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Abstract. We study coercive estimates for some second-order degenerate and damped
differential operators with unbounded coefficients. We also establish the conditions for
invertibility of these operators.

1 Introduction

For the Sturm-Liouville operator l0y = −y′′ + q(x)y (x ∈ R), coercive estimates and
other properties associated which Sobolev spaces are well known (see [1, 3, 4, 15]).
Properties of the operator ly = −y′′ + ry′ + qy with the intermediate coefficient r
subordinated to the potential q in some sense, are studied in [5, 9].

In this work, we consider the minimal closed differential operator

Ly = −ρ(x)(ρ(x)y′)′ + r(x)y′ + q(x)y

in L2(R), where ρ, r are continuously differentiable functions, and q is a continuous
function. We do not assume that ρ, r, q are bounded in R. The aim of this work is
to show that the operator L is continuously invertible when these coefficients satisfy
some conditions and to obtain the following estimate for y ∈ D(L)

‖−ρ(ρy′)′‖2 + ‖ry′‖2 + ‖qy‖2 ≤ C ‖Ly‖2 , (1.1)

where D(L) is the domain of L, ‖ · ‖2 is the norm in L2(R), and C independent of y.
Estimate (1.1) already implies that the domain of L coincides with the subspace

generated by the norm ‖−ρ(ρy′)′‖2 + ‖ry′‖2 + ‖qy‖2. This fact enables us to use
the methods of the embedding theory of weighted Sobolev spaces for studying many
important properties (for example, regularity, spectral or approximation properties) of
L (see [8, 12, 13, 16]).

The operator L has numerous applications in mathematical physics and stochastic
processes. For example, in the theory of Brownian motion the Ornstein - Uhlenbek
operator is used (see [10]), which is an operator of type L, and the Fokker - Plank and
Kramer differential operators are generalizations of the Ornstein-Uhlenbek operator.
The Ornstein-Uhlenbek operator was studied in works of M. Smoluchowski, A. Fokker,
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M. Plank, H.C. Burger, R. Furth, L. Zernike, S. Goudsmitt, M.C. Wang (see [20] and
the references therein). On the other hand, the operator L is used to describe the
problem of the propagation of small oscillations in a viscoelastic compressible medium
[17, 19]. Also, the operator L is used in the study of the vibrational motion in mediums
with resistance, where the resistance depends on the velocity [18].

Recently in works of J. Pruss, R. Shnaubelt, A. Rhandi, G. Da Prato, V. Vespri,
P. Clement, G. Metafune, D. Pallara, M. Hieber, L. Lorenzi and others the following
Ornstein-Uhlenbek-type operator

A0u = −div (a∇u) + F · ∇u− V u

was investigated with various properties (see [2] and references therein). In this works
are imposed the additional conditions which are sufficient to control the drift term
F · ∇u by −div (a∇u) and V u.

The results of the present paper show that if the intermediate coefficient r is quickly
growing, then the one dimensional operator L is invertible and has regular properties.
Estimate (1.1) is useful for evolutionary partial differential equations associated with
the operator L (see [7]).

The paper is organized as follows. In Section 2 we prove several auxiliary statements
and the invertibility of the operator

ly = −ρ(ρy′)′ + ry′

for a certain class of ρ and r. In Section 3 we prove inequality (1.1) under some
additional conditions. We present some examples in Section 4.

Inequality (1.1) for operator l in the case ρ = 1 was obtained in [11]. The coercive
estimate of L in L1(R) was proved in [14].

We denote by C(R) the class of the continuous functions, and by C(s)(R) (s =

1, 2, ...) the class of all s times continuously differentiable functions and by C
(s)
0 (R)

(s = 1, 2, ...) the subset of all compactly supported functions in C(s)(R).

2 Auxiliary statements and existence of the resolvent for a de-
generate operator

Denote by l the closure in L2(R) of the differential expression

l0y = −ρ(ρy′)′ + ry′

on C
(2)
0 (R), where ρ ∈ C(1)(R), r ∈ C(R). The operator l is a degenerate operator,

since it does not have the lower-order term. The domain D(l) is contained in the space
L2(R) only in the case when the functions ρ and r satisfy some additional conditions.

In this section, we give some sufficient conditions for bounded invertibility of the
operator l. We denote

αg,h(t) = ‖g‖L2(0, t)

∥∥h−1
∥∥
L2( t,+∞)

(t > 0),

βg,h(τ) = ‖g‖L2(τ, 0)

∥∥h−1
∥∥
L2(−∞, τ)

(τ < 0),
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γg,h = max

(
sup
t>0

αg,h(t), sup
τ<0

βg,h(τ)

)
,

where g and h are given functions.

Lemma 2.1. [11]. Let g and h be continuous functions on R and γg,h < ∞. Then
for any y ∈ C(1)

0 (R) the following inequality holds:∫ ∞
−∞
|g(x)y(x)|2 dx ≤ c1

∫ ∞
−∞
|h(x)y′(x)|2 dx.

Moreover, the least such constant c1 satisfies γg,h ≤ c1 ≤ 2γg,h.

Lemma 2.2. Let ρ ∈ C(1)(R) and r ∈ C(R) satisfy the following conditions

r ≥ 1, γ1,
√
r <∞. (2.1)

Then for y ∈ D(l) the following estimate holds:

∥∥√ry′∥∥
2

+ ‖y‖2 ≤
(
1 +

√
2γ1,

√
r

) ∥∥∥∥ 1√
r
ly

∥∥∥∥
2

. (2.2)

Proof. Let y ∈ C(2)
0 (R). Integrating by parts, we have

(ly, y′) =

∫
R
r(x)(y′)2dx. (2.3)

By Hölder’s inequality,

| (L0y, y
′)| ≤

∥∥∥∥ 1√
r
L0y

∥∥∥∥
2

∥∥√ry′∥∥
2
. (2.4)

Since r ≥ 1, from (2.3) and (2.4) it follows that

∥∥√ry′∥∥
2
≤
∥∥∥∥ 1√

r
L0y

∥∥∥∥
2

. (2.5)

On the other hand, using Lemma 2.1, we get

‖y‖2 ≤ 2γ1,
√
r

∥∥√ry′∥∥
2
.

Then ∥∥√ry′∥∥
2

+ ‖y‖2 ≤
(
1 + 2γ1,

√
r

) ∥∥√ry′∥∥
2
.

So, using (2.5) we obtain that (2.2) holds for any y ∈ C(2)
0 (R).

Let y ∈ D(l). Then there exists a sequence {yn}∞n=1 ⊂ C
(2)
0 (R) such that

‖yn − y‖2 → 0, ‖lyn − ly‖2 → 0 as n → ∞. Since (2.2) holds for all yn (n ∈ N).
Then passing to limit as n→∞ we obtain the desired estimate for y ∈ D(l).
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Theorem 2.1. Let r ∈ C(R), ρ ∈ C(1)(R) be such that

r ≥ ρ2, γ1,
√
r <∞ (2.6)

and for some N > 0 the following inequality holds

1 ≤ ρ(x) ≤ c2

(
1 + x2

)N
. (2.7)

Then the operator l is invertible and the inverse operator l−1 is defined on the whole
L2(R).

Proof. Inequality (2.2) implies that the inverse l−1 exists. It suffices to show that
R(l) = L2(R). Assume that R(l ) 6= L2(R). Then there exists a non-zero element
v ∈ L2(R) such that v⊥R(l). It follows that

l∗v ≡ (ρ(ρ v)′)
′
+ (rv)′ = 0,

where l∗ is the adjoint operator of l. Put ρv = z, then(
ρz′ +

r

ρ
z

)′
= 0,

or (
z exp

[∫ x

a

r(t)

ρ2(t)
dt

])′
=
c

ρ
exp

(∫ x

a

r(t)

ρ2(t)
dt

)
,

where c is a constant.
If c 6= 0, then we can assume that c = −1. Inequalities (2.6), (2.7) imply that(

z(x) exp

[∫ x

a

r(t)

ρ2(t)
dt

])′
≤ c1 < 0, x ∈ (a, +∞).

Hence (2.6) and (2.7) imply that v /∈ L2(R).
If c = 0, then we have

v =
c2

ρ(x)
exp

[
−
∫ x

a

r(t)

ρ2(t)
dt

]
.

By (2.7), there exists x0 < a such that |v(x)| ≥ δ > 0 for any x ≤ x0. So v /∈ L2(R).
Hence, we obtained a contradiction. Thus R(l ) = L2(R).

Definition 1. l is called separable in L2(R), if there exists c > 0 such that

‖ρ(ρy′)′‖2 + ‖ry′‖2 ≤ c3 ‖ly‖2 (2.8)

for all y ∈ D(l).

Put ρy′ = z. Then
ly = −ρz′ + r

ρ
z.
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Let λ ≥ 0, and ρ be a bounded function. We define Kλ : L2(R)→ L2(R) as follows:

Kλz = −z′ +
(
r

ρ2
+ λ

)
z, z ∈ D(Kλ),

where D(Kλ) is the domain of Kλ. Note that Kλ is separable in L2(R), if for some
c4 > 0,

‖z′‖2 +

∥∥∥∥( r

ρ2
+ λ

)
z

∥∥∥∥
2

≤ c4 ‖Kλz‖2

for all z ∈ D(Kλ).

Lemma 2.3. Let ρ ∈ C(1)(R), 1 ≤ ρ ≤ s, r ∈ C(R) satisfy (2.2). Then l is separable
in L2(R) if and only if

Kλz = −z′ +
(
r

ρ2
+ λ

)
z

is separable in L2(R) for some λ ≥ 0.

Proof. Assume that l is separable in L2(R). Put ρy′ = z. Then

‖ − ρz′‖2 +

∥∥∥∥rρz
∥∥∥∥

2

≤ c5‖ρ−1K0z‖2.

Hence,

‖ − z′‖2 +

∥∥∥∥ rρ2
z

∥∥∥∥
2

≤ c5‖K0z‖2. (2.9)

It is easy to check that for any z ∈ D(Kλ) the following estimate holds:∥∥∥∥√ r

ρ2
+ λ z

∥∥∥∥
2

≤

∥∥∥∥∥∥ 1√
r
ρ2

+ λ
Kλz

∥∥∥∥∥∥
2

. (2.10)

Therefore, (
1

s2
+ λ

)
‖z‖2 ≤ ‖Kλz‖2 , z ∈ D(Kλ). (2.11)

By (2.9) and (2.11), we have that

‖ − z′‖2 +

∥∥∥∥( r

ρ2
+ λ

)
z

∥∥∥∥
2

≤ c5‖K0z‖2 + λ‖z‖2 ≤ (c5 + 2)‖Kλz‖2. (2.12)

So, Kλ is separable in L2(R).
Let Kλ be separable in L2(R), i.e.

‖ − z′‖2 +

∥∥∥∥( r

ρ2
+ λ

)
z

∥∥∥∥
2

≤ c6‖Kλz‖2, z ∈ D(Kλ).

By (2.11), we obtain that

‖Kλz‖2 ≤ ‖K0z‖2 +
λ

λ+ 1/s2
‖Kλz‖2,
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hence
‖Kλz‖2 ≤ (s2λ+ 1)‖K0z‖2.

So, it follows that

‖ − ρz′‖2 +

∥∥∥∥rρz
∥∥∥∥

2

≤ s

[
‖ − z′‖2 +

∥∥∥∥ rρ2
z

∥∥∥∥
2

]
≤ c6‖Kλz‖2 + λ‖z‖2

≤ (c6 + 1)‖Kλz‖2 ≤ 2c6(s2λ+ 1)‖K0z‖2.

Taking z/ρ = y′, we get that

‖ − ρ(ρy′)′‖2 + ‖ry′‖2 ≤ c7‖ly‖2.

Lemma 2.4. Let ρ ∈ C(1)(R), 1 ≤ ρ ≤ s and r ∈ C(R). Suppose that

sup
|x−η|≤2

r(x)

r(η)
<∞ (2.13)

and condition (2.2) hold. Then l is separable in L2(R).

Proof. By Lemma 2.3, it is enough to prove that K λ is separable in L2(R) for some
λ ≥ 0.

Theorem 2.1 implies that Kλ is continuously invertible on L2(R) for all λ ≥ 0.
Next, we show a useful representation of K−1

λ . Let ∆j = (j − 1, j + 1) (j ∈ Z), and
{ϕj}+∞

j=−∞ be a sequence in C∞0 (∆j) such that

0 ≤ ϕj ≤ 1,
∣∣ϕ′j(x)

∣∣ ≤ m (j ∈ Z) ,
+∞∑
j=−∞

ϕ2
j(x) = 1.

We extend the restriction of r(x)ρ−2(x) to the interval ∆j to R as a piecewise
continuous function ψj(x) with period 2. Let Kλ,j be the closure in L2(∆j) of the
differential operator −z′ + (ψj(x) + λ) z on C

(1)
0 (∆j). Similarly to (2.10), we obtain

that ∥∥∥√ψj + λ z
∥∥∥

2,∆j

≤

∥∥∥∥∥ 1√
ψj + λ

Kλ, j z

∥∥∥∥∥
2,∆j

, z ∈ C(1)
0 (∆j), j ∈ Z.

Hence, (
1

s2
+ λ

)
‖z‖2,∆j

≤ ‖Kλ,jz‖2,∆j
, z ∈ D(Kλ,j), j ∈ Z. (2.14)

So, K−1
λ,j exists. On the other hand, by Theorem 2.1, K−1

λ,j is defined on the whole
L2(∆j).

Define Bλ and Mλ as follows:

Bλf =
+∞∑
j=−∞

ϕ′j(x)K−1
λ,jϕjf, Mλf =

+∞∑
j=−∞

ϕj(x)K−1
λ,jϕjf, f ∈ L2(R).
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Since suppϕj ⊂ ∆j−1

⋃
∆j

⋃
∆j+1 (j ∈ Z), at each point x ∈ R the sums of the

right-hand side of Bλ and Mλ contain no more than two summands, so Bλ and Mλ are
well-defined on the whole L2(R). Moreover, it is clear that

KλMλ = E −Bλ. (2.15)

Notice that in (j, j + 1) (j ∈ Z) only the functions ϕj and ϕj+1 are not equal to zero.
So, we have that

‖Bλf‖2
2 =

∥∥∥∥∥
+∞∑
j=−∞

ϕ′j(x)K−1
λ,jϕjf

∥∥∥∥∥
2

2

=

∫ ∞
−∞

∣∣∣∣∣
+∞∑
j=−∞

ϕ′j(x)K−1
λ,jϕjf

∣∣∣∣∣
2

dx

=
+∞∑
i=−∞

∫ i+1

i

(
+∞∑
j=−∞

∣∣ϕ′j(x)
∣∣ ∣∣[K−1

λ,j (ϕjf)
]

(x)
∣∣)2

dx

=
+∞∑
i=−∞

∫ i+1

i

[
|ϕ′i|

∣∣(K−1
λ,i (ϕkf)

)∣∣+
∣∣ϕ′i+1

∣∣ ∣∣(K−1
λ,i+1 (ϕi+1f)

)∣∣]2 dx
≤ 2

+∞∑
i=−∞

(∫
∆i

|ϕ′i|
2 ∣∣K−1

λ,i (ϕif)
∣∣2 dx+

∫
∆i+1

∣∣ϕ′i+1

∣∣2 ∣∣K−1
λ,i+1 (ϕi+1f)

∣∣2 dx)

= 4
+∞∑
i=−∞

∫
∆i

|ϕ′i(x)|2
∣∣K−1

λ,i (ϕif) (x)
∣∣2 dx.

Furthermore

‖Bλf‖2
2 ≤ 4m2

+∞∑
j=−∞

(∥∥K −1
λ,j

∥∥2

L2(∆j)→L2(∆j)
‖ϕjf‖2

2,∆j

)

≤ 8m2 sup
j∈Z

∥∥K −1
λ,j

∥∥2

L2(∆j)→L2(∆j)

∫
R

(∑
j

ϕ2
j

)
|f |2 dx

= 8m2 sup
j∈Z

∥∥K−1
λ,j

∥∥2

L2(∆j)→L2(∆j)
‖f‖2

2 .

By inequality (2.14), ∥∥K −1
λ,j

∥∥
L2(∆j)→L2(∆j)

≤ s2

1 + s2λ
.

Thus ‖Bλf‖2 ≤
2
√

2 ms2

1+s2λ
‖f‖2 , f ∈ L2(R). Let λ0 = (4

√
2ms2 − 1)s−2. Then

‖Bλ‖L2(R)→L2(R) ≤
1

2

holds for any λ ≥ λ0. So, E +Bλ (λ ≥ λ0) is invertible. By (2.15), we get

K−1
λ = Mλ(E −Bλ)

−1, λ ≥ λ0. (2.16)
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Now, we can prove (2.8). Let m1 = sup
|x−η|≤2

r(x)
r(η)

. By (2.16) and the properties of

ϕj (j ∈ Z), we obtain that∥∥∥∥( r

ρ2
+ λ

)
K−1
λ f

∥∥∥∥
2

≤ 4
√

2 (m1s
2 + 1) ‖f‖2 .

Then, for λ ≥ (4
√

2ms2 − 1)s−2, we have that

‖z′‖2 +

∥∥∥∥( r

ρ2
+ λ

)
z

∥∥∥∥
2

≤ (1 + 4
√

2 + 4
√

2m1s
2) ‖Kλz‖2 . (2.17)

Put z = ρy′. By (2.17), we get that∥∥ρ (ρy′)
′∥∥

2
+ ‖ry′‖2 ≤ 8

√
2ms(1 + 4

√
2 + 4

√
2m1s

2) ‖ly‖2 , y ∈ D(l), (2.18)

hence l is separable.

3 Separability of the damped differential operator

Denote by L the closure in L2(R) of the differential expression

L̃y = −ρ(ρy′)′ + ry′ + qy

on C
(2)
0 (R), where ρ is a continuously differentiable function, r and q are continuous

functions.

Theorem 3.1. Let ρ be a bounded continuously differentiable function, r and q be
continuous functions. Suppose that ρ ≥ 1, r and q satisfy conditions (2.2), (2.17) and
γq,r < ∞. Then L is continuously invertible, and L−1 is defined on the whole L2(R).
Furthermore, there exists c8 such that

‖−ρ(ρy′)′‖2 + ‖ry′‖2 + ‖qy‖2 ≤ c8 ‖Ly‖2 , (3.1)

for any y ∈ D(L).

Proof. We consider the equation
Ly = f. (3.2)

A function y ∈ L2(R) is called a solution to (3.2), if there is a sequence {yn}+∞
n=1 ⊂

C
(2)
0 (R) such that ‖yn − y‖2 → 0, ‖Lyn − f‖2 → 0 (n → +∞). It is clear that L is

continuously invertible if and only if there exists a unique solution y to (3.2) for each
f ∈ L2(R). Putting x = at (a > 0), we rewrite (3.2) in the following form:

−ρ̃(t)(ρ̃(t)ỹ
′

t)
′

t + 1/αr̃(t)ỹ
′

t + 1/α2q̃(t)ỹ = f̃ , (3.3)

where

ỹ(t) = y(at), ρ̃(t) = ρ(at), r̃(t) = r(at), q̃(t) = q(at), f̃(t) = f(at)/a2.
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Let
l̂0ỹ = −ρ̃(t)(ρ̃(t)ỹ

′

t)
′

t + r̃/a ỹ′t,

then from (3.3) we obtain
l̂0ỹ + q̃(t)/a2ỹ = f̃(t). (3.4)

Note that r̃/a satisfies the conditions of Lemma 2.3, so the operator l̂0 is continuously
invertible. By (2.18),∥∥∥−ρ̃(t)(ρ̃(t)ỹ

′

t)
′

t

∥∥∥
2

+
∥∥∥r̃/a ỹ′t∥∥∥

2
≤ T

∥∥∥l̂0ỹ∥∥∥
2
, ∀ ỹ ∈ D(l̂0), (3.5)

where T = 8
√

2ms(1 + 4
√

2 + 4
√

2m1s
2).

It is clear that γq̃,r̃ = 1/a γq,r. By Lemma 2.1 and (3.5),∥∥∥∥ 1

a2
q̃ỹ

∥∥∥∥
2

≤ 2γq̃,r̃
a2
‖r̃ỹ′‖2 ≤ 2γq,ra

−2

∥∥∥∥1

a
r̃ỹ′
∥∥∥∥

2

≤ 2Tγq,r
a2

∥∥∥l̂0ỹ∥∥∥
2
.

Choose a = 2
√
T γq,r, then ∥∥∥∥ 1

a2
q̃ỹ

∥∥∥∥
2

≤ 1

2

∥∥∥l̂0ỹ∥∥∥
2
. (3.6)

By Theorem 1.16 in Chapter IV of [6], l̂0 + 1
a2
q̃1(t)E is invertible and

R
(
l̂0 + 1

a2
q̃1E

)
= L2(R). Let ỹ be a solution to (3.4). Then, by (3.5) and (3.6), we

get that ∥∥∥−ρ̃(t)(ρ̃(t)ỹ
′
)
′
∥∥∥

2
+

∥∥∥∥1

a
r̃ỹ′
∥∥∥∥

2

+

∥∥∥∥ 1

a2
q̃ỹ

∥∥∥∥
2

≤
[
T

(
1 +

2γq,r
a2

)] ∥∥∥l̂0ỹ∥∥∥
2
. (3.7)

On the other hand, ∥∥∥l̂0ỹ∥∥∥
2
≤
∥∥∥∥(l̂0 +

1

a2
q̃E

)
ỹ

∥∥∥∥
2

+

∥∥∥∥ 1

a2
q̃ỹ

∥∥∥∥
2

. (3.8)

Using (3.4) and (3.6), we obtain that∥∥∥∥ 1

a2
q̃ỹ

∥∥∥∥
2

≤
∥∥∥∥(l̂0 +

1

a2
q̃E

)
ỹ

∥∥∥∥
2

,

and ∥∥∥l̂0ỹ∥∥∥
2
≤
∥∥∥∥(l̂0 +

1

a2
q̃E

)
ỹ

∥∥∥∥
2

+

∥∥∥∥ 1

a2
q̃ỹ

∥∥∥∥
2

≤ 2

∥∥∥∥(l̂0 +
1

a2
q̃E

)
ỹ

∥∥∥∥
2

. (3.9)

So, (3.7) and (3.9) imply that the inequality∥∥∥−ρ̃(ρ̃ỹ
′
)
′
∥∥∥

2
+

∥∥∥∥1

a
r̃ỹ′
∥∥∥∥

2

+

∥∥∥∥ 1

a2
q̃ỹ

∥∥∥∥
2

≤ 2

[
T

(
1 +

2γq,r
a2

)] ∥∥∥f̃∥∥∥
2

holds for any solution ỹ to (3.4). Let t = x/a. Rewriting the above formula, we obtain
(3.1).
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4 Examples

1. Let L0y = (1 + x2) ((1 + x2) y′)
′
+ (5 + x4) y′. Then all conditions of Theorem 2.1

are satisfied. Hence, L0 is invertible, and L−1
0 is continuous.

2. We consider
Ly = −y′′ + (1 + x2)ωy′ + |x|σy,

where ω > 0, σ ≥ 0. If ω ≥ σ/2+3/4, then the conditions of Theorem 3.1 are satisfied.
So L has a bounded inverse L−1, and there exists c9 > 0 such that

‖y′′‖2 +
∥∥(1 + x2

)ω
y′
∥∥

2
+ ‖|x|σy‖2 ≤ c9 ‖Ly‖2

for all y ∈ D(L).
3. By Theorem 3.1, L̃y = −y′′ + exp(1 + x2)y′ + exp |x| y is continuously invertible on
L2(R). Moreover, for all y ∈ D(L̃),

‖y′′‖2 +
∥∥exp(1 + x2) y′

∥∥
2

+ ‖exp |x| y‖2 ≤ c10

∥∥∥L̃y∥∥∥
2
,

where c10 is independent of y.
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