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Abstract. We study coercive estimates for some second-order degenerate and damped
differential operators with unbounded coefficients. We also establish the conditions for
invertibility of these operators.

1 Introduction

For the Sturm-Liouville operator loy = —y” + ¢(x)y (x € R), coercive estimates and
other properties associated which Sobolev spaces are well known (see [1, 3, 4, 15]).
Properties of the operator ly = —y” + ry’ + qy with the intermediate coefficient r
subordinated to the potential ¢ in some sense, are studied in [5, 9].

In this work, we consider the minimal closed differential operator

Ly = —p(x)(p(x)y') +r(@)y" +q(x)y

in Ly(R), where p, r are continuously differentiable functions, and ¢ is a continuous
function. We do not assume that p, r, ¢ are bounded in R. The aim of this work is
to show that the operator L is continuously invertible when these coefficients satisfy
some conditions and to obtain the following estimate for y € D(L)

I=p(py")lly + Iry'llo + llaylly < C NI Lyll, (1.1)

where D(L) is the domain of L, || - ||, is the norm in Ly(R), and C independent of y.

Estimate (1.1) already implies that the domain of L coincides with the subspace
generated by the norm |[—p(py') |, + |7V/[l, + |lgyll,- This fact enables us to use
the methods of the embedding theory of weighted Sobolev spaces for studying many
important properties (for example, regularity, spectral or approximation properties) of
L (see [8, 12, 13, 16]).

The operator L has numerous applications in mathematical physics and stochastic
processes. For example, in the theory of Brownian motion the Ornstein - Uhlenbek
operator is used (see [10]), which is an operator of type L, and the Fokker - Plank and
Kramer differential operators are generalizations of the Ornstein-Uhlenbek operator.
The Ornstein-Uhlenbek operator was studied in works of M. Smoluchowski, A. Fokker,
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M. Plank, H.C. Burger, R. Furth, L. Zernike, S. Goudsmitt, M.C. Wang (see [20] and
the references therein). On the other hand, the operator L is used to describe the
problem of the propagation of small oscillations in a viscoelastic compressible medium
[17, 19]. Also, the operator L is used in the study of the vibrational motion in mediums
with resistance, where the resistance depends on the velocity [18].

Recently in works of J. Pruss, R. Shnaubelt, A. Rhandi, G. Da Prato, V. Vespri,
P. Clement, G. Metafune, D. Pallara, M. Hieber, L. Lorenzi and others the following
Ornstein-Uhlenbek-type operator

Aopu = —div (aVu) + F - Vu—Vu

was investigated with various properties (see |2] and references therein). In this works
are imposed the additional conditions which are sufficient to control the drift term
F -Vu by —div (aVu) and Vu.

The results of the present paper show that if the intermediate coefficient r is quickly
growing, then the one dimensional operator L is invertible and has regular properties.
Estimate (1.1) is useful for evolutionary partial differential equations associated with
the operator L (see [7]).

The paper is organized as follows. In Section 2 we prove several auxiliary statements
and the invertibility of the operator

ly=—plpy') +ry’

for a certain class of p and r. In Section 3 we prove inequality (1.1) under some
additional conditions. We present some examples in Section 4.

Inequality (1.1) for operator [ in the case p = 1 was obtained in [11]. The coercive
estimate of L in Ly (R) was proved in [14].

We denote by C(R) the class of the continuous functions, and by C®)(R) (s =
1, 2, ...) the class of all s times continuously differentiable functions and by Cés) (R)
(s =1, 2, ...) the subset of all compactly supported functions in C*)(R).

2 Auxiliary statements and existence of the resolvent for a de-
generate operator

Denote by [ the closure in Ly(R) of the differential expression
loy = —plpy') + 1y’

on C’SQ) (R), where p € CO(R), r € C(R). The operator [ is a degenerate operator,
since it does not have the lower-order term. The domain D(l) is contained in the space
Ly(R) only in the case when the functions p and r satisfy some additional conditions.

In this section, we give some sufficient conditions for bounded invertibility of the
operator [. We denote

O‘g,h(t) = ||g||L2(0,t) Hh_lHLg(t7+oo) (t>0),

/897h(7) = HQHLQ(T,O) Hh_lHLQ(_OO77-) (T < O),
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Vg,h = Max (sup agn(t), sup Bgﬁ(T)) ,
t>0 7<0

where g and h are given functions.

Lemma 2.1. [11]. Let g and h be continuous functions on R and v, < co. Then

for any y € C’él)(R) the following inequality holds:

[ﬁmwwmﬁms@/wmwymfm.

Moreover, the least such constant c; satisfies Yo < c1 < 2.
Lemma 2.2. Let p € CY(R) and r € C(R) satisfy the following conditions
r>1,7,5 < o0. (2.1)

Then for y € D(l) the following estimate holds:

1
H¢@wfwmus0+wﬁ¥w»H7ay 22)

2

Proof. Let y € C’éz) (R). Integrating by parts, we have

<@ﬂvzémw@%w. (2.3)

By Holder’s inequality,

—~

2.4)

um%yns]

1 /
e NG

Since r > 1, from (2.3) and (2.4) it follows that

Vil < | g5t

2

On the other hand, using Lemma 2.1, we get

Iylly < 29,05 (VY|

Then
Hﬁ?/“g + ||y||2 < (1 + 2'717\/?) ”\/;y/HQ

So, using (2.5) we obtain that (2.2) holds for any y € 032) (R).
Let y € D(l). Then there exists a sequence {y,} —, C Céz)(R) such that

n=1

lun —ylls = 0, ||lyn —ly|l, = 0 as n — oo. Since (2.2) holds for all y, (n € N).
Then passing to limit as n — oo we obtain the desired estimate for y € D(I). O
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Theorem 2.1. Let r € C(R), p € CW(R) be such that
r>p% s < 00 (2.6)
and for some N > 0 the following inequality holds
1< p() < e (14227 (2.7)

Then the operator 1 is invertible and the inverse operator [=! is defined on the whole

Ly(R).

Proof. Inequality (2.2) implies that the inverse [~! exists. It suffices to show that
R(l) = L2(R). Assume that R(l) # Ly(R). Then there exists a non-zero element
v € Ly(R) such that v L R(I). It follows that

Fo = (p(pv)) + (ro) =0,

where [* is the adjoint operator of [. Put pv = z, then

(pz’ + %z)/ — 0,
(Z o U ;;ft)) ‘”} ) =, (/ ;2% dt) |

where ¢ is a constant.
If ¢ # 0, then we can assume that ¢ = —1. Inequalities (2.6), (2.7) imply that

(z(x) exp [ / ’ ;;é)) dt] ) < <0,z € (a, +00).

Hence (2.6) and (2.7) imply that v ¢ Ly(R).
If ¢ = 0, then we have
2 “or(t)
v = exp —/ dt} :
p(x) { o PP(1)

By (2.7), there exists xy < a such that |v(x)| > 6 > 0 for any < xy. So v ¢ Lo(R).
Hence, we obtained a contradiction. Thus R(l) = La(R). O

or

Definition 1. [ is called separable in Ly(R), if there exists ¢ > 0 such that
ooy Y'lly + lIry'lly < es [Tyl (2.8)
for all y € D(1).

Put py’ = z. Then
ly=—pz' + —2.
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Let A > 0, and p be a bounded function. We define K : Ly(R) — Lo(R) as follows:
Kyz= -2+ (% +)\> Z, Z € D(KA)7
p

where D(K) is the domain of K. Note that K is separable in Ls(R), if for some

cy >0,
’ T
1211, + ;JF/\ 2

Lemma 2.3. Let p € CD(R), 1 < p < s, r € O(R) satisfy (2.2). Then | is separable
in Ly(R) if and only if

< ¢4 ||K>\zH2
2

for all z € D(K)).

Kyz=—2"+ (%—I—/\) z
p
is separable in Lo(R) for some A > 0.
Proof. Assume that [ is separable in Ly(R). Put py’ = z. Then

.
|wwﬂb+yw < csllo™ Kol
P lla
Hence,
T
=22+ ;Z < 5| Koz|[2- (2.9)
2

It is easy to check that for any z € D(K,) the following estimate holds:

1
HM%—#)\Z < || ———— K,z . (2.10)
P 2 2T A
2
Therefore,
1
() el < 16uel . = € D), (2.11)
By (2.9) and (2.11), we have that
T
=2+ (5 +2) 2] <clForlat Alsle < @+ 2l @12
2

So, K, is separable in Ly(R).
Let K be separable in Ly(R), i.e.

e

By (2.11), we obtain that

< CgHK)\ZHQ, zZ € D(K)\)
2

[Exzl2 < ([ Kozl2 + [19%4p¥

A
A+1/s?
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hence
[Kxzll2 < (8°A 4 1) || Koz

So, it follows that

r
—Z

<s [n —z'||2+]
2

T
= o2l + ] . } < coll Knzlla + A=l
P 2
< (c6 + D[ Kxzlla < 2¢6(s*A + 1) [ Kozl o

Taking z/p = v/, we get that

=2y ) ll2 + lIry'll2 < erlllyll2-

Lemma 2.4. Let p € CO(R), 1 < p < s andr € C(R). Suppose that

o,
S0 o

and condition (2.2) hold. Then [ is separable in Lo(R).

Proof. By Lemma 2.3, it is enough to prove that K  is separable in Ly(R) for some
A>0.

Theorem 2.1 implies that K is continuously invertible on Ly(R) for all A > 0.
Next, we show a useful representation of K, '. Let A; = (j — 1,5+ 1) (j € Z), and

{p; ;fioo be a sequence in C§°(A;) such that

+o00
0< g <Lgj(@)| <m (je€Z), Y ¢(z)=1

j=—00

We extend the restriction of r(z)p~2(x) to the interval A; to R as a piecewise
continuous function ;(x) with period 2. Let K, ; be the closure in Ls(A;) of the
differential operator —z’ + (¢;(x) + A) z on Cél)(Aj). Similarly to (2.10), we obtain
that

2eCM(A),je
2,A,

Vot

1
< ||—=K) ;=

Hence,

1 .
(g + )\) 2l a, < 1Es2lly o, -2 € D(Eay).j € Z. (2.14)

So, KA_J1 exists. On the other hand, by Theorem 2.1, K/\_J1 is defined on the whole
La(4y).
Define By and M, as follows:

“+o00 “+00

Bif = Y @ Kilesf, Maf = Y 9i(@)K5 el f € La(R).

j=—o0 j=—o0
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Since suppy; C A;1JA;UAj41 (J € Z), at each point z € R the sums of the
right-hand side of By and M) contain no more than two summands, so By and M, are
well-defined on the whole Ly(R). Moreover, it is clear that

K, M, = E — B,. (2.15)

Notice that in (j,7 + 1) (j € Z) only the functions ¢; and ;1 are not equal to zero.
So, we have that

2 2
|B/\f||2 Z QOJ A]gpj / Z QDJ )\j(p.] dx
j=—00 2 j=—00
400 2
Z/ <Z |0 ()| | [ K] (0.)] ($)|> da
1=—00 j=—o00
+oo
=5 [ B0 )]+ el 5k oo
§2 Z (/ ’@zl |K)\z QDZ ‘ d$+/ ‘801—1—1’ | )\1—0—1 901+1f)’2d[[’)
—42/ U@ | Kxt (of) (@)
Furthermore
+oo
N S (T Svil NN 23 N
j=—00

< s 1 s | (2 P

= 8mSup [ K5, 0, snoca 115

By inequality (2.14),

2

s
HLz Aj)—La(Ag) = 14 52\

Thus || By fll, < 2225 || f|l,, f € La(R). Let A = (4v/2ms? — 1)s~2. Then

17535

1
||B>\||L2(R)—>L2(R) < 5

holds for any A > Ag. So, E + By (A > \g) is invertible. By (2.15), we get

K ' = My(E - B)) ", A > ). (2.16)
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Now, we can prove (2.8). Let m; = sup :Ef}g By (2.16) and the properties of
|z—n|<2

©j (j € Z), we obtain that

H(?“)W

Then, for A > (4v/2ms? — 1)s2, we have that

< AV2 (mys® + 1) || f]l, -

2

12|l + H (% + /\> 2| < (14 4V2 +4V2mi8%) | K, 2|, - (2.17)
2
Put z = py'. By (2.17), we get that
o (o) ||, + NI/ lly < 8V2ms(1+4v2 + 4v2m1s%) ||lyll, .y € D), (2.18)
hence [ is separable. O

3 Separability of the damped differential operator

Denote by L the closure in Ly(R) of the differential expression

Ly =—p(py) +ry + qy

on Céz) (R), where p is a continuously differentiable function, r» and ¢ are continuous
functions.

Theorem 3.1. Let p be a bounded continuously differentiable function, r and q be
continuous functions. Suppose that p > 1, r and q satisfy conditions (2.2), (2.17) and
Yor < 00. Then L is continuously invertible, and L™ is defined on the whole Ly(R).
Furthermore, there exists cg such that

I=p(oy') Iz + lIry/lly + llaylly < sl Lyll, (3.1)
for anyy € D(L).

Proof. We consider the equation
Ly = f. (3.2)

A function y € Ly(R) is called a solution to (3.2), if there is a sequence {y,} /> C

CP(R) such that |lyn — ylly, = 0, |Lyn — fll, = 0 (n — +00). It is clear that L is
continuously invertible if and only if there exists a unique solution y to (3.2) for each
f € Ly(R). Putting x = at (a > 0), we rewrite (3.2) in the following form:

—p()(p()T), + 1/aF ()G, + 1/aq(t)y = f, (3.3)

where

§(t) = y(at), p(t) = plat), 7(t) = r(at),q(t) = qlat), f(t) = f(at)/a®.
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Let
lof = —p(t)(P(D)T,); + T/ 5,
then from (3.3) we obtain ) .

o + q(t)/a” = f(t). (3.4)
Note that 7/a satisfies the conditions of Lemma 2.3, so the operator Iy is continuously
invertible. By (2.18),

<T

H_ D9); 7/a yt loy Vi€ D(ly), (3.5)

where T' = 8v/2ms(1 + 4v/2 + 4\/§m132).
It is clear that 757 = 1/a 7,,. By Lemma 2.1 and (3.5),

1 Ve 1. 2T g r
S| < LNy < 2yp007? || 7| < T |liog
a 9 CL a 9 CL
Choose a = 2/T" v,,, then
1 1
—aill <= zH . 3.6
pei Ll 53 0¥ | (3.6)

By Theorem 1.16 in Chapter IV of [6], Iy + 41 (t)E is invertible and
R (le + a%(ﬁE) = Ly(R). Let ¢ be a solution to (3.4). Then, by (3.5) and (3.6), we
get that

~ ~! ]- ~~/ ~~
H— t)y) il R et
a a )
29,
l ( 2 )} . (3.7)
2
On the other hand,
Jiod]|, < H <lo + —qE> + || ) - (35)
a 2
Using (3.4) and (3.6), we obtain that
1. - 1 -
H—zqy < H <lo + —qu> (7)1
a 2 a 2
and
A 1. . 1 .. A 1. .
< H <lo + —2qE) gl + ‘ —qy|| <2 (lo + —QqE) 7 (3.9)
a a a
2 2 2

So, (3.7) and (3.9) imply that the inequality

] =407

holds for any solution ¢ to (3.4). Let ¢t = x/a. Rewriting the above formula, we obtain
(3.1). O

|-a6],+ o7, +

f
2
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4 Examples

1. Let Loy = (1422 (14 22)y) + (54 2*)+/. Then all conditions of Theorem 2.1
are satisfied. Hence, L, is invertible, and L 1is continuous.

2. We consider
Ly _ _y// + (1 + :172)“3/ + |$|0y’

where w > 0, 0 > 0. If w > 0/2+43/4, then the conditions of Theorem 3.1 are satisfied.
So L has a bounded inverse L~!, and there exists ¢y > 0 such that

Iyl + ([ (1 +22) y'[], + M7yl < co llLyll,

forally € D(L).
3. By Theorem 3.1, Ly = —y" + exp(1 + 2*)y’ + exp |z|y is continuously invertible on
Ls(R). Moreover, for all y € D(L),

]

ly"ll; + flexp(1 +22) 'l + llexp |2 yll, < ero |[Ly]|_,

where cyq is independent of .
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