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Abstract. By constructing the correspondent relationship between matroids of ar-
bitrary cardinality and posets, under isomorphism, this paper characterizes matroids
of arbitrary cardinality without loops. Utilizing this characterization, it realizes the
translation of some results from posets to matroid of arbitrary cardinality frameworks.
At last, we give the conclusion.

1 Introduction

Using the family of closed sets of a matroid of arbitrary cardinality, in [6], it presents
the relationship between matroids of arbitrary cardinality and geometric lattices. This
relationship has been applied to study on the properties of matroids of arbitrary car-
dinality ([6-9]). However, both [2] and [5] indicate that not every poset is a geometric
lattice though a geometric lattice is a poset. This perhaps limits the applied fields of
the results found in [6]. We hope to change the status quo. This asks to find out the
relationship between matroids of arbitrary cardinality and some new structures which
generalize geometric lattices. To do this, first, we observe and add up the following
views:

(1.1) From the results in [7], we may infer that a matroid of arbitrary cardinality
is uniquely determined by its collection of independent sets.

(1.2) For a given matroid M of arbitrary cardinality, we may associate a poset
whose elements are the independent sets of M .

The above views (1.1) and (1.2) inform us that we may build up the correspondent
relationship between matroids of arbitrary cardinality and posets. This relationship
may extend the applied fields of matroids of arbitrary cardinality. This paper will
mainly follow the above analysis to complete its work.

We narrate the construction of this paper as follows. Section 2 review some knowl-
edge relative to posets and matroids of arbitrary cardinality.

In Section 3, for a matroid M = (S, I) of arbitrary cardinality with I as its family
of independent sets, we look in some properties at poset (I,⊆). The important in
Section 3 is that under isomorphism, we establish the correspondent relationship be-
tween posets with some pre-conditions and matroids of arbitrary cardinality with no
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loops. Using this relationship, it establishes the relationship between Boolean lattices
and matroids of arbitrary cardinality in which every member owes a unique base.

In Section 4, after comparing the relationship between matroids of arbitrary cardi-
nality and posets with the famous relationship between matroids of arbitrary cardinal-
ity and geometric lattices, we outline our future works.

In what follows, we assume that E is some arbitrary–possibly infinite–set; 2E de-
notes the family of all the subsets of E. For a set {A},Max{A} denotes the maximum
element in {A}. Y ⊂⊂ X represents Y to be a finite subset of a set X. N0 means the
set of non-negative integers.

For simplicity, if there is no confusion in the text, then a poset (P,≤) is said to be
P . In a poset P , b ≺ a stands for “a covers b”; the interval {x ∈ P : a ≤ x ≤ b} is in
notation [a, b]; for H = {a, b} ⊆ P,

∨
H sometimes is in notation a ∨ b. If two posets

P1 and P2 are isomorphic, then it will be denoted by P1
∼= P2.

2 Preliminaries

This section begins by reviewing some knowledge what are needed in the sequel.
All the knowledge relative to poset theory refers to [2,5]. In [2], it points out that a

Boolean algebra may be described to be a Boolean lattice, and vice versa. Therefore,
we may equivalently say: L is a Boolean algebra if and only if L is a Boolean lattice.

Some notations and properties of infinite matroids are reviewed here and the others
are referred to [1,6-8,11]. The knowledge of finite matroids are seen to [10,12].

Definition 1. (1)[1] Assume m ∈ N0 and F ⊆ 2E. Then the pair M := (E,F) is
called a matroid of rank m with F as its closed sets, if the following axioms hold:
(F1) E ∈ F ;
(F2) If F1, F2 ∈ F , then F1 ∩ F2 ∈ F ;
(F3) Assume F0 ∈ F and x1, x2 ∈ E \ F0. Then one has either

{F ∈ F|F0 ∪ {x1} ⊆ F} = {F ∈ F|F0 ∪ {x2} ⊆ F} or
F1∩F2 = F0 for certain F1, F2 ∈ F containing F0∪{x1} or F0∪{x2}, respectively.

(F4) m = max{n ∈ N0| there exist F0, F1, ..., Fn ∈ F with F0 ⊂ F1 ⊂ ... ⊂ Fn = E}.
The closure operator σ = σM : 2E → F of M is defined by σ(A) :=

⋂
F∈F
A⊆F

F . The

rank function ρ = ρM : 2E → {0, 1, ...,m} of M is defined by ρ(A) := max{k ∈ N0|
there exist F0, F1, ..., Fk ∈ F with F0 ⊂ F1 ⊂ ... ⊂ Fk = σ(A)}.

M is called simple, if any subset A ⊆ E with |A| ≤ 1 lies in F .
(2)[7] One calls A ∈ I = {A ⊆ E|x ∈ A, x /∈ σ(A \ {x})} an independent set of M .
(3)[12,pp.385-387;&11,p.74] An independence space Mp(E) is a set E together with

a collection Ip of subsets of E (called independent sets) such that
(i1) Ip 6= ∅;
(i2) If A ∈ Ip and B ⊆ A, then B ∈ Ip;
(i3) If A,B ∈ Ip and |A|, |B| <∞ with |A| = |B|+1, then ∃a ∈ A\B fits B∪{a} ∈ Ip;
(i4) If A ⊆ E and every finite subset of A is a member of Ip, then A ∈ Ip.

(4)[6] Two matroids Mi = (Ei,Fi) of arbitrary cardinality, where Fi is the system of
closed sets of Mi, (i = 1, 2), are isomorphic if there is a bijection φ : E1 → E2 satisfying
A ∈ F1 ⇔ φ(A) ∈ F2. We write M1 'M2 if M1 and M2 are isomorphic.
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In this paper, a matroid M = (E,F) defined as in Definition 1 is called a matroid
of arbitrary cardinality. A base of M is a maximal independent set. We define a loop
of M to be an element x of E such that {x} is not an independent set.

The following statements about loops are obvious.
(l1) x is a loop if and only if x ∈ σ(∅).
(l2) x is a loop if and only if ρ({x}) = 0.
(l3) x is a loop if and only if it is not contained in any base.
Therefore, if M is simple, then it has no loops, but not vice versa.

Lemma 2.1. (1)[7] A collection I of subsets of E is the set of independent sets of
a matroid of arbitrary cardinality on E if and only if I satisfies (i1) − (i4) and (i5):
max{k ∈ N0| there exists I0, I1, . . . , Ik ∈ I such that I0 ⊂ I1 ⊂ . . . ⊂ Ik} <∞.

(2)[7] I ⊆ 2E is the collection of independent sets of a matroid of arbitrary cardi-
nality M on E if and only if I satisfies (i1), (i2), (i4), (i5) and (i3)′: For X ⊆ E, if
I1, I2 ∈Max{I ⊆ X| I ∈ I}, then |I1| = |I2|.

(3)[11] Every independent subset of an independence space is contained in a basis.

Based on (1) of Lemma 2.1, in what follows, a matroid M of arbitrary cardinality
defined on E will be denoted by (E, I), and sometimes I is notated to be I(M). (3) of
Definition 1 informs us that M is also an independence space. We may easily state the
following result: for two matroids of arbitrary cardinality Mi, i.e. (Ei, Ii), (i = 1, 2),
M1 ' M2, i.e. M1 is isomorphic to M2, if and only if there is a bijection ψ : E1 → E2

satisfying I ∈ I1 ⇔ ψ(I) ∈ I2.
In [3] and [4], an independence space is called a finitary matroid. Thus a matroid

of arbitrary cardinality is a finitary matroid with finite rank. That is to say, a matroid
of arbitrary cardinality is a class of infinite matroids and much “like” finite matroids.
Since, for a long time, the theory of infinite matroids is much more complicated than
that of finite matroids. One of the difficulties has been that there are many reasonable
and useful definitions, none of which appeared to capture all the important aspects
of finite matroid theory. The “best and simplest” definition of an infinite matroid is
to require finite rank. Therefore, it is valuable to deal with matroids of arbitrary
cardinality.

As good contributions to infinite matroids such as [3,4,10-12], they provide a series
of axioms of finitary matroids. None of these axioms is discussed with the relationship
between poset theory and finitary matroids. Hence, according to our knowledge, it is
necessary to do the essential work on matroids of arbitrary cardinality–a special class
of infinite matroids, with poset theory.

3 Relations

This section will deal with the relationship between a matroid M = (E, I) of arbitrary
cardinality and a poset. First, we find out some properties of (I,⊆). Second, we
search that under what conditions, a poset P will correspond to a matroid M(P )
of arbitrary cardinality such that P is isomorphic to (I(M(P )),⊆). Third, it gets
the correspondence between the category of matroids of arbitrary cardinality with no
loops and the category of some posets with some conditions. Fourth, using a concrete



The relationships between posets and independent sets of a matroid of arbitrary cardinality 59

consequence, it shows the importance of the correspondent relationship obtained above
by “translation” between matroids of arbitrary cardinality and posets.

Lemma 3.1. For a matroid of arbitrary cardinality M = (E, I), the poset (I,⊆), i.e.
P(M), has the following properties.

(m1) ∅ is the least element in (I,⊆).
(m2) For any I ∈ I, the interval [∅, I] in (I,⊆) is isomorphic to the poset (2I ,⊆).
(m3) All of maximal chains in (I,⊆) have the same length |B|, where B is a base

in M .
(m4) For any X, Y ∈ (I,⊆), if h(X) = h(Y )+1, then there is a ∈ X \Y such that

Y ∪ a covers Y in (I,⊆), where h is the height function of (I,⊆).
(m5) Let A be the collection of atoms in (I,⊆). Every I ∈ (I,⊆) is a join of atoms,

i.e. I =
⋃

a∈AI

a = ∪AI , and |I| = |AI |, where AI is the family of atoms contained in I

in (I,⊆).
(m6) Let X ⊆ A. If there is Y ⊂⊂ X satisfying Y /∈ (I,⊆), then X /∈ (I,⊆).

Proof. (m1) is obvious by (i1).
(i2) causes the truth of (m2).
Considered (1) and (3) in Lemma 2.1 with Definition 1, for I ∈ I, we obtain that

there exists a base BI of M satisfying I ⊆ BI . In addition, (2) in Lemma 2.1 and (i5)
assure that all the maximal chains in (I,⊆) have finite length |BI |. Hence, (m3) holds.

Recalling back (m2) and (1) in Lemma 2.1, we see h(X) = |X| for any X ∈ I. So,
(m4) is followed by (i3).

Since |I| < ∞ holds for any I ∈ I according to (i5), and in addition, we know
that (2I ,⊆) is a Boolean lattice. Considering (m2) and (m3) with (1) in Lemma 2.1,
it follows that I is a join of atoms, i.e., I = ∪AI = AI , and so |I| = |AI |.

(i4) guarantees the correct of (m6).

The following example will express that P(M) may not be a lattice.
Example 1. Let E = {1, 2} and I = {∅, {1}, {2}}. Then it is easy to testify (E, I)
to be a matroid of arbitrary cardinality. But, obviously, (I,⊆) is not a lattice.

Conversely, for a poset P , we try to find out that under what conditions, there is
a matroid of arbitrary cardinality M satisfying P(M) ∼= P . In light of (m1), P must
keep the least element 0. Therefore, we will consider only the poset with the least
element.

Lemma 3.2. Let P be a poset with the least element 0, A be the collection of atoms
in P and Ax be the atoms contained in x ∈ P . If P satisfies the following (q1)-(q6),
then it exists a matroid M(P ) of arbitrary cardinality such that P ∼= (I,⊆) and M(P )
has no loops, where I is the set of independent sets of M(P ).

(q1) Every element in P is a join of atoms, namely, for x ∈ P , there is x =
∨
Ax.

(q2) For any x ∈ P , there is b ∈MaxP satisfying x ≤ b.
(q3) If b ∈MaxP , then [0, b] ∼= (2Ab ,⊆).
(q4) Every maximal chain in P has the same finite length.
(q5) For any x, y ∈ P , if h(x) = h(y) + 1, then there exists ax ∈ Ax \ Ay satisfying

y ≺ y ∪ ax in P , where h is the height function of P .
(q6) For S ⊆ A, if there is X ⊂⊂ S satisfying

∨
X /∈ P , then

∨
S /∈ P .
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Proof. We will carry out the proof step by step.
Step 1. If x, y ∈ P and x 6= y, then Ax 6= Ay.
Otherwise, there is Ax = Ay but x 6= y for some x, y ∈ P . Therefore by (q1), it

follows x =
∨
Ax =

∨
Ay = y, a contradiction.

Step 2. Let I = {Ax|x ∈ P}. We prove that (A, I) is a matroid of arbitrary
cardinality with I as its family of independent sets, and additionally, (A, I) has no
loops. We denote (A, I) as M(P ).

Step 2.1 Since 0 < x holds for any x ∈ P \ 0. It causes 0 not a join of atoms. That
is, A0 = ∅, and so, ∅ ∈ I.

Step 2.2 Let Ay ∈ I and X ⊆ Ay.
Ay ∈ I reveals y =

∨
Ay ∈ P . Since (q2) assures that there is by ∈ MaxP

satisfying y ≤ by. It follows [0, y] ⊆ [0, by]. Additionally, (2Z ,⊆) is a Boolean lattice
for any set Z. Thus, (q3) describes that [0, by] is a Boolean lattice, and in addition,
[0, y] ∼= (2Ay ,⊆) holds because of [0, by] ∼= (2Aby ,⊆). So [0, y] is a Boolean lattice.
However, X ⊆ Ay causes X ∈ 2Ay . Therefore, under isomorphism,

∨
X ∈ [0, y] holds,

i.e.
∨
X ∈ P . Hence, it follows X ∈ I.

Step 2.3 To prove: |Ax| <∞ for any x ∈ P .
For x ∈ P , (q2) asserts x ≤ b for some b ∈ MaxP . (q4) and (q5) together states

that there are a1j ∈ Ab (j = 1, 2, . . . , n < ∞) such that 0 ≺ a11 ≺ a11 ∪ a12 ≺ . . . ≺
a11 ∪ a12 ∪ . . . ∪ a1(n−1) ∪ a1n = b is a maximal chain in P . (q4) indicates that n is
the length of any maximal chains in P . Using the induction on n, we will carry out
the proof in the present step. Actually, if |Ab| <∞, then |Ax| <∞. Hence, we prove
|Ab| <∞ for any n.

If n ≤ 1. Then the needed result is true obviously.
We may easily prove if n = 2, then |Ab| <∞
Suppose for any n < k and k ≥ 3, |Ab| <∞ holds. Let n = k ≥ 3 and |Ab| ≮ ∞.
Then we assert that (a11∪ a12) ‖ am0 is true for some am0 ∈ Ab \ {a11, a12, . . . , a1n}.
Otherwise, for any am ∈ Ab \ {a11, a12, . . . , a1n}, there is (a11 ∪ a12) ∦ am. In light

of 0 ≺ am, 0 ≺ a11, 0 ≺ a12, 0 ≺ a11 ≺ a11 ∪ a12 and |am| < |a11 ∪ a12|, it brings about
am < a11 ∪ a12. Considered a12, a11 ∪ a12 ∈ P, h(a12) = 1 with (q3) and (q4), we may
easily obtain h(a11∪a12) = 2, Aa12 = {a12} andAa11∪a12 = {a11, a12}. Hence (q5) causes
a12 ≺ a11∪a12. In addition, am < a11∪a12 and h(a11∪a12) = 2 express am ≺ a11∪a12.
Therefore, we may reveal that {0, a11, a12, am, a11∪a12} is a diamond, and additionally,
a subposet of [0, b]. Because (q3) assures [0, b] to be a Boolean lattice, by (2) of Lemma
2.1, {0, a11, a12, am, a11 ∪ a12} is not a sublattice of [0, b], a contradiction.

Let at0 ∈ Ab \ {a11, a12, . . . , a1n} satisfy at0 ‖ (a11 ∪ a12). Since a11, a12 ∈ Ab

guarantees a11 ‖ at0 and at0 < b. Considered with n ≥ 3, we get a11 ∪ a12 < b. So
{0, a11, at0 , a11 ∪ a12, b} is a subposet of P and also a pentagon. Thus, {0, a11, am, a11 ∪
a12, b} is a subposet of [0, b] and a pentagon. Since [0, b] is a Boolean lattice according
to (q3). Hence, by Lemma 2.1, the pentagon {0, a11, at0 , a11∪a12, b} is not be a subposet
of [0, b], a contradiction.

Therefore, it has |Ab| <∞.
Step 2.4 First, we prove h(x) = |Ax| for any x ∈ P .
Let h(x) = n. (q4) compels n < ∞. Using the induction on n, we will finish the

proof.
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If n = 1. This suggests 0 ≺ x, and so h(x) = |Ax| = 1.
If n = 2. Then there exist two different elements a1, a2 ∈ Ax satisfying a1 ∨ a2 = x.

In addition, h(x) = 2 asks a < x for any a ∈ Ax.
If Ax \ {a1, a2} 6= ∅, then there is a3 ∈ Ax \ {a1, a2} satisfying a3 < x. We

may indicate that {0, a1, a2, a3, x} constitutes a diamond to be a subposet of [0, x].
However, [0, x] is a subposet of [0, bx] for some bx ∈ MaxP . In other words, by
(q3), up to isomorphism, {0, a1, a2, a3, x} is a subposet of the Boolean lattice [0, bx], a
contradiction. Thus, there is |Ax| = 2.

Suppose the needed result is true for any n < k. Now, let h(x) = n = k and 3 ≤ k.
Since [0, x] ⊆ [0, b] is correct for some b ∈MaxP . Considered this result with (q3)

and (q4), we may state that all the maximal chains between x and 0 will indeed have the
same finite length k. No matter to suppose that 0 ≺ X1 ≺ X2 ≺ . . . ≺ Xt−1 ≺ Xt = x
is a maximal chain between 0 and x. In virtue of (q5), it follows that the above chain
satisfies t = h(x) = k andX1 = a1, X2 = a1∪a2, . . . , Xt−1 = a1∪a2∪. . .∪at−1, x = Xt =
Xt−1 ∪ a, where a, aj ∈ Ax, (j = 1, 2, . . . , t− 1). Additionally, (q1) indicates x =

∨
Ax.

Thus, we may obtain Ax ⊆ {a1, a2, . . . , at−1, a}. So, |Ax| = |{a1, a2, . . . , at−1, a}| =
k = h(x) is true.

Second, the result above combined with (q5) will assure the hold of (i3) in I.
Step 2.5 Combining (q1) and (q6) with Step 2.2, it yields out the real of (i4) for I.
Step 2.6 (q4) and Step 2.3 cause the correct of (i5) for I.
Taken Step 2.1–Step 2.6, we may state that (A, I) is a matroid of arbitrary cardi-

nality with I as its family of independent sets.
By the definitions of A and Ax given above, for any a ∈ A, there is a ∈ P , and

further, there exists Aa ∈ I and Aa = {a}. This points out that there does not exist
loops in M(P ).

Step 3. To prove P ∼= (I,⊆).
Let f : P → (I,⊆) be defined as x 7→ Ax for any x ∈ P . We may easily find out

that f is a bijection.
Let x, y ∈ P and x ∨ y ∈ P . Then we may state clearly Ax,Ay ⊆ Ax∨y. In virtue

of (q2), it follows the existence b ∈ MaxP satisfying x ∨ y ≤ b, and so x, y ≤ b.
Further, Ax,Ay,Ax∨y ⊆ Ab hold because of (q3). Still considering with (q3), it follows
Ax ∪Ay ∈ (2Ab ,⊆) which corresponds x ∨ y in [0, b]. Thus, it proves Ax∨y = Ax ∪Ay.

Additionally, if Ax ∪ Ay ∈ (I,⊆) and Az = Ax ∪ Ay, then z = x ∨ y.
Let a, b ∈ P and a ≤ b. By the definition of the notation Ax, it easily follows

Aa ⊆ Ab.
Obviously, we may obtain that if X, Y ∈ (I,⊆) and X ⊆ Y , then x ≤ y in P ,

where x =
∨
X, y =

∨
Y according to the definition of I.

For simplicity, if a poset P has the least element and satisfies (q1)-(q6), then we
call P a pseudo-geometric lattice.

Now unfortunately, the structure of a matroid M of arbitrary cardinality is not
completely specified by the poset P(M).
Example 2. Let a /∈ E1 and M1 = (E1, I) be a matroid of arbitrary cardinality
satisfying E1 = {x | {x} ∈ I}. Evidently, M2 = (E1 ∪ a, I) is a matroid of arbitrary
cardinality and {a} is a loop of M2 though P(M1) = P(M2).
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This indeterminacy of M from P(M) is due to the existence of loops. The impor-
tance of matroids of arbitrary cardinality without loops lies in the following theorem.

Theorem 3.1. There exists a one to one correspondence between pseudo-geometric
lattices and matroids of arbitrary cardinality without loops.

Proof. Let M = (E, I(M)) be a matroid of arbitrary cardinality with no loops. We see
that the set of atoms in P(M) is E. By (m3) and (2) in Lemma 2.1, we obtain that any
maximal chains in P(M) have the same finite length. Recalling back Lemma 3.1, we
may assure that P(M) has the least element and satisfies (q1)-(q6). Further, by Lemma
3.2, it causes M(P(M)) satisfying P(M) ∼= (I(M(P(M))),⊆), that is, (I(M),⊆) =
P(M) ∼= (I(M(P(M))),⊆). Meanwhile, M(P(M)) is defined on the set of atoms of
P(M), that is, on the set {{x}|x ∈ E}. Hence, M(P(M))) 'M holds.

Corollary 3.1. (1) Let M be a matroid of arbitrary cardinality without loops defined
on E. Then P(M) is a Boolean lattice if and only if |MaxP(M)| = 1.

(2) Let P be a pseudo-geometric lattice. Then P is a Boolean lattice if and only if
P is bounded, i.e. P does also have the greatest element.

Proof. (1)(⇐=) It is well known that (2MaxP(M),⊆) is a Boolean lattice if
|MaxP(M)| = 1. By (m2) and |MaxP(M)| = 1, we may believe the real of
P(M) ∼= (2MaxP(M),⊆).

(=⇒) The supposition, (m3), and (2) in Lemma 2.1 will assure P(M) to be a
bounded lattice, and so |MaxP(M)| = 1.

(2) It is a straightforward result from Theorem 3.1 and (1).

Thus, by Theorem 3.1, we may describe that the study of matroids of arbitrary
cardinality without loops is just the study of pseudo-geometric lattices. Many of the
interesting properties of matroids of arbitrary cardinality are preserved if we just pay
attention to matroids of arbitrary cardinality with no loops.

It is useful to “translate” some of the results about posets to a matroid of arbitrary
cardinality frameworks. Here, under the matroid of arbitrary cardinality frameworks,
for a Boolean lattice with finite length, we will obtain the same result as that in [2,p.18].

Theorem 3.2. Let P be a Boolean lattice with finite length. Then any interval sublat-
tice of P is a Boolean lattice.

Proof. Combined the supposition that P is a lattice with finite length, the definition
of lattice with the dual of [2,p.6,ex.8], we may assure that P has the least element
and |MaxP | = 1. Considered with the supposition that P is a Boolean lattice with
finite length, we may easily find out that P satisfies (q1)-(q6). By Theorem 3.1, under
isomorphism, it follows that there is a matroid M(P ) of arbitrary cardinality with no
loops corresponding to P .

In P , let A be the collection of atoms and Ax be the collection of atoms contained
in x ∈ P . Let [0, b] be an interval in P . Evidently, Ab is the set of atoms in [0, b] by
the definition of interval. Next we may prove that (Ab, Ib) is a matroid of arbitrary
cardinality where Ib = {Ax | x ∈ [0, b]}.

Theorem 3.1 informs us that M(P ) is defined on A and I(M(P )) = {Ax | x ∈ P}.
Additionally, in view of [11], we may yield out that M(P ) | Ab, i.e. (Ab, I(M(P )) | Ab)
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in which I(M(P )) | Ab = {X | X ⊆ Ab, X ∈ I(M(P ))}, is an independence space.
Recalling back (m3) for M(P ), we may state clearly that I(M(P )) | Ab satisfies (i5).
Therefore M(P ) | Ab is a matroid of arbitrary cardinality in view of (1) of Lemma 2.1
and (3) of Definition 1.

That M(P ) has no loops causes that M(P ) | Ab has no loops.
In addition, I(M(P )) | Ab = {X | X ∈ I(M(P )), X ⊆ Ab} = {Ax | Ax ∈

I(M(P )),Ax ⊆ Ab} holds evidently. Thus, there is Max(I(M(P )) | Ab) = Ab.
By (1) in Corollary 3.1, we will gain that P(I(M(P )) | Ab) is a Boolean lattice.
Simultaneously, under isomorphism, M(P ) | Ab corresponds to [0, b] in P . Therefore,
[0, b] is a Boolean lattice.

4 Conclusion

We may state that under isomorphism, Theorem 3.1 characterizes much more matroids
of arbitrary cardinality by posets than that found in [6]. This will perhaps generalize
the applied fields of matroids of arbitrary cardinality. Utilizing Theorem 3.1 into the
study on matroids of arbitrary cardinality is our future research contexts. More study
is left rooms.
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