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Abstract. In this paper, the homotopy analysis method (HAM) is sharpened to solve
the Fornberg-Whitham equation. Homotopy-Padé technique, and the use of proper
initial gauss and auxiliary linear operator are employed to accelerate the convergence
of approximations. Results demonstrate the power of the HAM equipped with these
techniques in increasing the convergence rate and enlarging the region of convergence.

1 Introduction

It is obvious that the exact solutions of the nonlinear partial differential equations can
help us to know the described process. So an important issue of the nonlinear partial
differential equations is to find their new exact solutions. Various methods for obtaining
exact solutions to nonlinear partial differential equations have been proposed, such as:
truncated expansion method [13, 14, 25, 26], the simplest equation method [15], an
automated tanh-function method [24], the polygons methods [12] and the Clarkson-
Kruskal direct method [4]. Traveling wave solution is an important type of solution
for the partial differential equations and many nonlinear partial differential equations
have been found to have a variety of traveling wave solutions. The Fornberg-Whitham
equation, given as

ut − uxxt + ux = uuxxx − uux + 3uxuxx,

has a type of traveling wave solution called a Kink-like wave solution and anti Kink-like
solutions. For most differential equations, no exact solutions is known and, in some
cases, it is not even clear whether a unique solution exist. On the other hand often
the obtained exact solution is not proper to use. So, approximation methods have
been developed. Degaspersi and Procesi [6], studied the following family of third order
dispersive partial differential equation

ut + c0ux + γuxxx − α2uxxt = (c1u
2 + c2u

2
x + c3uxx)x, (1.1)

where α, γ, ci, i = 0, 1, 2, 3 are real constants. They found that there are only three
equations that satisfy the asymptotic integrablity condition within the family, the
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Korteweg-de Vries equation, the Camassa-Holm equation and the Degasperis-Procesi
equation. For c1 = −3c3

2α2 , c2 = c3
2

Eq. (1.1) becomes Fornberg-Whitham equation. In
1967, in order to discuss wave-breaking’s qualitative behavior, Fornberg and Whitham
gave the Fornberg-Whitham equation. In comparison with the Camassa-Holm equation
and Degasperis equation, the Fornberg-Whitham equation is not integrable, so research
on the solution of Fornberg-Whitham equation is very difficult, but it is important for
studying wave-breaking, analysis property and this equation is qualitative behavior of
wave-breaking. In the last two decades with the rapid development of nonlinear sci-
ence there has appeared ever increasing interest of scientists, physicists and engineers
in the analytical techniques for nonlinear problems. Analytic techniques are based on
either perturbation techniques or traditional non-perturbation methods. Perturbation
method is one of the well-known methods for solving nonlinear problems analytically.
It is based on the existence of small/large parameters, the so-called perturbation quan-
tities [22]. However, many nonlinear problems do not contain such kind of perturbation
quantities. In general, the perturbation method is valid only for weakly nonlinear prob-
lems. To overcome the restrictions of perturbation techniques, some non-perturbation
techniques are proposed, such as the Lyapunov’s artificial small parameter method [18],
the δ-expansion method [10], the Adomian’s decomposition method [2], the homotopy
perturbation method [7] and the variational iteration method (VIM) [8, 19]. These
schemes generate an infinite series solution and do not have the problem of round-
ing errors. The approximate analytical methods, unlike the implicit finite difference
methods, do not require the numerical solution of system of equation. Using these
non-perturbation methods, one can indeed obtain approximations even if there are no
small/large physical parameters. However, the convergence of solution series is not
guaranteed. Liao [17] took the lead to apply the homotopy [9], a basic concept in
topology, to gain analytic approximations of nonlinear differential equations. Differ-
ent from perturbation techniques, the HAM is valid no matter if a nonlinear problem
contains small/large physical parameters. More importantly, unlike all other analytic
techniques, the HAM provides us with a simple way to adjust and control the conver-
gence radius of solution series. Thus, one can always get accurate approximations by
means of the HAM. In recent years, the HAM has been successfully applied for solving
various nonlinear problems in many branches of sciences. It is worth to point out that
the homotopy analysis method and the Adomian decomposition method for solving the
Fornberg-Whitham equation were applied in [1].
There also exist some techniques to accelerate the convergence of a series solution,
such as padé technique which is widely applied. The homotopy-padé technique was
proposed by means of combing the padé technique with the homotopy analysis method.
In this paper using homotopy Padé technique HAM is improved for solving Fornberg-
Whitham equation. It is found that the convergence rate is increased and the region
of convergence can be greatly enlarged.
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2 Homotopy analysis method

In this section we describe the main points of HAM method. Consider the following
equation

N [u(x, t)] = 0 (2.1)

whereN is a nonlinear operator and x, t are spatial and temporal independent variables
and u(x, t) is unknown function. By means of generalizing the traditional homotopy
method, the zero order deformation equation is constructed as

(1− q)L[φ(x, t; q)− u0(x, t)] = q~N [φ(x, t; q)], (2.2)

where L is a linear operator, q ∈ [0, 1] is the embedding parameter, ~ is a nonzero
auxiliary parameter and u0(x, t) is an initial guess of u(x, t). When q = 0, the zero
order deformation equation becomes

L[φ(x, t; 0)− u0(x, t)] = 0,

so
φ(x, t; 0) = u0(x, t),

and when q = 1 we have
~N [φ(x, t; 1)] = 0,

so, since ~ 6= 0, we get
N [φ(x, t; 1)] = 0,

equivalently φ(x, t; 1)is the solution of (1.1). Thus as the embedding parameter q
increase from 0 to 1, the solution φ(x, t; q) of (2.1) varies continuously from the initial
approximation u0(x, t)to the exact solution u(x, t). Such kind of continues variation is
called deformation in topology, and this is the reason why we call (2.1) the zero order
deformation equation. Since φ(x, q) is also dependent upon the embedding parameter
q ∈ [0, 1], we expand it into the Maclaurin series with respect to q:

φ(x, t; q) = u0(x, t) +
∞∑
m=1

um(x, t)qm, (2.3)

where

um(x, t) =
1

m!

∂mφ(x, t; q)

∂qm
|q=0, (2.4)

called the homotopy-Maclaurin series. Note that we have extremely large freedom to
choose auxiliary linear operator L and the initial guess u0(x). Assuming that, the
auxiliary linear operator L and the initial guess u0(x) are so properly chosen that the
above homotopy-Maclaurin series converges at q = 1, we have the so-called homotopy
series solution

u(x, t) = u0(x, t) +
∞∑
m=1

um(x, t), (2.5)
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which satisfies the original equation N [u(x) = 0]. The governing equation of um(x, t)
can be derived from the zero order deformation equation(2.1). To this end, define the
vector

−→un = {u0(x, t), u1(x, t), u2(x, t), . . . , un(x, t)}.

Differentiating the zero order deformation equation m times with respect to q and then
setting q = 0 and finally dividing by m!, we have the so-called m-th order deformation
equation

L[um(x, t)− χmum−1(x, t)] = ~<m(−−−→um−1), (2.6)

where

<m(
−−−−−−→
um−1(x, t)) =

1

(m− 1)!

∂m−1N [φ(x, t; q)]

∂qm−1
|q=0, (2.7)

and

χm =

{
0, m ≤ 1,
1, m > 1.

The high-order deformation equation (2.6) is always linear with the known term on the
right-hand side, therefore it is easy to solve, as long as we choose the auxiliary linear
operator L properly.

3 Homotopy-Padé technique

A Padé approximant is the ratio of two polynomials constructed from the coefficients
of the Taylor series expansion of a function u(x). The [L/M] Padé approximant to a
function u(x) is given by

[
L

M
] =

PL(x)

QM(x)
, (3.1)

where PL(x) is polynomial of degree at most L and QM(x) is a polynomial of degree
at most M. The formal power series

u(x) =
∞∑
i=1

aix
i,

u(x)− PL(x)

QM(x)
= O(xL+M+1),

determine the coefficients of PL(x) and QM(x) by comparing the coefficient of like
powers.
Also, the [m,n] Padé for u(x, t) based on top explanation is of the form∑m

k=0 Fm,k(x)t
k∑n

k=0Gm,k(x)tk
,

or ∑m
k=0 Fm,k(t)x

k∑n
k=0Gm,k(t)xk

,
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where Fm,k(x) and Gm,k(t) are functions to be determined. The homotopy-Padé tech-
nique was proposed by means of combining the Padé technique with the homotopy
analysis method [16]. The corresponding [m, n] Padé approximant for a series (2.3)
about the embedding parameter q, is expressed by∑m

k=0Am,k(x, t)q
k∑n

k=0Bm,k(x, t)qk
, (3.2)

where Am,k(x, t) and Bm,k(x, t)are determined by following approximations

u0(x, t), u1(x, t), ..., um+n(x, t). (3.3)

By setting q = 1 the [m, n] homotopy-Padé approximant is obtained as∑m
k=0Am,k(x, t)∑n
k=0Bm,k(x, t)

. (3.4)

It has been found that the [m,n] Homotopy-Padé approximation often converges faster
than the corresponding traditional [m,n] Padé approximation, besides, homotopy-Padé
approximants often converges faster than solutions calculated by homotopy analysis
method. In many cases the [m,m] Homotopy-Padé approximation is independent of
the auxiliary parameter ~.

4 Solutions

Consider the Fornberg-Whitham equation

ut − uxxt + ux = uuxxx − uux + 3uxuxx, (4.1)

with the initial condition
u(x, 0) = exp(

1

2
x). (4.2)

The exact solution of the problem is

u(x, t) = exp(
1

2
x− 2

3
t).

From (4.1) we define the nonlinear operator

N [φ(x, t; q)] =
∂φ(x, t; q)

∂t
− ∂3φ(x, t; q)

∂x2∂t
+
∂φ(x, t; q)

∂x
− φ(x, t; q)

∂3φ(x, t; q)

∂x3

+φ(x, t; q)
∂φ(x, t; q)

∂x
− 3

∂φ(x, t; q)

∂x

∂2φ(x, t; q)

∂x2
, (4.3)

and choose the linear operator

L[φ(x, t; q) =
∂φ(x, t; q)

∂t
, (4.4)

with the property
L(c1) = 0,
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where c1 is the integration constant. According to condition (4.2) we can choose the
initial approximation u0(x, t) = e

1
2
x. By the analysis in section 3, we construct the zero

order deformation equation

(1− q)L[φ(x, t; q)− u0(x, t)] = q~N [φ(x, t; q)]. (4.5)

Obviously, when q = 0 and q = 1 we can write

φ(x, t; 0) = u0(x, t), φ(x, t; 1) = u(x, t).

Therefore, as embedding parameter q increases from 0 to 1, φ(x, t; q) varies from the
initial guess u0(x, t) to the solution u(x, t). We obtain the m-th-order deformation
equation

L[um(x, t)− χmum−1(x, t)] = ~<m(−−−→um−1), (4.6)

subject to the initial condition
um(x, t) = 0,

where

<m(−−−→um−1) =
∂um−1(x, t)

∂t
− ∂3um−1(x, t)

∂x2∂t
+
∂um−1(x, t)

∂x
(4.7)

+
m−1∑
k=0

[−uk(x, t)
∂3um−1−k(x, t)

∂x3
+ uk(x, t)

∂um−1−k(x, t)

∂x
− 3

∂uk(x, t)

∂x

∂2um−1−k(x, t)

∂x2
].

Applying the operator L−1 on both sides of (4.6) the solution of mth-order deformation
equation for m ≥ 1 becomes

um(x, t) = χmum−1(x, t) + ~L−1[<m(−−−→um−1)]. (4.8)

We now successively obtain

u0(x, t) = exp(
1

2
x),

u1(x, t) = exp(
1

2
x)[

~t
2

],

u2(x, t) = exp(
1

2
x)[

4~ + 3~2

8
t+

~2t2

8
],

u3(x, t) = exp(
1

2
x)[t(

48

96
~ +

72

96
~2 +

27

96
~3) + t2(

24

96
~2 +

18

96
~3) + t3(

1

48
~3)],

... (4.9)

We use nine terms in evaluating the approximate solution as

uapp =
8∑
i=0

ui.

The [4, 4] homotopy-Padé approximant for the obtained approximate solution is

e
x
2 (8505− 2835t+ 405t2 − 30t3 + t4)

8505 + 2835t+ 405t2 + 30t3 + t4
. (4.10)
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5 Conclusions

Fig.1 shows the ~-curves for ut(0, 0.5), utt(0, 0.5) and uttt(0, 0.5) obtained by the 8th-
order HAM approximate solution. The horizontal line segment that denotes the valid
region of the ~ and guarantees convergence extends approximately from −1.7 < ~ <
−0.9. Fig.2 shows the exact solution and the approximate solution obtained by the [4,4]
homotopy-padé technique. As shown in Table.1, Table.2, Table.3, Table.4, Fig.3, Fig.4
and Fig.5 the approximation given by the [4,4] homotopy-padé technique converges
much faster than those given by 8th-order HAM.

Fig. 1. The ~− curves of ut(0, 0.5) (DotDashed) and utt(0, 0.5) (Dotted) and uttt(0, 0.5)
(Dashed) given by 8th− order HAM approximate solution.

xi/ti 0.2 0.4 0.6 0.8 1
-4 1.14542× 10−9 1.02543× 10−7 5.03369× 10−8 1.05801× 10−7 2.30377× 10−7

-2 3.11538× 10−9 2.78742× 10−7 1.3683× 10−7 2.87597× 10−7 6.26231× 10−7

0 8.46358× 10−9 7.57698× 10−7 3.71942× 10−7 7.81769× 10−7 1.70227× 10−6

2 2.30064× 10−8 2.05964× 10−6 1.01104× 10−6 2.12507× 10−6 4.62725× 10−6

4 6025379× 10−8 5.59868× 10−6 2.7483× 10−6 5.77653× 10−6 1.25782× 10−5

Table 1: The absolute errors for differences between the exact solution and the approximate
solution obtained by the HAM (~ = −1) at some points.

Fig. 2. The behavior of the solution: exact, 8th-order HAM and [4,4] HPT orderly left to
right.
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xi/ti 0.2 0.4 0.6 0.8 1
-4 1.32507× 10−11 539397× 10−11 1.19404× 10−10 1.06198× 10−10 4.40263× 10−10

-2 3.6019× 10−11 1.46624× 10−10 3.24572× 10−10 2.88676× 10−10 1.19676× 10−9

0 9.7909× 10−11 3.98566× 10−10 8.82273× 10−10 7.847× 10−10 3.25313× 10−9

2 2.66149× 10−10 1.08341× 10−9 2.39828× 10−9 2.13305× 10−9 8.84291× 10−9

4 7.23462× 10−10 2.94501× 10−9 6.51922× 10−9 5.79821× 10−9 2.40375× 10−8

Table 2: The absolute error for difference between the exact solution and 8th-order HAM
solution by ~ = −1.2 at some points.

xi uexact uHAM uHPT uexact − uHAM uexact − uHPT

−4 0.0048279500 0.0049912100 0.0048412030 1.63262× 10−4 1.32530× 10−5

−2 0.0131237287 0.0135675000 0.0131597541 4.43791× 10−4 3.60253× 10−5

0 0.0356739933 0.0368803000 0.0357719204 1.20635× 10−3 9.79270× 10−5

2 0.0966971967 0.1002510000 0.0972381612 3.27920× 10−3 2.66193× 10−4

4 0.2635971381 0.2725110000 0.2673207265 8.91378× 10−3 7.23588× 10−4

Table 3: The absolute error for differences between the exact solution and 8th-order HAM
approximate fot ~ = −1.2 when t = 5. Also the absolute error for differences between the
exact solution and [4,4] homotopy padé technique when t = 5.

xi/ti 0.2 0.4 0.6 0.8 1
-4 6.93889× 10−17 2.79082× 10−14 9.40595× 10−13 1.10033× 10−11 7.2083× 10−11

-2 1.66533× 10−16 7.58282× 10−14 2.55682× 10−12 2.991× 10−11 1.95942× 10−10

0 4.44089× 10−16 2.06168× 10−13 6.95011× 10−12 8.13037× 10−11 5.32625× 10−10

2 1.33227× 10−15 5.60441× 10−13 1.88924× 10−11 2.21007× 10−10 1.44783× 10−9

4 3.55271× 10−15 1.52323× 10−12 5.13554× 10−11 6.00759× 10−10 3.9356× 10−9

Table 4: The absolute error for difference between the exact solution and [4,4] HPT approxi-
mant at some points.

Fig. 3. Error between exact solution and 8th-order HAM(Dashed), also error between exact
solution and [4,4] HPT(Dotted) in t = 0.5.



Homotopy analysis method and homotopy Padé approximants 73

Fig. 4. The behavior of absolute error in the region 0 < x < 1, 0 < t < 1 by 8th-order HAM.

Fig. 5. The behavior of absolute error in the region 0 < x < 1, 0 < t < 1. by [4,4] HPT.
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