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Abstract. The averaging method is justified and the complete asymptotics of a so-
lution periodic in time is constructed and justified for an evolutional system of par-
tial differential equations with quickly oscillating in time junior terms, some of which
are proportional to the frequency of oscillations. The considered system generalizes
the well-known thermal liquid convection problem (in Oberdeck-Boussinesc approach)
when a vessel with a liquid vibrates with high frequency.

1 Introduction

In the work [11] the Krylov-Bogoliubov averaging method [1] is applied to the problem
of the thermal liquid convection beginning in a vessel subjected to small in amplitude
vibrations at high frequency w. In [6, 4] a rigorous justification of the applicability
of this method to a wide class of thermal convection problems in the field of quickly
oscillating forces (in particular, to the problem in [11]) is provided. In the work [5] for
similar problems the complete asymptotics of a solution (as w — o00) is constructed
and justified, where the leading term is a solution of the homogenized problem. In our
paper the considered problem is much more general than in papers [11, 6, 4, 5. We
call it a generalized problem of vibrational convection. For this problem the complete
asymptotics (as w — o0) of a solution 27 /w-periodic in time of the original (per-

turbed) problem is constructed in a small neighbourhood of a stationary solution v
of the corresponding averaged problem. Note that a specificity of the problem of the
thermal convection (see, eg., [4]), approaches of the averaging method theory [1] and
the boundary layer method [9] are used. It is proved that the construction of every

partial sum of the asymptotics is reduced (if v is known) to solving a finite number of
w-independent linear stationary uniquely solvable problems of five specific types. Two
of these types are related to partial differential equations and three of them are related
to ordinary differential equations. Existence and relative uniqueness of the mentioned
2mw~L-periodic in time solutions and justification of constructed in this work complete
asymptotics may be verified as in [4, 5].
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2 The problem statement and the result formulation

Let 2 be a bounded domain in R? with an infinitely smooth boundary 9. In the
cylinder Q@ = Q x R, Q = QU 09, we consider the problem of finding solutions 2mw™1-
periodic in ¢ of the system of equations

ov :
o + (v,V)v=—-Vp+rvAv+w Z ar(z) exp(ikwt)T
0<|k|<m
ov _ oT ,
+ Z Jik (x,v, %,T, %) exp(ikwt), 21)
0<|k|<m
or ov 0T
—_— T AT T, — '
5 + (v, VT) = x +0<kz<m Jok <x Vs o 8;1:) exp(ikwt),

divv=0,v|50=0,T|5q = h.
Here m € N, w is a large parameter, v, x > 0, ax(z), fix(z,v,w,T,S) € C3,
for(z,v,w, T, S) € C,h(x) € R, and ag(x) = a_x(x),
fie(z,v,w, T, S) = f1_k(x,v,w,T,S),
for(z,v,w, T, S) = fo_p(x,v,w,T,S),

where (z,v,w,T,S) € Q x R? x R? x R x R?, and the overlined vector-functions are
complex conjugate. Let fi, for, ax, h be infinitely differentiable in all their arguments.
We suppose also that the components f;;,. of the vector-functions f;; depend on com-
ponents v, w and S in a polynomial way and they are linear functions in w:

firr(@, 0,0, T, 8) = igra(, T)of 052 vg2wi ws®  awg 2 SP1.S51551, (2.2)
|a|=0

where @ € N, a = ajp = (g, ..., a5) is a multi-index, and oy + a5 + ... + a2 < 1.

In the present work solutions to problem (2.1) and all other problems are understood
in the classic sense.

Let us consider the system

@ —vAu+Vqg+ (u, V)u+ Z k=2 [(Ha,W, V)Ha_ W — a(Tla_, W, VW)

ot
0<|k|<m

= Z < ap¥ (x,u @,W, a—W,T) exp(ikT) >
x ox

ow ou  OW
— XAW + (0, VIV) =}~ <¢2k( T W%,T) >z €,
0<|k|<m
ulyq = 0, Wlyq = h(z).
(2.3)
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We call it an averaged (limiting) problem. Here and below the symbol < ¢(...,7) >
27

1
denotes the ¢ averaging in 7 :< ¢(...,7) >= o ¢(...,T)dr, where o(...,7) is a
m
0

continuous 27-periodic in 7 vector-function,

@rk(mﬂ‘ag_z?WﬂS’ﬂ—) :frk(xau_’_u u+uo WS ZkT_erks ,T’: 1,2,

Uy = Z (ik)TlapWeT.

0<|k|<m

Here II is a known in mathematical hydrodynamics orthoprojector in Lo(£2) onto the
subspace of solenoid vectors Sy(€2) (see [10, 3, §|),

au -\ — ST
\IJ(CL’,U,%,W,S,T)E Z (i5)  Hope™".

s#0
0<|kl<m

Let problem (2.3) have a real stationary solution (u, ¢, W) = (uo, po, o), and the elliptic

system
L(v,q,T) = —vAv + (v, V)v + (v, V)ug + Vg

+ Y k?([a Ty, V)Ha_y T + (Hay T, V)a_, Ty — ap(Ha_ T, V)

0<|k|<m
ov 0 dTy
_ak(Ha’ kT()va Z < ag |5 <I’ Vo, 7 0 T07 ) ) v

ou ox or
0<|k|<m
ov (%0 8T0 ov ov 8110 8T
+%(9€, oy 5 TO’(? )81:+8_T(’0’8_T0’8x’>T
ov 81}0 8T0 oT
+% (:U Vg, — 5 L0 ) ax} exp(ikT) >
64,01]c 6v0 8T
- Z |:<W(x7007 8 T07 al” )U
0<[k|<m
0P1k vy Ty ov  Opg vy Ty
+ aw (Q?, Vo, 53— a T07 a )3m+ (9T (l’, Vo, a TOa a ) >T (24)
&plk 81}0 E)TO aT o
+as(”””’°’a o 5y >3x ] 0,
div v =0,

R(v,T) = —xAT + (vo, VT) + (v, VTp)

Opag vy 0Ty
- Z [< ou (%Uo,%,Tm%ﬂ') v
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Y2k 7 p Y20
Tow Pt 5T g T e (B g o g

890% 81)0 8T0 aT - B
< ’ ax7T07a )837 :|_07U|89_07

T|aQ:O,/qu:0
Q

Do, ( Ovg 0T, ) Ov N Do, ( Ovg 8T07T) T

have no nontrivial solutions.

Let the above mentioned conditions be satisfied. Then problem (2.1) for large
values of w has a relatively unique (in the usual Holder norm C%1(Q)) 2mw~!-periodic
in time solution (v,,T,,) (the corresponding function p,, is defined here uniquely up to
numerical term).

To construct the asympthotic expansion the solution of the stated problem we
replace in (2.1) wt by 7 and w12 by €. Then we get the problem of finding 27-periodic
in 7 solutions of the system

ov 9 .
5 ¢ VAV + €Vp + (v, Vv = Z ai(x) exp(ikT)T
0<|k|<m
Z fik (x v, ZT> exp(ikT),
0<|k|<m v (2.5)
or 9 o ov . 0T ,
5, ¢ XAT + €*(v,VT) =€ 0<%:<m for (m,v, 8x’T’ 0x) exp(ikT),

divv=0,v|y0=0,T|y = h.

In order to apply the boundary-layer method [9] to problem (2.5) we use the
curviliniar coordinate system (i, r) on the closure 2, of the boundary subdomain €,
of the domain (2 (7 is the width of the layer). We define a mapping 992 x [0,7] — Q, by
the rule (¢, 1) — ¥ + nyr, where ¢ = (¢1,15) is a point on €2 with local coordinates
Y, and n,, is an inward normal vector to 0f2 at the point 1. We choose the number 7
to be sufficiently small, so that the mentioned normals in €2, do not intersect.

Then let us introduce the new independent variable p = Jwr, r < 7, express the
derivatives in z;, 1<j<3, via the derivatives in 11,12 and p and expand the coefficients
in the powers of w™'/2. We get the following equalities:

0 or 0 oYy 0 oy, 0
g a9 a9 2.
oz, 0z, 0r Z B, \/_&c] ap Z 9z, O (2:6)

or B B p
a—%zbj(x)—bj(iﬁ) b; (¥, NV

)
0b;(¥,0) p  10%b;(¥,0) p?
= b, 0) + J@r \/5+2 o2 w

2
_b0+bﬂ\/_

.. (2.7)

b+
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ka . - - PN\ ackj(wvo) P
axj = Ck’](x) - Cm(@[],?‘) = Ckj (¢? \/a) = Ck;j (d}a O) + or \/a (2 8)
194y (1,0) p? p r’ |
+§TZ+ —ijO+Ck]1\/—+ij2w + .
Hence 9 3 B
\/_b0+b1p+b2 +b3p )_
B ( j j j J B
j Ve P (2.9)

2 2
p p 9
+ E (Cky0+0k]1\/—+0k92;+---) a—wk

k=1
We seek the asymptotics of the 27r-periodic in 7 solution of problem (2.5) in the
following form

v(x, T, €) = Z fug(2) + Z Fug(x, ) + Z e wy (¥, p

k=0 k=0 k=0
oo

+3 (v, p,7)
k=

0
pla,m6) =Y epe(z) + > & s, 1) + Y Ehil(e, p)
k=0 k=0 k=0 (210)
> 2.10
+ Z Ek_lgk(w7 P T)a
T(x,7,€) = Z Ty (x Z 2Ry (2, 7) Zek“Wk(@b p)
k=0 k=0

+Z k+1Zk: vav )7
k=0

p=eln
Let us consider five types of linear uniquely solvable problems: the construction of
coefficients of series (2.10) is reduced to them (see Section 3). The first two problems
are related to partial differential equations.
(A1) The Neyman problem for the following system

O0s

AS:f(l‘), 8_72 0

= p(z), (2.11)

where f,¢ are the infinitely differentiable in  and 0f) three-dimensional vector-
functions, n is an inward normal to the boundary 02 and

/fdx—l—/gods—O

o0N

(A2) The Dirichlet problem for the following system

L(v,q,T) = f(z),div v = 0,/qdm =0,

2 (2.12)
R(v,T) = g(x), U|aQ =0, T|aQ =0,
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where f, g are the infinitely differentiable vector-functions.
The next three are the problems of limited on the ray p > 0 solutions to the

following ordinary differential equations with the parameter ¢ € 0 :
(A3)
ikz(¢,p) =v ) 4 (4, p) exp(Ap),

Z(@D, O) = Z0<¢)a

2| o = 0.

P2(, p
0p* (2.13)

Pwlr) | gy p) exp(rp) =0, (2.14)

— + F(¢, p) exp(Ap) =0, (2.15)

Here k € Z \ {0}, ReA < 0, F is a polynomial in p with infinitely differentiable in
coeffitients.

Remark. The presented list of five types of auxiliary problems fully characterizes
our algorithm used for construction the asympthotics of the solution to problem (2.1).
Problems (A3)-(Ab) are also included in this algorithm just because of it, though their
solution consists of finite number of arithmetic operations.

Theorem 2.1. Let the conditions of this section be satisfied, w > wgy, where wy is a
sufficiently large number, (uy, po,T.) is the specified in this section 27 /w ™ -periodic in
t solution of system (2.1). Then the following statements are true.

1) Construction of any partial sum (u",p™, T™) of the complete formal asymptotics
of the solution of the stated problem for w >> 1 is reduced to solving a finite number
of linear uniquely solvable problems of types (A1)-(A5). All the terms of partial sums
of series (2.10) are real and infinitely smooth.

2) For all non-negative numbers I, m (uy,,py, T,) € C™(Q) and following estimates
hold

Hl,m < Cl7m7nw7[n+17max(l72,2m72,0)]/2’ (2 16)

e — unHl,m + |7, -1
Hpr - Vanl,m < Cl,m,nw_[n+1_max(l’2m)]/2’ (217)
where ¢,y are constants independent of w.

Here CY™(Q) is a usual Hélder space on the cylinder @ of all vector-functions
u(z,t), which have continuous derivatives in x up to order [/] and in ¢ up to order [m|,
satisfying the Holder condition with the appropriate indices.

3 Construction of a formal asymptotic expansion

In this section we prove the first statement of Theorem 2.1.
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Proof. First we establish that the construction of the coefficients in equalities (2.1) is
indeed reduced to solving a finite number of problems of types (Al)-(A5).

For z € Q, we denote the components of an arbitrary vector v(z) € R?® in the
curvilinear coordinates (¥, 1y, 7) as ¥ (z), s = 1,2, 3. If v(x) = vy (z) +vo(w)i, vy, v9 €
R3, then we write v®) (z) = v\* (2) +v{” ()i and use the known representations of A, V
and div in the coordinates (1, p) (see [4], [2]):

Av =Y "L, pv+ [Rin(x,€)|(v), (3.1)
Vp==Ejngxwﬁﬁp+ﬂRzN@nde) (3.2)
div v=e¢" —v —i—ZEJ 1 (W, o + Dy (1, p)ot

(3.3)

Jj=

+D;3(¥, P)U(3)) [RzN , 6)](v).

Here L;, P;, D;; are linear differential expressions in 1,12, p and their coefficients
are polynomlals in p with (¢, 12)-dependent coeflicients; R,y are linear differential
expressions in 1,19, p with (z,€)-dependent coefficients. We write down only the
expressions for the leading terms of expansions (3.1) and (3.2):

(Loa(, p)v)® = =% [9p%, s = 1,2,3,

(Poi(w,p)p) = 0,5 = 1,2, (Pa(,p))®) = Op/0p. (34)
Let us formally substitute series (2.10) in equalities (2.5):

- Ou(z,7) 0z (V, p,T)
k
zﬁ{ s

k=0

—€ VAZ x) + up(z, 7) + wi(, p) + 2V, p, 7))
4TS e [pu(o) + el )+l p) + (w0, 7))
=

+¢” ( e [on(2) + up(w, ) + wi(¥, p) + 2 (4, p, 7)] ,V> (3.5)
k=0
XZEk +Ukl‘ T)‘i‘wk(wv )+2k(¢7p77-)]

(e 9]

= Z ag(x) Z " [Th(z) + € Ry, 7) + Wi (¥, p) + € Z1(¢, p, T)]

0<|k|<m k=0

xexp(ikT)
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iem |:8Rk(:£,7') N OZi (1, p, 7)]

or or
k=0
_GZXAZ [Tk( )+ € Ry(x, 7) + eWi(¥, p) + € Zk (1, p, )]
k=0

ol (x,T)

oz x

) exp(ikT),

(Z k x) 4+ ug(z, 7) + wr (v, p) + 21 (W, p, 7)]) =0,

k=0
Z€k +uk z T)—i_wk(w? >+zk(w7;077—)] :07
k=0 1)
Z e [Th(x) + € Ry, 7) + Wi (¥, p) + €Z1(, p, 7)]| = h(z).
k=0 o0
Let us expand vector-functions f;;, where v, g”,T or

are represented by series

(2.10), in Taylor series with (z, vo, 5 8”0 ,To, aTO) as the center and equate the coefficients
at the same degrees of € separately for regular and boundary layer vector-functions.
Applying averaging in 7, we split the obtained equalities into problems for stationary

and non-stationary vector-functions.

From equations (3.5), (3.7), by taking into account equalities (3.3), (3.1) and (3.4),

we find first of all that

ol 9z

=0 =0
8p T dp ’
2wl
0,s=1,2
ap 78 ) Y

Wol yne = 20| me = 0, < 2 >=0.
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For the first oscillating regular coefficients in equations (3.5), (3.6) we find that

@UO . .
5 + Vso = Z apTy exp(ikt), div ug = 0, ué?)) o —283) 50
0<|k|<m
OR O(vo + u T ,
a—:+(uo,VTo) - > [f% ($7U0+u07 ( 0895 0),T0, 8:}00) cxp(ikT)
0<|k|<m
(3.11)

- < S (x’vo + g, Al Ty, %) exp(ikT) >}
800 aTD 800 aTO
|:802]€ (ZL‘,UO; 83’; ) 0 am 77—) SDQkJ (x,vo’—ax s 0, am 77_ ’

0<|[k|<m

< Ry >=< ug >=< 59 >= 0.
The last representation takes into account equality (3.14) which follows from the first

equation (3.11) (see below).
We have furthermore

0" Pz (5) 9 (5)
— =0,< >=0 = =1,2
or op? S U P N P
82WO 1 2 i 8f2;€ < 8(U0 + Uo) (‘3T0)
= _Xi < T, Ug + Vo, 7T07 pr(ZkT)
(9p2 0< |k <m IZ(; JZ:; 3wj+3l ox ox r—0
0
y (wo, 41 + Zo7l+1)bj0 s= vl A,
dp
990 02(()3)
=T g >=0
ap 87_ ) gO Y
07 0?7,
—-— - =A-<A><Zy>=0,Zylyn =0
87' X apz 3 0 ) 0|8Q )
Wo‘pzoo = ZO’p:oo = Zo‘p:oo = gg|pzoo =0.
(3.12)
We find for main stationary regular coefficients (2.10)
—VA’UO -+ Vpo + (Uo, V)U0+ < (Uo, V)uo >
0 T,
= Z < Y1k (x,vo, %,Tg, a—xo,T) > + Z ai Ry ea:p(z'k7)> :
0<|k|<m 0<|k|<m
div vy = 0, (3.13)
v 0T,
_XAT0+(U0,VT0) = Z < ok ({L‘,Uo,a—:;,T(),a—;,T) >,

0<|[k|<m

UO|aQ = _w0|aQ ) T0|aQ = h.



50 N. Ivleva, V. Levenshtam

Following [9], we consider all boundary layer vector-functions vanishing out of the
boundary strip {1y,/3, and in € they are multiplied by the cutting-off function x €
C>®(Q):

_J 1,0<r < /3,
X(.I) - { O,x € 9\9277/3'

From (3.10) we find that wy = 0, z(()?’) = 0. From the first equality (3.11) we have

uy = Z (ik) 'Ma, Ty exp(ikT), (3.14)
0<|k|<m
Asy = div Z apTy exp(ikwt), (3.15)
0<|k|<m
0
% = Z (arTo)® eap(ikwt)| g, < so >= 0. (3.16)
" loq 0<|k|<m

From the second equality (3.11) and (3.14) we find

Ry=0 (m o, 88110 To, 6;; : ) + Z k~%(May Ty, Vo) exp(ikT). (3.17)
0<|k|<m

Let us replace uy and Ry in system (3.13) by their expressions (3.14), (3.17) found just

now. So, we obtain problem (2.3) with u = vy, ¢ = po, W = Tj as the unknowns. It is

solvable by the hypothesis.

By the mathematical induction we prove that the construction of each coefficient
of series (2.10) is reduced to solving a finite number of problems of types (A1l)-(A5).
Let for n > 1 and for all £ < n the inductive assumption be satisfied for the set of all
coeffitients Py: v, Uk, Pk, Uk, Sk, Wi,y Zks P—1, 9k, Tk, R, W, Zx. By using (3.1)-(3.9), let
us write out the problems for the set of coefficients P,.

According to (3.7), (3.5), (3.1)-(3.4) and the inductive assumption, we have

ow Q
ap = an(wv p)v wn ‘p:oo - 07 (318)
9wl
57 = Bus(@p), w)| . =0.5=1,2, (3.19)
az,(?)
B Aa(W,p,7), 2 n)’p:oo =0,< 23 >=0. (3.20)

Here a,, B, s, A, are the known at this step boundary layer functions, and A, is quickly
oscillating in 7 having zero average in 7. We note that in this case a,, 0,5 have the

form ZF Y, p) exp(Asp) and A, the form ZZF W, p) exp(Asp) exp(irwt). Here

r=1 s=1
F; and )\ are of the same nature as I’ and X in problems (A3)-(A5).
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Now for regular nonstationary vector-functions we find

ou,,
or

+ Vs, — Z arT, exp(ikt) = folz,7), div u, = 0, ul?) 00 = —223)’89, (3.21)
0<|k|<m

OR, 0 0 0T
+ (UO7VTn) + (una VTO) - Z { o2k (3:71)07 i;aTOa _anT) Un,

or ou 0 0
0<|k|<m
890% 81}0 GTO (%n 8302k 81}0 aTo
o (o G o 0m) G+ S (e G ) T
890% 81}0 8T0 8Tn .
g (o G G ) G f - <] = e

< U, >=< R, >=< s, >=0.

The known vector-functions f,,(z, 7), on(x, 7) having zero average in 7 are in the right-
hand sides of equalities (3.21), (3.22).

Once again for the boundary layer coefficients we find

Oh,,

X ap - 5n(¢7p>7 hn|p:oo = 07 (323)
0% 022" i i

or -V 3p2 = Mn,s(l/)apa 7—)7 Zgz)lag - u7(’L) o005 = 1,2, (324)

o*w,,
X 8/)2 = 7n(¢a P), Wn|p:oo = O, (325)

99y
a_p = 5n(¢7/07 7-)7 (326)
0z, %7,

(97' - X ap2 = Un(%ﬂ» T)a Zn‘ag = _RTL—l‘BQ’

< 7, >=< 29

(3.27)
>=<gp >=0, Wo| _oo = Znl,mne = #nl oo = Inlpmoe =0

Here vy, ftn,s, &, Yo, O are the known boundary layer vector-functions, having the above
noted structure after formula (3.20).
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For the regular coeffitients we have further

—vAv, + YV, + (v, V), + (0, V)vo+ < (1o, V), > + < (g, V)ug >
. Jp1x vy 0Ty
_ Z ap R, exp(zk7’)> — Z [< —/ (x,vo, LTy, —, ) Up,
<0<k|<m 0<|k|<m Ou Oz Oz
0Pk dvg Ty ov,  0p1k Ovg Ty
+ aw (IE, Vo, 5 a T07 8;1: ?7—) 81’ + 8T Z, Vo, a TO: al” Tn
D1y, g 0Ty oT, )
¥k T — —
+ o9 (I, V0 5 10 5 ) B } (), div v, =0,
—XAT, + (vo, VT},) + (v, V1) (3.28)
(9(,02k 01}0 8T
- Z [<W(% Vo, Oz 1o, —— Er )Un
0< k| <m
0o, dvg Ty v,  O0pay Ovg Ty
T ow (MO’ 9z 10 By ) or T ar \&ve gy Te g ) I
8(,0% o (%0 T 8Tg 8T . (Qj)
85 y VOoy "5 8.73'7 0y a s T a.T = Xn ’
Unlog = — Walaq s Tulag = — Walsg s

where ¥, (z), xn(x) are the known regular vector-functions.
We find w, from (3.18), (3.19), and W,, from (3.25).
variable 7 from (3.20), (3.27) we can uniquely define 2V Let (1?%,

of the problem

% + Vs = fo,divu=0,u?

‘89 = _Zn?’)‘asz’

which is solvable due to the equality

(see [4, Lemma 4]).
Next by (3.21)

Up = Z (ik) 'Ha, Ty, exp(ikT)+ u

0<|k|<m

<u>=<s>=0,

Now after excluding the

0
s,) be the solution

(3.29)

(3.30)

(3.31)
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Substituting expression (3.31) for wug, u,, in (3.22), we find

R,= > [k{(NayT,, VTy) + (MayTy, VT,)} exp(ikr)]

0<|k|<m

ov (%0 8T oV 81}0 8T0 8vn

+% (.Z' Vo, 7— a T07 a >UTL + a_w (x7U07 a,f 7T07 8 ) (9x
(3.32)

ov vy Ty
—i—a—T (.CE Vo, — o Ay, — s >Tn

ov vy 0Ty aT,
+% (m Vo, %aToa %>T> O +dp(z,7),

where d,,(z,7) is the known function. Let us substitute expressions (3.31), (3.32) for
Up, Ry, in (3.28). We get the problem

—vAv, + Vp, + (vo, V), + (v, V)vg

+ Y kP (MagTo, VIHay T, + Y k7> (HapT,, V)Ha_ i T

0<|k|<m 0<|k|<m
>k Pa(May Ty, VT,) — Yk *ap(a_y Ty, VT)
0<|k|<m 0<|k|<m
ov (%0 8T
- Z < ag % (.’,U,U(], o T07 o 7T> Un
0<|k|<m
ov 8?)0 aT() (%n ov 81)0 8T
to, (l‘;voaa—x7To78—x,T> o T T <$ vo, 55 Lo, 5 )Tn
8\11 81}0 GTO 3Tn .
+$ (w vo, 5= To, %,7) ax} exp(tkt) >
&plk (91}0 8T
- Z {< Dy (937210,8— To, —— e )Un
0<|k[<m
01k Ovo Ty ov, 01 Ovg a7y
ik T, el P A (3.33)
+ aw (.T,'Uo, 8 0 (91: 77-) 8x + aT Z, Vo, axa 0> 5’%’7— n
D1 ovy . 0Ty \ 0T,
—_— — T — p—
s (” Y 52 B ) 0z >] (),
div v, =0,

—xAT, + (vo, VT},) + (v, Vo)

ago% 81)0 (9T
— Z |:<W (fL’,’UQ, O To, Oz 7') Up+
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T n T
+8¢2k <Z’ v avo T a : ) 8U + agpzk (l’,’l}o,%,To,Q,T) Tn+

ow 0 90T ) o oT Ox ox
8gogk 81}0 (9T0 8Tn
IP2% 70 7, 0 s ) D o | =
+ 85’ <x7U07 8IE y 40y 333 aT) 833' >:| X’I’L(x)7

Unlog = —Wnlaq » Tnlog = —Whalaq -
In view of the equality
/ w®ds = 0 (3.34)
9)
[4, Lemma 4] the heterogeneity in boundary conditions is removed. So, one can con-
struct infinitely smooth couple (gn,j(ln), which satisfies the boundary conditions of

problem (3.33), and the condition div 8n: 0. As a result we get the problem like
(2.4), which is solvable by the hypothesis. We find functions Z,,, z,(f), s =1,2,g9,, h,
from equations (3.23), (3.24), (3.26), (3.27). It is obvious now that our induction as-
sumption is satisfied for the set of coeffitients P,. Thus construction of the formal
asymthotic expansion of the solution of problem (2.1) is completed. Its justification
and the proof of the second statement of Theorem 2.1 can be carried out as in [5]. O
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