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Abstract. We consider the Bayesian problem of estimating the success probabil-
ity in a series of conditionally independent trials with binary outcomes. We study the
asymptotic behaviour of the weighted differential entropy for posterior probability den-
sity function conditional on x successes after n conditionally independent trials when
n → ∞. Suppose that one is interested to know whether the coin is approximately
fair with a high precision and for large n is interested in the true frequency. In other
words, the statistical decision is particularly sensitive in a small neighbourhood of the
particular value γ = 1/2. For this aim the concept of the weighted differential en-
tropy introduced in [1] is used when it is necessary to emphasize the frequency γ. It
was found that the weight in suggested form does not change the asymptotic form of
Shannon, Renyi, Tsallis and Fisher entropies, but changes the constants. The leading
term in weighted Fisher Information is changed by some constant which depends on
the distance between the true frequency and the value we want to emphasize.

1 Introduction

Let U be a random variable (RV) that uniformly distributed in interval [0, 1]. Given
a realization of this RV p, consider a sequence of conditionally independent identically
distributed ξi where ξi = 1 with probability p and ξi = 0 with probability 1−p. Let xi,
each 0 or 1, be an outcome in trial i. Denote by Sn = ξ1+. . .+ξn, by x = (xi, i = 1, ..., n)
and by x = x(n) =

∑n
i=1 xi. Note that RVs (ξi) are positively correlated. Indeed,

P(ξi = 1, ξj = 1) =
∫ 1

0
p2dp = 1/3 if i 6= j, but P(ξi = 1)P(ξj = 1) = (

∫ 1

0
pdp)2 = 1/4.

The probability that after n trials the exact sequence x will appear:

P(ξ1 = x1, ..., ξn = xn) =

∫ 1

0

px(1− p)n−xdp =
1

(n+ 1)
(
n
x

) . (1.1)

The posteriori PDF given the information that after n throws we observe x heads takes
the form

f (n)(p) ≡ fp|Sn(p|ξ1 = x1, ..., ξn = xn) = (n+ 1)

(
n

x

)
px(1− p)n−x. (1.2)
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Note that conditional distribution given in (1.2) is a Beta-distribution B(x+1, n−x+1).
The RV Z(n) with PDF (1.2) has the following conditional variance:

V[Z(n)|Sn = x] =
(x+ 1)(n− x+ 1)

(n+ 3)(n+ 2)2
. (1.3)

In our previous paper [8] Shannon’s entropy of (1.2) was studied in three particular
cases: x = bαnc, x ∼ nβ, where 0 < α, β < 1 and either x or n− x is a constant. We
have demonstrated that the limiting distributions when n → ∞ in the cases 1 and 2
are Gaussian. However, the asymptotic normality does not imply automatically the
limiting form of differential entropy. In general the problem of taking the limits under
the sign of entropy is rather delicate and was extensively studied in literature, cf., e.g.,
[4, 6]. In stated problem, it was proved that in the first and second cases the differential
entropies are asymptotically Gaussian with corresponding variances. In the third case
the limiting distribution is not Gaussian, but still the asymptotics of the differential
entropy can be found explicitly.

Consider the following statistical experiment with twofold goal: at the initial stage
an experimenter mainly concerns whether the coin is approximately fair (i.e. p ≈ 1

2
)

with a high precision. As the size of a sample grows, he proceeds to estimate the
true value of the parameter anyway. We want to quantify the differential entropy
of this experiment taking into account its two sided objective. It seems that the
quantitative measure of information gain of this experiment is provided by the concept
of the weighted differential entropy [2, 1].

Let φ(n) ≡ φ(n)(α, γ, p) be a weight function that underlines the importance of some
particular value γ (γ = 1/2 in the problem stated above). The goal of this work is
to study the asymptotic behaviour of weighted Shannon’s (1.4), Renyi’s (1.5), Tsallis’s
(1.6) and Fisher’s (1.7) differential entropies [3, 8] of RV Z(n) with PDF f (n) given
in (1.2) and particular RV Z

(n)
α with PDF f

(n)
α given in (1.2) with x = bαnc where

0 < α < 1:

hφ(f (n)
α ) = −

∫
R
φ(n)f (n)

α logf (n)
α dp, (1.4)

Hφ
ν (f (n)

α ) =
1

1− ν
log

∫
R
φ(n)

(
f (n)
α

)ν
dp, (1.5)

Sφq (f (n)
α ) =

1

q − 1

(
1−

∫
R
φ(n)

(
f (n)
α

)q
dp

)
, (1.6)

Iφ(α) = E

(
φ(n)(Z(n)

α )

(
∂

∂α
logf(Z(n)

α )

)2 ∣∣∣α) (1.7)

where q, ν ≥ 0 and q, ν 6= 1.When the weight function is uniform (φ ≡ 1) we will omit
the superscript φ. The following special cases are considered:

1. φ(n) ≡ 1,

2. φ(n) depends on both n and p.
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We assume that φ(n)(x) ≥ 0 for all x. Choosing the weight function we adopt the
following normalization rule: ∫

R
φ(n)f (n)

α dp = 1. (1.8)

It can be easily checked that if a weight function φ(n) satisfies (1.8) then the Renyi
weighted entropy (1.5) and Tsallis weighted entropy (1.6) tend to Shannon’s weighted
entropy as ν → 1 and q → 1 correspondingly.

In this paper we consider the weight function of the following form:

φ(n)(p) = Λ(n)(α, γ)pγ
√
n(1− p)(1−γ)

√
n (1.9)

where Λ(n)(α, γ, p) is found from normalizing condition (1.8) and is given explicitly
in (3.1). This weight function is selected as a model example with a twofold goal to
emphasize a particular value γ for moderate n while preserving the estimate to be
asymptotically unbiased

lim
n→∞

∫ 1

0

pφ(n)f (n)dp = α.

2 Main results

Proposition 2.1. For the weighted Shannon differential entropy of RV Z
(n)
α with PDF

f
(n)
α and weight function φ(n) given in (1.9) the following limit exists

lim
n→∞

(
hφ(f (n)

α )− 1

2
log

(
2πeα(1− α)

n

))
=

(α− γ)2

2α(1− α)
. (2.1)

If α = γ then
lim
n→∞

(
hφ(f (n)

α )− h(f (n)
α )
)

= 0 (2.2)

where h(f
(n)
α ) is the standard (φ ≡ 1) Shannon’s differential entropy.

Theorem 2.1. Let Z(n) be a RV with PDF f (n) given in (1.2), Z(n)
α be a RV with PDF

f
(n)
α given in (1.2) with x = bαnc, 0 < α < 1 and Hν(f

(n)) be the weighted Renyi
differential entropy given in (1.5).

(a) When φ(n) ≡ 1 and both x and n − x tend to infinity as n → ∞ the following
limit holds

lim
n→∞

(
Hν(f

(n))− 1

2
log

2πx(n− x)

n3

)
= − log(ν)

2(1− ν)
, (2.3)

and for any fixed n

lim
ν→1

(
Hν(f

(n))− h(f (n))
)

= 0. (2.4)

(b) When the weight function φ(n) is given in (1.9) the following limit for the Renyi
weighted entropy of f (n)

α holds

lim
n→∞

(
Hφ
ν (f (n)

α )− 1

2
log

2πα(1− α)

n

)
= − log(ν)

2(1− ν)
+

(α− γ)2

2α(1− α)ν
, (2.5)
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and for any fixed n

lim
ν→1

(
Hφ
ν (f (n)

α )− hφ(f (n)
α )
)

= 0. (2.6)

Proposition 2.2. For any continuous random variable X with PDF f and for any
non-negative weight function φ(x) which satisfies condition (1.8) and such that∫

R
φ(x)f(x)ν |log(f(x))|dx <∞,

the weighted Renyi differential entropy Hφ
ν (f) is a non-increasing function of ν and

∂

∂ν
Hφ
ν (f) = − 1

(1− ν)2

∫
R
z(x)log

z(x)

φ(x)f(x)
dx (2.7)

where

z(x) =
φ(x)(f(x))ν∫

R φ(x)(f(x))νdx
.

Similarly, the Tsallis weighted entropy Sφq (f) given in (1.6) is a non-increasing function
of q.

Theorem 2.2. Let Z(n) be a RV with PDF f (n) given in (1.2), Z(n)
α be a RV with PDF

f
(n)
α given in (1.2) with x = bαnc, 0 < α < 1 and Sφq (f (n)) be the weighted Tsallis
differential entropy given in (1.6).

(a) When both x and n− x tend to infinity as n→∞ and φ(n)(p) ≡ 1,

lim
n→∞

(
Sq(f

(n))− 1

q − 1

(
1− 1
√
q

(
2πx(n− x)

n3

) 1−q
2

))
= 0 (2.8)

and for any fixed n
lim
q→1

(
Sq(f

(n))− h(f (n))
)

= 0. (2.9)

(b) When the weight function φ(n) is given in (1.9) the following limit for the Tsallis
weighted entropy of f (n)

α holds

lim
n→∞

(
Sφq (f (n)

α )− 1

q − 1

(
1− 1
√
q

(
2πα(1− α)

n

) 1−q
2

exp

(
(α− γ)2(1− q)

2α(1− α)q

)))
= 0

(2.10)
and for any fixed n

lim
q→1

(
Sφq (f (n)

α )− hφ(f (n)
α )
)

= 0. (2.11)

Remark. It can be seen by Theorem 2.1 and Theorem 2.2 that for large n standard
Renyi’s entropy and standard Tsallis’s entropy (for φ ≡ 1) "behaves" like respective
entropies of the Gaussian RV with the variance x(n−x)

n3 .
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Theorem 2.3. Let Z(n)
α be a RV with PDF f (n)

α given in (1.2) with x = bαnc, 0 < α < 1

and I(f
(n)
α ) be the weighted Fisher information given in (1.7).

(a) When φ(n) ≡ 1

lim
n→∞

[
I(f (n)

α )−
(

1

α(1− α)

)
n

]
= −2α2 − 2α + 1

2α2(1− α)2
. (2.12)

(b) When φ(n) is given in (1.9)

lim
n→∞

[
Iφ(f (n)

α )−
(

1

α(1− α)
+

(α− γ)2

(1− α)2α2

)
n−B(α, γ)

√
n

]
= C(α, γ) (2.13)

where B(α, γ) and C(α, γ) are constants which depend only on α and γ and are given
in (3.25) and (3.26) respectively .

3 Proofs

The normalizing constant Λ(n)(γ) in the weight function (1.9) can be found from con-
dition (1.8). We obtain that

Λ(n)(γ) =
Γ(x+ 1)Γ(n− x+ 1)Γ(n+ 2 +

√
n)

Γ(x+ γ
√
n+ 1)Γ(n− x+ 1 +

√
n− γ

√
n)Γ(n+ 2)

=

B(x+ 1, n− x+ 1)

B(x+ γ
√
n+ 1, n− x+

√
n− γ

√
n+ 1)

(3.1)

where Γ(x) is the Gamma function and B(x, y) is the Beta function. We denote by
ψ(0)(x) = ψ(x) and by ψ(1)(x) the digamma function and its first derivative respectively

ψ(j)(x) =
dj+1

dxj+1
logΓ(x). (3.2)

In further calculations we will need the asymptotics of digamma functions in two par-
ticular cases j = 0 and j = 1 only

ψ(x) = log(x)− 1

2x
+O

(
1

x2

)
as x→∞,

ψ(1)(x) =
1

x
+

1

2x2
+O

(
1

x3

)
as x→∞.

Recall also the Stirling formula [5]:

n! =
√

2πn
(n
e

)n(
1 +

1

12n
+O

(
1

n2

))
as n→∞. (3.3)
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3.1 Proposition 2.1

The Shannon differential entropy of PDF f
(n)
α given in (1.2) with the weight function

φ(n) given in (1.9) takes the form:

hφ(f (n)
α ) = log

[
(n+ 1)

(
n

x

)]
+x

∫ 1

0

log(p)φ(n)f (n)
α dp+ (n−x)

∫ 1

0

log(1−p)φ(n)f (n)
α dp.

The integrals can be computed explicitly [5] (4.253.1):∫ 1

0

xµ−1(1− xr)ν−1log(x)dx =
1

r2
B
(µ
r
, ν
)(

ψ
(µ
r

)
− ψ

(µ
r

+ ν
))

.

Applying this formula, we get∫ 1

0

log(p)φ(n)f (n)
α dp = ψ(x+ z + 1)− ψ(n+

√
n+ 2)

and ∫ 1

0

log(1− p)φ(n)f (n)
α dp = ψ(n− x+

√
n− z + 1)− ψ(n+

√
n+ 2)

where z = γ
√
n.

Applying Stirling’s formula (3.3) and using the asymptotics for the digamma function
we have that

hφ(f (n)
α ) =

1

2
log

2πe[α(1− α)]

n
+

(α− γ)2

2α(1− α)
+O

(
1√
n

)
. (3.4)

The leading term in (3.4) is the Shannon differential entropy of Gaussian RV with the
weight function φ(n) ≡ 1. Moreover, note that leading term of the asymptotics for the
weighted differential entropy exceeds that for the classical differential entropy studied
in [8]. The difference tends to zero as γ → α.

3.2 Theorem 2.1

(a) In this case φ(n)(p) ≡ 1 the Renyi entropy has the form

(1− ν)Hν(f
(n)) = νlog

[
(n+ 1)

(
n

x

)]
+ log

[∫ 1

0

pνx(1− p)ν(n−x)dp

]
.

Consider the integral:∫ 1

0

pνx(1− p)ν(n−x)dp = B(νx+ 1, ν(n− x) + 1) =
Γ(νx+ 1)Γ(ν(n− x) + 1)

Γ(νn+ 2)
.

Applying Stirling’s formula, we obtain that

(1− ν)Hν(f
(n)) =

1− ν
2

log

(
2πx(n− x)

n3

)
− 1

2
log(ν) +O

(
1

n

)
. (3.5)
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So, we have that

Hν(f
(n)) =

1

2
log

(
2πx(n− x)

n3

)
− log(ν)

2(1− ν)
+O

(
1

n

)
. (3.6)

Note that the leading terms in (3.6) looks like the Renyi differential entropy of the
Gaussian RV with variance x(n−x)

n3 .
Taking the limit as ν → 1 and applying L’Hopital’s rule we get that

Hν→1(f (n)) = lim
ν→1

Hν(f
(n)) =

1

2
log

(
2eπx(n− x)

n3

)
+O

(
1

n

)
. (3.7)

For example, when x = bαnc, 0 < α < 1 the Renyi entropy:

Hν→1(f (n)) =
1

2
log

2πe[α(1− α)]

n
+O

(
1

n

)
where the leading term is Shannon’s differential entropy of the Gaussian RV with the
corresponding variance.

(b) When φ(n) is given in (1.9) and x = bαnc, the weighted Renyi differential
entropy of PDF f

(n)
α takes the following form

Hφ
ν (f (n)

α ) =
1

1− ν
log

∫ 1

0

φ(n)
(
f (n)
α

)ν
dp,

∫ 1

0

φ(n)
(
f (n)
α

)ν
dp ≡ U1U2U3 where

U1 =
Γ(νx+ γ

√
n+ 1)Γ(ν(n− x) + (1− γ)

√
n+ 1)

Γ(νn+
√
n+ 2)

,

U2 =

(
Γ(n+ 2)

Γ(x+ 1)Γ(n− x+ 1)

)ν−1

,

U3 =
Γ(n+

√
n+ 2)

Γ(x+ z + 1)Γ(n− x+
√
n− z + 1)

where z = γ
√
n as before.

Applying Stirling’s formula for each term and taking all parts together, we obtain
that

Hφ
ν (f (n)

α ) =
1

2
log

2πα(1− α)

n
− log(ν)

2(1− ν)
+

(α− γ)2

2α(1− α)ν
+O

(
1√
n

)
. (3.8)

Taking the limit when ν → 1 and applying L’Hopital’s rule we get that

Hφ
ν→1(f (n)

α ) = lim
ν→1

Hφ
ν (f (n)

α ) =
1

2
log

2πe[α(1− α)]

n
+

(α− γ)2

2α(1− α)
+O

(
1√
n

)
. (3.9)

So, for any fixed n the weighted Renyi differential entropy tends to Shannon’s weighted
differential entropy as ν → 1.
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3.3 Proposition 2.2

We need to show that

∂

∂ν
Hφ
ν (f) ≤ 0,

∂

∂ν
Hφ
ν (f) =

log
∫
R φ(x)(f(x))νdx

(1− ν)2
+

∫
R φ(x)(f(x))ν log(f(x))dx

(1− ν)
∫
R φ(x)(f(x))νdx

= I1 + I2. (3.10)

Denote
z(x) =

φ(x)(f(x))ν∫
R φ(x)(f(x))νdx

. (3.11)

Note that z(x) ≥ 0 for any x and ∫
R
z(x)dx = 1.

Denote Q = log

∫
R
φ(x)(f(x))νdx. Using the substitution (3.11)

Q = log(φ(x)) + νlog(f(x))− log(z(x)) (3.12)

we obtain
I2 =

1

1− ν

∫
R
z(x)log(f(x))dx,

I1 + I2 =
1

(1− ν)2

(
log

∫
R
φ(x)(f(x))νdx+ (1− ν)

∫
R
z(x)log(f(x))dx

)
.

By substitution log(f(x)) using (3.12) we obtain that

− ∂

∂ν
Hφ
ν (f) =

1

(1− ν)2

∫
R
z(x)log

(
z(x)

φ(x)f(x)

)
dx =

1

(1− ν)2
DKL(z||φf). (3.13)

Here DKL(z||φf) is the Kullback-Leibler divergence between z and φf which is always
non-negative [3, 7]. Due to conditions φ(x)f(x) ≥ 0 and (1.8), φ(x)f(x) is itself a
PDF: ∫

R
φ(x)f(x)dx = 1.

Similarly, one can show that the Tsallis weighted differential entropy given in (1.6) is
a non-increasing function of q. So, the result follows.

3.4 Theorem 2.2.

(a) When φ(n) ≡ 1, the Tsallis entropy has the form

Sq(f
(n)) =

1

q − 1

(
1−

∫ 1

0

(f(p))q dp

)
=

1

q − 1

(
1−

∫ 1

0

(
(n+ 1)

(
n

x

)
px(1− p)n−x

)q
dp

)
.
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Let us denote the integral above by V0. Compute its asymptotics using (3.3), (3.5) and
the Taylor expansion for exponential function we get

V0 ≡
∫ 1

0

(
f (n)

)q
dp = elog

∫ 1
0 (f (n))

q
dp =

1
√
q

(
2πx(n− x)

n3

) 1−q
2
(

1 +O

(
1

n

))
.

By straightforward computation we obtain that

Sq(f
(n)) =

1

q − 1

(
1−

(
1
√
q

2πx(n− x)

n3

) 1−q
2
(

1 +O

(
1

n

)))
. (3.14)

Note that V0 → 1 as q → 1, applying L’Hospital’s rule we get that

lim
q→1

Sq(f
(n)) = Sq→1(f (n)) =

1

2
log

(
2eπx(n− x)

n3

)
+O

(
1

n

)
. (3.15)

The leading term in the expression above is nothing else but Shannon’s differential
entropy of the Gaussian RV.

(b) When φ(n) is given in (1.9) the Tsallis entropy of PDF f
(n)
α has the form

Sφq (f (n)
α ) =

1

q − 1

(
1−

∫ 1

0

φ(n)
(
f (n)
α

)q
dp

)
.

Using that x = bαnc, (3.3), (3.8) and the Taylor expansion for exponential function,
we obtain that

V1 ≡
∫ 1

0

φ(n)
(
f (n)
α

)q
dp = e

log
[∫ 1

0 φ
(n)
(
f
(n)
α )

)q
dp
]

=

=
1
√
q

(
2πα(1− α)

n

) 1−q
2

exp

(
(α− γ)2

2α(1− α)

(
1

q
− 1

))(
1 +O

(
1√
n

))
.

So, we have the following form for the weighted Tsallis differential entropy:

Sφq (f (n)
α ) =

1

q − 1

(
1− 1
√
q

(
2πα(1− α)

n

) 1−q
2

e
(α−γ)2
2α(1−α)(

1
q
−1)
(

1 +O

(
1√
n

)))
.

Note that V1 → 1 as q → 1. Applying L’Hospital’s rule we get that

Sφq→1(f (n)
α ) ≡ lim

q→1
Sφq (f (n)

α ) =
1

2
log

2πe[α(1− α)]

n
+

(α− γ)2

2α(1− α)
+O

(
1√
n

)
. (3.16)

Then the weighted Tsallis entropy tends to weighted Shannon’s differential entropy as
q → 1.
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3.5 Theorem 2.3

(a) The Fisher information in the case φ(n) ≡ 1 and PDF f
(n)
α takes the form:

I(α) = E

((
∂

∂α
logf (n)

α (Z(n)
α )

)2 ∣∣∣α) =

∫ 1

0

(
∂

∂α
logf (n)

α

)2

f (n)
α dp,

∂

∂α
logf (n)

α = nlog(p)− nlog(1− p) + nψ(n− x+ 1)− nψ(x+ 1). (3.17)

Denote

W0 =
Γ(n− x+ 1)Γ(x+ 1)

Γ(n+ 2)
.

In order to compute the expectation we will need the following formulas [5] (4.261.17):∫ 1

0

log2(p)px(1− p)n−xdp

= W0(ψ(n+ 2)− ψ(x+ 1))2 − ψ(1)(n+ 2) + ψ(1)(x+ 1),
(3.18)

∫ 1

0

log2(1− p)px(1− p)n−xdp

= W0(ψ(n+ 2)− ψ(n− x+ 1))2 − ψ(1)(n+ 2) + ψ(1)(n− x+ 1),
(3.19)

∫ 1

0

log(p)log(1− p)px(1− p)n−xdp

= W0(ψ(n+ 2)− ψ(n− x+ 1)(ψ(n+ 2)− ψ(x+ 1))− ψ(1)(n+ 2).
(3.20)

So, we have that
I(α) = n2(ψ(1)(x+ 1) + ψ(1)(n− x+ 1)). (3.21)

Using the asymptotics for the digamma function we get

I(α) =
1

α(1− α)
n− 1

2

2α2 − 2α + 1

α2(1− α)2
+O

(
1

n

)
. (3.22)

Remark. When x = bαnc ∫ 1

0

pf (n)
α dp = α + bn(α)

where bn(α) is a bias

bn(α) ' 1− 2α

n
.

Note that ∂
∂α
bn(α) → 0 as n → ∞. So, our estimate is asymptotically unbiased.

Also note that the leading term in Theorem 2.3 has the same form as in the classical
problem of estimating p in a series of n binary trials I(p) = n

p(1−p) .
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(b) The weighted Fisher Information in the case of the weight (1.9) and PDF f
(n)
α

takes the following form

Iφ(α) = E

(
φ(n)

(
∂

∂α
logf (n)

α

)2 ∣∣∣α) =

∫ 1

0

φ(n)

(
∂

∂α
logf (n)

α

)2

f (n)
α dp.

All the integrals can be found exactly similarly to integrals (3.18)-(3.20):

Iφ(α) = n2
(
ψ(1)(x+ z + 1) + ψ(1)(n− x+ 1 +

√
n− z)

)
+n2

[
(ψ(x+ z + 1)− ψ(x+ 1)) +

(
ψ(n− x+ 1 +

√
n− z)− ψ(n− x+ 1)

)]2
.

Using the asymptotics for the digamma function we get

Iφ(α) = A(α, γ)n+B(α, γ)
√
n+ C(α, γ) +O

(
1√
n

)
, (3.23)

where
A(α, γ) =

1

α(1− α)
+

(α− γ)2

(1− α)2α2
, (3.24)

B(α, γ) =
2αγ − γ − α2

(1− α)2α2
+

(α− γ)2

(1− α)3α3
(α(2γ − 1)− γ), (3.25)

C(α, γ) =
α− 2α4 − 2γ2 + 6αγ3 + α3(2 + 4γ)− 3α(1 + γ2)

−2(1− α)3α3)

+
α4(−31− 44γ + 72γ2 − 56γ3 + 28γ4 + 36α− 12α2)

12(1− α)4α4

+
6α2(γ2 − 2γ3 + 12γ4 − 1)− 4γ3(11γ − 44αγ − 6 + 3γ2 − 6γ3 + 14γ4)

12(1− α)4α4
.

(3.26)

An impact of the weight function of form (1.9) results in appearance of the term of
order

√
n, but the leading order, n, remains the same. However, the coefficient at n is

larger by
(α− γ)2

(1− α)2α2
. Evidently, when the frequency of special interest is equal to the

true frequency the leading term is the same as in the Fisher information with constant
weight. Also note that the rate depends on the distance between γ and α and as γ → α
only the leading term remains.
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