EURASIAN MATHEMATICAL JOURNAL

ISSN 2077-9879 Volume 1, Number 4 (2010), 95 – 115

INVERSE EXTREMAL PROBLEM FOR VARIATIONAL FUNCTIONALS

I.V. Orlov

Communicated by A.A. Shkalikov

Key words: variational functional, integrand, local extremum, non-local extremum, compact extremum, Sobolev space, Legendre-Jacobi condition, compact derivative, dominating mixed smoothness.

AMS Mathematics Subject Classification: 49J05, 49L99.

Abstract. We investigate an inverse extremal problem for the variational functionals: to describe, under certain conditions, all types of variational functionals having a local extremum (in case of the space $C^1[a; b]$) or a compact extremum (in case of the Sobolev space $W^{1,2}[a; b] = H^1[a; b]$) at a given point of the corresponding function space. The non-locality conditions for a compact extrema of variational functionals are described as well.

1 Introduction. Preliminaries

The classical scheme of proving the existence of a local extremum for the onedimensional Euler-Lagrange variational functional

$$\Phi(y) = \int_{a}^{b} f(x, y, y') dx \mapsto \text{extr} \quad (y \in C^{1}[a; b])$$

at an extremal point y assumes [5], [4] checking the strengthened Legendre condition $f_{y'y'}(x, y, y') \neq 0$ and the Jacobi condition $U(x) \neq 0$ $(a < x \le b)$ for the Hamilton–Jacobi equation:

$$-\frac{d}{dx}\left[f_{y'y'}(x,y,y')U'\right] + \left[-\frac{d}{dx}\left(f_{yy'}(x,y,y')\right) + f_{y^2}(x,y,y')\right]U = 0$$
$$(U(a) = 0, U'(a) = 1).$$

The second step is the most laborious, it requires to solve a rather complicated equation in order to get, in fact, a very small information about the behaviour of the solution U.

Moreover, the initial conditions U(a) = 0, U'(a) = 1, have as a consequence automatical fulfilment of the Jacobi condition near a. The only question is – how long is the appropriate interval?

In the recent author's paper [8], it was shown that the interval satisfying the Jacobi condition can be chosen depending only on the form of the integrand f and not depending on a concrete extremal. More precisely, the main result distinguishes two cases depending on the range of the coefficients in the Hamilton-Jacobi equation. In the first case, an extremum is guaranteed without any restriction on the length of [a; b], in the second one, such a restriction is present. This result remains valid also for the case of a compact extremum in the Sobolev space $H^1[a; b]$.

Let us formulate these results considering first the classical C^1 -case.

Theorem 1. Let the variational functional

$$\Phi(y) = \int_{a}^{b} f(x, y, y') dx \quad (y \in C^{1}[a; b], y(a) = y(b) = 0, f \in C^{2}, f_{yz} \in C^{1})$$
(1.1)

satisfy at a point $y_0(\cdot) \in C^2[a; b]$ the Euler-Lagrange equation

$$f_y(x, y_0, y'_0) - \frac{d}{dx} \left[f_z(x, y_0, y'_0) \right] = 0.$$
(1.2)

Denote

$$p := \min_{a \le x \le b} f_{z^2}(x, y_0(x), y'_0(x));$$
$$q := \min_{a \le x \le b} \left[f_{y^2}(x, y_0(x), y'_0(x)) - \frac{d}{dx} (f_{yz}(x, y_0(x), y'_0(x))) \right].$$

Then, under the boundary conditions $y(a) = y_0(a), y(b) = y_0(b),$

- 1) for p > 0, $q \ge 0$, $\Phi(y)$ attains a strong local minimum at $y_0(\cdot)$ (without any restriction on the length of [a; b]);
- 2) for p > 0, q < 0, and under the restriction

$$b - a < \frac{\pi}{4} \sqrt{\frac{p}{|q|}},\tag{1.3}$$

on the length of [a; b], $\Phi(y)$ attains a strong local minimum at $y_0(\cdot)$ as well.

An analogous result holds for a compact extrema of a variational functional in the Sobolev H^1 -case.

Theorem 2. Let the variational functional

$$\Phi(y) = \int_{a}^{b} f(x, y, y') dx \quad (y \in H^{1}[a; b], \ y(a) = y(b) = 0, \ f \in W^{2}_{K}(z))$$
(1.4)

satisfy at a $W^{2,2}$ -smooth point $y_0(\cdot)$ the Euler-Lagrange equation. Then, under the conditions and notation of Theorem 1,

- 1) for p > 0, $q \ge 0$, $\Phi(y)$ attains a strong K-minimum at $y_0(\cdot)$ (without any restriction on the length of [a; b]);
- 2) for p > 0, q < 0, and under the restriction

$$b-a < \frac{\pi}{4}\sqrt{\frac{p}{|q|}}$$

on the a length of [a; b], $\Phi(y)$ attains a strong K-minimum at $y_0(\cdot)$ as well.

(The Weierstrass class $W_K^2(z)$ will be defined below).

These results simplify essentially finding of both a local extremum in the C^{1} -case and a K-extremum in the H^{1} -case for the variational functionals of type (1.1), (1.4). Thisallows setting the inverse problem: to describe a general form of a variational functional having extremum at a given point (under the Euler-Lagrange and Legendre conditions).

The paper is devoted to solution of this problem. The first item contains a solution of the inverse problem in $C^1[a; b]$ (Theorems 3, 4 below). The second item contains a solution of the inverse problem in $H^1[a; b]$ (Theorems 7 – 9 below).

The third item is auxiliary for the further investigation of K-extrema. It contains a description of integrands in the Weierstrass class $W^2K_2(z)$, which provides the appropriate analytical properties of variational functionals in H^1 (Theorem 10). The fourth item contains the so-called "stationary form of the Legendre-Jacobi conditions" (SLG) guaranteeing the existence of a K-extremum under a weaker restriction on the length of [a; b]. On the basis of that results, the fifth item contains a solution of the inverse problem in $H^1[a; b]$ under the (SLJ)-condition and the exponential (SLJ)-condition.

Next, the sixth item of the work consider the main properties of the mappings from the Weierstrass class $W_K^2(z)$ that allow to construct easily the extensive classes of the integrands from the Weierstrass class $W^2K_2(z)$. The final, seventh item of the work contains a description of an extensive enough class of the variational functionals having non–local compact extrema in $H^1[a, b]$.

2 Inverse extremal problem for variational functionals in $C^{1}[a; b]$

Let us set up the following problem: to find a general form of the variational functional (1.1) possessing local minimum at zero under the strengthened Legendre condition.

1) We shall write integrands f of functional (1.1) the form

$$f(x, y, z) = P(x, y) + Q(x, y) \cdot z + \frac{1}{2}R(x, y, z) \cdot z^{2}.$$
 (2.1)

Then

$$P(x,y) = f(x,y,0), \quad Q(x,y) = f_z(x,y,0), \quad R(x,y,0) = f_{z^2}(x,y,0).$$

Under this notation, the Euler–Lagrange equation at the zero extremal takes the form

$$(Q_x - P_y)(x, 0) = 0 \quad (a \le x \le b);$$
 (2.2)

and the strengthened Legendre condition at the zero extremal takes the form

$$R(x,0,0) =: p(x) > 0 \quad (a \le x \le b).$$
(2.3)

2) Choose an arbitrary function $P \in C^2$. Then a general form of Q follows by (2.2):

$$\left(Q_x(x,0) = P_y(x,0)\right) \Rightarrow \left(Q(x,0) = C + \int_a^x P_y(t,0)dt\right) \Rightarrow$$
$$\Rightarrow \left(Q(x,y) = C + \int_a^x P_y(t,0)dt + \widetilde{Q}(x,y), \text{ where } \widetilde{Q}(x,0) = 0\right) \Rightarrow$$
$$\Rightarrow \left(Q(x,y) = C + \int_a^x P_y(t,0)dt + [q(x,y) - q(x,0)]\right). \tag{2.4}$$

Here $C \in \mathbb{R}$ and $q \in C^2$ can be chosen arbitrarily.

3) A general form of R easily follows by condition (2.3):

$$\left(R(x,0,0) = p(x) > 0\right) \Rightarrow \left(R(x,y,z) = p(x) + [\rho(x,y,z) - \rho(x,0,0)]\right), \quad (2.5)$$

where p(x) > 0, $p \in C^2$; $\rho \in C^2$ can be chosen arbitrarily.

4) A general form of the integrand f follows now from (2.1), (2.4) and (2.5):

$$f(x, y, z) = P(x, y) + \left(C + \int_{a}^{x} P_{y}(t, 0)dt + [q(x, y) - q(x, 0)]\right) \cdot z + \frac{1}{2} \left(p(x) + [\rho(x, y, z) - \rho(x, 0, 0)]\right) \cdot z^{2}, \qquad (2.6)$$

where $C \in \mathbb{R}$; $q, p \in C^2$ (p > 0) can be chosen arbitrarily. So, the following statement in proved.

Theorem 3. Let, under the conditions of Theorem 1, functional (1.1) attain a local minimum at zero under the strengthened Legendre condition. Then the integrand f takes the form (2.6).

Remark 1. As it follows from Theorem 3, a general form of the variational functional (1.1) taking a local minimum at zero under the strengthened Legendre condition is

$$\Phi(y) = \int_{a}^{b} \left(P(x,y) + \left[C + \int_{a}^{x} P_{y}(t,0)dt + q(x,y) - q(x,0) \right] \cdot y' + \frac{1}{2} \left[p(x) + \rho(x,y,y') - \rho(x,0,0) \right] \cdot y'^{2} \right) dx, \qquad (2.7)$$

where $C \in \mathbb{R}$, P, q, p > 0, ρ are the arbitrary functions in C^2 .

Thus, under the strengthened Legendre condition, the inverse extremal variational problem at zero is solved: all the functionals of type (1.1) taking a local minimum at zero are described.

Now, let us pass to the general case of an arbitrary C^2 -smooth extremal in $C^1[a; b]$. Let us fix an arbitrary C^2 -smooth function $y_0(x)$, $a \le x \le b$, satisfying the boundary conditions $y(a) = y_0(a)$, $y(b) = y_0(b)$.

In order to reduce the problem to the case of the zero extremal considered above, it suffices to introduce the auxiliary variational functional:

$$\widetilde{\Phi}(y) = \Phi(y+y_0) = \int_a^b f(x, y+y_0(x), y'+y'_0(x))dx =: \int_a^b \widetilde{f}(x, y, y')dx$$
$$(y(a) = y(b) = 0).$$

The condition $y_0(\cdot) \in C^2$ guarantees fulfilment of the condition in (1.1) for the auxiliary integrand \tilde{f} .

Application of Theorem 3 to the auxiliary integrand \tilde{f} leads to a solution of the inverse extremal problem for Φ at an arbitrary point $y_0(\cdot) \in C^2[a; b]$.

Theorem 4. Let, under the conditions of Theorem 1, the variational functional (1.1) attain a local minimum at a point $y_0(\cdot) \in C^2[a; b]$ satisfying the boundary conditions $y(a) = y_0(a), y(b) = y_0(b)$ and the strengthened Legendre condition. Then the integrand f has form

$$f(x, y, z) = P(x, y - y_0(x)) + \left(C + \int_a^x P_y(t, -y_0(t))dt + [q(x, y - y_0(x)) - q(x, -y_0(x))]\right) \cdot (z - y'_0(x)) + \frac{1}{2} \left(p(x) + [\rho(x, y - y_0(x), z - y'_0(x)) - \rho(x, -y_0(x), -y'_0(x))]\right) \cdot (z - y'_0(x))^2, \quad (2.8)$$

where $C \in \mathbb{R}$; $P, q, p > 0, \rho \in C^2$ can be chosen arbitrarily.

This implies the following formula for the general form of functional (1.1) attaining a local minimum in $C^1[a; b]$ at a point $y_0(\cdot) \in C^2[a; b]$ under the strengthened Legendre condition:

$$\Phi(y) = \int_{a}^{b} \left(P(x, y - y_{0}(x)) + \left[C + \int_{a}^{x} P_{y}(t, -y_{0}(t)) dt + q(x, y - y_{0}(x)) - q(x, -y_{0}(x)) \right] \cdot (y' - y'_{0}(x)) + \frac{1}{2} \left[p(x) + \rho(x, y - y_{0}(x), y' - y'_{0}(x)) - \rho(x, -y_{0}(x), -y'_{0}(x)) \right] \cdot (y' - y'_{0}(x))^{2} \right) dx, \quad (2.9)$$

where $C \in \mathbb{R}$; $P, q, p > 0, \rho \in C^2$ can be chosen arbitrarily, arises.

Thus, under the strengthened Legendre condition, the inverse extremal variational problem at an arbitrary point $y_0(\cdot) \in C^2$ is solved: all functionals of type (1.1), attaining a local minimum at a point $y_0(\cdot)$, are described.

3 Compact extrema of variational functionals in Sobolev space $H^1[a; b]$

To consider the inverse extremal problem in $H^1[a; b]$, let us first introduce the concept of a compact extremum and bring a necessary information on compact extrema of variational functionals in $H^1[a; b]$.

In the Hilbert-Sobolev space $W^{1,2}[a;b] = H^1[a;b]$ equipped with the norm

$$\|y\|_{H^1[a;b]}^2 = \int_a^b (y^2 + y'^2) dx , \qquad (3.1)$$

as is well known, by virtue of I.V. Skrypnik's theorem ([14], Ch.11) variational functionals have practically no non-absolute local extrema. In the our works [11], [9], [10], [6] and in the works by E.V. Bozhonok [1], [2], [3] the general concept of *a compact extremum* (or *K*-*extremum*) of a functional was studied (see, also, [12]). It has been shown there that the classical, both necessary and sufficient conditions of a local extremum of a variational functional in $C^1[a; b]$ can be extended to the case of a *K*-extremum in $H^1[a; b]$. In this case, the *K*-extrema inherit the important properties of the local extrema and can be considered as an analogue of the ones in the case of variational functionals in $H^1[a; b]$.

Definition 5. Let a real functional $\Phi : H \to \mathbb{R}$ be defined in a Hilbert space H. Say that Φ has a compact minimum (or K-minimum) at a point $y_0 \in H$ if, for each absolutely convex (a.c.) compact set $C \subset H$, the restriction of f to the subspace $(y_0 + \operatorname{span} C)$ has a local minimum at y_0 with respect to the Banach norm $\|\cdot\|_C$ in span C generated by C. In other words, for each a.c. compactum $C \subset H$ there exists such $\varepsilon = \varepsilon(C) > 0$ that $\varphi(y) \geq \varphi(y_0)$ for all y satisfying $y - y_0 \in \varepsilon \cdot C$.

Next assume for simplicity [a; b] = [0; T].

Definition 6. We say that a mapping $\varphi : [0;T] \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}^n$ belongs to the Weierstrass class $W_K(z)$, if φ is uniformly continuous and bounded locally in x and y, and globally in z. We say that φ belongs to the Weierstrass class $W_K^1(z)$ if $\varphi \in W_K(z)$ and gradient $\nabla_{yz}\varphi \in W_K(z)$. We say that φ belongs to the Weierstrass class $W_K^2(z)$ if $\varphi \in W_K(z)$, the gradient $\nabla_{yz}\varphi \in W_K(z)$ and the Hessian $H_{yz}\varphi \in W_K(z)$.

Next, we say that a function $f : [0;T] \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ belongs to the class $WK_2(z)$ if a representation pseudoquadratic in z

$$f(x, y, z) = A(x, y, z) + B(x, y, z) \cdot z + C(x, y, z) \cdot z^{2},$$
(3.2)

can be chosen in such a way that the coefficients A, B, C belong to the class $W_K(z)$. We say that f belongs to the Weierstrass class $W^1K_2(z)$ if the coefficients A, B, C belong to the class $W_K^1(z)$. Finally, we say that f belongs to the Weierstrass class $W^2K_2(z)$ if the coefficients A, B, C belong to the class $W_K^2(z)$.

Note that the classes $W_K(z)$, $W_K^1(z)$, $W_K^2(z)$ can be considered as the appropriate space with dominating mixed smoothness (see [13], [15]).

In [7] the following sufficient condition of the twice K-differentiability of a variational functional in Sobolev space $H^1[0;T]$ was obtained.

Theorem 5. If $f \in W^2K_2(z)$ then the Euler-Lagrange functional

$$\Phi(y) = \int_{0}^{T} f(x, y, y') dx, \quad y(\cdot) \in H^{1}[0; T]$$
(3.3)

is twice K-differentiable everywhere on $H^1[0;T]$. Moreover,

$$\Phi_K''(y)(h,k) = \int_0^T \left[\frac{\partial^2 f}{\partial y^2}h \cdot k + \frac{\partial^2 f}{\partial y \partial z}(h' \cdot k + h \cdot k') + \frac{\partial^2 f}{\partial z^2}h' \cdot k'\right] dx. \quad (3.4)$$

The following generalized Euler-Lagrange equation [1] serves for finding a Kextremum of functional (3.3) in the space $H^1[0;T]$ as an analogue of the classical necessary condition of a local extremum for a variational functional in $C^1[0;T]$.

Theorem 6. Let, in addition to the hypotheses of Theorem 5, the following conditions hold:

- (i) functional (3.3) possesses a K-extremum at a point $y(\cdot) \in H^1[0;T]$;
- (ii) the function $\frac{\partial f}{\partial z}(x, y, y')$ is absolutely continuous on [0; T].

Then the generalized Euler-Lagrange equation:

$$L(f)(y) = \frac{\partial f}{\partial y}(x, y, y') - \frac{d}{dx}\left(\frac{\partial f}{\partial z}(x, y, y')\right) = 0 \quad a.e. \quad on \quad [0;T]$$
(3.5)

holds. In particular, the condition (ii) is fulfilled in the case

$$(\partial f/\partial z) \in C^1([0;T] \times \mathbb{R}^2), \quad y(\cdot) \in W^{2,2}[0;T].$$

The solutions of equation (3.5), satisfying condition (ii) of Theorem 6, are called the K – extremals of functional (3.3) in the space $H^1[0;T]$.

Let us also formulate the generalized sufficient Legendre-Jacobi condition [3] of a strong K-extremum in the case of Sobolev space $H^1[0;T]$.

Theorem 7. Let $f:[0;T] \times \mathbb{R}^2 \to \mathbb{R}$, $f \in W^2K_2(z)$, $y(\cdot)$ be a K-extremal of functional (3.3) in $H_0^1[0;T]$ and the functions $\frac{\partial f}{\partial z}(x, y(x), y'(x))$ and $\frac{\partial^2 f}{\partial y \partial z}(x, y(x), y'(x))$ be absolutely continuous on K-extremal $y(\cdot)$. Suppose that:

1) the strengthened Legendre condition, i.e.

$$\frac{\partial^2 f}{\partial z^2}(x, y(x), y'(x)) > 0$$

is fulfilled everywhere on [0; T];

2) the generalized Jacobi condition is fulfilled, i.e. every solution of the Jacobi equation

$$-\frac{d}{dx}\left(\frac{\partial^2 f}{\partial z^2}(x,y(x),y'(x))u'\right) + \left[-\frac{d}{dx}\left(\frac{\partial^2 f}{\partial y \partial z}(x,y(x),y'(x))\right) + \frac{\partial^2 f}{\partial y^2}(x,y(x),y'(x))\right]u \stackrel{a.e}{=} 0$$
(3.6)

in the class $H^1[0;T]$, satisfying the initial conditions u(0) = 0, u'(0) = 1, does not vanishes for $0 < x \leq T$.

Then Euler-Lagrange functional (3.3) possesses a strong K-minimum at the point $y(\cdot)$.

This theorem allows to extend the results of Section 1 to the case of a K-minimum in $H^1[a; b]$.

Theorem 8. Let variational functional (1.1) at a $W^{2,2}$ -smooth point $y_0(\cdot) \in H^1[a;b]$ satisfy the Euler-Lagrange equation, and, in addition, $R(x, y, z) \in W_K^2(z)$. Then, under the conditions and notation of Theorem 1,

- 1) for p > 0, $q \ge 0$, $\Phi(y)$ attains a strong K-minimum at $y_0(\cdot)$ (without any restriction on the length of [a; b]);
- 2) for p > 0, q < 0, and under restriction (1.3) on the length of [a; b], $\Phi(y)$ attains a strong K-minimum at $y_0(\cdot)$ as well.

Theorem 9. Let, under the conditions and notation of Theorem 8, variational functional (1.1) attain a K-minimum at a $W^{2,2}$ -smooth point $y_0(\cdot)$ from $H^1[a;b]$ satisfying the boundary conditions $y(a) = y_0(a)$, $y(b) = y_0(b)$ and the strengthened Legendre condition.

Then the integrand f takes form (2.8), where $C \in \mathbb{R}$; P, q, p > 0, in C^2 and ρ in $W_K^2(z)$ can be chosen arbitrarily.

This results implies formula (2.9) giving the general form of functional (1.1) having a K-minimum at a $W^{2,2}$ -smooth point $y_0(\cdot)$ in $H^1[a;b]$ satisfying the strengthened Legendre condition.

4 Minimal pseudoquadratic representation for integrands of variational functionals from the class $W^2 K_2(z)$

This Section is devoted to description of a suitable class of integrands for which the corresponding variational functionals in $H^1[a; b]$ possess the compact–analytical properties allowing analytical investigation of a compact extremum.

Let us consider an integrand $f \in W^2K_2(z)$, i.e.

$$f(x, y, z) = A(x, y, z) + B(x, y, z) \cdot z + C(x, y, z) \cdot z^2,$$

where A, B, $C \in W_K(z)$, with analogous representations for the gradient $\nabla_{yz} f$ and the Hessian $H_{yz} f$.

Since the function f is twice continuously differentiable on $\Omega \times \mathbb{R} \times \mathbb{R}$ in (y, z), application of the second order Taylor formula in z at a point (x, y, 0) leads to

$$f(x,y,z) = f(x,y,0) + \frac{\partial f}{\partial z}(x,y,0) \cdot z + \frac{\partial^2 f}{\partial z^2}(x,y,0) \cdot \frac{z^2}{2} + \varphi(x,y;z), \qquad (4.1)$$

where $\varphi(x, y; z) = o(z^2)$ as $z \to 0$ locally uniformly in x, y. Set

$$R(x, y, z) = \frac{\partial^2 f}{\partial z^2}(x, y, 0) + \frac{\varphi(x, y; z)}{z^2} \quad \text{as} \quad z \neq 0; \qquad R(x, y, 0) = 0.$$

Then $R \in W_K(z)$ and, denoting by $P(x, y) = f(x, y, 0), \ Q(x, y) = \frac{\partial f}{\partial z}(x, y, 0)$, we obtain from (4.1)

$$f(x, y, z) = P(x, y) + Q(x, y) \cdot z + R(x, y, z) \cdot \frac{z^2}{2},$$
(4.2)

where $P, Q \in C^2; R \in W_K(z)$.

Now, using the equalities

$$\frac{\partial f}{\partial y} = \frac{\partial P}{\partial y} + \frac{\partial Q}{\partial y} \cdot z + \frac{\partial R}{\partial y} \cdot \frac{z^2}{2}, \quad \frac{\partial f}{\partial z} = Q + R \cdot z + \frac{\partial R}{\partial z} \cdot \frac{z^2}{2},$$
$$\frac{\partial^2 f}{\partial y \partial z} = \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial y} \cdot z + \frac{\partial^2 R}{\partial y \partial z} \cdot \frac{z^2}{2}, \quad \frac{\partial^2 f}{\partial y^2} = \frac{\partial^2 P}{\partial y^2} + \frac{\partial^2 Q}{\partial y^2} \cdot z + \frac{\partial^2 R}{\partial y^2} \cdot \frac{z^2}{2},$$
$$\frac{\partial^2 f}{\partial z^2} = R + 2\frac{\partial R}{\partial z} \cdot z + \frac{\partial^2 R}{\partial z^2} \cdot \frac{z^2}{2}, \quad (4.3)$$

it follows by the conditions

$$\nabla_{yz} f \in WK_2(z), \quad H_{yz} f \in WK_2(z)$$

that

$$\nabla_{yz} R \in W_K(z), \quad H_{yz} R \in W_K(z).$$

Thus, in the representation (4.2), $R \in W_K^2(z)$.

Conversely, if representation (4.2) holds with $P, Q \in C^2$; $R \in W_K^2(z)$, then the condition $f \in W^2 K_2(z)$ holds automatically. Thus, the following theorem is proved.

Theorem 10. The representability of f in form (4.2) with $P, Q \in C^2$; $R \in W_K^2(z)$, is necessary and sufficient for f to be in the class $W^2K_2(z)$.

5 Stationary form of the Legendre-Jacobi conditions

A simple example of the "harmonic oscillator" in which case

$$\Phi(y) = \int_0^T (y'^2 - y^2) dx$$

shows that restriction (1.3) on the length of [a; b] in Theorem 8(2) can be too strong. Now we consider some types of integrands for which an essential weakening of the restriction (3) is possible.

Let us consider the variational functional

$$\Phi(y) = \int_{0}^{T} \left(R(x, y, y') \cdot \frac{y'^2}{2} + Q(x, y) \cdot y' + P(x, y) \right) dx, \quad y(\cdot) \in H_0^1[0; T], \quad (5.1)$$

where $P, Q \in C^2$; $R \in W_K^2(z)$.

Note that, according to Theorem 10, the integrand

$$f(x, y, z) = R(x, y, z) \cdot \frac{z^2}{2} + Q(x, y) \cdot z + P(x, y)$$

is of the class $W^2 K_2(z)$. Hence, by Theorem 5, this functional is well-posed and twice *K*-differentiable in $H_0^1[0;T]$.

Now, consider conditions ensuring existence of a K-extremum at zero for variational functional (5.1).

1) From equalities (4.3) we obtain

$$\frac{\partial f}{\partial y}(x,0,0) = \frac{\partial P}{\partial y}(x,0), \quad \frac{\partial f}{\partial z}(x,0,0) = Q(x,0).$$
(5.2)

Then, substituting (5.2) in the Euler-Lagrange variational equation along K-extremal $y_0(x) \equiv 0 \ (0 \leq x \leq T)$ for functional (5.1) and taking into account, that $f \in C^2$, we obtain

$$(d/dx)[f(x,0,0)] = (d/dx)[Q(x,0)],$$

hence

$$\frac{\partial P}{\partial y}(x,0) - \frac{\partial Q}{\partial x}(x,0) \equiv 0.$$
(5.3)

2) Next, let us study conditions of fulfilment of the generalized Legendre-Jacobi sufficient condition for a strong K-extremum of the functional $\Phi(y)$ in Sobolev space H_0^1 (Theorem 7) along a K-extremal $y_0(\cdot)$. Note first that it is necessary to impose the additional requirement of the absolute continuity along the K-extremal $y_0(x) \equiv 0$ of the functions

$$\frac{\partial f}{\partial z}(x, y_0(x), y_0'(x)) = Q(x, 0) \quad \text{and} \quad \frac{\partial^2 f}{\partial y \partial z}(x, y_0(x), y_0'(x)) = \frac{\partial Q}{\partial y}(x, 0).$$

i) The strengthened Legendre condition in the case of a K-minimum for functional (5.1) takes the form

$$\frac{\partial^2 f}{\partial z^2}(x,0,0) = R(x,0,0) > 0 \tag{5.4}$$

everywhere along [0; T].

ii) The Jacobi condition: the generalized Jacobi equation for functional (5.1) along K-extremal $y_0(\cdot)$

$$-\frac{d}{dx}\left[\frac{\partial^2 f}{\partial z^2}(x,0,0)u'\right] + \left[-\frac{d}{dx}\left(\frac{\partial^2 f}{\partial y \partial z}(x,0,0)\right) + \frac{\partial^2 f}{\partial y^2}(x,0,0)\right]u \stackrel{\text{a.e.}}{=} 0$$

in view of equalities (5.1) takes the form

$$-\frac{d}{dx}\left[R(x,0,0)u'\right] + \left[-\frac{d}{dx}\left(\frac{\partial Q}{\partial y}(x,0)\right) + \frac{\partial^2 P}{\partial y^2}(x,0)\right]u \stackrel{\text{a.e.}}{=} 0.$$

Or, taking into account $f \in C^2$, it follows that

$$-\frac{d}{dx}\left[R(x,0,0)u'\right] + \left[\frac{\partial^2 P}{\partial y^2}(x,0) - \frac{\partial^2 Q}{\partial x \partial y}(x,0)\right] u \stackrel{\text{a.e.}}{=} 0, \tag{5.5}$$

under the initial conditions u(0) = 0, u'(0) = 1.

Now, let us consider sufficient conditions of fulfillment of the Jacobi condition.

Assume that the following additional conditions are satisfied

$$R(x,0,0) \equiv r > 0, \tag{5.6}$$

$$\left(\frac{\partial^2 P}{\partial y^2} - \frac{\partial^2 Q}{\partial x \partial y}\right)(x,0) \equiv p.$$
(5.7)

Then equation (5.5) takes the form

$$ru'' - pu = 0, \quad u(0) = 0, \quad u'(0) = 1.$$
 (5.8)

Consider all the possible cases: p = 0, p > 0, p < 0.

a) p = 0. Equation (5.8) takes the form: u'' = 0, whence the solution u(x) = x satisfies the Jacobi condition:

$$u(x) \neq 0, \quad 0 < x \le T, \quad \text{for all} \quad T > 0$$

b) p > 0. Equation (5.8) takes the form: $u'' = \frac{p}{r}u$ with $\frac{p}{r} > 0$, whence the solution $u(x) = \sqrt{\frac{r}{p}} \operatorname{sh} \sqrt{\frac{p}{r}}x$ satisfies the Jacobi condition:

$$u(x) \neq 0, \quad 0 < x \leq T, \quad \text{for all} \quad T > 0.$$

c) p < 0. Equation (5.8) takes the form: $u'' = -\left|\frac{p}{r}\right| u$ with $\frac{p}{r} < 0$, whence the solution $u(x) = \sqrt{\left|\frac{r}{p}\right|} \sin \sqrt{\left|\frac{p}{r}\right|} x$ satisfies the Jacobi condition:

$$u(x) \neq 0, \quad 0 < x \le T, \quad \text{only for the case}$$

$$T < \pi \sqrt{\left|\frac{r}{p}\right|}.$$

We say that conditions (5.3), (5.6), (5.7) (providing fulfilment of the Legendre-Jacobi sufficient conditions at zero) are the stationary form of the Legendre-Jacobi conditions at zero, or (SLJ)-conditions.

Now, let consider some generalization of the conditions (SLJ). Namely, replace the conditions (5.6)-(5.7) by the following ones:

$$R(x,0,0) = r \cdot e^{\alpha x} \quad (r > 0, \ \alpha \in \mathbb{R}),$$
(5.9)

$$\left(\frac{\partial^2 P}{\partial y^2} - \frac{\partial^2 Q}{\partial x \partial y}\right)(x,0) = p \cdot e^{\alpha x}.$$
(5.10)

Then equation (5.5) takes the form

$$r \cdot u'' + (r\alpha) \cdot u' - p \cdot u = 0, \quad u(0) = 0, \quad u'(0) = 1, \tag{5.11}$$

with the discriminant

$$D = r(r\alpha^2 + 4p).$$

Consider all the possible cases: $r\alpha^2 + 4p = 0$, $r\alpha^2 + 4p > 0$, $r\alpha^2 + 4p < 0$.

a) $r\alpha^2 + 4p = 0$. The characteristic equation for equation (5.11) takes the form: $\lambda = -\alpha/2$, whence the solution $u(x) = x \cdot e^{-\alpha x/2}$ satisfies the Jacobi condition:

$$u(x) \neq 0, \quad 0 < x \le T, \quad \text{for all} \quad T > 0.$$

b) $r\alpha^2 + 4p > 0$. The characteristic equation for equation (5.11) takes the form:

$$r\cdot\lambda^2+(r\alpha)\cdot\lambda-p=0\quad (D>0),$$

whence the solution

$$u(x) = 2e^{-\frac{\alpha}{2}x} \cdot \sqrt{\frac{r}{r\alpha^2 + 4p}} \cdot \operatorname{sh}\left(\frac{1}{2}\sqrt{\frac{r\alpha^2 + 4p}{r}}x\right)$$

satisfies the Jacobi condition:

$$u(x) \neq 0, \quad 0 < x \le T, \quad \text{for all} \quad T > 0.$$

c) $r\alpha^2 + 4p < 0$. The characteristic equation for equation (5.11) takes the form:

$$r \cdot \lambda^2 + (r\alpha) \cdot \lambda - p = 0 \quad (D < 0),$$

whence the solution

$$u(x) = 2e^{-\frac{\alpha}{2}x} \cdot \sqrt{\frac{r}{|r\alpha^2 + 4p|}} \cdot \sin\left(\frac{1}{2}\sqrt{\frac{|r\alpha^2 + 4p|}{r}}x\right)$$

satisfies the Jacobi condition:

$$u(x) \neq 0$$
, $0 < x \le T$, only for the case
 $T < 2\pi \sqrt{\frac{r}{|r\alpha^2 + 4p|}}$.

We call conditions (5.9)-(5.10) the exponential (SLJ)-conditions. Of course, the "usual" (SLJ)-conditions (5.6)-(5.7) are a particular case of conditions (5.9)-(5.10) corresponding to $\alpha = 0$.

6 Inverse extremal problem for variational functionals in $H^1[a; b]$ under the (SLJ)-condition

Our aim in this Section is to describe *all* integrands of the class $W^2K_2(z)$ satisfying conditions (5.3), (5.6), (5.7):

$$\frac{\partial P}{\partial y}(x,0) - \frac{\partial Q}{\partial x}(x,0) \equiv 0, \quad \left(\frac{\partial^2 P}{\partial y^2} - \frac{\partial^2 Q}{\partial x \partial y}\right)(x,0) \equiv p, \quad R(x,0,0) \equiv r > 0, \quad (6.1)$$

where P, Q, R are coefficients of minimal representation (5.1) of the integrand f; $P, Q \in C^2$; $R \in W_K^2(z)$.

1) Choose $P(x, y) \in C^2$ arbitrarily. Then the first of equations (6.1) leads to:

$$\left(\frac{\partial Q}{\partial x}(x,0) = \frac{\partial P}{\partial y}(x,0)\right) \Leftrightarrow \left(Q(x,0) = \int_{0}^{x} \frac{\partial P}{\partial y}(t,0)dt + C_{1}\right),$$

hence it follows

$$Q(x,y) = \int_{0}^{x} \frac{\partial P}{\partial y}(t,0)dt + \widetilde{Q}(x,y), \quad \text{where} \quad \widetilde{Q}(x,0) \equiv C_{1}.$$
(6.2)

2) The second of equations (6.1) leads to:

$$\frac{\partial^2 Q}{\partial x \partial y}(x,0) = \frac{\partial^2 P}{\partial y^2}(x,0) - p.$$
(6.3)

Substituting of (6.2) in (6.3) leads to:

$$\left(\frac{\partial^2 \widetilde{Q}}{\partial x \partial y}(x,0) = \frac{\partial^2 Q}{\partial x \partial y}(x,0) = \frac{\partial^2 P}{\partial y^2}(x,0) - p\right) \Rightarrow$$

$$\Rightarrow \left(\frac{\partial \widetilde{Q}}{\partial y}(x,0) = \int_{0}^{x} \left[\frac{\partial^{2} P}{\partial y^{2}}(t,0) - p\right] dt + C_{2}\right),$$

hence

$$\frac{\partial \widetilde{Q}}{\partial y}(x,y) = \int_{0}^{x} \left[\frac{\partial^2 P}{\partial y^2}(t,0) - p \right] dt + \widetilde{q}(x,y), \quad \text{where} \quad \widetilde{q}(x,0) \equiv C_2.$$

Now, by integrating in y we obtain:

$$\widetilde{Q}(x,y) = \int_{0}^{y} ds \int_{0}^{x} \left[\frac{\partial^2 P}{\partial y^2}(t,0) - p \right] dt + \int_{0}^{y} \widetilde{q}(x,s) ds + C_1, \quad \text{where} \quad \widetilde{q}(x,0) \equiv C_2.$$
(6.4)

Next, by substituting (6.4) in (6.2) we obtain:

$$Q(x,y) = \int_{0}^{x} \frac{\partial P}{\partial y}(t,0)dt + \int_{0}^{y} ds \int_{0}^{x} \left[\frac{\partial^2 P}{\partial y^2}(t,0) - p\right] dt + \int_{0}^{y} \widetilde{q}(x,s)ds + C_1,$$

where $\tilde{q}(x,0) \equiv C_2$. From here, denoting $\tilde{q}(x,y) = q(x,y) - q(x,0) + C_2$, after not complicated transformations we obtain:

$$Q(x,y) = \int_{0}^{x} \left[\frac{\partial P}{\partial y}(t,0) + y \cdot \frac{\partial^2 P}{\partial y^2}(t,0) \right] dt + \int_{0}^{y} [q(x,s) - q(x,0)] ds + (C_1 + C_2 y - p \cdot xy), \quad (6.5)$$

where the function $q \in C^2$ and the constants C_1 and C_2 can be chosen arbitrarily.

3) By setting

$$R(x, y, z) = r(x, y, z) - r(x, 0, 0) + r,$$
(6.6)

we obtain the last of conditions (6.1): $R(x, 0, 0) \equiv r$ as well. At last, substituting of (6.5)–(6.6) in (4.2) leads to the desired result:

$$f(x, y, z) = P(x, y) + \left\{ \int_{0}^{x} \left[\frac{\partial P}{\partial y}(t, 0) + y \cdot \frac{\partial^{2} P}{\partial y^{2}}(t, 0) \right] dt + \int_{0}^{y} [q(x, s) - q(x, 0)] ds + (C_{1} + C_{2}y - p \cdot xy) \right\} \cdot z + [r(x, y, z) - r(x, 0, 0) + r] \cdot \frac{z^{2}}{2},$$
(6.7)

where the functions $P(x, y) \in C^2$, $q(x, y) \in C^2$, $r(x, y, z) \in W_K^2(z)$ and the constants C_1 and C_2 can be chosen arbitrarily.

Let us pass now to the case of an arbitrary K-extremal $y_0(x)$ of the class $W^{2,2}[a;b]$. In this case we, use the auxiliary variational functional (see Introduction):

$$\widetilde{\Phi}(y) = \Phi(y+y_0) = \int_a^b f(x, y+y_0(x), y'+y_0'(x)) \, dx =: \int_a^b \widetilde{f}(x, y, y') \, dx$$

Applying to \tilde{f} representation (6.7) together with the consequent shifts $y + y_0 \mapsto y$ and $z + y'_0(x) \mapsto z$ leads to the general form of the integrand for the case under consideration:

$$f(x,y,z) = P(x,y-y_0(x)) + \left\{ \int_0^x \left[\frac{\partial P}{\partial y}(t,0) + (y-y_0(x)) \cdot \frac{\partial^2 P}{\partial y^2}(t,0) \right] dt + \frac{\partial^2 P}{\partial y^2}(t,0) \right\} dt + \frac{\partial^2 P}{\partial y^2}(t,0) dt + \frac{\partial^2 P}{\partial y^2}(t$$

$$+ \int_{0}^{y-y_{0}(x)} [q(x,s)-q(x,0)] ds + (C_{1}+C_{2}\cdot(y-y_{0}(x))-p\cdot x\cdot(y-y_{0}(x)))] \cdot (z-y_{0}'(x)) + (z-y_{0}'(x))^{2}$$

+
$$[r(x, y - y_0(x), z - y'_0(x)) - r(x, 0, 0) + r] \cdot \frac{(z - y'_0(x))^2}{2}$$

where the functions

$$P(x, y) \in C^2$$
, $q(x, y) \in C^2$, $r(x, y, z) \in W_K^2(z)$

and the constants C_1 and C_2 can be chosen arbitrarily.

Finally, let us obtain an analogue of representation (6.7) for the case of exponential (SLJ)-conditions:

$$\left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right)(x,0) \equiv 0; \quad \left(\frac{\partial^2 P}{\partial y^2} - \frac{\partial^2 Q}{\partial x \partial y}\right)(x,0) = p \cdot e^{\alpha x}; \quad R(x,0,0) = r \cdot e^{\alpha x} \quad (r > 0).$$

Choosing $P(x,y) \in C^2$ arbitrarily and acting analogously with 1)–2) above, we can obtain \$x\$

$$Q(x,y) = \int_{0}^{\infty} \left[\frac{\partial P}{\partial y}(t,0) + y \cdot \frac{\partial^2 P}{\partial y^2}(t,0) \right] dt + \int_{0}^{y} \left[q(x,s) - q(x,0) \right] ds + \left(C_1 + C_2 y - p \cdot \frac{e^{\alpha x} - 1}{\alpha} \cdot y \right),$$

where the functions $P(x, y) \in C^2$, $q \in C^2$ and the constants C_1 and C_2 can be chosen arbitrarily.

Next, by setting

$$R(x,y,z) = r(x,y,z) - r(x,0,0) + r \cdot e^{\alpha x}$$

and acting analogously to 3) above, we can obtain the desired result:

$$f(x, y, z) = P(x, y) + \left\{ \int_{0}^{x} \left[\frac{\partial P}{\partial y}(t, 0) + y \cdot \frac{\partial^{2} P}{\partial y^{2}}(t, 0) \right] dt + \int_{0}^{y} \left[q(x, s) - q(x, 0) \right] ds + \left(C_{1} + C_{2}y - p \cdot \frac{e^{\alpha x} - 1}{\alpha} \cdot y \right) \right\} \cdot z + C_{1} + C_{2}y - p \cdot \frac{e^{\alpha x} - 1}{\alpha} \cdot y + C_{1} + C_{2}y - p \cdot \frac{e^{\alpha x} - 1}{\alpha} \cdot y + C_{1} + C_{2}y - p \cdot \frac{e^{\alpha x} - 1}{\alpha} \cdot y + C_{1} + C_{2}y - p \cdot \frac{e^{\alpha x} - 1}{\alpha} \cdot y + C_{1} + C_{2}y - p \cdot \frac{e^{\alpha x} - 1}{\alpha} \cdot y + C_{1} + C_{2}y - p \cdot \frac{e^{\alpha x} - 1}{\alpha} \cdot y + C_{1} + C_{2}y - p \cdot \frac{e^{\alpha x} - 1}{\alpha} \cdot y + C_{1} + C_{2}y - p \cdot \frac{e^{\alpha x} - 1}{\alpha} \cdot y + C_{2}y + C_{1} + C_{2}y - p \cdot \frac{e^{\alpha x} - 1}{\alpha} \cdot y + C_{1} + C_{2}y + C_{2}y$$

+
$$[r(x, y, z) - r(x, 0, 0) + r \cdot e^{\alpha x}] \cdot \frac{z^2}{2}$$
,

where the functions

$$P(x,y)\in C^2,\quad q(x,y)\in C^2,\quad r(x,y,z)\in W^2_K(z)$$

and the constants C_1 and C_2 can be chosen arbitrarily.

7 Properties of mappings of class $W_K^2(z)$

Aiming at applying formulas (6.7) where the mappings $R(x, y, z) \in W_K^2(z)$, we consider some properties of the such mappings.

First, denote by $W^2(z)$ the class of the mappings $\varphi(z)$ having $\varphi(z)$, $\varphi'(z)$ and $\varphi''(z)$ possessing uniform continuity and boundedness for $-\infty < z < \infty$. Then the following statements are valid.

Proposition 3. If

$$R(x, y, z) = \sum_{k=1}^{n} \alpha_k(x, y) \cdot \beta_k(z), \text{ where } \alpha_k \in C^2, \beta_k \in W^2(z),$$

then $R \in W^2_K(z)$.

Proof. Let us fix $k = \overline{1, n}$. As $\alpha_k(x, y)$ is uniformly continuous and bounded in x, y by the Weierstrass theorem, and $\beta_k(z)$ is uniformly continuous globally in z by the assumption, then obviously $\alpha_k(x, y) \cdot \beta_k(z) \in W_K(z)$.

Next, the gradient

$$\nabla_{yz}[\alpha_k(x,y)\cdot\beta_k(z)] = \left(\frac{\partial\alpha_k}{\partial y}(x,y)\cdot\beta_k(z),\alpha_k(x,y)\cdot\beta'_k(z)\right)$$

has the coefficients from $W_K(z)$ and therefore is in that class. Finally, the Hessian

$$H_{yz}[\alpha_k(x,y) \cdot \beta_k(z)] = \begin{pmatrix} \frac{\partial^2 \alpha_k}{\partial y^2}(x,y) \cdot \beta_k(z), & \frac{\partial \alpha_k}{\partial y} \cdot \beta'_k(z) \\ \\ \frac{\partial \alpha_k}{\partial y}(x,y) \cdot \beta'_k(z), & \alpha_k(x,y) \cdot \beta''_k(z) \end{pmatrix}$$

has the coefficients in $W_K(z)$ as well and therefore is in that class. So, $\alpha_k(x, y) \cdot \beta_k(z) \in W_K^2(z)$, hence $R(x, y, z) \in W_K^2(z)$ evidently follows.

Proposition 4. If $R_1, \ldots, R_m \in W_K^2(z)$; $\varphi(u_1, u_2, \ldots, u_m) \in C^2$, then $\varphi(R_1(x, y, z), \ldots, R_m(x, y, z)) \in W_K^2(z)$.

Proof. For an arbitrary compact $C_y \subset \mathbb{R}$ the mappings R_1, \ldots, R_m are uniformly continuous and bounded on $[0; T] \times C_y \times \mathbb{R}$. Hence φ possesses the same properties on the set

$$\prod_{i=1}^{m} R_i \left([0;T] \times C_y \times \mathbb{R} \right)$$

and therefore the composition $\varphi(R_1, \ldots, R_m)$ is in the Weierstrass class $W_K(z)$. The analogous properties of $\nabla_{yz}\varphi(R_1, \ldots, R_m)$ and $H_{yz}\varphi(R_1, \ldots, R_m)$ follow from the representations

$$\begin{aligned} \frac{\partial}{\partial y}\varphi(R_1,\ldots,R_m) &= \sum_{i=1}^m \frac{\partial\varphi}{\partial u_i}(R_1,\ldots,R_m) \cdot \frac{\partial R_i}{\partial y};\\ \frac{\partial}{\partial z}\varphi(R_1,\ldots,R_m) &= \sum_{i=1}^m \frac{\partial\varphi}{\partial u_i}(R_1,\ldots,R_m) \cdot \frac{\partial R_i}{\partial z};\\ \frac{\partial^2}{\partial y^2}\varphi(R_1,\ldots,R_m) &= \end{aligned}$$
$$= \sum_{i=1}^m \left[\sum_{j=1}^m \frac{\partial^2\varphi}{\partial u_i\partial u_j}(R_1,\ldots,R_m) \cdot \frac{\partial R_j}{\partial y} \cdot \frac{\partial R_i}{\partial y} + \frac{\partial\varphi}{\partial u_i}(R_1,\ldots,R_m) \cdot \frac{\partial^2 R_i}{\partial y^2} \right];\\ \frac{\partial^2}{\partial z^2}\varphi(R_1,\ldots,R_m) &= \end{aligned}$$
$$= \sum_{i=1}^m \left[\sum_{j=1}^m \frac{\partial^2\varphi}{\partial u_i\partial u_j}(R_1,\ldots,R_m) \cdot \frac{\partial R_j}{\partial z} \cdot \frac{\partial R_i}{\partial z} + \frac{\partial\varphi}{\partial u_i}(R_1,\ldots,R_m) \cdot \frac{\partial^2 R_i}{\partial z^2} \right];\\ \frac{\partial^2}{\partial y\partial z}\varphi(R_1,\ldots,R_m) &= \end{aligned}$$
$$= \sum_{i=1}^m \left[\sum_{j=1}^m \frac{\partial^2\varphi}{\partial u_i\partial u_j}(R_1,\ldots,R_m) \cdot \frac{\partial R_j}{\partial z} \cdot \frac{\partial R_i}{\partial y} + \frac{\partial\varphi}{\partial u_i}(R_1,\ldots,R_m) \cdot \frac{\partial^2 R_i}{\partial z^2} \right].$$

Corollary 1. By the conditions $R_1, \ldots, R_m \in W_K^2(z)$, $\alpha_k(x, y) \in C^2$ $(k = \overline{1, m})$ it follows that

$$\sum_{k=1}^{m} \alpha_k(x, y) R_k(x, y, z) \in W_K^2(z).$$

Note that the last Corollary generalizes Proposition 3 because

$$\beta_k \in W^2(z) \Rightarrow \beta_k \in W^2_K(z).$$

Corollary 2. If $R_1, \ldots, R_m \in W_K^2(z)$, then $R_1 \cdot R_2 \cdot \ldots \cdot R_m \in W_K^2(z)$. Proposition 5. If $R(x, y, z) \in W_K^2(z)$, $\psi(z) \in W^2(z)$ then $R(x, y, \psi(z)) \in W_K^2(z)$.

Proof. Since for an arbitrary compact C_y the mapping R is uniformly continuous and bounded on $[0;T] \times C_y \times \mathbb{R}$ and ψ is uniformly continuous and bounded for $z \in \mathbb{R}$, then $R(x, y, \psi(z))$ is of the Weierstrass class $W_K(z)$. The analogous properties of $\nabla_{yz}R(x, y, \psi(z))$ and $H_{yz}R(x, y, \psi(z))$ follow from the representations

$$\frac{\partial}{\partial y}R(x,y,\psi(z)) = \frac{\partial R}{\partial y}(x,y,\psi(z)); \quad \frac{\partial}{\partial z}R(x,y,\psi(z)) = \frac{\partial R}{\partial z}(x,y,\psi(z))\cdot\psi'(z);$$

$$\frac{\partial^2}{\partial y^2} R(x, y, \psi(z)) = \frac{\partial^2 R}{\partial y^2} (x, y, \psi(z)); \quad \frac{\partial}{\partial y \partial z} R(x, y, \psi(z)) = \frac{\partial^2 R}{\partial y \partial z} (x, y, \psi(z)) \cdot \psi'(z);$$
$$\frac{\partial^2}{\partial z^2} R(x, y, \psi(z)) = \frac{\partial^2 R}{\partial z^2} (x, y, \psi(z)) \cdot (\psi'(z))^2 + \frac{\partial R}{\partial z} (x, y, \psi(z)) \cdot \psi''(z).$$

Let us note also some properties of the class $W^2(z)$ being used in the constructions above. Denote by $C_b^n(z)$ the class of all functions $\varphi(z) \in C^n$ having bounded derivatives up to *n*-th order.

Property 1. The following inclusions are valid:

$$C_b^3(z) \subset W^2(z) \subset C_b^2(z).$$

Property 2. If $\varphi \in C^2$ and φ is periodic, then $\varphi \in W^2(z)$.

Property 3. If $\varphi \in C^2$, $\varphi^{(k)}(\pm \infty)$ exist and are finite for k = 0, 1, 2, then $\varphi \in W^2(z)$.

8 Non-local K-extrema of variational functionals in $H^1[a; b]$

Here we describe a rather wide class of the variational functionals in $H^1[a; b]$ having a non–local compact extremum at zero.

Note first, that if functional (5.1) attains a strong K-minimum at zero then for every zero neighborhood $U(0) \subset H^1$ there exist such values of y that $\Phi(y) > \Phi(0)$. Thus, Φ cannot attain a local maximum at zero.

Now, let us investigate conditions under which functional (5.1) does not attain a local minimum at zero.

Let the integrand of functional (5.1) satisfy conditions (6.1) i.e., it takes form (6.7) and let Φ attain a strong K-minimum at zero. Suppose for convenience $\Phi(0) = 0$. By virtue of (6.7), it means

$$\int_{0}^{T} P(x,0)dx = 0.$$

The last condition is obviously satisfied under the assumption

$$P(x,0) \equiv 0. \tag{8.1}$$

Introduce also the supplementary conditions:

$$Q(0,0) = 0, (8.2)$$

that is equivalent, by virtue of (6.7), to the condition $C_1 = 0$, and also the alternating signs condition for R:

$$R(x, 0, z_0) \le -r_0 < 0 \qquad (\forall \ x \in [0; T])$$
(8.3)

for some z_0 . Let us show that Φ does not attain a local minimum at zero under conditions (8.1)–(8.3).

 Set

$$y^{\varepsilon}(x) = \begin{cases} z_0(x-\varepsilon), & \text{as} \quad 0 \le x \le \varepsilon; \\ 0, & \text{as} \quad \varepsilon \le x \le T \end{cases}$$

for sufficiently small $\varepsilon > 0$.

Obviously, $y^{\varepsilon} \in H_0^1[0;T]$. Moreover,

$$\|y^{\varepsilon}\|_{H^{1}}^{2} = \int_{0}^{\varepsilon} \left(z_{0}^{2}(x-\varepsilon)^{2} + z_{0}^{2}\right) dx = z_{0}^{2}\left(\varepsilon + \frac{\varepsilon^{3}}{3}\right) \to 0 \quad \text{as } \varepsilon \to 0$$

The integrand f along the function y^{ε} takes the form

$$f(x, y^{\varepsilon}, (y^{\varepsilon})') =$$

$$= \begin{cases} R(x, z_0(x-\varepsilon), z_0) \cdot \frac{z_0^2}{2} + Q(x, z_0(x-\varepsilon)) \cdot z_0 + P(x, z_0(x-\varepsilon)), & 0 \le x \le \varepsilon; \\ 0, & \varepsilon \le x \le T. \end{cases}$$

From here it follows that

$$\Phi(y^{\varepsilon}) = \frac{z_0^2}{2} \cdot \int_0^{\varepsilon} R(x, z_0(x-\varepsilon), z_0) dx + z_0 \cdot \int_0^{\varepsilon} Q(x, z_0(x-\varepsilon)) dx + \int_0^{\varepsilon} P(x, z_0(x-\varepsilon)) dx. \quad (8.4)$$

Moreover,

$$\begin{cases} (8.1) \text{ implies} & P(x, z_0(x - \varepsilon)) = o(1) \\ (8.2) \text{ implies} & Q(x, z_0(x - \varepsilon)) = o(1) \\ (8.3) \text{ implies} & R(x, z_0(x - \varepsilon), z_0) = -r_0 + o(1) \end{cases}$$

$$(8.5)$$

From (8.4)–(8.5) it follows that

$$\Phi(y^{\varepsilon}) = o(\varepsilon) + z_0 \cdot o(\varepsilon) + \frac{z_0^2}{2} \cdot [o(\varepsilon) - r_0 \varepsilon] = -\frac{z_0^2 r_0}{2} \varepsilon + o(\varepsilon) < 0$$

for sufficiently small $\varepsilon > 0$.

Thus, functional (5.1) cannot attain a local minimum at zero and therefore it does not attain a local extremum at zero. Hence, an arbitrary variational functional $\Phi(y)$ having an integrand satisfying conditions (6.1) and (8.1)–(8.3), attains a non-local *K*-minimum at zero. Let us summarize the results of our considerations.

Theorem 11. Consider a functional of the form

$$\Phi(y) = \int_{0}^{T} \left(R(x, y, y') \cdot \frac{y'^2}{2} + Q(x, y) \cdot y' + P(x, y) \right) dx, \quad y(\cdot) \in H_0^1[0; T],$$

where $P, Q \in C^2; R \in W^2_K(z)$.

Then under the assumptions:

$$\frac{\partial P}{\partial y}(x,0) - \frac{\partial Q}{\partial x}(x,0) \equiv 0, \quad \left(\frac{\partial^2 P}{\partial y^2} - \frac{\partial^2 Q}{\partial x \partial y}\right)(x,0) \equiv p, \quad R(x,0,0) \equiv r > 0,$$
$$P(x,0) \equiv 0, \quad Q(0,0) = 0,$$

and also under the alternating signs condition for R:

$$R(x, 0, z_0) \le -r_0 < 0 \qquad (\forall \ x \in [0; T]);$$

for some z_0 , the variational functional $\Phi(y)$ attains a non-local K-minimum at zero for every T > 0 in the case of $p \ge 0$ and for $0 < T < \pi \sqrt{\left|\frac{r}{p}\right|}$ in the case of p < 0.

Let us consider in the conclusion some concrete examples.

Example 1. Consider the following functional:

$$\Phi(y) = \int_{0}^{1/3} \left((y')^2 \left(\sin(1 + \cos y') - \frac{1}{2} \right) + y' \sin y^2 + y^2 \right) dx, \quad y(\cdot) \in H_0^1([0; 1/3]).$$

In the case under consideration,

$$P(y) = y^2$$
, $Q(y) = \sin y^2$, $R(z) = 2\sin(1 + \cos z) - 1$.

Direct calculation shows fulfilment of condition (6.1) and (8.1)–(8.3) for the functional $\Phi(y)$. Moreover,

$$R(0) \equiv r = 2\sin 2 - 1 > 0,$$

and for $z = \pi$ $R(\pi) = -1 < 0$.

Thus, since in the case $p \equiv 2 > 0$ and T = 1/3, then by virtue of Theorem 11 the functional $\Phi(y)$ attains a non-local K-minimum at zero.

Example 2. Consider the following functional:

$$\Phi(y) = \int_{0}^{1} \left(y^{3} \ln(x^{2} + 4) + y' \sin xy + \frac{(y')^{2} \cos y'}{2(1 + (y')^{2})} \right) dx, \quad y(\cdot) \in H_{0}^{1}[0; 1].$$

In the case under consideration

$$P(x,y) = y^3 \ln(x^2 + 4), \quad Q(x,y) = \sin xy, \quad R(z) = \frac{\cos z}{1 + z^2}.$$

Direct calculation shows fulfilment of conditions (6.1) and (8.1)–(8.3) for the functional $\Phi(y)$. Moreover,

$$R(0) \equiv r = 1 > 0,$$

and for $z = \pi$ $R(\pi) = -1/(1 + \pi^2) < 0$.

Thus, since in the case $p \equiv -1 < 0$ and $T = 1 < \pi$, then by virtue of Theorem 11 the functional $\Phi(y)$ attains a non-local K-minimum at zero.

References

- E.V. Bozhonok, On solutions to "almost everywhere" Euler-Lagrange equation in Sobolev space H¹. Methods of Funct. Anal. & Top., 13, no. 3 (2007), 262 – 266.
- [2] E.V. Bozhonok, Some existence conditions of compact extrema for variational functionals of several variables in Sobolev space H¹. Operator Theory: Adv. & Appl., 190 (2009), 141 – 155.
- [3] E.V. Bozhonok, I.V. Orlov, Legendre and Jacobi conditions of compact extrema for variation functionals in Sobolev spaces. Pratsi Inst. Matem. Nats. Akad. Nauk Ukr., 3 no. 4 (2006), 282 – 293 (in Russian).
- [4] B. Dacorogna, Introduction to the calculus of variations. Imperial College Press, London, 2004.
- [5] M. Giaquinta, S. Hildebrandt, Calculus of Varitions. Springer, New York, 1996.
- [6] I.V. Orlov, Compact extrema: general theory and its applications to the variational functionals. Operator Theory: Adv. & Appl., 190 (2009), 397 - 417.
- [7] I.V. Orlov, E.V. Bozhonok, Conditions of existence, K-continuity and K-differentiability of Euler-Lagrange functional in Sobolev space W₂¹. Uchenye Zapiski Tavricheskogo Natsynal'nogo Universiteta, 19, no. 2 (2006), 63 – 78 (in Russian).
- [8] I. Orlov, Elimination of Hamilton-Jacobi equation in extreme variational problems. http: //arXiv:1008.2599 (2010), 1 - 10.
- [9] I.V. Orlov, Extreme Problems and Scales of the Operator Spaces. North-Holland Math. Studies. Funct. Anal & Appl., 197 (2004), 209 – 228.
- [10] I.V. Orlov, K-differentiability and K-extrema, Ukrainskii Matem. Vestnik, 3, no. 1 (2006), 97
 115 (in Russian).
- [11] I.V. Orlov, Normal differentiability and extrema of functionals in locally convex space. Kibernetika i Sistemnyi Analiz, no. 4 (2002), 24 – 35 (in Russian).
- [12] E.A.M. Rocha, D.F.M. Torres, First integrals for problems of calculus of variations on locally convex spaces. Applied Sciences, 10 (2008), 207 – 218.
- [13] H.-J. Schmeisser, W. Sickel, Spaces of functions of mixed smoothness and approximation from hyperbolic crosses. J. Approx. Theory, 128, no. 2 (2004), 115 - 150.
- [14] I.V. Skrypnik, Nonlinear elliptic high order equations. Naukova Dumka, Kiev, 1973 (in Russian).
- [15] H. Triebel, Theory of Function Spaces III. Monographs in Math., 100. Birkhäuser, Basel, 2006.

Igor Orlov Faculty of Mathematics and Informatics Taurida National V. Vernadsky University 4 Vernadsky Avenu 95007 Simferopol, Ukraine E-mail: old@crimea.edu