EURASIAN MATHEMATICAL JOURNAL

ISSN 2077-9879

Volume 6, Number 2 (2015), 63 – 74

SOME INEQUALITIES FOR SECOND ORDER DIFFERENTIAL OPERATORS WITH UNBOUNDED DRIFT

K.N. Ospanov, R.D. Akhmetkaliyeva

Communicated by I.N. Parasidis

Key words: second order differential equation, drift, invertibility, separability

AMS Mathematics Subject Classification: 34A30.

Abstract. We study coercive estimates for some second-order degenerate and damped differential operators with unbounded coefficients. We also establish the conditions for invertibility of these operators.

1 Introduction

For the Sturm-Liouville operator $l_0y = -y'' + q(x)y$ ($x \in \mathbb{R}$), coercive estimates and other properties associated which Sobolev spaces are well known (see [1, 3, 4, 15]). Properties of the operator ly = -y'' + ry' + qy with the intermediate coefficient r subordinated to the potential q in some sense, are studied in [5, 9].

In this work, we consider the minimal closed differential operator

$$Ly = -\rho(x)(\rho(x)y')' + r(x)y' + q(x)y$$

in $L_2(\mathbb{R})$, where ρ , r are continuously differentiable functions, and q is a continuous function. We do not assume that ρ , r, q are bounded in \mathbb{R} . The aim of this work is to show that the operator L is continuously invertible when these coefficients satisfy some conditions and to obtain the following estimate for $y \in D(L)$

$$\|-\rho(\rho y')'\|_2 + \|ry'\|_2 + \|qy\|_2 \le C \|Ly\|_2,$$
 (1.1)

where D(L) is the domain of L, $\|\cdot\|_2$ is the norm in $L_2(\mathbb{R})$, and C independent of y.

Estimate (1.1) already implies that the domain of L coincides with the subspace generated by the norm $\|-\rho(\rho y')'\|_2 + \|ry'\|_2 + \|qy\|_2$. This fact enables us to use the methods of the embedding theory of weighted Sobolev spaces for studying many important properties (for example, regularity, spectral or approximation properties) of L (see [8, 12, 13, 16]).

The operator L has numerous applications in mathematical physics and stochastic processes. For example, in the theory of Brownian motion the Ornstein - Uhlenbek operator is used (see [10]), which is an operator of type L, and the Fokker - Plank and Kramer differential operators are generalizations of the Ornstein-Uhlenbek operator. The Ornstein-Uhlenbek operator was studied in works of M. Smoluchowski, A. Fokker,

M. Plank, H.C. Burger, R. Furth, L. Zernike, S. Goudsmitt, M.C. Wang (see [20] and the references therein). On the other hand, the operator L is used to describe the problem of the propagation of small oscillations in a viscoelastic compressible medium [17, 19]. Also, the operator L is used in the study of the vibrational motion in mediums with resistance, where the resistance depends on the velocity [18].

Recently in works of J. Pruss, R. Shnaubelt, A. Rhandi, G. Da Prato, V. Vespri, P. Clement, G. Metafune, D. Pallara, M. Hieber, L. Lorenzi and others the following Ornstein-Uhlenbek-type operator

$$A_0 u = -div (a\nabla u) + F \cdot \nabla u - Vu$$

was investigated with various properties (see [2] and references therein). In this works are imposed the additional conditions which are sufficient to control the drift term $F \cdot \nabla u$ by $-div(a\nabla u)$ and Vu.

The results of the present paper show that if the intermediate coefficient r is quickly growing, then the one dimensional operator L is invertible and has regular properties. Estimate (1.1) is useful for evolutionary partial differential equations associated with the operator L (see [7]).

The paper is organized as follows. In Section 2 we prove several auxiliary statements and the invertibility of the operator

$$ly = -\rho(\rho y')' + ry'$$

for a certain class of ρ and r. In Section 3 we prove inequality (1.1) under some additional conditions. We present some examples in Section 4.

Inequality (1.1) for operator l in the case $\rho = 1$ was obtained in [11]. The coercive estimate of L in $L_1(\mathbb{R})$ was proved in [14].

We denote by $C(\mathbb{R})$ the class of the continuous functions, and by $C^{(s)}(\mathbb{R})$ (s = 1, 2, ...) the class of all s times continuously differentiable functions and by $C_0^{(s)}(\mathbb{R})$ (s = 1, 2, ...) the subset of all compactly supported functions in $C^{(s)}(\mathbb{R})$.

2 Auxiliary statements and existence of the resolvent for a degenerate operator

Denote by l the closure in $L_2(\mathbb{R})$ of the differential expression

$$l_0 y = -\rho(\rho y')' + ry'$$

on $C_0^{(2)}(\mathbb{R})$, where $\rho \in C^{(1)}(\mathbb{R})$, $r \in C(\mathbb{R})$. The operator l is a degenerate operator, since it does not have the lower-order term. The domain D(l) is contained in the space $L_2(\mathbb{R})$ only in the case when the functions ρ and r satisfy some additional conditions.

In this section, we give some sufficient conditions for bounded invertibility of the operator l. We denote

$$\alpha_{g,h}(t) = \|g\|_{L_2(0,t)} \|h^{-1}\|_{L_2(t,+\infty)} (t > 0),$$

$$\beta_{g,h}(\tau) = \|g\|_{L_2(\tau,0)} \|h^{-1}\|_{L_2(-\infty,\tau)} (\tau < 0),$$

$$\gamma_{g,h} = \max \left(\sup_{t>0} \alpha_{g,h}(t), \sup_{\tau<0} \beta_{g,h}(\tau) \right),$$

where g and h are given functions.

Lemma 2.1. [11]. Let g and h be continuous functions on \mathbb{R} and $\gamma_{g,h} < \infty$. Then for any $y \in C_0^{(1)}(\mathbb{R})$ the following inequality holds:

$$\int_{-\infty}^{\infty} |g(x)y(x)|^2 dx \le c_1 \int_{-\infty}^{\infty} |h(x)y'(x)|^2 dx.$$

Moreover, the least such constant c_1 satisfies $\gamma_{g,h} \leq c_1 \leq 2\gamma_{g,h}$.

Lemma 2.2. Let $\rho \in C^{(1)}(\mathbb{R})$ and $r \in C(\mathbb{R})$ satisfy the following conditions

$$r \ge 1, \gamma_{1,\sqrt{r}} < \infty. \tag{2.1}$$

Then for $y \in D(l)$ the following estimate holds:

$$\|\sqrt{r}y'\|_{2} + \|y\|_{2} \le \left(1 + \sqrt{2\gamma_{1,\sqrt{r}}}\right) \left\|\frac{1}{\sqrt{r}}ly\right\|_{2}.$$
 (2.2)

Proof. Let $y \in C_0^{(2)}(\mathbb{R})$. Integrating by parts, we have

$$(ly, y') = \int_{\mathbb{R}} r(x)(y')^2 dx.$$
 (2.3)

By Hölder's inequality,

$$|(L_0 y, y')| \le \left\| \frac{1}{\sqrt{r}} L_0 y \right\|_2 \left\| \sqrt{r} y' \right\|_2.$$
 (2.4)

Since $r \ge 1$, from (2.3) and (2.4) it follows that

$$\|\sqrt{r}y'\|_{2} \le \left\|\frac{1}{\sqrt{r}}L_{0}y\right\|_{2}.$$
 (2.5)

On the other hand, using Lemma 2.1, we get

$$||y||_2 \le 2\gamma_{1,\sqrt{r}} ||\sqrt{r}y'||_2$$
.

Then

$$\|\sqrt{r}y'\|_2 + \|y\|_2 \le (1 + 2\gamma_{1,\sqrt{r}}) \|\sqrt{r}y'\|_2$$

So, using (2.5) we obtain that (2.2) holds for any $y \in C_0^{(2)}(\mathbb{R})$.

Let $y \in D(l)$. Then there exists a sequence $\{y_n\}_{n=1}^{\infty} \subset C_0^{(2)}(\mathbb{R})$ such that $\|y_n - y\|_2 \to 0$, $\|ly_n - ly\|_2 \to 0$ as $n \to \infty$. Since (2.2) holds for all y_n $(n \in \mathbb{N})$. Then passing to limit as $n \to \infty$ we obtain the desired estimate for $y \in D(l)$.

Theorem 2.1. Let $r \in C(\mathbb{R})$, $\rho \in C^{(1)}(\mathbb{R})$ be such that

$$r \ge \rho^2, \gamma_{1,\sqrt{r}} < \infty \tag{2.6}$$

and for some N > 0 the following inequality holds

$$1 \le \rho(x) \le c_2 \left(1 + x^2\right)^N. \tag{2.7}$$

Then the operator l is invertible and the inverse operator l^{-1} is defined on the whole $L_2(\mathbb{R})$.

Proof. Inequality (2.2) implies that the inverse l^{-1} exists. It suffices to show that $R(l) = L_2(\mathbb{R})$. Assume that $R(l) \neq L_2(\mathbb{R})$. Then there exists a non-zero element $v \in L_2(\mathbb{R})$ such that $v \perp R(l)$. It follows that

$$l^*v \equiv (\rho(\rho v)')' + (rv)' = 0,$$

where l^* is the adjoint operator of l. Put $\rho v = z$, then

$$\left(\rho z' + \frac{r}{\rho}z\right)' = 0,$$

or

$$\left(z \exp\left[\int_{a}^{x} \frac{r(t)}{\rho^{2}(t)} dt\right]\right)' = \frac{c}{\rho} \exp\left(\int_{a}^{x} \frac{r(t)}{\rho^{2}(t)} dt\right),$$

where c is a constant.

If $c \neq 0$, then we can assume that c = -1. Inequalities (2.6), (2.7) imply that

$$\left(z(x) \exp\left[\int_a^x \frac{r(t)}{\rho^2(t)} dt\right]\right)' \le c_1 < 0, \ x \in (a, +\infty).$$

Hence (2.6) and (2.7) imply that $v \notin L_2(\mathbb{R})$.

If c = 0, then we have

$$v = \frac{c_2}{\rho(x)} \exp\left[-\int_a^x \frac{r(t)}{\rho^2(t)} dt\right].$$

By (2.7), there exists $x_0 < a$ such that $|v(x)| \ge \delta > 0$ for any $x \le x_0$. So $v \notin L_2(\mathbb{R})$. Hence, we obtained a contradiction. Thus $R(l) = L_2(\mathbb{R})$.

Definition 1. l is called separable in $L_2(\mathbb{R})$, if there exists c > 0 such that

$$\|\rho(\rho y')'\|_2 + \|ry'\|_2 \le c_3 \|ly\|_2 \tag{2.8}$$

for all $y \in D(l)$.

Put $\rho y' = z$. Then

$$ly = -\rho z' + \frac{r}{\rho}z.$$

Let $\lambda \geq 0$, and ρ be a bounded function. We define $K_{\lambda}: L_2(\mathbb{R}) \to L_2(\mathbb{R})$ as follows:

$$K_{\lambda}z = -z' + \left(\frac{r}{\rho^2} + \lambda\right)z, \ z \in D(K_{\lambda}),$$

where $D(K_{\lambda})$ is the domain of K_{λ} . Note that K_{λ} is separable in $L_2(\mathbb{R})$, if for some $c_4 > 0$,

$$\|z'\|_{2} + \left\| \left(\frac{r}{\rho^{2}} + \lambda \right) z \right\|_{2} \le c_{4} \|K_{\lambda} z\|_{2}$$

for all $z \in D(K_{\lambda})$.

Lemma 2.3. Let $\rho \in C^{(1)}(\mathbb{R})$, $1 \leq \rho \leq s$, $r \in C(\mathbb{R})$ satisfy (2.2). Then l is separable in $L_2(\mathbb{R})$ if and only if

$$K_{\lambda}z = -z' + \left(\frac{r}{\rho^2} + \lambda\right)z$$

is separable in $L_2(\mathbb{R})$ for some $\lambda \geq 0$.

Proof. Assume that l is separable in $L_2(\mathbb{R})$. Put $\rho y' = z$. Then

$$\|-\rho z'\|_2 + \left\|\frac{r}{\rho}z\right\|_2 \le c_5 \|\rho^{-1}K_0z\|_2.$$

Hence,

$$\|-z'\|_2 + \left\|\frac{r}{\rho^2}z\right\|_2 \le c_5 \|K_0z\|_2.$$
 (2.9)

It is easy to check that for any $z \in D(K_{\lambda})$ the following estimate holds:

$$\left\| \sqrt{\frac{r}{\rho^2} + \lambda} z \right\|_2 \le \left\| \frac{1}{\sqrt{\frac{r}{\rho^2} + \lambda}} K_{\lambda} z \right\|_2. \tag{2.10}$$

Therefore,

$$\left(\frac{1}{s^2} + \lambda\right) \|z\|_2 \le \|K_{\lambda}z\|_2, \ z \in D(K_{\lambda}). \tag{2.11}$$

By (2.9) and (2.11), we have that

$$\|-z'\|_{2} + \left\| \left(\frac{r}{\rho^{2}} + \lambda \right) z \right\|_{2} \le c_{5} \|K_{0}z\|_{2} + \lambda \|z\|_{2} \le (c_{5} + 2) \|K_{\lambda}z\|_{2}. \tag{2.12}$$

So, K_{λ} is separable in $L_2(\mathbb{R})$.

Let K_{λ} be separable in $L_2(\mathbb{R})$, i.e.

$$\|-z'\|_2 + \left\| \left(\frac{r}{\rho^2} + \lambda \right) z \right\|_2 \le c_6 \|K_{\lambda} z\|_2, \ z \in D(K_{\lambda}).$$

By (2.11), we obtain that

$$||K_{\lambda}z||_{2} \le ||K_{0}z||_{2} + \frac{\lambda}{\lambda + 1/s^{2}} ||K_{\lambda}z||_{2},$$

hence

$$||K_{\lambda}z||_2 \le (s^2\lambda + 1)||K_0z||_2.$$

So, it follows that

$$\|-\rho z'\|_{2} + \left\|\frac{r}{\rho}z\right\|_{2} \le s \left[\|-z'\|_{2} + \left\|\frac{r}{\rho^{2}}z\right\|_{2}\right] \le c_{6}\|K_{\lambda}z\|_{2} + \lambda\|z\|_{2}$$
$$\le (c_{6}+1)\|K_{\lambda}z\|_{2} \le 2c_{6}(s^{2}\lambda+1)\|K_{0}z\|_{2}.$$

Taking $z/\rho = y'$, we get that

$$\|-\rho(\rho y')'\|_2 + \|ry'\|_2 \le c_7 \|ly\|_2.$$

Lemma 2.4. Let $\rho \in C^{(1)}(\mathbb{R})$, $1 \leq \rho \leq s$ and $r \in C(\mathbb{R})$. Suppose that

$$\sup_{|x-\eta| \le 2} \frac{r(x)}{r(\eta)} < \infty \tag{2.13}$$

and condition (2.2) hold. Then l is separable in $L_2(\mathbb{R})$.

Proof. By Lemma 2.3, it is enough to prove that K_{λ} is separable in $L_2(\mathbb{R})$ for some $\lambda \geq 0$.

Theorem 2.1 implies that K_{λ} is continuously invertible on $L_2(\mathbb{R})$ for all $\lambda \geq 0$. Next, we show a useful representation of K_{λ}^{-1} . Let $\Delta_j = (j-1,j+1)$ $(j \in \mathbb{Z})$, and $\{\varphi_j\}_{j=-\infty}^{+\infty}$ be a sequence in $C_0^{\infty}(\Delta_j)$ such that

$$0 \le \varphi_j \le 1, \left| \varphi_j'(x) \right| \le m \ (j \in \mathbb{Z}), \sum_{j=-\infty}^{+\infty} \varphi_j^2(x) = 1.$$

We extend the restriction of $r(x)\rho^{-2}(x)$ to the interval Δ_j to \mathbb{R} as a piecewise continuous function $\psi_j(x)$ with period 2. Let $K_{\lambda,j}$ be the closure in $L_2(\Delta_j)$ of the differential operator $-z' + (\psi_j(x) + \lambda) z$ on $C_0^{(1)}(\Delta_j)$. Similarly to (2.10), we obtain that

$$\left\| \sqrt{\psi_j + \lambda} \ z \right\|_{2, \Delta_j} \le \left\| \frac{1}{\sqrt{\psi_j + \lambda}} K_{\lambda, j} z \right\|_{2, \Delta_j}, z \in C_0^{(1)}(\Delta_j), j \in \mathbb{Z}.$$

Hence,

$$\left(\frac{1}{s^2} + \lambda\right) \|z\|_{2,\Delta_j} \le \|K_{\lambda,j}z\|_{2,\Delta_j}, z \in D(K_{\lambda,j}), j \in \mathbb{Z}.$$
(2.14)

So, $K_{\lambda,j}^{-1}$ exists. On the other hand, by Theorem 2.1, $K_{\lambda,j}^{-1}$ is defined on the whole $L_2(\Delta_j)$.

Define B_{λ} and M_{λ} as follows:

$$B_{\lambda}f = \sum_{j=-\infty}^{+\infty} \varphi_j'(x) K_{\lambda,j}^{-1} \varphi_j f, \quad M_{\lambda}f = \sum_{j=-\infty}^{+\infty} \varphi_j(x) K_{\lambda,j}^{-1} \varphi_j f, f \in L_2(\mathbb{R}).$$

Since supp $\varphi_j \subset \Delta_{j-1} \bigcup \Delta_j \bigcup \Delta_{j+1} \ (j \in \mathbb{Z})$, at each point $x \in \mathbb{R}$ the sums of the right-hand side of B_{λ} and M_{λ} contain no more than two summands, so B_{λ} and M_{λ} are well-defined on the whole $L_2(\mathbb{R})$. Moreover, it is clear that

$$K_{\lambda}M_{\lambda} = E - B_{\lambda}. \tag{2.15}$$

Notice that in (j, j + 1) $(j \in \mathbb{Z})$ only the functions φ_j and φ_{j+1} are not equal to zero. So, we have that

$$||B_{\lambda}f||_{2}^{2} = \left\| \sum_{j=-\infty}^{+\infty} \varphi'_{j}(x) K_{\lambda,j}^{-1} \varphi_{j} f \right\|_{2}^{2} = \int_{-\infty}^{\infty} \left| \sum_{j=-\infty}^{+\infty} \varphi'_{j}(x) K_{\lambda,j}^{-1} \varphi_{j} f \right|^{2} dx$$

$$= \sum_{i=-\infty}^{+\infty} \int_{i}^{i+1} \left(\sum_{j=-\infty}^{+\infty} |\varphi'_{j}(x)| \left| \left[K_{\lambda,j}^{-1} (\varphi_{j}f) \right] (x) \right| \right)^{2} dx$$

$$= \sum_{i=-\infty}^{+\infty} \int_{i}^{i+1} \left[|\varphi'_{i}| \left| \left(K_{\lambda,i}^{-1} (\varphi_{k}f) \right) \right| + \left| \varphi'_{i+1} \right| \left| \left(K_{\lambda,i+1}^{-1} (\varphi_{i+1}f) \right) \right| \right]^{2} dx$$

$$\leq 2 \sum_{i=-\infty}^{+\infty} \left(\int_{\Delta_{i}} |\varphi'_{i}|^{2} \left| K_{\lambda,i}^{-1} (\varphi_{i}f) \right|^{2} dx + \int_{\Delta_{i+1}} |\varphi'_{i+1}|^{2} \left| K_{\lambda,i+1}^{-1} (\varphi_{i+1}f) \right|^{2} dx \right)$$

$$= 4 \sum_{i=-\infty}^{+\infty} \int_{\Delta_{i}} |\varphi'_{i}(x)|^{2} \left| K_{\lambda,i}^{-1} (\varphi_{i}f) (x) \right|^{2} dx.$$

Furthermore

$$||B_{\lambda}f||_{2}^{2} \leq 4m^{2} \sum_{j=-\infty}^{+\infty} \left(||K_{\lambda,j}^{-1}||_{L_{2}(\Delta_{j}) \to L_{2}(\Delta_{j})}^{2} ||\varphi_{j}f||_{2,\Delta_{j}}^{2} \right)$$

$$\leq 8m^{2} \sup_{j \in \mathbb{Z}} ||K_{\lambda,j}^{-1}||_{L_{2}(\Delta_{j}) \to L_{2}(\Delta_{j})}^{2} \int_{\mathbb{R}} \left(\sum_{j} \varphi_{j}^{2} \right) |f|^{2} dx$$

$$= 8m^{2} \sup_{j \in \mathbb{Z}} ||K_{\lambda,j}^{-1}||_{L_{2}(\Delta_{j}) \to L_{2}(\Delta_{j})}^{2} ||f||_{2}^{2}.$$

By inequality (2.14),

$$\|K_{\lambda,j}^{-1}\|_{L_2(\Delta_j)\to L_2(\Delta_j)} \le \frac{s^2}{1+s^2\lambda}.$$

Thus $||B_{\lambda}f||_2 \leq \frac{2\sqrt{2} \, ms^2}{1+s^2\lambda} \, ||f||_2$, $f \in L_2(\mathbb{R})$. Let $\lambda_0 = (4\sqrt{2} \, ms^2 - 1)s^{-2}$. Then

$$||B_{\lambda}||_{L_2(\mathbb{R}) \to L_2(\mathbb{R})} \le \frac{1}{2}$$

holds for any $\lambda \geq \lambda_0$. So, $E + B_{\lambda}$ ($\lambda \geq \lambda_0$) is invertible. By (2.15), we get

$$K_{\lambda}^{-1} = M_{\lambda}(E - B_{\lambda})^{-1}, \lambda \ge \lambda_0. \tag{2.16}$$

Now, we can prove (2.8). Let $m_1 = \sup_{|x-\eta| \le 2} \frac{r(x)}{r(\eta)}$. By (2.16) and the properties of φ_j $(j \in \mathbb{Z})$, we obtain that

$$\left\| \left(\frac{r}{\rho^2} + \lambda \right) K_{\lambda}^{-1} f \right\|_2 \le 4\sqrt{2} \left(m_1 s^2 + 1 \right) \|f\|_2.$$

Then, for $\lambda \geq (4\sqrt{2}ms^2 - 1)s^{-2}$, we have that

$$\|z'\|_{2} + \left\| \left(\frac{r}{\rho^{2}} + \lambda \right) z \right\|_{2} \le (1 + 4\sqrt{2} + 4\sqrt{2}m_{1}s^{2}) \|K_{\lambda}z\|_{2}.$$
 (2.17)

Put $z = \rho y'$. By (2.17), we get that

$$\|\rho(\rho y')'\|_{2} + \|ry'\|_{2} \le 8\sqrt{2}ms(1 + 4\sqrt{2} + 4\sqrt{2}m_{1}s^{2}) \|ly\|_{2}, y \in D(l),$$
 (2.18)

hence l is separable.

3 Separability of the damped differential operator

Denote by L the closure in $L_2(\mathbb{R})$ of the differential expression

$$\tilde{L}y = -\rho(\rho y')' + ry' + qy$$

on $C_0^{(2)}(\mathbb{R})$, where ρ is a continuously differentiable function, r and q are continuous functions.

Theorem 3.1. Let ρ be a bounded continuously differentiable function, r and q be continuous functions. Suppose that $\rho \geq 1$, r and q satisfy conditions (2.2), (2.17) and $\gamma_{q,r} < \infty$. Then L is continuously invertible, and L^{-1} is defined on the whole $L_2(\mathbb{R})$. Furthermore, there exists c_8 such that

$$\|-\rho(\rho y')'\|_{2} + \|ry'\|_{2} + \|qy\|_{2} \le c_{8} \|Ly\|_{2},$$
 (3.1)

for any $y \in D(L)$.

Proof. We consider the equation

$$Ly = f. (3.2)$$

A function $y \in L_2(\mathbb{R})$ is called a solution to (3.2), if there is a sequence $\{y_n\}_{n=1}^{+\infty} \subset C_0^{(2)}(\mathbb{R})$ such that $\|y_n - y\|_2 \to 0$, $\|Ly_n - f\|_2 \to 0$ $(n \to +\infty)$. It is clear that L is continuously invertible if and only if there exists a unique solution y to (3.2) for each $f \in L_2(\mathbb{R})$. Putting x = at (a > 0), we rewrite (3.2) in the following form:

$$-\tilde{\rho}(t)(\tilde{\rho}(t)\tilde{y}_t')_t' + 1/\alpha \tilde{r}(t)\tilde{y}_t' + 1/\alpha^2 \tilde{q}(t)\tilde{y} = \tilde{f}, \tag{3.3}$$

where

$$\tilde{y}(t) = y(at), \tilde{\rho}(t) = \rho(at), \tilde{r}(t) = r(at), \tilde{q}(t) = q(at), \tilde{f}(t) = f(at)/a^2.$$

Let

$$\hat{l}_0 \tilde{y} = -\tilde{\rho}(t) (\tilde{\rho}(t) \tilde{y}_t')_t' + \tilde{r}/a \ \tilde{y}_t',$$

then from (3.3) we obtain

$$\hat{l}_0 \tilde{y} + \tilde{q}(t)/a^2 \tilde{y} = \tilde{f}(t). \tag{3.4}$$

Note that \tilde{r}/a satisfies the conditions of Lemma 2.3, so the operator \hat{l}_0 is continuously invertible. By (2.18),

$$\left\| -\tilde{\rho}(t)(\tilde{\rho}(t)\tilde{y}_t')_t' \right\|_2 + \left\| \tilde{r}/a \ \tilde{y}_t' \right\|_2 \le T \left\| \hat{l}_0 \tilde{y} \right\|_2, \forall \, \tilde{y} \in D(\hat{l}_0), \tag{3.5}$$

where $T = 8\sqrt{2}ms(1 + 4\sqrt{2} + 4\sqrt{2}m_1s^2)$.

It is clear that $\gamma_{\tilde{q},\tilde{r}} = 1/a \ \gamma_{q,r}$. By Lemma 2.1 and (3.5),

$$\left\| \frac{1}{a^2} \tilde{q} \tilde{y} \right\|_2 \le \frac{2\gamma_{\tilde{q},\tilde{r}}}{a^2} \left\| \tilde{r} \tilde{y}' \right\|_2 \le 2\gamma_{q,r} a^{-2} \left\| \frac{1}{a} \tilde{r} \tilde{y}' \right\|_2 \le \frac{2T\gamma_{q,r}}{a^2} \left\| \hat{l}_0 \tilde{y} \right\|_2.$$

Choose $a = 2\sqrt{T \gamma_{q,r}}$, then

$$\left\| \frac{1}{a^2} \tilde{q} \tilde{y} \right\|_2 \le \frac{1}{2} \left\| \hat{l}_0 \tilde{y} \right\|_2. \tag{3.6}$$

By Theorem 1.16 in Chapter IV of [6], $\hat{l}_0 + \frac{1}{a^2}\tilde{q}_1(t)E$ is invertible and

 $R\left(\hat{l}_0 + \frac{1}{a^2}\tilde{q}_1E\right) = L_2(\mathbb{R})$. Let \tilde{y} be a solution to (3.4). Then, by (3.5) and (3.6), we get that

$$\left\| -\tilde{\rho}(t)(\tilde{\rho}(t)\tilde{y}')' \right\|_{2} + \left\| \frac{1}{a}\tilde{r}\tilde{y}' \right\|_{2} + \left\| \frac{1}{a^{2}}\tilde{q}\tilde{y} \right\|_{2}$$

$$\leq \left[T \left(1 + \frac{2\gamma_{q,r}}{a^{2}} \right) \right] \left\| \hat{l}_{0}\tilde{y} \right\|_{2}. \tag{3.7}$$

On the other hand,

$$\|\hat{l}_0 \tilde{y}\|_2 \le \|\left(\hat{l}_0 + \frac{1}{a^2} \tilde{q} E\right) \tilde{y}\|_2 + \|\frac{1}{a^2} \tilde{q} \tilde{y}\|_2.$$
 (3.8)

Using (3.4) and (3.6), we obtain that

$$\left\| \frac{1}{a^2} \tilde{q} \tilde{y} \right\|_2 \le \left\| \left(\hat{l}_0 + \frac{1}{a^2} \tilde{q} E \right) \tilde{y} \right\|_2,$$

and

$$\left\| \hat{l}_0 \tilde{y} \right\|_2 \le \left\| \left(\hat{l}_0 + \frac{1}{a^2} \tilde{q} E \right) \tilde{y} \right\|_2 + \left\| \frac{1}{a^2} \tilde{q} \tilde{y} \right\|_2 \le 2 \left\| \left(\hat{l}_0 + \frac{1}{a^2} \tilde{q} E \right) \tilde{y} \right\|_2. \tag{3.9}$$

So, (3.7) and (3.9) imply that the inequality

$$\left\| -\tilde{\rho}(\tilde{\rho}\tilde{y}')' \right\|_{2} + \left\| \frac{1}{a}\tilde{r}\tilde{y}' \right\|_{2} + \left\| \frac{1}{a^{2}}\tilde{q}\tilde{y} \right\|_{2} \leq 2 \left[T \left(1 + \frac{2\gamma_{q,r}}{a^{2}} \right) \right] \left\| \tilde{f} \right\|_{2}$$

holds for any solution \tilde{y} to (3.4). Let t = x/a. Rewriting the above formula, we obtain (3.1).

4 Examples

- 1. Let $L_0y = (1+x^2)((1+x^2)y')' + (5+x^4)y'$. Then all conditions of Theorem 2.1 are satisfied. Hence, L_0 is invertible, and L_0^{-1} is continuous.
- 2. We consider

$$Ly = -y'' + (1+x^2)^{\omega}y' + |x|^{\sigma}y,$$

where $\omega > 0$, $\sigma \ge 0$. If $\omega \ge \sigma/2 + 3/4$, then the conditions of Theorem 3.1 are satisfied. So L has a bounded inverse L^{-1} , and there exists $c_9 > 0$ such that

$$||y''||_2 + ||(1+x^2)^{\omega}y'||_2 + |||x|^{\sigma}y||_2 \le c_9 ||Ly||_2$$

for all $y \in D(L)$.

3. By Theorem 3.1, $\tilde{L}y = -y'' + \exp(1+x^2)y' + \exp|x|y$ is continuously invertible on $L_2(\mathbb{R})$. Moreover, for all $y \in D(\tilde{L})$,

$$\|y''\|_{2} + \|\exp(1+x^{2})y'\|_{2} + \|\exp|x|y\|_{2} \le c_{10} \|\tilde{L}y\|_{2},$$

where c_{10} is independent of y.

References

- [1] K.Kh. Boimatov, Separability theorems, weighted spaces and their applications. Proc. Steklov Inst. Math. 170 (1987), 39–81.
- [2] R. Donninger, B. Schorkhuber, A spectral mapping theorem for perturbed Ornstein-Uhlenbeck operators on $L_2(\mathbb{R}^d)$. J. Func. Anal. 268 (2015), no. 9.
- W.N. Everitt, M. Giertz, Some inequalities associated with certain differential operators. Math. Z. 126 (1972), 308–326.
- [4] W.N. Everitt, M. Giertz, Some properties of the domains of certain differential operators. Proc. Lond. Math. Soc. 23 (1971), 301–324.
- [5] M.V. Fedoryuk, Asymptotic methods for linear ordinary differential equations. Nauka, Moscow, 1983 (in Russian).
- [6] T. Kato, Perturbation theory for linear operators. Springer Science & Business Media, 1995.
- [7] G. Metafuni, D. Pallara, J. Pruss, R. Schnaubelt, L_p -Theory for Elliptic Operators on \mathbb{R}^d with singular coefficients. Z. Anal. Anwendungen 24 (2005), 497–521.
- [8] M.B. Muratbekov, M.M. Muratbekov, K.N. Ospanov, On approximate properties of solutions of a nonlinear mixed-type equation. Journal of Mathematical Sciences. 150 (2008), no. 6, 2521–2530.
- [9] M.A. Naimark, Linear differential operators. English transl. Ungar, New York, 1967.
- [10] G.E. Ornstein, L.S. Uhlenbeck, On the theory of Brownian motion. Phys. Review. 36 (1930), 823–841.
- [11] K.N. Ospanov, R.D. Akhmetkaliyeva, Separation and the existence theorem for second order nonlinear differential equation. Electron. J. Qual. Th. Dif. Eq. 66 (2012), 1-12.
- [12] K.N. Ospanov, On the nonlinear generalized Cauchy-Riemann system on the whole plane. Siberian Math. J. 38 (1997), no. 2, 314–319.
- [13] K.N. Ospanov, Qualitative and approximate characteristics of solutions of Beltrami-type systems. Comp. Var. Ell. Eq. 60 (2015), no. 7, 1005–1014.
- [14] K. Ospanov, L₁-maximal regularity for differential equation with damped term. Electron. J. Qual. Th. Dif. Eq. 39 (2015), 1–9.
- [15] M. Otelbaev, Coercive estimates and separation theorems for elliptic equations in \mathbb{R}^n . Proc. Steklov Inst. Math. 161 (1984), 213–239.
- [16] I.N. Parasidisa, P.C. Tsekrekos, Correct and selfadjoint problems for quadratic operators. Eurasian Math. J. 1 (2010), no. 2, 122–135.
- [17] E.I. Shemyakin, Propagation of nonstationary perturbations in a visco-elastic medium. Dokl. Akad. nauk SSSR. 104 (1955), no. 1, 34–37.
- [18] A.N. Tikhonov, A.A. Samarskiy, *Equations of mathematical physics*. Nauka, Moscow, 1973 (in Russian).
- [19] S.S. Voit, The propagation of the initial condensation in a viscous gas. Uch. zap. Moscow st. univ. Mechanics. 5 (1954), 125–142.
- [20] M.C. Wang, G.E. Uhlenbeck, On the theory of the Brownian motion II. Rev. of Modern Physics, 1945.

Kordan Nauryzkhanovich Ospanov, Raya Duisenbekovna Akhmetkaliyeva Department of Mechanics and Mathematics
L.N. Gumilyov Eurasian National University
13 Kazhymukan St,
010008 Astana, Kazakhstan
E-mails: ospanov_kn@enu.kz, raya_84@mail.ru

Received: 22.04.2015