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Abstract. In this paper we investigate the problem of distributed optimal control
for the oscillation processes described by Fredholm integro-differential equations with
partial derivatives when the function of the external source depends nonlinearly on the
control parameters. We have developed an algorithm for finding approximate solutions
of nonlinear optimization problems with arbitrary precision. The developed method of
solving nonlinear optimization problems is constructive and can be used in applications.

1 Introduction

In applied problems many real processes are described by integro-differential equations
with partial derivatives [8], [11], [12]. After the advent of the optimal control theory
for systems with distributed parameters, many applied problems were investigated by
the methods of the optimal control theory [1], [3], [5]. In developing mathematical
research methods for applied problems the use of generalized solutions to boundary
value problem appeared to be more convenient.

In this article we investigate the problem of unique solvability of nonlinear dis-
tributed optimal control for oscillation processes described by Fredholm integro-
differential equations with partial derivatives. We established that the optimal control
satisfies simultaneously two relations: of equality-type and inequality-type. In this
case the relation of equality-type leads to a nonlinear integral equation, and the second
relation is a differential inequality for the function of the external source.

Sufficient conditions for the existence of a unique solution of the optimization prob-
lem in the form of the triple (u°(¢,z), VO(t, x), J[u®(t,x)]) are found. Here u°(t,x) is
the desired optimal control, V°(¢,z) is a optimal process, J[u’(t,z)] is a minimum
value of the functional.

We have developed an algorithm for finding approximate solutions of the boundary
value problem and have proved its convergence.
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2 Boundary value problem of the controlled process

The process of oscillation will be described by a scalar function V' (¢, z) , defined on the
region Qr = Q x (0,77 , where @ is a region of the space R" bounded by a piecewise
smooth surface v, which satisfies the integro-differential equation [8], [11], [12]

T
V}t—AV—)\/ K(t,n)V(r,x)dr + flt,z,u(t,z)], € QCR", 0<t<T, (2.1)
0

on the boundary of () satisfies the initial condition
V(07ZE) - ¢1($)a ‘/;5(07 l’) = 77[}2(31/’), VS Qa (22)

and the boundary condition

I'Vitz) = i aij(1)Vy, (t, x)cos(d,x;) +a(z)V(t,x) =0, z€v, 0<t<T. (2.3)

ij=1n

Here A is the elliptic operator defined by the formula

n

AV(t2) = ) (ay(2)Va, (t,2))s, — c(@)V (¢, 2),

ij=1
n n

ai;(z) = a;i(2), Z agj(z)oioy > co Za?, co > 0;
1,j=1 =0

) is a normal vector, emanating from the point x € v; K(¢,7) is a given function
defined in the region D = {0 <t <1, 0 <7 < 1} and satisfying the condition

T T
/ / K*(t,7)drdt = K, < o0, (2.4)
o Jo
i.e. K(t,7) is an element of the Hilbert space H(D) ;

¢1 < Hl(Q)v 1P2 € H(Q)u fU[t7x7u(t7x)] 7A 07 V(t,x) € QT7 (25)

a(x) > 0, ¢(x) > 0 are given measurable functions; H;(Q) is the Sobolev space of
first-order; the function of the external source f[t,x,u(t, )] depends nonlinearly on
the control functions u(t,x) € H(Qr) and the set of allowable values of the control is
bounded; A is a parameter, T is a fixed moment of time and « > 0 is a constant.

As is known [10], under conditions (2.5) problem (2.1) - (2.3) has no classical
solutions. Therefore, we will use the notion of a generalized solution to problem (2.1)
- (2.3).

We seek the solution to problem (2.1) - (2.3) in the form:

V(t,z) =Y Va(t)z(), (2.6)
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where V,,(t) = (V(t,2) fQ (t,x)z,(v)dzx are the Fourier coefficients, z,(x)
satisfy the boundary value problem 7]

Az(x) = —X2(2), v€Q, Tz(z)=0, z€7,

for each n = 1,2,3,.... The system of the eigenfunctions {z,(z)} form a complete
orthonormal system in the Hilbert space H(Q), and the corresponding eigenvalues A,
satisfy the following conditions A\, < A\,41,Vn =1,2,3, ..., lim, o A\, = 00.

Definition 1. A function V(¢,x) € H(Qr) is called a generalized solution to problem
(2.1) - (2.3) if it satisfies the initial condition in a weak sense, that is for any function
¢o € H(Q), ¢ € H(Q) we have the equalities:

lim V(t x)po(x da:—/% )o(x

t—+0

lim Vt(t,x)gzﬁl(x)dx:/ng(a:)qbl(x)dx

t—+0 Q

and the Fourier coefficients V,,(¢) satisfy the following linear Fredholm integral equation
of the second type

1
Vo(t) = ¥1pcosipt + —¢2nsin)\nt—|— (2.7)

+—/szn)\ (t—1) ( / K(r,s)V, ds—i—fn(Tu))d:c

where 1,19, and F,(t,u) are the Fourier coefficients of the functions
1, o, f(t,x,u(t,x)) respectively.

To determine the Fourier coefficients V,,(t) equation (2.7) can be rewritten as

_)\/ Ko(t, $)Va(s)ds + an(t) (2.8)

where ,
1
K,(t,s) = )\—/ sin \,(t — 7)K(7,s)dr, K,(0,s) =0, (2.9)
n Jo
I 1o
ay(t) = 1, cOS At + /\—1/J2n sin A\, t + ~ / sin A (t — 7) fu (T, u(T))dT. (2.10)
n n J0

We find the solution to integral equation (2.8) by the formula [4], [9]:

Va(t) = )\/T R, (t, s, N)an(s)ds + a,(t) (2.11)

where
o0

Ru(t,s,\) =Y N7'K,i(t,s), n=1,23, ., (2.12)

=1
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is the resolvent of the kernel K, (t,s) = K, 1(t,s), and the iterated kernels K, ;(t, s)
are defined by the formula

T
Kniii(ts) = / Kolt, ) Kni(n, $)dn i = 1,23, ., Koa(ts) = Kn(t,s), (2.13)
0

for each n = 1,2,3,.... We investigate the convergence of Neumann series (2.12). Ac-
cording to (2.9) and (2.13) by direct calculation the following estimates are established

T2%-1 T
1Kty s)) < ()\Q)iKé_l/o K%(r,s)dr, i=1,2,3,... (2.14)

Convergence of Neumann series (2.12) follows by the inequality

[Ra(t, 5, M) < DI Kt )]

i=1

f; B " (ki (/ TK2<y,s>dy) !

([ o) " S (55) "
T\/_>

() S

=1

2

2

T (" Y A
- £ (/ K2(y,s)ds> =
An 0 A — AN TV K

VT (/OT KQ(?J?S)dS) : A — IAll TVEy

It converges for the values of the parameter A that satisfy the inequality

T
’)\| )\—\/ Ky < 1.

By direct calculation we establish the following inequality

T T T
1
R%(t,s,\)ds < / / K?(y, s)dyds 2.15
/0 (t,5,2) L, ) O — N TVE,)? (2.15)

B KoT
(A = A TVEo)*

which will later be repeatelly used.
The Neumann series for values of the parameter A satisfying |A| < \/%/\n —— 00
0 n—oo

converges absolutely for each n = 1,2,3,..., i.e. the radius of convergence increases
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when n is growing. In this case the resolvent R, (t,s,\), as the sum of an absolutely
convergent series, is a continuous function.

Note that Neumann series absolutely converges for any n = 1, 2, 3, ... only for values
of the parameter \ satisfying

A1
TVE,
Thus, we find the solution to problem (2.1) - (2.3) by formula (2.6), where V,,(¢) is
defined by (2.11) as the unique solution to integral equation (2.8). It is easy to verify
that this solution satisfies initial condition (2.2).

Now we show that this solution is an element of the space H(Q). Taking into
account (2.9) and (2.10) by direct calculation we have the following inequality

/OT/QV2(t,x)dxdt—/oT/Q(g‘/n(t)zn(x))z(t,x)dxdt

/ sz t)dt < / (A /OT Ro(t, 5, N)an(s)ds + an(t)>2dt
< Q/OTi ()\2 /OT R2(t, s, \)ds /OT aZ(s)ds + ai(t))dt

s 2 KoT g 2 ' 2 .
_2{/0 ;)\ (>\n_|)\|T\/70)2/0 an(s)dsdt—i-/o ;an(t)dt}, (2.17)

Based on the following calculations Further we shall take into account the following

calculations:
0o LT
> [
n=1 0
2

o0 T 1 1 t
< g /0 (¢1ncosAns + )\—wgnsm/\ns + " /0 sinA, (s — 1) fu(T, u(7’))d7’> ds
n=1 n n

A < (2.16)

o T
1
<3 E / <1pfn0032)\n5 + A—2w§nsz’n2)\ s

t

1 T
)\—2 sin* A\, (T — T)dT/ A, u]dT) ds
0

00 T
<3T (Z W2+ Z %n _|_ Z )\22/0 2, u}ch)
n=1""
1 T (T
<37 (mez oy @i+ 5 ) / £, u]d7> < o0;
n=1
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00 T 00 T 1
Z/ ai@)dt = Z/ (l/JlnCOSAnt + )\—wgnsin)\nt
n=1"0 n=1 70 n

2 T
—/ sin A, (t — 7) fu(7, 1) T) dt§3/ Z <¢%n
0 n=1

1 1 [T T
+ﬁ¢§n sin? A\t + " / sin? A\, (T — T)dT/ 27, dT) dt
n J0O 0

Il + ool 553 [ il )

T
= 3T (Il (2)]7 + )\2 [ (2 )Ili+p ||f(t,x,U(t,x))Hi>;
1

2 {/;gv o |]A(!0§\/Fo)2 /OT a2 (s)dsdt + /jgai(t)dt}

NET
(M = N[ TV E))?

T 1
1By 1f (8, @, ult, x))HfH) + 3T( (@) + e ()7

1
< o7y T( i@y + 55 1=

T
by Hf(t,x,u@,m»uz)} _ 6T2(|w1<x>nz + 5 @l

+)\Z%||f(t,:v,U(t,$))||§{) (H( A|2A[|(;\/_)>

Consequently, from (2.17) we obtain the relation

/T/ V3(t, r)dxdt < oo,
0 JQ
i.e. V(t,l’) € H(QT)

When defining the functions V,,(t), n = 1,2,3,..., by formulas (2.11)-(2.12), it is
not always possible to find the resolvent R, (¢, s, \) explicitly. In practice, most often
approximations of the resolvent are considered. The truncated series of the form

R™(t, s, )\) ZX YKoty s), n=1,23,..., (2.18)

is called m th approximation of the resolvent for each fixed n = 1,2, 3, .... The function
V'™ (t) defined by the formula

T
Vin(t) = )\/ R (t, s, N)an(s)ds + a,(t), n=1,2,3,..., (2.19)
0

n



24 A K. Kerimbekov, E.F. Abdyldaeva

is called the m th approximation of the function V,,(t) for each fixed n = 1,2,3,....
According to formula (2.6), the m th approximation of the solution to boundary value
problem (2.1)-(2.3) is found by the formula

V™t x) = i ()\ /T R (t, s, N)an(s)ds + an(t)) Zn (), (2.20)

n=1 0

where V"'(t) have the form (2.19). We show that the approximate solution V" (¢, x) to
boundary-value problem (2.1)-(2.3) converges to the exact solution V' (¢, x) in the norm
of the space H(Qr). By taking into account (2.12), (2.14), (2.15), (2.18), (2.19) and

the inequality
- r—1 1 - T -1 m+1 qm >
¢ dr = — ¢'dr =q q + —
m+1 q m—+1 lnq m-+1

1 1
=¢ " (1-— ] =¢"1-—], 0<qg<]1,
Ing Ing

the convergence of the approximate solution V,™(t) follows from the inequality
x)

IV (t,z) = V™(t,

17

(/ / / AR R:?(t,s,A>Jan<s>dszn<x>)2dmt
-[%

n=1

_/OTAzg/OT [Rn(t,s,k)—R;”(t,s,)\)fds/OTai(s)dsdt
:)\2/0 / Z;IW I\Kmts)\] ds/ 2 (6)dst
A2/0 / A?/ Ky s

X (i (|>\|—\/_)l_) ds/OT a?(s)dsdt

i=m-+1

<)\ /0 (Ro(t, 5, ) — R™(t, 5, \)] an(s)ds)th

2
=1 T ~—\" 1 T
22 E 2
n=1"" n Y

NT2 K, T 2m
<5 (V) <1 znlwf) Z/
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T 2m
< C3(N) (W/\—l V KO) — 0,

2
N2T? K, 1
C3(\) = ¥ (1 — —ln|/\|7;\\l/K70>

2 2 T 2
x3T <H¢1($)HH + )\% 1402 ()77 + e 1/ (2, %U(tw))llH) :

where

3 Formulation of optimal control problem and conditions of
optimality

We will consider the optimization problem in which it is required to minimize the
integral functional

Jut, z)] = /Q (V(T,2) - & (@) + V(T 2) — &a(a)]?) da (3.1)

T
2
—I—B/O /Qp [t,x,u(t,x)]dzdt, [ >0,

where & € Hi1(Q), & € H(Q) are given functions; p[t, z, u(t, z)] € H(Qr) is nonlinear
and monotonic function with respect to the functional variable, defined on the set of
solutions to problem (2.1) - (2.3). So we need to find the control u°(¢,z) € H(Qr)
which together with the corresponding solution VO(¢,z) of boundary value problem
(2.1) - (2.3) gives the smallest possible value of functional (3.1). In this case u°(¢, ) is
called the optimal control, and V°(¢,z) the optimal process.

Since by condition (2.5) each control u(t, z) uniquely defines the controlled process
V(t,z), then for the control u(t,z) + Au(t,x) corresponds the solution to boundary
value problem (2.1)-(2.3) in the form V(¢,z) + AV (¢, x) , where AV (¢, z) is the incre-
ment corresponding to the increment Au(t,z). According to the procedure of applica-
tion of the maximum principle [1], [3], the increment of functional (3.1) can be written
as

AJ[u] = Jlu + Au] — Jfu] = — /0 /Q ATt 2, V (¢, 2), w(t, ), u(t, 2)|dedt (3.2)

—i—/ [AV*(T, ) + AVA(T, z)] dz,
Q
where
H[t,z, V(t,x),wt,x),u(t,z)] = flt, z,ult,2)|w(t,v) — Bp*[t, z, u(t, )], (3.3)

and the function w(t, x) is a solution of the adjoint boundary value problem

T
wtt—Aw:/\/ K(r,t)w(r,x)dr, z€Q, 0<t<T,
0
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w(T,x) +2[Vi(T,z) = &(2)] = 0, wi(T,x) = 2[V(T,z) - &i(2)] =

n

Tw(t,z) = Z(aij(x)wmj (t,x))s; — c(x)w(t,x) =0 (3.4)

ij=1
According to the maximum principle for systems with distributed parameters [1],
[3], the optimal control is determined by the relations

2p(t e ult ) pultutr)
PR — w(t 7). (3.5)
ﬁhxwmxﬂ(( 1fggmﬁawt”0u>m (3.6)

which are called the optimality conditions.

4 Solution of the adjoint boundary-value problem

We are looking for a solution of the adjoint boundary value problem (3.4) in the form

of the series -
r) =Y wa(t)z(z). (4.1)

It is easy to verify that the Fourier coefficients w,,(t) for each fixed n = 1,2, 3, ..., satisfy
the conditions

w, (1) + Nw, (1) /KTtUJn

wn(T) 4 2[Vo(T) = €20] = 0, w,(T) = 2[Va(T) — &1a] =0,

which can be converted to the linear non-homogeneous Fredholm integral equation of
the second type

wy(t) = —2)\/0 By, (s, t)wn(s)ds + g (1), (4.2)

where

T
B,(s,t) = )\i/ sin\,(n —t)K(s,n)dn and By(s,T) =0, (4.3)
n Jt

qn<t>=—2{[v;<T>—sQnJcosAn@—tm (1) =l sind, <T—t>}.

We finf the solution to equation (4.2) by using the formula [4], 9]
T
wzx/xm@¢m%@@+%@, (4.4)
0
where the resolvent W, (s,t, A) of the kernel B, (s,t) is given by

(s, 8, ) ZX 'Boi(s,t) i=1,2,3,.., (4.5)
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and the iterated kernels B, ;(s,t) are defined by the formula

T
Byit1(s,t) = / B, (1,t)Byi(s,7)dr, i=1,2.3,..., Byi(s,t) = By(s,t). (4.6)
0

for each fixed n = 1,2,3,.... Now we investigate the convergence of Neumann series
(4.5). According to (4.3) and (4.6) by direct calculation we get

T21 1
|Bri(s,)]” = o2y K”/ K*(s,m)dn,  i=1,2,3,.. (4.7)
T 2i—1 T T 21—1 7
T ) T K
/ Busls, ) ds < = ki / / Ksmdn= 1Ko 4y
0 (An)z 0 0 (>\n>z

Convergence of Neumann series (4.5) follows by the inequality

(s,t, \) Z/\’ 'B,i(s,t) <Z|)\|Z YB,.(s,1)]

oo - T2i-1 T , 1/2
= Z ‘)"27 ()\2>z' Kt (/0 K (Saﬁ)dn)
i=1 n

T 1/2 1
< ﬁ (/ K? 5,1 dn) ,
0 ( ) )\n — |)\‘T\/K0

which converges for the values of the parameter A\ that satisfy the inequality
|/\|%\/K0 <1 forevery n=1,2,3, ...
By direct calculation we establish the following inequality

VT T 1/2
LA < o—r K*(s,n)d
Wt = e ([ 5 snan)

and

, TK,
/W (5800 < TR

Thus, the solution of the adjoint boundary-value problem (3.4) we find by the

formula
o

w(t, z) = ; {A /0 ' Wi (s, t, A\)gn(s)ds + qn(t)} (). (4.9)

It is easy to verify that w(t,z) is an element of the space H(Q7). This follows by the
inequality

/OT/QWQ(t,x)dxdt:/oT/Q (gwn(t)zn(x> (t, z)dxdt = /
:/OT = ( / Wo(s,t, X\)gn(s )ds+qn()> dt
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<23 ((A [ Wit toyis) +qi<t>> i
L § (o s i)
< 2/ (V o= |7;|[;¢F> / die)is + () )
<2 (143G i) /OT 8
<2(1+ ¥ vy )2/ nlo
<s(14y —|TA|§O¢E>2)
xz/{ — e 2c0s (T — 8) + [Va(T) — €102 —sm)\(T—s)}ds

1 NT?K,
<16/ { Dtentsy (V’?(T>_§%")}[HMl—WWOFOV

which holds because

dt < 0o

ivn’?(T)<oo, in(T)<oo
&, = llé@)l  and Zﬁzn €2(2) 15 -
Z

5 Nonlinear integral equation for optimal control

We find the optimal control according to optimality conditions (3.5) and (3.6). We
substitute in (3.5) the solution of adjoint boundary value problem (3.4) defined by
(4.9) and have equality

Bl & ut, )pult, 0t 2) o8 (3 [T 6 o (s1ds e
2 fu[t,x,u(t,x)] - 2; (A/O Wn( 7t7 A)Qn( )d +qn(t)> n( )

According to (4.3) , (2.11), (2.10)-(2.12) we reduce this equality to the form

Pp(t, z, u(t, z))pu(t, z, u(t, x)) _
fult, z,u(t, x)]

_ g L:(tA) {hn - /OT (7 N folr u]dT} (@), (5.1)
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where

L:;(t’ )‘) = {Wln(tv >‘)v W2n(t> )‘)} )

T
Win(t,\) = cos A\ (T —t) + )\/ Wi (s,t, \) cos A, (T — s)ds; (5.2)
0

1 T
Wan(t, \) = " (sin (T —t) + )\/ Wi (s, t, \)sin A, (T — s)ds) ;
n 0

Gn(T,A) = {G1n(1,A), Gop (T, N) }

T
Gin(7,\) = cos A(T — 7) + A / R (T, 5, \) sin A (s — 7)ds: (5.3)

1 T
Gon(T,\) = " (sin (T —71)+ )\/ R,(T, s, \)sin \,(s — T)dS) ;

n

hn = {h1n7 h2n} ;

T
hin = &opn — U1n l—/\n sin A\, T+ /\/ R, (T, s,\) cos )\nsds} (5.4)
0

T
_% |:COS T+ )\/ R;lt(T,s,)\) sin )\nsds] :
0

n

T
hon = §1n — Y1 {COS AT+ )\/ R, (T, s, \)cos )\nsds]
0

T
_% {sin AT + A / Ro(T, s, \) sin )\nsds] :
0

n

Thus, the optimal controlis defined as the solution of nonlinear integral equation
(5.1), at the same time must satisfy condition (3.6). Condition (3.6) restricts the class
of functions of external actions f[t, x,u(t,x)]. Therefore, we assume that the function
f(t,z,u(t,x)) satisfies (3.6) for any control u(t,z) € H(Qr) i.e. the optimization
problem is considered in class {f(t,z,u(t,z))} of functions satisfying (3.6).

We rewrite nonlinear integral equation (5.6) in the form

Pp(t, x, ult, 2))pu(t, z, u(t, v))
fult, u(®)]

A / /Q Go(rs N Fulr 1 s )] 2 () dydr 2 (2) (5.5)

= Lt Nhnza (@),
n=1

and we investigated its solvability.
Nonlinear integral equation (5.5) is solved following the work [2]. We set

Bp(t, z,u(t, z))p,(t, v, u(t,z)) i
Fult i, u(t, )] =1(t,2). (5.6)
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Lemma 5.1. The function l(t,z) is an element of the space H(Qr).

Proof. By (2.5) we have the estimate

sup
(t,I)GQT

pu(t, z, u(t, z))
fu(t7I,U(t,x))‘ <M, vte[0,T].

As p(t,z,u(t,z)) € H(Qr) for any u(t,z) € H(Qr) the statement of the lemma follows
by the inequality

[ [ [ (stintiso

T
< B2M2/ /pQ(t,m,u(t,x))dxdt < 0.
0 JQ
O

According to (3.6), the control u(t,z) is uniquely determined by equality (5.5), i.e.
there is a function ¢ such that

u(t,z) = p(t,z,l(t,x), ). (5.7)

By (5.5) and (5.6) we rewrite equation (5.1) in the form

[(t,x) —i—/o /QL(t,T,x,y,)\)f[T,y,go(T,y,l(T, y), B)]dydx = h(t, z) (5.8)

where L(t,7,2,y,\) = > o0 L*(t, \)Gr (7, N) 20 (2) 20 (y);

ht,z) =) Li(t, Ahnzn(2), (5.9)
n=1
or in the operator form
[ = N[ (5.10)

where N([l] = No[l] + h,

Noll] = — / /Q Lit, 7.2,y M) fIrys om0, 1(r ), Oldydr, b = h(t, ).

Now we turn to the problem of unique solvability of operator equation (5.10).
Lemma 5.2. The function h(t,z) is an element of the space H(Qr).

Proof. By direct calculation we establish the following inequality

/DT/Qh2(t,x)dxdt:/0T/Q <2L;(t7/\)hnzn(x)>2d(l}dt
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:/OT (iL;(t,A)h) dt = / ho) % di

)\2T2K0

Further, taklng into account that ¢, € H;(Q) and the following estimates

/OT )R;t(t, 5, \)

T
/ Ro(t,s. N ds <
0

TKo\2

(A = INTVE,)*
KoT

(A = INTVE)*

2
ds <

it is easy to show that

anm—Z( nFh3,) < 0.

n=1

From these inequalities it follows that h(t,x) € H(Qr). O

Lemma 5.3. The operator No[l(t,x)] maps the space H(Q) into itself, i.e. No[l(t,x)]
is an element of the space H(Qr) for any l(t,xz) € H(Qr).

Proof. By direct calculation we have the inequalities

/OT/QNg[l(t,x)]dxdt:/oT/Q(_ /OT/QL(t,T,xay’/\)f[T’y’@(T’y’l(T’y)’ﬁﬂdydT)dedt

-/ (i (£aten. [ Gutr et y)>5)]dT>>2dt

n=1

T o )
é/o ;HLn(t,A)HRQ
T o0 T T
< [ S0t Ve [ 160 Wl [ i i
NT?Ky NT?K,
|drd
S/ 24(H (M — |)\|T\/_o)2)2(1+( |)\|T\/_) /f 7, uldrdt

:8<1+( AT;?T;_) Z fTu

n=170

2

< )/OTGn(T,)\)f[T,y,gp(7,y,l(7,y),ﬁ)]d7> dt

2

dt

R2

/0Gn(T,A)f[r,y,go(T,y,l(T,y),ﬁ)]dT

—8(1+ NT2K, )T?Hf(zsw[txzm) B0 < 00
(M = NTVE)? SRS T PG = °
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NT2K,
ot e <4 (14 )
f ()‘n - P"T )2
1 NT?K,
Gn(t, N[5 <21+ 1+
|Gt )HR ( )\2)( (An —])\\T\/_) )
Hence the statement of the lemma follows. n
Lemma 5.4. Suppose that the conditions
1f @tz ult, @) = f(t @, ult, @)y < follu—ullg, fo>0 (5.11)
and
[olt, 2,1, 8) = plt, 2, 1, Bl < o(B) 1) =1(1)]| 5> po(B) >0 (5.12)
are satisfied. Then if the condition
MK,
=5 <1, 7=v38(1 T 5.13

is met, the operator Nyll] is contractive.

Proof. By direct calculations we have the inequality

HN(Z)_ Z)HH: HNO( )+ h = No(l) hHH
<A ft z,olt 2,1t 2), B]) — f(t 0t 2, Ut 2), B]) |
<Ffo ||lt, =, U(t, x), B] = lt, =, I(t, ﬂ]HH
< Afol[lt, z, 1t, x), B] = @lt, 2, 1(t, x), B]||
< 7fop(B) [|Ut, ) = U(t, @), = 7 It 2) = Ut 2)][

from which follows the proof of the lemma. O]

Theorem 5.1. Suppose that conditions (2.4)-(2.5), (3.6), (5.2)-(5.4) are satisfied.
Then operator equation (5.10) has a unique solution in the space H(Qr).

Proof. According to Lemmas 4.1 and 4.2, operator equation (5.10) can be considered
in the space H(Qr). According to Lemma 4.3 operator N(I) is contractive. Since
the Hilbert space H(Qr) is a complete metric space, by the theorem on contraction
mappings [6] the operator N (1) has a unique fixed point, i.e. operator equation (5.10)
has a unique solution.

The solution of operator equation (5.10) can be found by the method of successive
approximations, i.e. nth approximation of the solution is found by the formula

lo(t,x) = N[l,—1(t,z)], n=1,23,..,

where ly(t,x) is an arbitrary element of the space H(Qr) and h = ly(t,z). We have
the estimate [6]

n TL

i) = talt )| = T INGo) = Dol

||N(lo)+h ol

n

_ 7 "
= _VHN[lo(t, M ez

1
where 0 < v < 1 is the constraction constant. O
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The exact solution I(¢,x) can be found as the limit of the approximate solutions,
i.e.

I(t,z) = lim 1,(t,z).

n—oo

Substituting this solution in (5.7) we find the required optimal control
u’(t,z) = o[t z,l(t, ), B]. (5.14)

According to (2.6) we find the optimal process V°(¢, ) , i.e. the solution of bound-
ary value problem (2.1)-(2.5) corresponding to the optimal control u°(¢,z), by the
formula

VOt 7) = i ()\ /OT Ro(t, 5, \an(s)ds + an(t)> (). (5.15)

n=1

The minimum value of the functional (3.1) is calculated by the formula

Il (t,x)] = /Q {V°(T.2) - @] + [F(T,2) - &))"} de (5.16)

T
2 0
+5/0 /Ql (t,x,u’(t, x))dzdt.

The found triple (u®(t,z), VO(t,x), J[u’(t,z)]) is a solution to the nonlinear opti-
mization problem.

6 An approximate solution of the optimization problem

In practice, it is not always possible to find the exact solution of equation (5.8), i.e.

the limit function I(¢, z). Therefore, in most cases the approximate solution 1, (¢, x) of
(5.8) is considered, where the number n is determined by the inequality

”_"7 INoli(t )]l < € (6.1)

Hl_(t,x) — ln(t,x)H < .

for a given ¢ > 0. By substituting the approximate solution [, (t,z) in (5.7) we find
the nth approximation of the optimal control

un(t,x) = plt, z,l,(t, x), . (6.2)

Lemma 6.1. Let the function ¢[t,x,l(t,z), B] satisfy condition (5.13). Then the nth
approzimate controls converges to the optimal control u®(t,z) by norm of the Hilbert
space H(Q7) as n — oo.

Proof. Lemma’s assertion follows by the inequality

Huo(t,x) — un(t,$)HH = !!gp[t,z,[(t,x),ﬁ] — lt, x, ln(t,$),ﬁ]||H

< (@) 60 = 12y < BT 1Nl =2 0. (63
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According to formulas (2.6), (2.10) (2.11) and supposing that u = u°(¢, z) we find
the optimal process V°(t, x). We will consider the following approximations :

VT 2) — g <)\ /0 "Rt 5 N)an(s)ds + an(t)> o (2), (6.4)

the mth approximation of the optimal process with respect the resolvent;

VIt x) Z( / R™(t, s, \)a ()ds+a§(t)) (), (6.5)

where
k 1 ,
a, (t) = P1pcosh,t + )\—wgnsm)\nt

+>\in/o sin)\n(t—T)/Qf[T,y,uk(T,y)]zn(y)dydT (6.6)

the k, mth approximation of the optimal process corresponding to control ug (¢, x);

V() = ; ()\ /0 "Rt 5 \)ak ()ds + a,’g(t)) () (6.7)

is the k, m, rth approximation of the optimal process which determined by a finite sum,
i.e. approximation which is applicable in practice.

Investigation of the convergence of the optimal process will be carried out by the
following scheme. We note that

HVO(t,x — V"t HH HVO (t,x) = V™(t, x HH

HV(Ex) = V)l + Ve () = VT (8 )l (6.8)
and we prove that the following relations holds
0 m .
[Vt z) = vt 2)||, —— 0; (6.9)
IV (k) = V(e )y —= 0, (6.10)
for any fixed m =1,2,3, ...,
|"/;cm(t7 x) - Vkm’r@? x)HH T_>—00> 0, (6'11)

for any fixed m, k=1,2,3,....
Then according to (6.9)-(6.11) by (6.8) we have

VOt =) = V™" (t, x)|| ,, ——— 0.

m,k,r—o00
Relation (6.9) follows by the inequality :

IVt a) — v, < ”VFO<1_1;)

A n ATVEo
A1
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1 T 1/2
<37 (nwl(w)nz b Il + ||f<t,x,u<t,x>>||z)

T m
X (])\\—\/Ko) —0
)\1 m—0o0
since |)\|)\21\/K0 < 1.

Relation (6.10) follows by the inequality

V™ (t,z) — Vit o) |5 < / / ( { / R (t,s,N)ay(s)ds + an(t)

2

) /0 ' R™(t, s, \)ak(s)ds — aﬁ(t)] zn(x)) dadt

_/ng {A/OTan(t,s,A)%n/ossin(s—T)

(] (.00 )] = 17,9, )2 0) s
b [ sints =) [ ()] = (e )2 )] i
gz/jg [AQ/OTRqTQ(t,s,/\)ds/OT/OS)\i%/osst(s—T)dT
< [ (] Ut = st (o) ars
v [ sinte = [ 1700 = fwgjzatya
<2/Ti[xl Y

X /OT (/Q (flry,u’(r,9)] = flr v, ui(7, ) Zn(y)dy>2df

v /OT (/Q (flr,y,u(7,9)] = flry, un(7, ) Zn(y)dy)sz] dt

1 N K, T? 9
<2T—T |1 20l (t, ) — up(t
BT (+(A1—!A\T\/Fo)2>f°”u(’x) el )

va(tvx) - Vkm(tvx)HH

27?2 2K, T? 1/2
< () fled - ual, o

n
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Relation (6.11) follows by the inequality

IV (t, @) = Vi ()l

<(>\ /0 "Rt s 0k (s)ds + aﬁ(t)> zn(x)>2 dadt
>

1 1
+/\_¢2n8in)\n8 + )\_ / Sin}‘n(s - T) / fn[T’ Y, uk<7-7 y)}zn(y)dydT]dS
n n Jo Q

g

n=r+1

( /T R (t, s, \)[th1ncosAns

n=r+1

1 1 [t 2
+77Z}1n003/\nt + )\_w2n5inAnt + )\_ / Sln)‘n(t - T) / fn [Ta Y, uk<7—7 y)]zn<y>dyd7—> dt
n n Jo Q

S/Z

n=r+1

T
—I—% {sm)\nth )\/ R:f(t,s,)\)sm)\nsds}
0

n

<¢1n {cos/\ t+ /\/ R;’f(t,s,)\)cos/\nsds]

1 t
+)\— sinA, (t — 7')/ (79, u(7,9)) 20 (y) dydr
n Jo Q

+Ain /OT(A/TTRg(t,S,A)smAn(s—r)ds)/Qf(r,y,uk(T,y))zn(y)dydTydt

T o0
<3 / >
0 n=r+1

T
(w%n[COS)\nt + )\/ R™(t, s, \)cos\,sds]?
0

Qﬁ2n [

n

sinAnt + )\/ R™(t, s, \)sin\,sds]?

2

U% l /O L AT — 1) /0 Y /Q f(T,y,uk(T,y))zn(y)dy} ir

+/OT(A/OT Ri(t,s,A)dS/OT SmQ)\n(s—O)ds)dT/OT(/Q f(T,y,uk(f,y))zn(y)dy)2d7>dt

s

0 n=r+1

T T
(w%n[COSQ)\nt + >\2/ R2(t, s, >\)d8/ cos* A\, 5ds]
0 0

+¢2n[ 2\ 2 [T Lo
A SIn“ At + A Ry (t,s,\)ds | sin“\,sds]
0 0

1 T T T T
+— {/ sin* A (T — T)dT/ A2 Ri(t,s,)\)ds/ sin2/\nsdsdr}
AL Lo 0 0 0
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X /OT(/Q f(r,y, u(r, y))zn(y)dy)QdT) dt

- 2 AijKh ¢bn AQJij
SﬁTn;(%” {1 O — NTVEG)? T]+_[”<An—|wm>2ﬂ

v [T+ o] [ sty

> ) NTK, V3, NTK, ]
“Tn;l(%"{l O = DTV T]* [”(An—wmvT

5 [V et [ et i)

NTK, V3,
S‘ﬂl Do — TV 2 ]{Z%*Z 2

n=r+1 n=r+1 ”
+T F(T,y, un(7,9) za(y)dy) *dr}
njggl n/h b/n T, k;T T
NTK, }
<67l |1+
— { ( r+1'_|ArT\/__- {njggl¢hn
=1
 (la@)llg + T I un(r)z) Y 550
n=r+1 T
NTK, }
<67 |1+
— { ( r+1'_|ArT\/__- {njggl¢hn
1r—+1
+ (Ia@)llg + T, un(r o)) =5y} —= 0,

. 00 2 .
R — 0 as a residual term of a convergent series.

Now we calculate the approximate value of the functional. In accordance with

the approximations of the optimal process we will distinguish the follows types of the
approximations of the minimum value of the functional:

u(t,z)] = /Q {VAT.2) = &(@) + [V(T.2) - &(2)]*} do

T
3 / /Q PA(t, 0, (t, ) dudt

is minimal value of the functional corresponding to the optimal control u°(¢,x) and
optimal process VO(t, x);

Jn[u®(t, )] = /Q {V™(T,2) = &(@)]* + V(T 2) — &(2)]* } do
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T
2 0
—i—ﬁ/o /Qp (t,x,u"(t,z))dxdt

is minimal value of the functional corresponding to the optimal control u°(¢,z) and
mth approximation (with respect to resolvent) of the optimal process V°(t, z);

I [une(t, )] = /Q {Vi"(T,2) = &(@))* + [V (T, 2) — &(2)]*} do

T

is minimal value of the functional corresponding kth approximation of optimal control
and mth approximation of the optimal process;

T gt )] = /Q (V™ (T, ) — & @) + VI (T, 2) — Ex(x)]?} do

T

is minimal value of the functional corresponding kth approximation of optimal control
u®(t,x) and k,r, mth approximation of the optimal process V%(t, ). Investigation of
convergence of the optimal process will be carried out as follows:

| T () = T () | < [T (1) = T ()] + | Jon (1) = Ton ()| + | Ton () = 7, ()]

It is easy to prove that the following relations hold

| J(u®) = Jp (u”)| —— 0; (6.12)
m—0o0
| Jin (%) = i (ur)| —— 0, (6.13)
k—o00
for any fixed m =1,2,3, ...;
() = T )] 0 (6.14)

for any fixed values m,k =1,2,3, ....
Then from (6.8) we have

| J(u®) = J (ug)| —— 0.

m,k,r—o00

Relation (6.12) follows by the inequality
| T (") = T ()| = /Q{(VO(T, 2) = &)+ (VAT,2) - &)

= (V™(T,2) = &)" + (V;"(T,2) — &)}

_ /Q{(VO(T, 2) + V(T 2) — 26,)
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x (VT 2) = V(T 2)) + (VT 2) + V(T ) = 28) (VT 2) = V" (T, 2)) }
< |\VAT, x) + V™(T,x) = 26|, |VT, 2) = V™(T,2)]|,
+ VAT, 2) + V(T x) = 28|, ||VA(T, =) = V(T )|,
< i |[VAT, ) = VT, 2) ||, + G [[VA(T,2) = V(T @), —— 0,

where

HIVHT @)l + 212600l < Co,
HIVH(T @) + 2112620l < Co,

VAT, »
VAT, =

M

M
as

T m
||VO(T, .’I’) Vm T T HH < 4/ Cg( ) <|)\‘)\—1\/ Ko) m O,
T m
V) v < VO (W) o

Concerning the first relation see equation (2.20) and the second relation is proved
similarly.
Relation (6.13) follows by the inequality

[Tt — T (11)] = ‘B/OT/Q (P(t, 2, 00 (¢, 2)) — pP(t, 2, un(t, 2))) dxdt‘

_5// (2,0 ))+p(t,x,uk(t,x))]2>l/2

X ([p(t, z,ul(t,x)) — p(t, z, u(t, x))]2> v dxdt

BCs ||p t,z,u’(t,x)) — p(t, x,uk(t,x))HH
—BC’3p0Hu t,x) —ug(t, HH —)O m=1,2,3,..,

Cs = / / p(t, z,u’(t, r)) —i—p(t,x,uk(t,x))f)l/? dxdt.

Relation (6.14) follows by the inequality
| S (ure) = T ()| < (VT ) + V(T ) = 26l V(T @) = Vi (T 2) |

F VT, ) + Vi (T, @) — 26|, Vi (T ) — Vi (Th @), =
Co Vi (T, 2) = VI (T, 2) |y + Cs Vi (T, 2) = Vg (T, @)y —— 0,

IV (T o)l g + IV (T o) g + 216l < Ca,
Vit (T o)y + Ve (T o)l + 2 [1€2ll g < s,

Thus we have proved that the approximate solution of nonlinear optimization prob-
lem converges to the exact solution (u(t), V" (t, z), J& [uk(t)]) with respect to optimal
control, optimal process and functional.
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