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Abstract. In this paper, we consider the following second order quasi-linear differential
equation:

(Φp(x
′))′ + f(t, x) = 0, 0 < t < 1,

where Φp(s) = |s|p−2s, p ≥ 2, subject to certain boundary conditions. The criteria
of solvability of these boundary value problems are given by employing the recent
generalization of coincidence degree method. We also give an example to illustrate our
conclusions.

1 Introduction

In this paper, we consider the following second order quasi-linear differential equation:

(Φp(x
′))′ + f(t, x) = 0, 0 < t < 1, (1.1)

subject to one of the following boundary conditions:

x(0) = 0, Φp(x
′(1)) =

m−2∑
i=1

αiΦp(x
′(ηi)), (1.2)

x′(0) = 0, Φp(x
′(1)) =

m−2∑
i=1

αiΦp(x
′(ηi)), (1.3)

x(0) = x(ξ), Φp(x
′(1)) =

m−2∑
i=1

αiΦp(x
′(ηi)), (1.4)

where Φp(s) = |s|p−2s, is the p -Laplacian, p ≥ 2; ηi(1 ≤ i ≤ m − 2) are fixed points
with 0 < η1 < η2 < · · · < ηm−2 < 1; 0 < ξ < 1; αi(1 ≤ i ≤ m − 2) are nonnegative
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constants and
m−2∑
i=1

αi = 1(resonance condition),
m−2∑
i=1

αiηi 6= 1.

By using the coincidence degree method, various existence results of the solutions
of boundary value problems (BVPs) at resonance have been established in the liter-
ature, for example, see [4,7-10] and the references cited therein. These results are,
however, confined to BVPs with linear leading term x′′, i.e., to the case p = 2 in equa-
tion (1.1), mainly because the traditional coincidence degree method only applies to
linear operators. As the p -Laplacian of a function comes frequently into play in many
practical situations (for example, in the description of fluid dynamical and nonlinear
elastic mechanical phenomena), very recently increasing attention has been drawn to
the study of BVPs with the p -Laplacian. For example, one is referred to Cheung and
Ren [1-3] and the references cited there. One useful technique used by Cheung and
Ren is to translate the p -Laplacian equation into a 2-dimensional system for which
Mawhin’s Continuation Theorem [5] applies. In this paper, we shall follow the line of
this method and by using a newly developed coincidence degree method by Ge and
Ren in [6], we obtain the solvability of second order quasi-linear multi-point equation
(1.1) with boundary conditions (1.2), (1.3) or (1.4) at resonance for p ≥ 2.

2 Preliminary results

Let X and Z be two Banach spaces with norms ‖ · ‖X and ‖ · ‖Z , respectively. A
continuous operator

M : X ∩ domM → Z (2.1)

is said to be quasi-linear if

(a) ImM := M(X ∩ domM) is a closed subset of Z, (2.2)

(b) kerM := {x ∈ X ∩ domM : Mx = 0} is linearly homeomorphic to Rn, n <∞.
(2.3)

Let X1 = kerM and X2 be the complement space of X1 in X, then X = X1 ⊕X2.
On the other hand, suppose Z1 is a subspace of Z and Z2 is the complement of Z1 in Z
so that Z = Z1 ⊕ Z2. Let P : X → X1 and Q : Z → Z1 be two projectors and Ω ⊂ X
an open and bounded set with origin θ ∈ Ω. Throughout the paper we use θ to denote
the origin of a linear space.

Suppose Nλ : Ω → Z, λ ∈ [0, 1] is a continuous operator. Denote N1 by N . Let
Σλ = {x ∈ Ω : Mx = Nλx}. Nλ is said to be M−compact in Ω if

(c) there is a vector subspace Z1 of Z with dimZ1 = dimX1 and an operator
R : Ω× [0, 1] → X2 being continuous and compact such that for λ ∈ [0, 1],

(I −Q)Nλ(Ω) ⊂ ImM ⊂ (I −Q)Z, (2.4)

QNλx = 0, λ ∈ (0, 1),⇔ QNx = 0, (2.5)

R(·, 0) is the zero operator and R(·, λ)|Σλ
= (I − P )|Σλ

, (2.6)

M [P +R(·, λ)] = (I −Q)Nλ. (2.7)
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Let J : Z1 → X1 be a homeomorphism with J(θ) = θ. Define Sλ : Ω ∩ domM →
X, 0 ≤ λ ≤ 1 by

Sλ = P +R(·, λ) + JQN. (2.8)

Then Sλ is a completely continuous mapping.

Theorem 1 ( [6]). Let X and Z be two Banach spaces with the norms ‖ · ‖X and
‖ · ‖Z, respectively, and Ω ⊂ X an open and bounded nonempty set. Suppose

M : X ∩ domM → Z

is a quasi-linear operator and

Nλ : Ω → Z, λ ∈ [0, 1]

are M−compact. In addition, if
(H1) Mx 6= Nλx, λ ∈ (0, 1), x ∈ ∂Ω,
(H2) deg{JQN,Ω ∩ kerM, 0} 6= 0,

where N = N1, then the abstract equation Mx = Nx has at least one solution in Ω.

3 Solvability of BVP (1.1) – (1.2)

Now we discuss the existence of solution for BVP (1.1) – (1.2) by applying Theorem 1.
Here a function u defined on [0, 1] is said to be a solution to BVP (1.1) – (1.2) if

u ∈ V = {v ∈ C1[0, 1] : Φp(v
′) ∈ C1[0, 1]} satisfying BVP (1.1)-(1.2).

In this section, we let X = {x ∈ C[0, 1] : x(0) = 0, Φp(u
′(1)) =

m−2∑
i=1

αiΦp(x
′(ηi))}

and Z = C[0, 1] with sup norms ‖ · ‖X and ‖ · ‖Z , respectively. Clearly, X, Z are
Banach spaces.

Define M : X ∩ domM → Z by

(Mx)(t) = (Φp(x
′(t)))′. (3.1)

Then
kerM = {x = at : a ∈ R}, domM = V,

ImM = {y ∈ Z, (Φp(x
′))′ = y(t), for some x(t) ∈ X ∩ domM}

=

{
y ∈ Z, Φp(x

′(t)) = B +

∫ t

0

y(t)dt, x(0) = 0, Φp(x
′(1)) =

m−2∑
i=1

αiΦp(x
′(ηi))

}

=

{
y ∈ Z :

∫ 1

0

y(t)dt =
m−2∑
i=1

αi

∫ ηi

0

y(t)dt

}

=

{
y ∈ Z,

m−2∑
i=1

αi

∫ 1

ηi

y(s)ds = 0

}
.

Let
X1 = kerM, X2 = {x ∈ X : x(1) = 0},
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Z1 = R, Z2 = ImM.

Obviously dimX1 = dimZ1 = 1 and X = X1 ⊕X2. Define P : X → X1, Q : Z → Z1

by

Px = x(1)t, Qy =

m−2∑
i=1

αi

1−
m−2∑
i=1

αiηi

∫ 1

ηi

y(s)ds. (3.2)

Then for any y ∈ Z, we have y1 ∈ ImM if y1 = y −Q(y). In fact,

m−2∑
i=1

αi

∫ 1

ηi

y1(s)ds =
m−2∑
i=1

αi

∫ 1

ηi

y(s)ds−Q(y)
m−2∑
i=1

αi

∫ 1

ηi

ds

=
m−2∑
i=1

αi

∫ 1

ηi

y(s)ds−

m−2∑
i=1

αi

1−
m−2∑
i=1

αiηi

∫ 1

ηi

y(s)ds
m−2∑
i=1

αi(1− ηi)

= 0.

So y1 ∈ ImM . That is to say, Z = Z1 ⊕ Z2.
For any Ω ⊂ X define Nλ : Ω → Z by

(Nλx)(t) = −λf(t, x(t)). (3.3)

Clearly, (I −Q)N0 is a zero operator, and

(I −Q)Nλ(Ω) ⊂ ImM ⊂ (I −Q)Z,

i.e., (2.4) holds. Obviously (2.5) holds, too.
Let the homeomorphism J : Z1 → X1 be defined by

J(a) = at, a ∈ R, t ∈ [0, 1]. (3.4)

Define R : Ω× [0, 1] → X2 by

R(x, λ)(t) =

∫ t

0

Φ−1
p

[
Φp(x(1)) + c−

∫ s

0

λf(τ, x(τ))dτ

]
ds− x(1)t, 0 ≤ t ≤ 1 (3.5)

where c is a constant depending on (x, λ) and satisfying∫ 1

0

Φ−1
p

[
Φp(x(1)) + c−

∫ s

0

λf(τ, x(τ))dτ

]
ds− x(1) = 0. (3.6)

We now show that for given x ∈ Ω, λ ∈ [0, 1], (3.6) has a unique solution c = c(x, λ).
Let

F (c) =

∫ 1

0

Φ−1
p

[
Φp(x(1)) + c−

∫ s

0

λf(τ, x(τ))dτ

]
ds− x(1)
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and

c1 = min
0≤t≤1

∫ t

0

λf(τ, x(τ))dτ, c2 = max
0≤t≤1

∫ t

0

λf(τ, x(τ))dτ.

Clearly F (c) is continuous and increasing with respect to c on [c1, c2] and F (c1) ≤ 0 ≤
F (c2). Therefore there is a unique c ∈ [c1, c2] satisfying (3.6).

We claim that the c is continuous dependence on (x, λ) by uniqueness of c.
If not, there is a point (x0, λ0) ∈ Ω× [0, 1] and a sequence (xn, λn) → (x0, λ0) such

that cn = c(xn, λn) 6→ c(x0, λ0) = c0. Let

r = max
{
‖x‖ : x ∈ Ω

}
and

d = max
|x|≤r,0≤t≤1

|f(t, x)|.

Then −d ≤ c1 ≤ c2 ≤ d for the c1 and c2 given above. It yields that −d ≤ cn ≤ d. So
there is a subsequence of (xn, λn), say, the sequence (xn, λn) itself, such that

cn = c(xn, λn) → c̃ 6= c0.

However,

F (cn) =

∫ 1

0

Φ−1
p

[
Φp(xn(1) + cn −

∫ s

0

λnf(τ, xn(τ))dτ

]
− xn(1) = 0,

and Lebesgue’s theorem yields

F (c̃) =

∫ 1

0

Φ−1
p

[
Φp(x0(1) + c̃−

∫ s

0

λ0f(τ, x0(τ))dτ

]
− x0(1) = 0,

which contradicts the uniqueness of c = c(x0, λ0).
For any bounded set Ω 6= φ, λ ∈ [0, 1], it is easy to see that R : Ω× [0, 1] → X2 ⊂ X

is relatively compact and continuous. By (3.5), we have for

x ∈ Σλ = {x ∈ Ω : Mx = Nλx} = {x ∈ Ω : (Φp(x
′))′ = −λf(t, x)}

that

R(x, λ)(t) =

∫ t

0

Φ−1
p

[
Φp(x(1)) + c−

∫ s

0

λf(τ, x(τ))dτ

]
ds− x(1)t

=

∫ t

0

Φ−1
p

[
Φp(x(1)) + c+

∫ s

0

(Φp(x
′(τ))′dτ

]
ds− x(1)t

=

∫ t

0

Φ−1
p [Φp(x(1)) + c+ Φp(x

′(s)− Φp(x
′(0))] ds− x(1)t.

(3.7)

If we choose c = −Φp(x(1)) + Φp(x
′(0)), then

R(x, λ)(1) =

∫ 1

0

Φ−1
p [Φp(x

′(s))] ds− x(1) = x(1)− x(1) = 0.
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As proved above, c is unique. This implies that c = −Φp(x(1)) + Φp(x
′(0)) and hence

R(x, λ)(t) =

∫ t

0

Φ−1
p

[
Φp(x(1))− Φp(x(1)) + Φp(x

′(0)) +

∫ s

0

(Φp(x
′(τ)))′dτ

]
ds− x(1)t

= x(t)− x(1)t, (3.8)

which yields the second part of (2.6).
At the same time, we have

R(x, 0)(t) =

∫ t

0

Φ−1
p [Φp(x(1)) + c] ds− x(1)t

and (3.6) implies c = 0. So R(x, 0)(t) ≡ 0 for each x ∈ Ω. Then the first part of (2.6)
holds.

Besides, it is easy to verify that (2.7) also holds.
Therefore Nλ is M−compact in Ω.
Now we prove

Theorem 2. Suppose f ∈ C0([0, 1]×R,R). Under the following two conditions
(A1) There is a constant M0 > 0 such that

xf(t, x) < 0, t ∈ [0, 1], x ∈ R with |x| > M0;

(A2) There is a constant M1 > 0 with M1 >
M0

η1
such that

fM1 < Φp(M1)− Φp

(
M0

η1

)
where fM1 = max

t∈[0,1], |x|≤M1

|f(t, x)|;

BVP (1.1) – (1.2) has at least one solution x with ‖x‖X < M1.

Proof. Consider 
(Φp(x

′))′ + λf(t, x) = 0, 0 < t < 1,

x(0) = 0, Φp(x
′(1)) =

m−2∑
i=1

αiΦp(x
′(ηi)),

(3.9)

which is equivalent to
Mx = Nλx, λ ∈ [0, 1] (3.10)

in X where M and Nλ are defined as above.
Take Ω = {x ∈ X : ‖x‖X < M1}. We show that

Mx 6= Nλx, λ ∈ (0, 1), x ∈ ∂Ω. (3.11)

If not, there are λ0 ∈ (0, 1) and u ∈ ∂Ω such that

Mu = Nλ0u,

then there is t0 ∈ [0, 1] such that

|u(t0)| = M1, |u(t)| ≤M1, t ∈ [0, 1].
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Without loss of generality, suppose u(t0) = M1.
Clearly t0 6= 0 since u(0) = 0.
If t0 ∈ (0, 1), then

u′(t0) = 0

and there is δ ∈ (0, t0) such that

u′(t) ≥ 0, t ∈ (t0 − δ, t0). (3.12)

However, (Φp(u
′(t0)))

′ = −λ0f(t, u(t0)) = −λ0f(t,M1) > 0 implies

Φp(u
′(t)) < Φp(u

′(t0)) = 0, t ∈ (t0 − δ, t0)

and then
u′(t) < 0, t ∈ (t0 − δ, t0),

a contradiction to (3.12).
If t0 = 1, then

|u(1)| = M1 and |u(t)| ≤M1, t ∈ [0, 1). (3.13)

By boundary condition Φp(u
′(1)) =

m−2∑
i=1

αiΦp(u
′(ηi)), we know there is a η ∈ [η1, 1)

such that
u′(η) = u′(1)

which yields there is ξ ∈ (η, 1) ⊆ (η1, 1) such that

u′′(ξ) = 0.

Since p ≥ 2 from equation (3.3) we find

Φ′
p(u

′(ξ))u′′(ξ) + λ0f(ξ, u(ξ)) = 0.

So we have
f(ξ, u(ξ)) = 0

which together with assumption (A1) yields

|u(ξ)| ≤M0

and then there is θ ∈ (0, ξ) such that

|u′(θ)| =
∣∣∣∣u(ξ)− u(0)

ξ − 0

∣∣∣∣ =
|u(ξ)|
ξ

≤ M0

η1

.

Thus by Mu = Nλ0u we have

Φp(u
′(t)) = Φp(u

′(θ))−
∫ t

θ

λ0f(s, u(s))ds, t ∈ [0, 1],

i.e.,

Φp(|u′(t)|) = |Φp(u
′(t))| ≤ Φp

(
M0

η1

)
+ fM1 , t ∈ [0, 1].
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That is

max
t∈[0,1]

|u′(t)| ≤ Φ−1
p

[
Φp

(
M0

η1

)
+ fM1

]
.

From u(1) = u(0) +

∫ 1

0

u′(s)ds, we find

M1 = |u(1)| =
∣∣∣∣∫ 1

0

u′(s)ds

∣∣∣∣ ≤ ∫ 1

0

|u′(s)| ds

≤ max
t∈[0,1]

|u′(t)|

≤ Φ−1
p

[
Φp

(
M0

η1

)
+ fM1

]
.

So

Φp(M1) ≤ Φp

(
M0

η1

)
+ fM1 ,

i.e.,

fM1 ≥ Φp(M1)− Φp

(
M0

η1

)
which contradicts assumption (A2).

Then (3.5) holds.
As for the degree, we have

deg{JQN,Ω ∩X1, 0} = deg{QNJ, J−1(Ω ∩X1), J
−1(0)} = deg{QNJ, (−M1,M1), 0}.

As M1t > M1η1 > M0 for t ∈ [η1, 1], it follows that

QNy|y=M1 =

m−2∑
i=1

αi

1−
m−2∑
i=1

αiηi

∫ 1

ηi

f(t,M1t)dt < 0,

QNy|y=−M1 =

m−2∑
i=1

αi

1−
m−2∑
i=1

αiηi

∫ 1

ηi

f(t,−M1t)dt > 0,

hence we have

deg{JQN,Ω ∩X1, 0} = deg{QNJ, (−R,R), 0} 6= 0.

Applying Theorem 1 we reach the conclusion. �
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4 Solvability of BVP (1.1) – (1.3)

A function u defined on [0, 1] is said to be a solution to BVP (1.1) – (1.3) if u ∈ V =
{v ∈ C1[0, 1] : Φp(v

′) ∈ C1[0, 1]} satisfying BVP (1.1) – (1.3).

In this section, we let X = {x ∈ C[0, 1] : x′(0) = 0, Φp(x
′(1)) =

m−2∑
i=1

αiΦp(x
′(ηi))}

and Z = C[0, 1] with sup norms ‖ · ‖X and ‖ · ‖Z , respectively. Clearly, X, Z are
Banach spaces.

Define M : X ∩ domM → Z by

(Mx)(t) = (Φp(x
′(t)))′. (4.1)

Then
kerM = {x = a : a ∈ R}, domM = V,

ImM = {y ∈ Z, (Φp(x
′))′ = y(t), for some x(t) ∈ X ∩ domM}

=

{
y ∈ Z, Φp(x

′(t)) = B +

∫ t

0

y(s)ds, x′(0) = 0, Φp(x
′(1)) =

m−2∑
i=1

αiΦp(x
′(ηi))

}

=

{
y ∈ Z,

m−2∑
i=1

αi

∫ 1

ηi

y(s)ds = 0

}
.

Let
X1 = kerM, X2 = {x ∈ X : x(0) = 0},

Z1 = R, Z2 = ImM.

Obviously dimX1 = dimZ1 = 1 and X = X1 ⊕X2. Define P : X → X1, Q : Z → Z1

by

Px = x(0), Qy =

m−2∑
i=1

αi

1−
m−2∑
i=1

αiηi

∫ 1

ηi

y(s)ds. (4.2)

Then from Section 3, we know that Z = Z1 ⊕ Z2.
For all Ω ⊂ X, define Nλ : Ω → Z by

(Nλx)(t) = −λf(t, x(t)). (4.3)

Clearly, (I −Q)N0 is a zero operator, and

(I −Q)Nλ(Ω) ⊂ ImM ⊂ (I −Q)Z,

i.e., (2.4) holds. Obviously (2.5) holds, too.
Let the homeomorphism J : Z1 → X1 be defined by

J(a) = a, a ∈ R, t ∈ [0, 1]. (4.4)
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Define R : Ω× [0, 1] → X2 by

R(x, λ)(t) =

∫ t

0

Φ−1
p

[
Φp(x(0)) + c+

∫ 1

s

λf(τ, x(τ))dτ

]
ds, 0 ≤ t ≤ 1 (4.5)

where c is a constant depending on (x, λ) and satisfying

Φ−1
p

[
Φp(x(0)) + c+

∫ 1

0

λf(τ, x(τ))dτ

]
= 0, (4.6)

that is c = −Φp(x(0)) −
∫ 1

0

λf(τ, x(τ))dτ . It’s easily to see that c is unique and

continuous dependence on (x, λ).
For any bounded set Ω 6= φ, λ ∈ [0, 1], it is easy to see that R : Ω× [0, 1] → X2 ⊂ X

is relatively compact and continuous.
From (4.5) and (4.6), for

x ∈ Σλ = {x ∈ Ω : Mx = Nλx} = {x ∈ Ω : (Φp(x
′))′ = −λf(t, x)},

we have

c = −Φp(x(0))−
∫ 1

0

λf(τ, x(τ))dτ = −Φp(x(0)) +

∫ 1

0

(Φp(x
′(τ))′dτ

= −Φp(x(0)) + Φp(x
′(1)), λ 6= 0

and

R(x, λ)(t) =

∫ t

0

Φ−1
p

[
Φp(x(0)) + c+

∫ 1

s

λf(τ, x(τ))dτ

]
ds

=

∫ t

0

Φ−1
p

[
Φp(x(0))− Φp(x(0)) + Φp(x

′(1))−
∫ 1

s

(Φp(x
′(τ))′dτ

]
ds

=

∫ t

0

Φ−1
p [Φp(x(0))− Φp(x(0)) + Φp(x

′(1)) + Φp(x
′(s))− Φp(x

′(1))] ds

= x(t)− x(0), (4.7)

which yields the second part of (2.6).
At the same time, for λ = 0, we have c = −Φp(x(0)) −

∫ 1

s
λf(τ, x(τ))dτ =

−Φp(x(0)). Then we have

R(x, 0)(t) =

∫ t

0

Φ−1
p [Φp(x(0))− Φp(x(0))]ds = 0.

So R(x, 0)(t) ≡ 0 for each x ∈ Ω. Then the first part of (2.6) holds.
Besides, it is easy to verify that (2.7) also holds.
Therefore Nλ is M−compact in Ω.
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Now we prove

Theorem 3. Suppose f ∈ C0([0, 1]×R,R). Under the following two conditions
(A1) There is a constant M0 > 0 such that

xf(t, x) < 0, t ∈ [0, 1], x ∈ R with |x| > M0;

(A2) There is a constant M1 > M0 such that

fM1 < Φp(M1 −M0), where fM1 = max
t∈[0,1], |x|≤M1

|f(t, x)|;

BVP (1.1) – (1.3) has at least one solution x with ‖x‖X < M1.

Proof. Consider 
(Φp(x

′))′ + λf(t, x) = 0, 0 < t < 1,

x′(0) = 0, Φp(x
′(1)) =

m−2∑
i=1

αiΦp(x
′(ηi)),

(4.8)

which is equivalent to
Mx = Nλx, λ ∈ [0, 1] (4.9)

in X where M and Nλ are defined as above.
Take Ω = {x ∈ X : ‖x‖X < M1}. We show that

Mx 6= Nλx, λ ∈ (0, 1), x ∈ ∂Ω. (4.10)

If not, there exist λ0 ∈ (0, 1) and u ∈ ∂Ω such that

Mu = Nλ0u,

then there is a t0 ∈ [0, 1] such that

|u(t0)| = M1, |u(t)| ≤M1, t ∈ [0, 1].

Without loss of generality, suppose u(t0) = M1.
If t0 = 0, from x′(0) = 0 we know that there exists a δ ∈ (0, 1) such that

u′(t) ≤ 0, t ∈ (0, δ). (4.11)

However, (Φp(u
′(0)))′ = −λ0f(t, u(0)) = −λ0f(t,M1) > 0 implies

Φp(u
′(t)) > Φp(u

′(0)) = 0, t ∈ (0, δ)

and then
u′(t) > 0, t ∈ (0, δ),

a contradiction to (4.11).
If t0 = 1, then

|u(1)| = M1 and |u(t)| ≤M1, t ∈ [0, 1). (4.12)
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By boundary condition Φp(u
′(1)) =

m−2∑
i=1

αiΦp(u
′(ηi)), we know that there exists an

η ∈ [η1, 1) and a ξ ∈ (η, 1) ⊆ (η1, 1) such that

|u(ξ)| ≤M0.

ByMu = Nλ0u we have

Φp(u
′(t)) = Φp(u

′(0))−
∫ t

0

λ0f(s, u(s))ds, t ∈ [0, 1],

i.e.,
Φp(|u′(t)|) = |Φp(u

′(t))| ≤ fM1 , t ∈ [0, 1].

That is
max
t∈[0,1]

|u′(t)| ≤ Φ−1
p [fM1 ].

From u(1) = u(ξ) +

∫ 1

ξ

u′(s)ds, we find

M1 = |u(1)| =
∣∣∣∣u(ξ) +

∫ 1

ξ

u′(s)ds

∣∣∣∣ ≤ |u(ξ)|+
∫ 1

ξ

|u′(s)|ds

≤M0 + max
t∈[0,1]

|u′(t)| ≤M0 + Φ−1
p [fM1 ].

So
Φ−1
p (fM1) ≥M1 −M0,

i.e.,
fM1 ≥ Φp(M1 −M0)

which contradicts assumption (A2).
Similar to the proof of Theorem 2, we can easily get that t is also not in (0,1). So

(4.10) holds.
As for the degree, we have

deg{JQN,Ω ∩X1, 0} = deg{QN, (−M1,M1), 0}.

As M1 > M0, it follows that

QNy|y=M1 =

m−2∑
i=1

αi

1−
m−2∑
i=1

αiηi

∫ 1

ηi

f(t,M1)dt < 0,

QNy|y=−M1 =

m−2∑
i=1

αi

1−
m−2∑
i=1

αiηi

∫ 1

ηi

f(t,−M1)dt > 0,

we have
deg{JQN,Ω ∩X1, 0} = deg{QN, (−M1,M1), 0} 6= 0.

Applying Theorem 1 we reach the conclusion. �
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5 Solvability of BVP (1.1) – (1.4)

A function u defined on [0, 1] is said to be a solution to BVP (1.1) – (1.4) if u ∈ V =
{v ∈ C1[0, 1] : Φp(v

′) ∈ C1[0, 1]} satisfying BVP (1.1) – (1.4).
In this section, we let X = {x ∈ C[0, 1] : x(0) = x(ξ), Φp(x

′(1)) =
m−2∑
i=1

αiΦp(x
′(ηi))} and Z = C[0, 1] with sup norms ‖ · ‖X and ‖ · ‖Z , respectively.

Clearly, X, Z are Banach spaces.
Define M : X ∩ domM → Z by

(Mx)(t) = (Φp(x
′(t)))′. (5.1)

Then
kerM = {x = a : a ∈ R}, domM = V,

ImM = {y ∈ Z, (Φp(x
′))′ = y(t), for some x(t) ∈ X ∩ domM}

=

{
y ∈ Z,

m−2∑
i=1

αi

∫ 1

ηi

y(s)ds = 0

}
.

Let
X1 = kerM, X2 = {x ∈ X : x(0) = x(ξ) = 0},

Z1 = R, Z2 = ImM.

Obviously dimX1 = dimZ1 = 1 and X = X1 ⊕X2. Define P : X → X1, Q : Z → Z1

by

Px = x(0), Qy =

m−2∑
i=1

αi

1−
m−2∑
i=1

αiηi

∫ 1

ηi

y(s)ds. (5.2)

Then from Section 3, we know that Z = Z1 ⊕ Z2.
For any Ω ⊂ X define Nλ : Ω → Z by

(Nλx)(t) = −λf(t, x(t)). (5.3)

Clearly, (I −Q)N0 is a zero operator, and

(I −Q)Nλ(Ω) ⊂ ImM ⊂ (I −Q)Z,

i.e., (2.4) holds. Obviously (2.5) holds, too.
Let the homeomorphism J : Z1 → X1 be defined by

J(a) = a, a ∈ R, t ∈ [0, 1]. (5.4)

Define R : Ω× [0, 1] → X2 by

R(x, λ)(t) =

∫ t

0

Φ−1
p

[
Φp(x(ξ)) + c−

∫ s

0

λf(τ, x(τ))dτ

]
ds, 0 ≤ t ≤ 1 (5.5)
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where c is a constant depending on (x, λ) and satisfying∫ ξ

0

Φ−1
p

[
Φp(x(ξ)) + c−

∫ s

0

λf(τ, x(τ))dτ

]
ds = 0. (5.6)

We now show that for given x ∈ Ω, λ ∈ [0, 1], (5.6) has a unique solution c = c(x, λ).
Let

F (c) =

∫ ξ

0

Φ−1
p

[
Φp(x(ξ)) + c−

∫ s

0

λf(τ, x(τ))dτ

]
ds

and

c1 = min
0≤t≤ξ

∫ t

0

λf(τ, x(τ))dτ − Φp(x(ξ)), c2 = max
0≤t≤1

∫ t

0

λf(τ, x(τ))dτ − Φp(x(ξ)).

Clearly F (c) is continuous and increasing with respect to c on [c1, c2] and F (c1) ≤ 0 ≤
F (c2). Therefore there is a unique c ∈ [c1, c2] satisfying (5.6).

We can easily prove that c is continuous dependence on (x, λ) by uniqueness of c.
And for any bounded set Ω 6= φ, λ ∈ [0, 1], it is easy to see that R : Ω×[0, 1] → X2 ⊂ X
is relatively compact and continuous.

From (5.5) and (5.6), for

x ∈ Σλ = {x ∈ Ω : Mx = Nλx} = {x ∈ Ω : (Φp(x
′))′ = −λf(t, x)},

we have

R(x, λ)(t) =

∫ t

0

Φ−1
p

[
Φp(x(ξ)) + c−

∫ s

0

λf(τ, x(τ))dτ

]
ds

=

∫ t

0

Φ−1
p

[
Φp(x(ξ)) + c+

∫ s

0

(Φp(x
′(τ))′dτ

]
ds

=

∫ t

0

Φ−1
p [Φp(x(ξ)) + c+ Φp(x

′(s))− Φp(x
′(0))]ds,

(5.7)

If we choose c = −Φp(x(ξ)) + Φp(x
′(0)), then

R(x, λ)(ξ) =

∫ ξ

0

Φ−1
p [Φp(x

′(s))] ds = x(ξ)− x(0) = 0.

As proved above, c is unique, this implies that c = −Φp(x(ξ)) + Φp(x
′(0)) and hence

R(x, λ)(t) =

∫ t

0

Φ−1
p

[
Φp(x(ξ))− Φp(x(ξ)) + Φp(x

′(0)) +

∫ s

0

(Φp(x
′(τ)))′dτ

]
ds

= x(t)− x(0),

(5.8)

which yields the second part of (2.6).
At the same time, we have

R(x, 0)(t) =

∫ t

0

Φ−1
p [Φp(x(ξ)) + c] ds
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and (5.6) implies c = −Φp(x(ξ)). So R(x, 0)(t) ≡ 0 for each x ∈ Ω. Then the first part
of (2.6) holds.

Besides, it is easy to verify that (2.7) also holds.
Therefore Nλ is M−compact in Ω.
Now we prove

Theorem 4. Suppose f ∈ C0([0, 1]×R,R). Under the following two conditions
(A1) There is a constant M0 > 0 such that

xf(t, x) < 0, t ∈ [0, 1], x ∈ R with |x| > M0;

(A2) There is a constant M1 > M0 such that

fM1 < Φp(M1 −M0), where fM1 = max
t∈[0,1], |x|≤M1

|f(t, x)|;

BVP (1.1)-(1.4) has at least one solution x with ‖x‖X < M1.

Proof. Consider 
(Φp(x

′))′ + λf(t, x) = 0, 0 < t < 1,

x(0) = x(ξ), Φp(x
′(1)) =

m−2∑
i=1

αiΦp(x
′(ηi)),

(5.9)

which is equivalent to
Mx = Nλx, λ ∈ [0, 1] (5.10)

in X where M and Nλ are defined as above.
Take Ω = {x ∈ X : ‖x‖X < M1}. We show that

Mx 6= Nλx, λ ∈ (0, 1), x ∈ ∂Ω. (5.11)

If not, there are λ0 ∈ (0, 1) and u ∈ ∂Ω such that

Mu = Nλ0u,

then there exists t0 ∈ [0, 1] such that

|u(t0)| = M1, |u(t)| ≤M1, t ∈ [0, 1].

Without loss of generality, suppose u(t0) = M1.
First, it is easy to prove that t0 is not in (0, 1) by using the same method in the

proof of Theorem 2. And from the boundary condition (1.4), we know that if t0 = 0,
then we also can choose t0 = ξ ∈ (0, 1). So t0 not in [0, 1).

If t0 = 1, then
|u(1)| = M1 and |u(t)| ≤M1, t ∈ [0, 1). (5.12)

By boundary condition x(0) = x(ξ), Φp(u
′(1)) =

m−2∑
i=1

αiΦp(u
′(ηi)), we know that there

exist α ∈ (0, ξ), η ∈ [η1, 1) and ζ ∈ (η, 1) ⊆ (η1, 1) such that

u′(α) = 0 and |u(ζ)| ≤M0.
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By Mu = Nλ0u, we have

Φp(u
′(t)) = Φp(u

′(α))−
∫ t

α

λ0f(s, u(s))ds, t ∈ [0, 1],

i.e.,
Φp(|u′(t)|) = |Φp(u

′(t))| ≤ fM1 , t ∈ [0, 1].

That is
max
t∈[0,1]

|u′(t)| ≤ Φ−1
p [fM1 ].

From u(1) = u(ζ) +
∫ 1

ζ
u′(s)ds, we find

M1 = |u(1)| =
∣∣∣∣u(ζ) +

∫ 1

ζ

u′(s)ds

∣∣∣∣ ≤ |u(ζ)|+
∫ 1

ζ

|u′(s)|ds

≤M0 + max
t∈[0,1]

|u′(t)| ≤M0 + Φ−1
p [fM1 ].

So
Φ−1
p (fM1) ≥M1 −M0,

i.e.,
fM1 ≥ Φp(M1 −M0)

which contradicts assumption (A2).
Then (5.10) holds.
Similar to the proof of Theorem 3, we also have

deg{JQN,Ω ∩X1, 0} = deg{QN, (−M1,M1), 0} 6= 0.

Applying Theorem 1 we reach the conclusion. �

6 Application

For example, let us consider the following BVP{
(Φ5(x

′))′ − x3 − t2 = 0, 0 < t < 1,
x(0) = 0, x′(1) = 1

3
x′(3

4
) + 2

3
x′(4

5
).

(3.14)

Corresponding to BVP (1.1), we have f(t, x) = −x3− t2, η1 = 3
4
, η2 = 4

5
. So M0, M1

can be chosen as M0 = 3
2
, M1 = 3 > 2 = M0

η1
such that

(A1) xf(t, x) < 0, t ∈ [0, 1], |x| > M0.

On the other hand, from fM1 = 28, Φ5(M1) = 81, Φ5(
M0

η1
) = Φ5(2) = 16, we know

fM1 = 28 < 81− 16 = Φ5(M1)− Φ5

(
M0

η1

)
which implies (A2) holds. By applying Theorem 2, we see BVP (3.14) has at least one
solution.
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