 0, Φ(y) attains a strong local minimum at y0(·) (without any re-
striction on the length of [a; b]);

2) for p > 0, q < 0, and under the restriction

b− a <
π

4

√
p

|q|
, (1.3)

on the length of [a; b], Φ(y) attains a strong local minimum at y0(·) as well.

An analogous result holds for a compact extrema of a variational functional in the
Sobolev H1-case.

Theorem 2. Let the variational functional

Φ(y) =

b∫
a

f(x, y, y′)dx (y ∈ H1[a; b], y(a) = y(b) = 0, f ∈ W 2
K(z)) (1.4)

satisfy at a W 2,2-smooth point y0(·) the Euler-Lagrange equation. Then, under the
conditions and notation of Theorem 1,
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1) for p > 0, q ≥ 0, Φ(y) attains a strong K–minimum at y0(·) (without any restric-
tion on the length of [a; b]);

2) for p > 0, q < 0, and under the restriction

b− a <
π

4

√
p

|q|

on the a length of [a; b], Φ(y) attains a strong K–minimum at y0(·) as well.

(The Weierstrass class W 2
K(z) will be defined below).

These results simplify essentially finding of both a local extremum in the C1-case
and a K-extremum in the H1-case for the variational functionals of type (1.1), (1.4).
Thisallows setting the inverse problem: to describe a general form of a variational
functional having extremum at a given point (under the Euler-Lagrange and Legendre
conditions).

The paper is devoted to solution of this problem. The first item contains a solution
of the inverse problem in C1[a; b] (Theorems 3, 4 below). The second item contains a
solution of the inverse problem in H1[a; b] (Theorems 7 – 9 below).

The third item is auxiliary for the further investigation of K-extrema. It contains a
description of integrands in the Weierstrass class W 2K2(z), which provides the appro-
priate analytical properties of variational functionals in H1 (Theorem 10). The fourth
item contains the so-called “stationary form of the Legendre-Jacobi conditions” (SLG)
guaranteeing the existence of a K-extremum under a weaker restriction on the length
of [a; b]. On the basis of that results, the fifth item contains a solution of the inverse
problem in H1[a; b] under the (SLJ)-condition and the exponential (SLJ)-condition.

Next, the sixth item of the work consider the main properties of the mappings from
the Weierstrass class W 2

K(z) that allow to construct easily the extensive classes of the
integrands from the Weierstrass class W 2K2(z). The final, seventh item of the work
contains a description of an extensive enough class of the variational functionals having
non–local compact extrema in H1[a, b].

2 Inverse extremal problem for variational functionals in C1[a; b]

Let us set up the following problem: to find a general form of the variational func-
tional (1.1) possessing local minimum at zero under the strengthened Legendre condi-
tion.

1) We shall write integrands f of functional (1.1) the form

f(x, y, z) = P (x, y) +Q(x, y) · z +
1

2
R(x, y, z) · z2 . (2.1)

Then

P (x, y) = f(x, y, 0), Q(x, y) = fz(x, y, 0), R(x, y, 0) = fz2(x, y, 0).

Under this notation, the Euler–Lagrange equation at the zero extremal takes the form

(Qx − Py)(x, 0) = 0 (a ≤ x ≤ b); (2.2)
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and the strengthened Legendre condition at the zero extremal takes the form

R(x, 0, 0) =: p(x) > 0 (a ≤ x ≤ b). (2.3)

2) Choose an arbitrary function P ∈ C2. Then a general form of Q follows by (2.2):

(
Qx(x, 0) = Py(x, 0)

)
⇒
(
Q(x, 0) = C +

x∫
a

Py(t, 0)dt

)
⇒

⇒
(
Q(x, y) = C +

x∫
a

Py(t, 0)dt+ Q̃(x, y), where Q̃(x, 0) = 0

)
⇒

⇒
(
Q(x, y) = C +

x∫
a

Py(t, 0)dt+ [q(x, y)− q(x, 0)]

)
. (2.4)

Here C ∈ R and q ∈ C2 can be chosen arbitrarily.
3) A general form of R easily follows by condition (2.3):(
R(x, 0, 0) = p(x) > 0

)
⇒
(
R(x, y, z) = p(x) + [ρ(x, y, z)− ρ(x, 0, 0)]

)
, (2.5)

where p(x) > 0, p ∈ C2; ρ ∈ C2 can be chosen arbitrarily.
4) A general form of the integrand f follows now from (2.1), (2.4) and (2.5):

f(x, y, z) = P (x, y) +

(
C +

x∫
a

Py(t, 0)dt+ [q(x, y)− q(x, 0)]

)
· z+

+
1

2

(
p(x) + [ρ(x, y, z)− ρ(x, 0, 0)]

)
· z2 , (2.6)

where C ∈ R; q, p ∈ C2 (p > 0) can be chosen arbitrarily. So, the following statement
in proved.

Theorem 3. Let, under the conditions of Theorem 1, functional (1.1) attain a local
minimum at zero under the strengthened Legendre condition. Then the integrand f
takes the form (2.6).

Remark 1. As it follows from Theorem 3, a general form of the variational func-
tional (1.1) taking a local minimum at zero under the strengthened Legendre condition
is

Φ(y) =

b∫
a

(
P (x, y) +

[
C +

x∫
a

Py(t, 0)dt+ q(x, y)− q(x, 0)

]
· y′+

+
1

2

[
p(x) + ρ(x, y, y′)− ρ(x, 0, 0)

]
· y′2

)
dx , (2.7)
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where C ∈ R, P , q, p > 0, ρ are the arbitrary functions in C2.
Thus, under the strengthened Legendre condition, the inverse extremal variational

problem at zero is solved: all the functionals of type (1.1) taking a local minimum at
zero are described.

Now, let us pass to the general case of an arbitrary C2-smooth extremal in C1[a; b].
Let us fix an arbitrary C2-smooth function y0(x), a ≤ x ≤ b, satisfying the boundary

conditions y(a) = y0(a), y(b) = y0(b).
In order to reduce the problem to the case of the zero extremal considered above,

it suffices to introduce the auxiliary variational functional:

Φ̃(y) = Φ(y + y0) =

b∫
a

f(x, y + y0(x), y
′ + y′0(x))dx =:

b∫
a

f̃(x, y, y′)dx

(y(a) = y(b) = 0).

The condition y0(·) ∈ C2 guarantees fulfilment of the condition in (1.1) for the auxiliary
integrand f̃ .

Application of Theorem 3 to the auxiliary integrand f̃ leads to a solution of the
inverse extremal problem for Φ at an arbitrary point y0(·) ∈ C2[a; b].

Theorem 4. Let, under the conditions of Theorem 1, the variational functional (1.1)
attain a local minimum at a point y0(·) ∈ C2[a; b] satisfying the boundary conditions
y(a) = y0(a), y(b) = y0(b) and the strengthened Legendre condition. Then the integrand
f has form

f(x, y, z) = P (x, y − y0(x))+

+

(
C +

x∫
a

Py(t,−y0(t))dt+ [q(x, y − y0(x))− q(x,−y0(x))]

)
· (z − y′0(x))+

+
1

2

(
p(x) + [ρ(x, y − y0(x), z − y′0(x))− ρ(x,−y0(x),−y′0(x))]

)
· (z − y′0(x))

2 , (2.8)

where C ∈ R; P , q, p > 0, ρ ∈ C2 can be chosen arbitrarily.

This implies the following formula for the general form of functional (1.1) attaining
a local minimum in C1[a; b] at a point y0(·) ∈ C2[a; b] under the strengthened Legendre
condition:

Φ(y) =

b∫
a

(
P (x, y−y0(x))+

[
C+

x∫
a

Py(t,−y0(t))dt+q(x, y−y0(x))−q(x,−y0(x))

]
·

· (y′ − y′0(x)) +
1

2

[
p(x) + ρ(x, y − y0(x), y

′ − y′0(x))−

− ρ(x,−y0(x),−y′0(x))
]
· (y′ − y′0(x))

2

)
dx , (2.9)
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where C ∈ R; P , q, p > 0, ρ ∈ C2 can be chosen arbitrarily, arises.
Thus, under the strengthened Legendre condition, the inverse extremal variational

problem at an arbitrary point y0(·) ∈ C2 is solved: all functionals of type (1.1), attain-
ing a local minimum at a point y0(·), are described.

3 Compact extrema of variational functionals in Sobolev space
H1[a; b]

To consider the inverse extremal problem in H1[a; b], let us first introduce the concept
of a compact extremum and bring a necessary information on compact extrema of
variational functionals in H1[a; b].

In the Hilbert-Sobolev space W 1,2[a; b] = H1[a; b] equipped with the norm

‖y‖2
H1[a;b] =

b∫
a

(y2 + y′2)dx , (3.1)

as is well known, by virtue of I.V. Skrypnik’s theorem ( [14], Ch.11) variational func-
tionals have practically no non-absolute local extrema. In the our works [11], [9], [10], [6]
and in the works by E.V. Bozhonok [1], [2], [3] the general concept of a compact ex-
tremum (orK-extremum) of a functional was studied (see, also, [12]). It has been shown
there that the classical, both necessary and sufficient conditions of a local extremum
of a variational functional in C1[a; b] can be extended to the case of a K-extremum
in H1[a; b]. In this case, the K-extrema inherit the important properties of the local
extrema and can be considered as an analogue of the ones in the case of variational
functionals in H1[a; b].

Definition 5. Let a real functional Φ : H → R be defined in a Hilbert space H. Say that
Φ has a compact minimum (or K-minimum) at a point y0 ∈ H if, for each absolutely
convex (a.c.) compact set C ⊂ H, the restriction of f to the subspace (y0 + spanC)
has a local minimum at y0 with respect to the Banach norm ‖ · ‖C in spanC generated
by C. In other words, for each a.c. compactum C ⊂ H there exists such ε = ε(C) > 0
that ϕ(y) ≥ ϕ(y0) for all y satisfying y − y0 ∈ ε · C.

Next assume for simplicity [a; b] = [0;T ].

Definition 6. We say that a mapping ϕ : [0;T ]× R× R → Rn belongs to the Weier-
strass class WK(z), if ϕ is uniformly continuous and bounded locally in x and y, and
globally in z. We say that ϕ belongs to the Weierstrass class W 1

K(z) if ϕ ∈ WK(z)
and gradient ∇yzϕ ∈ WK(z). We say that ϕ belongs to the Weierstrass class W 2

K(z) if
ϕ ∈ WK(z), the gradient ∇yzϕ ∈ WK(z) and the Hessian Hyzϕ ∈ WK(z).

Next, we say that a function f : [0;T ]× R× R → R belongs to the class WK2(z) if
a representation pseudoquadratic in z

f(x, y, z) = A(x, y, z) +B(x, y, z) · z + C(x, y, z) · z2, (3.2)
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can be chosen in such a way that the coefficients A, B, C belong to the class WK(z).
We say that f belongs to the Weierstrass class W 1K2(z) if the coefficients A, B, C
belong to the class W 1

K(z). Finally, we say that f belongs to the Weierstrass class
W 2K2(z) if the coefficients A, B, C belong to the class W 2

K(z).

Note that the classes WK(z), W 1
K(z), W 2

K(z) can be considered as the appropriate
space with dominating mixed smoothness (see [13], [15]).

In [7] the following sufficient condition of the twice K-differentiability of a varia-
tional functional in Sobolev space H1[0;T ] was obtained.

Theorem 5. If f ∈ W 2K2(z) then the Euler-Lagrange functional

Φ(y) =

T∫
0

f(x, y, y′)dx, y(·) ∈ H1[0;T ] (3.3)

is twice K–differentiable everywhere on H1[0;T ]. Moreover,

Φ′′
K(y)(h, k) =

T∫
0

[∂2f

∂y2
h · k +

∂2f

∂y∂z
(h′ · k + h · k′) +

∂2f

∂z2
h′ · k′

]
dx. (3.4)

The following generalized Euler–Lagrange equation [1] serves for finding a K-
extremum of functional (3.3) in the space H1[0;T ] as an analogue of the classical
necessary condition of a local extremum for a variational functional in C1[0;T ].

Theorem 6. Let, in addition to the hypotheses of Theorem 5, the following conditions
hold:

(i) functional (3.3) possesses a K-extremum at a point y(·) ∈ H1[0;T ];

(ii) the function ∂f
∂z

(x, y, y′) is absolutely continuous on [0;T ].

Then the generalized Euler-Lagrange equation:

L(f)(y) =
∂f

∂y
(x, y, y′)− d

dx

(
∂f

∂z
(x, y, y′)

)
= 0 a.e. on [0;T ] (3.5)

holds. In particular, the condition (ii) is fulfilled in the case

(∂f/∂z) ∈ C1([0;T ]× R2), y(·) ∈ W 2,2[0;T ].

The solutions of equation (3.5), satisfying condition (ii) of Theorem 6, are called
the K − extremals of functional (3.3) in the space H1[0;T ].

Let us also formulate the generalized sufficient Legendre-Jacobi condition [3] of a
strong K-extremum in the case of Sobolev space H1[0;T ].
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Theorem 7. Let f : [0;T ]× R2 → R, f ∈ W 2K2(z), y(·) be a K-extremal of func-
tional (3.3) in H1

0 [0;T ] and the functions ∂f
∂z

(x, y(x), y′(x)) and ∂2f
∂y∂z

(x, y(x), y′(x)) be
absolutely continuous on K-extremal y(·). Suppose that:

1) the stregthened Legendre condition, i.e.

∂2f

∂z2
(x, y(x), y′(x)) > 0

is fulfilled everywhere on [0;T ];
2) the generalized Jacobi condition is fulfilled, i.e. every solution of the Jacobi

equation

− d

dx

(
∂2f

∂z2
(x, y(x), y′(x))u′

)
+

[
− d

dx

(
∂2f

∂y∂z
(x, y(x), y′(x))

)
+

+
∂2f

∂y2
(x, y(x), y′(x))

]
u

a.e
= 0 (3.6)

in the class H1[0;T ], satisfying the initial conditions u(0) = 0, u′(0) = 1, does not
vanishes for 0 < x ≤ T .

Then Euler-Lagrange functional (3.3) possesses a strong K-minimum at the point
y(·).

This theorem allows to extend the results of Section 1 to the case of a K-minimum
in H1[a; b].

Theorem 8. Let variational functional (1.1) at a W 2,2–smooth point y0(·) ∈ H1[a; b]
satisfy the Euler-Lagrange equation, and, in addition, R(x, y, z) ∈ W 2

K(z).
Then, under the conditions and notation of Theorem 1,

1) for p > 0, q ≥ 0, Φ(y) attains a strong K-minimum at y0(·) (without any restric-
tion on the length of [a; b]);

2) for p > 0, q < 0, and under restriction (1.3) on the length of [a; b], Φ(y) attains
a strong K-minimum at y0(·) as well.

Theorem 9. Let, under the conditions and notation of Theorem 8, variational func-
tional (1.1) attain a K-minimum at a W 2,2–smooth point y0(·) from H1[a; b] satisfying
the boundary conditions y(a) = y0(a), y(b) = y0(b) and the strengthened Legendre con-
dition.

Then the integrand f takes form (2.8), where C ∈ R; P , q, p > 0, in C2 and ρ
inW 2

K(z) can be chosen arbitrarily.

This results implies formula (2.9) giving the general form of functional (1.1) having
a K-minimum at a W 2,2-smooth point y0(·) in H1[a; b] satisfying the strengthened
Legendre condition.
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4 Minimal pseudoquadratic representation for integrands of
variarional functionals from the class W 2K2(z)

This Section is devoted to description of a suitable class of integrands for which the cor-
responding variational functionals in H1[a; b] possess the compact–analytical properties
allowing analytical investigation of a compact extremum.

Let us consider an integrand f ∈ W 2K2(z), i.e.

f(x, y, z) = A(x, y, z) +B(x, y, z) · z + C(x, y, z) · z2,

where A, B, C ∈ WK(z), with analogous representations for the gradient ∇yzf and the
Hessian Hyzf .

Since the function f is twice continuously differentiable on Ω× R× R in (y, z),
application of the second order Taylor formula in z at a point (x, y, 0) leads to

f(x, y, z) = f(x, y, 0) +
∂f

∂z
(x, y, 0) · z +

∂2f

∂z2
(x, y, 0) · z

2

2
+ ϕ(x, y; z), (4.1)

where ϕ(x, y; z) = o(z2) as z → 0 locally uniformly in x, y. Set

R(x, y, z) =
∂2f

∂z2
(x, y, 0) +

ϕ(x, y; z)

z2
as z 6= 0; R(x, y, 0) = 0.

Then R ∈ WK(z) and, denoting by P (x, y) = f(x, y, 0), Q(x, y) = ∂f
∂z

(x, y, 0), we
obtains from (4.1)

f(x, y, z) = P (x, y) +Q(x, y) · z +R(x, y, z) · z
2

2
, (4.2)

where P , Q ∈ C2; R ∈ WK(z).
Now, using the equalities

∂f

∂y
=
∂P

∂y
+
∂Q

∂y
· z +

∂R

∂y
· z

2

2
,

∂f

∂z
= Q+R · z +

∂R

∂z
· z

2

2
,

∂2f

∂y∂z
=
∂Q

∂y
+
∂R

∂y
· z +

∂2R

∂y∂z
· z

2

2
,

∂2f

∂y2
=
∂2P

∂y2
+
∂2Q

∂y2
· z +

∂2R

∂y2
· z

2

2
,

∂2f

∂z2
= R + 2

∂R

∂z
· z +

∂2R

∂z2
· z

2

2
, (4.3)

it follows by the conditions

∇yzf ∈ WK2(z), Hyzf ∈ WK2(z)

that
∇yzR ∈ WK(z), HyzR ∈ WK(z).

Thus, in the representation (4.2), R ∈ W 2
K(z).

Conversely, if representation (4.2) holds with P , Q ∈ C2; R ∈ W 2
K(z), then the

condition f ∈ W 2K2(z) holds automatically. Thus, the following theorem is proved.

Theorem 10. The representability of f in form (4.2) with P , Q ∈ C2; R ∈ W 2
K(z), is

necessary and sufficient for f to be in the class W 2K2(z).
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5 Stationary form of the Legendre-Jacobi conditions

A simple example of the “harmonic oscillator” in which case

Φ(y) =

T∫
0

(y′2 − y2)dx

shows that restriction (1.3) on the length of [a; b] in Theorem 8(2) can be too strong.
Now we consider some types of integrands for which an essential weakening of the
restriction (3) is possible.

Let us consider the variational functional

Φ(y) =

T∫
0

(
R(x, y, y′) · y

′2

2
+Q(x, y) · y′ + P (x, y)

)
dx, y(·) ∈ H1

0 [0;T ], (5.1)

where P , Q ∈ C2; R ∈ W 2
K(z).

Note that, according to Theorem 10, the integrand

f(x, y, z) = R(x, y, z) · z
2

2
+Q(x, y) · z + P (x, y)

is of the class W 2K2(z). Hence, by Theorem 5, this functional is well-posed and twice
K-differentiable in H1

0 [0;T ].
Now, consider conditions ensuring existence of a K-extremum at zero for variational

functional (5.1).
1) From equalities (4.3) we obtain

∂f

∂y
(x, 0, 0) =

∂P

∂y
(x, 0),

∂f

∂z
(x, 0, 0) = Q(x, 0). (5.2)

Then, substituting (5.2) in the Euler-Lagrange variational equation along K-extremal
y0(x) ≡ 0 (0 ≤ x ≤ T ) for functional (5.1) and taking into account, that f ∈ C2, we
obtain

(d/dx)[f(x, 0, 0)] = (d/dx)[Q(x, 0)],

hence
∂P

∂y
(x, 0)− ∂Q

∂x
(x, 0) ≡ 0. (5.3)

2) Next, let us study conditions of fulfilment of the generalized Legendre-Jacobi
sufficient condition for a strong K-extremum of the functional Φ(y) in Sobolev space
H1

0 (Theorem 7) along a K-extremal y0(·). Note first that it is necessary to impose the
additional requirement of the absolute continuity along the K–extremal y0(x) ≡ 0 of
the functions

∂f

∂z
(x, y0(x), y

′
0(x)) = Q(x, 0) and

∂2f

∂y∂z
(x, y0(x), y

′
0(x)) =

∂Q

∂y
(x, 0).
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i) The stregthened Legendre condition in the case of a K-minimum for func-
tional (5.1) takes the form

∂2f

∂z2
(x, 0, 0) = R(x, 0, 0) > 0 (5.4)

everywhere along [0;T ].
ii) The Jacobi condition: the generalized Jacobi equation for functional (5.1) along

K-extremal y0(·)

− d

dx

[
∂2f

∂z2
(x, 0, 0)u′

]
+

[
− d

dx

(
∂2f

∂y∂z
(x, 0, 0)

)
+
∂2f

∂y2
(x, 0, 0)

]
u

a.e.
= 0

in view of equalities (5.1) takes the form

− d

dx
[R(x, 0, 0)u′] +

[
− d

dx

(
∂Q

∂y
(x, 0)

)
+
∂2P

∂y2
(x, 0)

]
u

a.e.
= 0.

Or, taking into account f ∈ C2, it follows that

− d

dx
[R(x, 0, 0)u′] +

[
∂2P

∂y2
(x, 0)− ∂2Q

∂x∂y
(x, 0)

]
u

a.e.
= 0, (5.5)

under the initial conditions u(0) = 0, u′(0) = 1.
Now, let us consider sufficient conditions of fulfillment of the Jacobi condition.
Assume that the following additional conditions are satisfied

R(x, 0, 0) ≡ r > 0, (5.6)

(
∂2P

∂y2
− ∂2Q

∂x∂y

)
(x, 0) ≡ p. (5.7)

Then equation (5.5) takes the form

ru′′ − pu = 0, u(0) = 0, u′(0) = 1. (5.8)

Consider all the possible cases: p = 0, p > 0, p < 0.
a) p = 0. Equation (5.8) takes the form: u′′ = 0, whence the solution u(x) = x

satisfies the Jacobi condition:

u(x) 6= 0, 0 < x ≤ T , for all T > 0.

b) p > 0. Equation (5.8) takes the form: u′′ = p
r
u with p

r
> 0, whence the solution

u(x) =
√

r
p
sh
√

p
r
x satisfies the Jacobi condition:

u(x) 6= 0, 0 < x ≤ T , for all T > 0.



106 I.V. Orlov

c) p < 0. Equation (5.8) takes the form: u′′ = −
∣∣p
r

∣∣u with p
r
< 0, whence the

solution u(x) =

√∣∣∣ rp∣∣∣ sin√∣∣pr ∣∣x satisfies the Jacobi condition:

u(x) 6= 0, 0 < x ≤ T , only for the case

T < π

√∣∣∣∣rp
∣∣∣∣.

We say that conditions (5.3), (5.6), (5.7) (providing fulfilment of the Legendre-
Jacobi sufficient conditions at zero) are the stationary form of the Legendre-Jacobi
conditions at zero, or (SLJ )-conditions.

Now, let consider some generalization of the conditions (SLJ). Namely, replace the
conditions (5.6)–(5.7) by the following ones:

R(x, 0, 0) = r · eαx (r > 0, α ∈ R), (5.9)(
∂2P

∂y2
− ∂2Q

∂x∂y

)
(x, 0) = p · eαx. (5.10)

Then equation (5.5) takes the form

r · u′′ + (rα) · u′ − p · u = 0, u(0) = 0, u′(0) = 1, (5.11)

with the discriminant
D = r(rα2 + 4p).

Consider all the possible cases: rα2 + 4p = 0, rα2 + 4p > 0, rα2 + 4p < 0.
a) rα2 + 4p = 0. The characteristic equation for equation (5.11) takes the form:

λ = −α/2, whence the solution u(x) = x · e−αx/2 satisfies the Jacobi condition:

u(x) 6= 0, 0 < x ≤ T , for all T > 0.

b) rα2 + 4p > 0. The characteristic equation for equation (5.11) takes the form:

r · λ2 + (rα) · λ− p = 0 (D > 0),

whence the solution

u(x) = 2e−
α
2
x ·
√

r

rα2 + 4p
· sh

(
1

2

√
rα2 + 4p

r
x

)

satisfies the Jacobi condition:

u(x) 6= 0, 0 < x ≤ T , for all T > 0.

c) rα2 + 4p < 0. The characteristic equation for equation (5.11) takes the form:

r · λ2 + (rα) · λ− p = 0 (D < 0),
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whence the solution

u(x) = 2e−
α
2
x ·
√

r

|rα2 + 4p|
· sin

(
1

2

√
|rα2 + 4p|

r
x

)

satisfies the Jacobi condition:

u(x) 6= 0, 0 < x ≤ T , only for the case

T < 2π

√
r

|rα2 + 4p|
.

We call conditions (5.9)–(5.10) the exponential (SLJ )-conditions. Of course, the
“usual” (SLJ)-conditions (5.6)–(5.7) are a particular case of conditions (5.9)–(5.10)
corresponding to α = 0.

6 Inverse extremal problem for variational functionals in
H1[a; b] under the (SLJ)–condition

Our aim in this Section is to describe all integrands of the class W 2K2(z) satisfying
conditions (5.3), (5.6), (5.7):

∂P

∂y
(x, 0)− ∂Q

∂x
(x, 0) ≡ 0,

(
∂2P

∂y2
− ∂2Q

∂x∂y

)
(x, 0) ≡ p, R(x, 0, 0) ≡ r > 0, (6.1)

where P , Q, R are coefficients of minimal representation (5.1) of the integrand f ;
P, Q ∈ C2; R ∈ W 2

K(z).
1) Choose P (x, y) ∈ C2 arbitrarily. Then the first of equations (6.1) leads to:

(
∂Q

∂x
(x, 0) =

∂P

∂y
(x, 0)

)
⇔

Q(x, 0) =

x∫
0

∂P

∂y
(t, 0)dt+ C1

 ,

hence it follows

Q(x, y) =

x∫
0

∂P

∂y
(t, 0)dt+ Q̃(x, y), where Q̃(x, 0) ≡ C1. (6.2)

2) The second of equations (6.1) leads to:

∂2Q

∂x∂y
(x, 0) =

∂2P

∂y2
(x, 0)− p. (6.3)

Substituting of (6.2) in (6.3) leads to:(
∂2Q̃

∂x∂y
(x, 0) =

∂2Q

∂x∂y
(x, 0) =

∂2P

∂y2
(x, 0)− p

)
⇒
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⇒

∂Q̃
∂y

(x, 0) =

x∫
0

[
∂2P

∂y2
(t, 0)− p

]
dt+ C2

 ,

hence
∂Q̃

∂y
(x, y) =

x∫
0

[
∂2P

∂y2
(t, 0)− p

]
dt+ q̃(x, y), where q̃(x, 0) ≡ C2.

Now, by integrating in y we obtain:

Q̃(x, y) =

y∫
0

ds

x∫
0

[
∂2P

∂y2
(t, 0)− p

]
dt+

y∫
0

q̃(x, s)ds+C1, where q̃(x, 0) ≡ C2. (6.4)

Next, by substituting (6.4) in (6.2) we obtain:

Q(x, y) =

x∫
0

∂P

∂y
(t, 0)dt+

y∫
0

ds

x∫
0

[
∂2P

∂y2
(t, 0)− p

]
dt+

y∫
0

q̃(x, s)ds+ C1,

where q̃(x, 0) ≡ C2. From here, denoting q̃(x, y) = q(x, y)− q(x, 0) + C2, after not
complicated transformations we obtain:

Q(x, y) =

x∫
0

[
∂P

∂y
(t, 0) + y · ∂

2P

∂y2
(t, 0)

]
dt+

+

y∫
0

[q(x, s)− q(x, 0)]ds+ (C1 + C2y − p · xy), (6.5)

where the function q ∈ C2 and the constants C1 and C2 can be chosen arbitrarily.
3) By setting

R(x, y, z) = r(x, y, z)− r(x, 0, 0) + r, (6.6)

we obtain the last of conditions (6.1): R(x, 0, 0) ≡ r as well. At last, substituting
of (6.5)–(6.6) in (4.2) leads to the desired result:

f(x, y, z) = P (x, y) +

{ x∫
0

[
∂P

∂y
(t, 0) + y · ∂

2P

∂y2
(t, 0)

]
dt+

y∫
0

[q(x, s)− q(x, 0)]ds+

+(C1 + C2y − p · xy)
}
· z + [r(x, y, z)− r(x, 0, 0) + r] · z

2

2
, (6.7)

where the functions P (x, y) ∈ C2, q(x, y) ∈ C2, r(x, y, z) ∈ W 2
K(z) and the constants

C1 and C2 can be chosen arbitrarily.
Let us pass now to the case of an arbitrary K–extremal y0(x) of the class W 2,2[a; b].

In this case we, use the auxiliary variational functional (see Introduction):

Φ̃(y) = Φ(y + y0) =

b∫
a

f(x, y + y0(x), y
′ + y′0(x)) dx =:

b∫
a

f̃(x, y, y′) dx.



Inverse extremal problem for variational functionals 109

Applying to f̃ representation (6.7) together with the consequent shifts y+ y0 7−→ y
and z + y′0(x) 7−→ z leads to the general form of the integrand for the case under
consideration:

f(x, y, z) = P (x, y − y0(x)) + {
x∫

0

[
∂P

∂y
(t, 0) + (y − y0(x)) ·

∂2P

∂y2
(t, 0)

]
dt+

+

y−y0(x)∫
0

[q(x, s)−q(x, 0)] ds+(C1 + C2 · (y − y0(x))− p · x · (y − y0(x)))}·(z−y′0(x))+

+ [r(x, y − y0(x), z − y′0(x))− r(x, 0, 0) + r] · (z − y′0(x))
2

2
,

where the functions

P (x, y) ∈ C2, q(x, y) ∈ C2, r(x, y, z) ∈ W 2
K(z)

and the constants C1 and C2 can be chosen arbitrarily.
Finally, let us obtain an analogue of representation (6.7) for the case of exponential

(SLJ)-conditions:(
∂P

∂y
− ∂Q

∂x

)
(x, 0) ≡ 0;

(
∂2P

∂y2
− ∂2Q

∂x∂y

)
(x, 0) = p·eαx; R(x, 0, 0) = r·eαx (r > 0).

Choosing P (x, y) ∈ C2 arbitrarily and acting analogously with 1)–2) above, we can
obtain

Q(x, y) =

x∫
0

[
∂P

∂y
(t, 0) + y · ∂

2P

∂y2
(t, 0)

]
dt+

+

y∫
0

[q(x, s)− q(x, 0)] ds+

(
C1 + C2y − p · e

αx − 1

α
· y
)
,

where the functions P (x, y) ∈ C2, q ∈ C2 and the constants C1 and C2 can be chosen
arbitrarily.

Next, by setting

R(x, y, z) = r(x, y, z)− r(x, 0, 0) + r · eαx

and acting analogously to 3) above, we can obtain the desired result:

f(x, y, z) = P (x, y) + {
x∫

0

[
∂P

∂y
(t, 0) + y · ∂

2P

∂y2
(t, 0)

]
dt+

+

y∫
0

[q(x, s)− q(x, 0)] ds+

(
C1 + C2y − p · e

αx − 1

α
· y
)
} · z+
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+ [r(x, y, z)− r(x, 0, 0) + r · eαx] · z
2

2
,

where the functions

P (x, y) ∈ C2, q(x, y) ∈ C2, r(x, y, z) ∈ W 2
K(z)

and the constants C1 and C2 can be chosen arbitrarily.

7 Properties of mappings of class W 2
K(z)

Aiming at applying formulas (6.7) where the mappings R(x, y, z) ∈ W 2
K(z), we consider

some properties of the such mappings.
First, denote by W 2(z) the class of the mappings ϕ(z) having ϕ(z), ϕ′(z) and ϕ′′(z)

possessing uniform continuity and boundedness for −∞ < z <∞. Then the following
statements are valid.

Proposition 3. If

R(x, y, z) =
n∑
k=1

αk(x, y) · βk(z), where αk ∈ C2, βk ∈ W 2(z),

then R ∈ W 2
K(z).

Proof. Let us fix k = 1, n. As αk(x, y) is uniformly continuous and bounded in x,
y by the Weierstrass theorem, and βk(z) is uniformly continuous globally in z by the
assumption, then obviously αk(x, y) · βk(z) ∈ WK(z).

Next, the gradient

∇yz[αk(x, y) · βk(z)] =

(
∂αk
∂y

(x, y) · βk(z), αk(x, y) · β′k(z)
)

has the coefficients from WK(z) and therefore is in that class. Finally, the Hessian

Hyz[αk(x, y) · βk(z)] =

∂2αk

∂y2
(x, y) · βk(z), ∂αk

∂y
· β′k(z)

∂αk

∂y
(x, y) · β′k(z), αk(x, y) · β′′k(z)


has the coefficients in WK(z) as well and therefore is in that class. So, αk(x, y) ·βk(z) ∈
W 2
K(z), hence R(x, y, z) ∈ W 2

K(z) evidently follows. �

Proposition 4. If R1, . . . , Rm ∈ W 2
K(z); ϕ(u1, u2, . . . , um) ∈ C2, then

ϕ(R1(x, y, z), . . . , Rm(x, y, z)) ∈ W 2
K(z).

Proof. For an arbitrary compact Cy ⊂ R the mappings R1, ... Rm are uniformly
continuous and bounded on [0;T ]×Cy ×R. Hence ϕ possesses the same properties on
the set

m∏
i=1

Ri ([0;T ]× Cy × R)
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and therefore the composition ϕ(R1, . . . , Rm) is in the Weierstrass class WK(z). The
analogous properties of ∇yzϕ(R1, . . . , Rm) and Hyzϕ(R1, . . . , Rm) follow from the rep-
resentations

∂

∂y
ϕ(R1, . . . , Rm) =

m∑
i=1

∂ϕ

∂ui
(R1, . . . , Rm) · ∂Ri

∂y
;

∂

∂z
ϕ(R1, . . . , Rm) =

m∑
i=1

∂ϕ

∂ui
(R1, . . . , Rm) · ∂Ri

∂z
;

∂2

∂y2
ϕ(R1, . . . , Rm) =

=
m∑
i=1

[
m∑
j=1

∂2ϕ

∂ui∂uj
(R1, . . . , Rm) · ∂Rj

∂y
· ∂Ri

∂y
+
∂ϕ

∂ui
(R1, . . . , Rm) · ∂

2Ri

∂y2

]
;

∂2

∂z2
ϕ(R1, . . . , Rm) =

=
m∑
i=1

[
m∑
j=1

∂2ϕ

∂ui∂uj
(R1, . . . , Rm) · ∂Rj

∂z
· ∂Ri

∂z
+
∂ϕ

∂ui
(R1, . . . , Rm) · ∂

2Ri

∂z2

]
;

∂2

∂y∂z
ϕ(R1, . . . , Rm) =

=
m∑
i=1

[
m∑
j=1

∂2ϕ

∂ui∂uj
(R1, . . . , Rm) · ∂Rj

∂z
· ∂Ri

∂y
+
∂ϕ

∂ui
(R1, . . . , Rm) · ∂

2Ri

∂y∂z

]
.

�

Corollary 1. By the conditions R1, . . . , Rm ∈ W 2
K(z), αk(x, y) ∈ C2 (k = 1,m) it fol-

lows that
m∑
k=1

αk(x, y)Rk(x, y, z) ∈ W 2
K(z).

Note that the last Corollary generalizes Proposition 3 because

βk ∈ W 2(z) ⇒ βk ∈ W 2
K(z).

Corollary 2. If R1, . . . , Rm ∈ W 2
K(z), then R1 ·R2 · . . . ·Rm ∈ W 2

K(z).

Proposition 5. If R(x, y, z) ∈ W 2
K(z), ψ(z) ∈ W 2(z) then R(x, y, ψ(z)) ∈ W 2

K(z).

Proof. Since for an arbitrary compact Cy the mapping R is uniformly continuous and
bounded on [0;T ] × Cy × R and ψ is uniformly continuous and bounded for z ∈ R,
then R(x, y, ψ(z)) is of the Weierstrass class WK(z). The analogous properties of
∇yzR(x, y, ψ(z)) and HyzR(x, y, ψ(z)) follow from the representations

∂

∂y
R(x, y, ψ(z)) =

∂R

∂y
(x, y, ψ(z));

∂

∂z
R(x, y, ψ(z)) =

∂R

∂z
(x, y, ψ(z)) · ψ′(z);
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∂2

∂y2
R(x, y, ψ(z)) =

∂2R

∂y2
(x, y, ψ(z));

∂

∂y∂z
R(x, y, ψ(z)) =

∂2R

∂y∂z
(x, y, ψ(z)) · ψ′(z);

∂2

∂z2
R(x, y, ψ(z)) =

∂2R

∂z2
(x, y, ψ(z)) · (ψ′(z))2 +

∂R

∂z
(x, y, ψ(z)) · ψ′′(z).

�
Let us note also some properties of the class W 2(z) being used in the constructions

above. Denote by Cn
b (z) the class of all functions ϕ(z) ∈ Cn having bounded derivatives

up to n-th order.

Property 1. The following inclusions are valid:

C3
b (z) ⊂ W 2(z) ⊂ C2

b (z).

Property 2. If ϕ ∈ C2 and ϕ is periodic, then ϕ ∈ W 2(z).

Property 3. If ϕ ∈ C2, ϕ(k) (±∞) exist and are finite for k = 0, 1, 2, then ϕ ∈ W 2(z).

8 Non–local K–extrema of variational functionals in H1[a; b]

Here we describe a rather wide class of the variational functionals in H1[a; b] having a
non–local compact extremum at zero.

Note first, that if functional (5.1) attains a strongK-minimum at zero then for every
zero neighborhood U(0) ⊂ H1 there exist such values of y that Φ(y) > Φ(0). Thus, Φ
cannot attain a local maximum at zero.

Now, let us investigate conditions under which functional (5.1) does not attain a
local minimum at zero.

Let the integrand of functional (5.1) satisfy conditions (6.1) i.e., it takes form (6.7)
and let Φ attain a strong K-minimum at zero. Suppose for convenience Φ(0) = 0. By
virtue of (6.7), it means

T∫
0

P (x, 0)dx = 0.

The last condition is obviously satisfied under the assumption

P (x, 0) ≡ 0. (8.1)

Introduce also the supplementary conditions:

Q(0, 0) = 0, (8.2)

that is equivalent, by virtue of (6.7), to the condition C1 = 0, and also the alternating
signs condition for R:

R(x, 0, z0) ≤ −r0 < 0 (∀ x ∈ [0;T ]) (8.3)

for some z0. Let us show that Φ does not attain a local minimum at zero under
conditions (8.1)– (8.3).
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Set
yε(x) =

{
z0(x− ε), as 0 ≤ x ≤ ε;

0, as ε ≤ x ≤ T

for sufficiently small ε > 0.
Obviously, yε ∈ H1

0 [0;T ]. Moreover,

‖yε‖2
H1 =

ε∫
0

(
z2
0(x− ε)2 + z2

0

)
dx = z2

0

(
ε+

ε3

3

)
→ 0 as ε→ 0.

The integrand f along the function yε takes the form

f(x, yε, (yε)′) =

=

{
R(x, z0(x− ε), z0) · z

2
0

2
+Q(x, z0(x− ε)) · z0 + P (x, z0(x− ε)), 0 ≤ x ≤ ε;

0, ε ≤ x ≤ T.

From here it follows that

Φ(yε) =
z2
0

2
·

ε∫
0

R(x, z0(x− ε), z0)dx+

+ z0 ·
ε∫

0

Q(x, z0(x− ε))dx+

ε∫
0

P (x, z0(x− ε))dx. (8.4)

Moreover, 
(8.1) implies P (x, z0(x− ε)) = o(1)
(8.2) implies Q(x, z0(x− ε)) = o(1) as ε→ 0.
(8.3) implies R(x, z0(x− ε), z0) = −r0 + o(1)

(8.5)

From (8.4)–(8.5) it follows that

Φ(yε) = o(ε) + z0 · o(ε) +
z2
0

2
· [o(ε)− r0ε] = −z

2
0r0
2
ε+ o(ε) < 0

for sufficiently small ε > 0.
Thus, functional (5.1) cannot attain a local minimum at zero and therefore it does

not attain a local extremum at zero. Hence, an arbitrary variational functional Φ(y)
having an integrand satisfying conditions (6.1) and (8.1)–(8.3), attains a non-local
K-minimum at zero. Let us summarize the results of our considerations.

Theorem 11. Consider a functional of the form

Φ(y) =

T∫
0

(
R(x, y, y′) · y

′2

2
+Q(x, y) · y′ + P (x, y)

)
dx, y(·) ∈ H1

0 [0;T ],
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where P , Q ∈ C2; R ∈ W 2
K(z).

Then under the assumptions:

∂P

∂y
(x, 0)− ∂Q

∂x
(x, 0) ≡ 0,

(
∂2P

∂y2
− ∂2Q

∂x∂y

)
(x, 0) ≡ p, R(x, 0, 0) ≡ r > 0,

P (x, 0) ≡ 0, Q(0, 0) = 0,

and also under the alternating signs condition for R:

R(x, 0, z0) ≤ −r0 < 0 (∀ x ∈ [0;T ]);

for some z0, the variational functional Φ(y) attains a non–local K–minimum at zero

for every T > 0 in the case of p ≥ 0 and for 0 < T < π

√∣∣∣ rp∣∣∣ in the case of p < 0.

Let us consider in the conclusion some concrete examples.

Example 1. Consider the following functional:

Φ(y) =

1/3∫
0

(
(y′)2

(
sin(1 + cos y′)− 1

2

)
+ y′ sin y2 + y2

)
dx, y(·) ∈ H1

0 ([0; 1/3]).

In the case under consideration,

P (y) = y2, Q(y) = sin y2, R(z) = 2 sin(1 + cos z)− 1.

Direct calculation shows fulfilment of condition (6.1) and (8.1)–(8.3) for the functional
Φ(y). Moreover,

R(0) ≡ r = 2 sin 2− 1 > 0,

and for z = π R(π) = −1 < 0.
Thus, since in the case p ≡ 2 > 0 and T = 1/3, then by virtue of Theorem 11 the

functional Φ(y) attains a non-local K-minimum at zero.

Example 2. Consider the following functional:

Φ(y) =

1∫
0

(
y3 ln(x2 + 4) + y′ sin xy +

(y′)2 cos y′

2(1 + (y′)2)

)
dx, y(·) ∈ H1

0 [0; 1].

In the case under consideration

P (x, y) = y3 ln(x2 + 4), Q(x, y) = sin xy, R(z) =
cos z

1 + z2
.

Direct calculation shows fulfilment of conditions (6.1) and (8.1)–(8.3) for the functional
Φ(y). Moreover,

R(0) ≡ r = 1 > 0,

and for z = π R(π) = −1/(1 + π2) < 0.
Thus, since in the case p ≡ −1 < 0 and T = 1 < π, then by virtue of Theorem 11

the functional Φ(y) attains a non-local K-minimum at zero.
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