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Abstract. The averaging method is justified and the complete asymptotics of a so-
lution periodic in time is constructed and justified for an evolutional system of par-
tial differential equations with quickly oscillating in time junior terms, some of which
are proportional to the frequency of oscillations. The considered system generalizes
the well-known thermal liquid convection problem (in Oberdeck-Boussinesc approach)
when a vessel with a liquid vibrates with high frequency.

1 Introduction

In the work [11] the Krylov-Bogoliubov averaging method [1] is applied to the problem
of the thermal liquid convection beginning in a vessel subjected to small in amplitude
vibrations at high frequency ω. In [6, 4] a rigorous justification of the applicability
of this method to a wide class of thermal convection problems in the field of quickly
oscillating forces (in particular, to the problem in [11]) is provided. In the work [5] for
similar problems the complete asymptotics of a solution (as ω → ∞) is constructed
and justified, where the leading term is a solution of the homogenized problem. In our
paper the considered problem is much more general than in papers [11, 6, 4, 5]. We
call it a generalized problem of vibrational convection. For this problem the complete
asymptotics (as ω → ∞) of a solution 2π/ω-periodic in time of the original (per-
turbed) problem is constructed in a small neighbourhood of a stationary solution

◦
v

of the corresponding averaged problem. Note that a specificity of the problem of the
thermal convection (see, eg., [4]), approaches of the averaging method theory [1] and
the boundary layer method [9] are used. It is proved that the construction of every
partial sum of the asymptotics is reduced (if

◦
v is known) to solving a finite number of

ω-independent linear stationary uniquely solvable problems of five specific types. Two
of these types are related to partial differential equations and three of them are related
to ordinary differential equations. Existence and relative uniqueness of the mentioned
2πω−1-periodic in time solutions and justification of constructed in this work complete
asymptotics may be verified as in [4, 5].
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2 The problem statement and the result formulation

Let Ω be a bounded domain in R3 with an infinitely smooth boundary ∂Ω. In the
cylinder Q = Ω×R,Ω = Ω ∪ ∂Ω, we consider the problem of finding solutions 2πω−1-
periodic in t of the system of equations

∂v

∂t
+ (v,∇)v = −∇p+ ν∆v + ω

∑
0<|k|≤m

ak(x) exp(ikωt)T

+
∑

0≤|k|≤m

f1k

(
x, v,

∂v

∂x
, T,

∂T

∂x

)
exp(ikωt),

∂T

∂t
+ (v,∇T ) = χ∆T +

∑
0≤|k|≤m

f2k

(
x, v,

∂v

∂x
, T,

∂T

∂x

)
exp(ikωt),

div v = 0, v|∂Ω = 0, T |∂Ω = h.

(2.1)

Here m ∈ N, ω is a large parameter, ν, χ > 0, ak(x), f1k(x, v, w, T, S) ∈ C3,
f2k(x, v, w, T, S) ∈ C, h(x) ∈ R, and ak(x) = a−k(x),

f1k(x, v, w, T, S) = f1,−k(x, v, w, T, S),

f2k(x, v, w, T, S) = f2,−k(x, v, w, T, S),

where (x, v, w, T, S) ∈ Ω × R3 × R9 × R × R3, and the overlined vector-functions are
complex conjugate. Let f1k, f2k, ak, h be infinitely differentiable in all their arguments.
We suppose also that the components fikr of the vector-functions fik depend on com-
ponents v, w and S in a polynomial way and they are linear functions in w:

fikr(x, v, w, T, S) =

Q∑
|α|=0

ψikrα(x, T )vα1
1 vα2

2 vα3
3 wα4

1 wα5
2 ...wα12

9 Sα13
1 Sα14

2 Sα15
3 , (2.2)

where Q ∈ N, α = αikr = (α1, ..., α15) is a multi-index, and α4 + α5 + ...+ α12 ≤ 1.
In the present work solutions to problem (2.1) and all other problems are understood

in the classic sense.
Let us consider the system
∂u

∂t
− ν∆u+∇q + (u,∇)u+

∑
0<|k|≤m

k−2[(ΠakW,∇)Πa−kW − ak(Πa−kW,∇W )]

=
∑

0<|k|≤m

< akΨ

(
x, u,

∂u

∂x
,W,

∂W

∂x
, τ

)
exp(ikτ) >

+
∑

0≤|k|≤m

< ϕ1k

(
x, u,

∂u

∂x
,W,

∂W

∂x
, τ

)
>,

div u = 0,

∂W

∂t
− χ∆W + (u,∇W ) =

∑
0≤|k|≤m

< ϕ2k

(
x, u,

∂u

∂x
,W,

∂W

∂x
, τ

)
>, x ∈ Ω,

u|∂Ω = 0, W |∂Ω = h(x).
(2.3)
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We call it an averaged (limiting) problem. Here and below the symbol < ϕ(..., τ) >

denotes the ϕ averaging in τ :< ϕ(..., τ) >=
1

2π

2π∫
0

ϕ(..., τ)dτ, where ϕ(..., τ) is a

continuous 2π-periodic in τ vector-function,

ϕrk(x, u,
∂u
∂x
,W, S, τ) = frk(x, u+ u0,

∂(u+u0)
∂x

,W, S)eikτ ≡
∑
s

lrkse
isτ , r = 1, 2,

u0 =
∑

0<|k|≤m

(ik)−1ΠakWeikτ .

Here Π is a known in mathematical hydrodynamics orthoprojector in L2(Ω) onto the
subspace of solenoid vectors S2(Ω) (see [10, 3, 8]),

Ψ(x, u,
∂u

∂x
,W, S, τ) ≡

∑
s 6=0

0≤|k|≤m

(is)−1l2kse
isτ .

Let problem (2.3) have a real stationary solution (u, q,W ) = (u0, p0, T0), and the elliptic
system

L(v, q, T ) ≡ −ν∆v + (v0,∇)v + (v,∇)v0 +∇q

+
∑

0<|k|≤m

k−2[(ΠakT0,∇)Πa−kT + (ΠakT,∇)Πa−kT0 − ak(Πa−kT,∇T0)

−ak(Πa−kT0,∇T )]−
∑

0<|k|≤m

< ak

[
∂Ψ

∂u

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
v

+
∂Ψ

∂w

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
∂v

∂x
+
∂Ψ

∂T

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
T

+
∂Ψ

∂S

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
∂T

∂x

]
exp(ikτ) >

−
∑

0≤|k|≤m

[
<
∂ϕ1k

∂u

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
v

+
∂ϕ1k

∂w

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
∂v

∂x
+
∂ϕ1k

∂T

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
T (2.4)

+
∂ϕ1k

∂S

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
∂T

∂x
>

]
= 0,

div v = 0,

R(v, T ) ≡ −χ∆T + (v0,∇T ) + (v,∇T0)

−
∑

0≤|k|≤m

[
<
∂ϕ2k

∂u

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
v
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+
∂ϕ2k

∂w

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
∂v

∂x
+
∂ϕ2k

∂T

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
T

+
∂ϕ2k

∂S

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
∂T

∂x
>

]
= 0, v|∂Ω = 0,

T |∂Ω = 0,

∫
Ω

qdx = 0

have no nontrivial solutions.
Let the above mentioned conditions be satisfied. Then problem (2.1) for large

values of ω has a relatively unique (in the usual Hölder norm C2,1(Q)) 2πω−1-periodic
in time solution (vω, Tω) (the corresponding function pω is defined here uniquely up to
numerical term).

To construct the asympthotic expansion the solution of the stated problem we
replace in (2.1) ωt by τ and ω−1/2 by ε. Then we get the problem of finding 2π-periodic
in τ solutions of the system

∂v

∂τ
− ε2ν∆v + ε2∇p+ ε2(v,∇)v =

∑
0<|k|≤m

ak(x) exp(ikτ)T

+ε2
∑

0≤|k|≤m

f1k

(
x, v,

∂v

∂x
, T,

∂T

∂x

)
exp(ikτ),

∂T

∂τ
− ε2χ∆T + ε2(v,∇T ) = ε2

∑
0≤|k|≤m

f2k

(
x, v,

∂v

∂x
, T,

∂T

∂x

)
exp(ikτ),

div v = 0, v|∂Ω = 0, T |∂Ω = h.

(2.5)

In order to apply the boundary-layer method [9] to problem (2.5) we use the
curviliniar coordinate system (ψ, r) on the closure Ωη of the boundary subdomain Ωη

of the domain Ω (η is the width of the layer). We define a mapping ∂Ω× [0, η] → Ωη by
the rule (ψ, r) → ψ + nψr, where ψ = (ψ1, ψ2) is a point on ∂Ω with local coordinates
ψ, and nψ is an inward normal vector to ∂Ω at the point ψ. We choose the number η
to be sufficiently small, so that the mentioned normals in Ωη do not intersect.

Then let us introduce the new independent variable ρ =
√
ωr, r ≤ η, express the

derivatives in xj, 1≤j≤3, via the derivatives in ψ1, ψ2 and ρ and expand the coefficients
in the powers of ω−1/2. We get the following equalities:

∂

∂xj
=

∂r

∂xj

∂

∂r
+

2∑
k=1

∂ψk
∂xj

∂

∂ψk
=
√
ω
∂r

∂xj

∂

∂ρ
+

2∑
k=1

∂ψk
∂xj

∂

∂ψk
, (2.6)

∂r

∂xj
≡ bj(x) = bj(ψ, r) = bj(ψ,

ρ√
ω

)

= bj(ψ, 0) +
∂bj(ψ, 0)

∂r

ρ√
ω

+
1

2

∂2bj(ψ, 0)

∂r2

ρ2

ω
+ ...

≡ bj0 + bj1
ρ√
ω

+ bj2
ρ2

ω
+ ...

(2.7)
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∂ψk
∂xj

≡ ckj(x) = ckj(ψ, r) = ckj(ψ,
ρ√
ω

) = ckj(ψ, 0) +
∂ckj(ψ, 0)

∂r

ρ√
ω

+
1

2

∂2ckj(ψ, 0)

∂r2

ρ2

ω
+ ... ≡ ckj0 + ckj1

ρ√
ω

+ ckj2
ρ2

ω
+ ...

(2.8)

Hence
∂

∂xj
=

(√
ωbj0 + bj1ρ+ bj2

ρ2

√
ω

+ bj3
ρ3

ω
+ . . .

)
∂

∂ρ

+
2∑

k=1

(
ckj0 + ckj1

ρ√
ω

+ ckj2
ρ2

ω
+ . . .

)
∂

∂ψk
.

(2.9)

We seek the asymptotics of the 2π-periodic in τ solution of problem (2.5) in the
following form

v(x, τ, ε) =
∞∑
k=0

εkvk(x) +
∞∑
k=0

εkuk(x, τ) +
∞∑
k=0

εkwk(ψ, ρ)

+
∞∑
k=0

εkzk(ψ, ρ, τ),

p(x, τ, ε) =
∞∑
k=0

εkpk(x) +
∞∑
k=0

εk−2sk(x, τ) +
∞∑
k=0

εkhk(ψ, ρ)

+
∞∑
k=0

εk−1gk(ψ, ρ, τ),

T (x, τ, ε) =
∞∑
k=0

εkTk(x) +
∞∑
k=0

εk+2Rk(x, τ) +
∞∑
k=0

εk+1Wk(ψ, ρ)

+
∞∑
k=0

εk+1Zk(ψ, ρ, τ),

ρ = ε−1r,

(2.10)

Let us consider five types of linear uniquely solvable problems: the construction of
coefficients of series (2.10) is reduced to them (see Section 3). The first two problems
are related to partial differential equations.

(A1) The Neyman problem for the following system

∆s = f(x),
∂s

∂n

∣∣∣∣
∂Ω

= ϕ(x), (2.11)

where f, ϕ are the infinitely differentiable in Ω and ∂Ω three-dimensional vector-
functions, n is an inward normal to the boundary ∂Ω and∫

Ω

fdx+

∫
∂Ω

ϕds = 0.

(A2) The Dirichlet problem for the following system

L(v, q, T ) = f(x), div v = 0,

∫
Ω

qdx = 0,

R(v, T ) = g(x), v|∂Ω = 0, T |∂Ω = 0,

(2.12)
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where f, g are the infinitely differentiable vector-functions.
The next three are the problems of limited on the ray ρ > 0 solutions to the

following ordinary differential equations with the parameter ψ ∈ ∂Ω :
(A3)

ikz(ψ, ρ) = ν
∂2z(ψ, ρ)

∂ρ2
+ F (ψ, ρ) exp(λρ),

z(ψ, 0) = z0(ψ),
z|ρ=∞ = 0.

(2.13)

(A4)
∂2w(ψ, ρ)

∂ρ2
+ F (ψ, ρ) exp(λρ) = 0,

w |ρ=∞ = 0.
(2.14)

(A5)
∂w(ψ, ρ)

∂ρ
+ F (ψ, ρ) exp(λρ) = 0,

w |ρ=∞ = 0.
(2.15)

Here k ∈ Z \ {0}, Reλ < 0, F is a polynomial in ρ with infinitely differentiable in ψ
coeffitients.
Remark. The presented list of five types of auxiliary problems fully characterizes
our algorithm used for construction the asympthotics of the solution to problem (2.1).
Problems (A3)-(A5) are also included in this algorithm just because of it, though their
solution consists of finite number of arithmetic operations.

Theorem 2.1. Let the conditions of this section be satisfied, ω > ω0, where ω0 is a
sufficiently large number, (uω, pω, Tω) is the specified in this section 2π/ω−1-periodic in
t solution of system (2.1). Then the following statements are true.

1) Construction of any partial sum (un, pn, T n) of the complete formal asymptotics
of the solution of the stated problem for ω >> 1 is reduced to solving a finite number
of linear uniquely solvable problems of types (A1)-(A5). All the terms of partial sums
of series (2.10) are real and infinitely smooth.

2) For all non-negative numbers l,m (uω, pω, Tω) ∈ Cl,m(Q) and following estimates
hold

‖uω − un‖l,m + ‖Tω − T n‖l,m ≤ cl,m,nω
−[n+1−max(l−2,2m−2,0)]/2, (2.16)

‖∇pω −∇pn‖l,m ≤ cl,m,nω
−[n+1−max(l,2m)]/2, (2.17)

where cl,m,n are constants independent of ω.

Here C l,m(Q) is a usual Hölder space on the cylinder Q of all vector-functions
u(x, t), which have continuous derivatives in x up to order [l] and in t up to order [m],
satisfying the Hölder condition with the appropriate indices.

3 Construction of a formal asymptotic expansion

In this section we prove the first statement of Theorem 2.1.
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Proof. First we establish that the construction of the coefficients in equalities (2.1) is
indeed reduced to solving a finite number of problems of types (A1)-(A5).

For x ∈ Ωη we denote the components of an arbitrary vector v(x) ∈ R3 in the
curvilinear coordinates (ψ1, ψ2, r) as v(s)(x), s = 1, 2, 3. If v(x) = v1(x)+v2(x)i, v1, v2 ∈
R3, then we write v(s)(x) = v

(s)
1 (x)+v

(s)
2 (x)i and use the known representations of ∆,∇

and div in the coordinates (ψ, ρ) (see [4], [2]):

∆v =
N∑

j=−2

εjLj(ψ, ρ)v + [R1,N(x, ε)](v), (3.1)

∇p =
∑
j=−1

εjPj(ψ, ρ)p+ [R2,N(x, ε)](p) (3.2)

div v = ε−1 ∂

∂ρ
v(3) +

N∑
j=0

εj(Dj,1(ψ, ρ)v
(1) +Dj,2(ψ, ρ)v

(2)

+Dj,3(ψ, ρ)v
(3)) + [R3,N(x, ε)](v).

(3.3)

Here Lj, Pj, Dj,i are linear differential expressions in ψ1, ψ2, ρ and their coefficients
are polynomials in ρ with (ψ1, ψ2)-dependent coefficients; Rj,N are linear differential
expressions in ψ1, ψ2, ρ with (x, ε)-dependent coefficients. We write down only the
expressions for the leading terms of expansions (3.1) and (3.2):

(L−2(ψ, ρ)v)
(s) = −∂2v(s)/∂ρ2, s = 1, 2, 3,

(P−1(ψ, ρ)p)
(s) = 0, s = 1, 2, (P−1(ψ, ρ))

(3) = ∂p/∂ρ. (3.4)

Let us formally substitute series (2.10) in equalities (2.5):

∞∑
k=0

εk
[
∂uk(x, τ)

∂τ
+
∂zk(ψ, ρ, τ)

∂τ

]

−ε2ν∆
∞∑
k=0

εk [vk(x) + uk(x, τ) + wk(ψ, ρ) + zk(ψ, ρ, τ)]

+ε2∇
∞∑
k=0

εk
[
pk(x) + ε−2sk(x, τ) + hk(ψ, ρ) + ε−1gk(ψ, ρ, τ)

]
+ε2

(
∞∑
k=0

εk [vk(x) + uk(x, τ) + wk(ψ, ρ) + zk(ψ, ρ, τ)] ,∇

)
(3.5)

×
∞∑
k=0

εk [vk(x) + uk(x, τ) + wk(ψ, ρ) + zk(ψ, ρ, τ)]

=
∑

0<|k|≤m

ak(x)
∞∑
k=0

εk
[
Tk(x) + ε2Rk(x, τ) + εWk(ψ, ρ) + ε2Zk(ψ, ρ, τ)

]
×exp(ikτ)
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+ε2
∑

0≤|k|≤m

f1k

(
x, v(x, τ),

∂v(x, τ)

∂x
, T (x, τ),

∂T (x, τ)

∂x
exp(ikτ)

)
;

∞∑
k=0

εk+2

[
∂Rk(x, τ)

∂τ
+
∂Zk(ψ, ρ, τ)

∂τ

]

−ε2χ∆
∞∑
k=0

εk
[
Tk(x) + ε2Rk(x, τ) + εWk(ψ, ρ) + ε2Zk(ψ, ρ, τ)

]

+ε2

(
∞∑
k=0

εk [vk(x) + uk(x, τ) + wk(ψ, ρ) + zk(ψ, ρ, τ)] , (3.6)

∇
∞∑
k=0

εk
[
Tk(x) + ε2Rk(x, τ) + εWk(ψ, ρ) + ε2Zk(ψ, ρ, τ)

])

= ε2
∑

0≤|k|≤m

f2k

(
x, v(x, τ),

∂v(x, τ)

∂x
, T (x, τ),

∂T (x, τ)

∂x

)
exp(ikτ),

div

(
∞∑
k=0

εk [vk(x) + uk(x, τ) + wk(ψ, ρ) + zk(ψ, ρ, τ)]

)
= 0, (3.7)

∞∑
k=0

εk [vk(x) + uk(x, τ) + wk(ψ, ρ) + zk(ψ, ρ, τ)]

∣∣∣∣∣
∂Ω

= 0, (3.8)

∞∑
k=0

εk
[
Tk(x) + ε2Rk(x, τ) + εWk(ψ, ρ) + ε2Zk(ψ, ρ, τ)

]∣∣∣∣∣
∂Ω

= h(x). (3.9)

Let us expand vector-functions fik, where v, ∂v
∂x
, T, ∂T

∂x
are represented by series

(2.10), in Taylor series with (x, v0,
∂v0
∂x
, T0,

∂T0

∂x
) as the center, and equate the coefficients

at the same degrees of ε separately for regular and boundary layer vector-functions.
Applying averaging in τ , we split the obtained equalities into problems for stationary
and non-stationary vector-functions.

From equations (3.5), (3.7), by taking into account equalities (3.3), (3.1) and (3.4),
we find first of all that

∂w
(3)
0

∂ρ
= 0,

∂z
(3)
0

∂ρ
= 0,

∂2w
(s)
0

∂ρ2
= 0, s = 1, 2,

w0|ρ=∞ = z0|ρ=∞ = 0, < z
(3)
0 >= 0.

(3.10)
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For the first oscillating regular coefficients in equations (3.5), (3.6) we find that
∂u0

∂τ
+∇s0 =

∑
0<|k|≤m

akT0 exp(ikτ), div u0 = 0, u
(3)
0

∣∣∣
∂Ω

= −z(3)
0

∣∣∣
∂Ω
,

∂R0

∂τ
+ (u0,∇T0) =

∑
0≤|k|≤m

[
f2k

(
x, v0 + u0,

∂(v0 + u0)

∂x
, T0,

∂T0

∂x

)
exp(ikτ)

− < f2k

(
x, v0 + u0,

∂(v0+u0)
∂x

, T0,
∂T0

∂x

)
exp(ikτ) >

]
=

∑
0≤|k|≤m

[
ϕ2k

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
− < ϕ2k

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
>

]
,

< R0 >=< u0 >=< s0 >= 0.

(3.11)

The last representation takes into account equality (3.14) which follows from the first
equation (3.11) (see below).

We have furthermore

∂z
(s)
0

∂τ
− ν

∂2z
(s)
0

∂ρ2
= 0, < z

(s)
0 >= 0, z

(s)
0

∣∣∣
∂Ω

= −u(s)
0

∣∣∣
∂Ω
, s = 1, 2,

∂2W0

∂ρ2
= −χ−1

∑
0≤|k|≤m

2∑
l=0

3∑
j=1

<
∂f2k

∂wj+3l

(
x, u0 + v0,

∂(u0 + v0)

∂x
, T0,

∂T0

∂x

)∣∣∣∣
r=0

exp(ikτ)

×∂(w0,l+1 + z0,l+1)

∂ρ
bj0 >≡ −χ−1 < A >,

∂g0

∂ρ
= −∂z

(3)
0

∂τ
,< g0 >= 0,

∂Z0

∂τ
− χ

∂2Z0

∂ρ2
= A− < A >,< Z0 >= 0, Z0|∂Ω = 0,

W0|ρ=∞ = Z0|ρ=∞ = z0|ρ=∞ = g0|ρ=∞ = 0.

(3.12)
We find for main stationary regular coefficients (2.10)

−ν∆v0 +∇p0 + (v0,∇)v0+ < (u0,∇)u0 >

=
∑

0≤|k|≤m

< ϕ1k

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
> +

〈 ∑
0<|k|≤m

akR0 exp(ikτ)

〉
,

div v0 = 0,

−χ∆T0 + (v0,∇T0) =
∑

0≤|k|≤m

< ϕ2k

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
>,

v0|∂Ω = −w0|∂Ω , T0|∂Ω = h.

(3.13)
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Following [9], we consider all boundary layer vector-functions vanishing out of the
boundary strip Ω2η/3, and in Ω they are multiplied by the cutting-off function χ ∈
C∞(Ω):

χ(x) =

{
1, 0 ≤ r ≤ η/3,
0, x ∈ Ω \ Ω2η/3.

From (3.10) we find that w0 = 0, z
(3)
0 = 0. From the first equality (3.11) we have

u0 =
∑

0<|k|≤m

(ik)−1ΠakT0 exp(ikτ), (3.14)

∆s0 = div
∑

0<|k|≤m

akT0 exp(ikωt), (3.15)

∂s0

∂n

∣∣∣∣
∂Ω

=
∑

0<|k|≤m

(akT0)
(3) exp(ikωt)|∂Ω , < s0 >= 0. (3.16)

From the second equality (3.11) and (3.14) we find

R0 = Ψ

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
+

∑
0<|k|≤m

k−2(ΠakT0,∇T0) exp(ikτ). (3.17)

Let us replace u0 and R0 in system (3.13) by their expressions (3.14), (3.17) found just
now. So, we obtain problem (2.3) with u = v0, q = p0,W = T0 as the unknowns. It is
solvable by the hypothesis.

By the mathematical induction we prove that the construction of each coefficient
of series (2.10) is reduced to solving a finite number of problems of types (A1)-(A5).
Let for n ≥ 1 and for all k < n the inductive assumption be satisfied for the set of all
coeffitients Pk: vk, uk, pk, uk, sk, wk, zk, hk−1, gk, Tk, Rk,Wk, Zk. By using (3.1)-(3.9), let
us write out the problems for the set of coefficients Pn.

According to (3.7), (3.5), (3.1)-(3.4) and the inductive assumption, we have

∂w
(3)
n

∂ρ
= αn(ψ, ρ), w

(3)
n

∣∣
ρ=∞ = 0, (3.18)

∂2w
(s)
n

∂ρ2
= βn,s(ψ, ρ), w

(s)
n

∣∣
ρ=∞ = 0, s = 1, 2, (3.19)

∂z
(3)
n

∂ρ
= λn(ψ, ρ, τ), z

(3)
n

∣∣
ρ=∞ = 0, < z(3)

n >= 0. (3.20)

Here αn, βn,s, λn are the known at this step boundary layer functions, and λn is quickly
oscillating in τ having zero average in τ . We note that in this case αn, βns have the

form
k∑
s=1

Fs(ψ, ρ) exp(λsρ) and λn the form
p∑
r=1

k∑
s=1

Fs(ψ, ρ) exp(λsρ) exp(irωt). Here

Fs and λs are of the same nature as F and λ in problems (А3)-(А5).
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Now for regular nonstationary vector-functions we find

∂un
∂τ

+∇sn −
∑

0<|k|≤m

akTn exp(ikτ) = fn(x, τ), div un = 0, u(3)
n

∣∣
∂Ω

= −z(3)
n

∣∣
∂Ω
, (3.21)

∂Rn

∂τ
+ (u0,∇Tn) + (un,∇T0)−

 ∑
0≤|k|≤m

{
∂ϕ2k

∂u

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
vn

+
∂ϕ2k

∂w

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
∂vn
∂x

+
∂ϕ2k

∂T

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
Tn

+
∂ϕ2k

∂S

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
∂Tn
∂x

}
− < ... >

]
= ϕn(x, τ),

< un >=< Rn >=< sn >= 0.

(3.22)

The known vector-functions fn(x, τ), ϕn(x, τ) having zero average in τ are in the right-
hand sides of equalities (3.21), (3.22).

Once again for the boundary layer coefficients we find

χ
∂hn
∂ρ

= δn(ψ, ρ), hn|ρ=∞ = 0, (3.23)

∂z
(s)
n

∂τ
− ν

∂2z
(s)
n

∂ρ2
= µn,s(ψ, ρ, τ), z

(s)
n

∣∣
∂Ω

= − u(s)
n

∣∣
∂Ω
, s = 1, 2, (3.24)

χ
∂2Wn

∂ρ2
= γn(ψ, ρ), Wn|ρ=∞ = 0, (3.25)

∂gn
∂ρ

= ξn(ψ, ρ, τ), (3.26)

∂Zn
∂τ

− χ
∂2Zn
∂ρ2

= vn(ψ, ρ, τ), Zn|∂Ω = −Rn−1|∂Ω ,

< Zn >=< z
(s)
n >=< gn >= 0, Wn|ρ=∞ = Zn|ρ=∞ = zn|ρ=∞ = gn|ρ=∞ = 0.

(3.27)

Here vn, µn,s, ξn, γn, δn are the known boundary layer vector-functions, having the above
noted structure after formula (3.20).



52 N. Ivleva, V. Levenshtam

For the regular coeffitients we have further

−ν∆vn +∇pn + (v0,∇)vn + (vn,∇)v0+ < (u0,∇)un > + < (un,∇)u0 >

−

〈 ∑
0<|k|≤m

akRn exp(ikτ)

〉
−

∑
0≤|k|≤m

[
<
∂ϕ1k

∂u

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
vn

+
∂ϕ1k

∂w

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
∂vn
∂x

+
∂ϕ1k

∂T

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
Tn

+
∂ϕ1k

∂S

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
∂Tn
∂x

>

]
= ψn(x), div vn = 0,

−χ∆Tn + (v0,∇Tn) + (vn,∇T0)

−
∑

0≤|k|≤m

[
<
∂ϕ2k

∂u

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
vn

+
∂ϕ2k

∂w

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
∂vn
∂x

+
∂ϕ2k

∂T

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
Tn

+
∂ϕ2k

∂S

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
∂Tn
∂x

>

]
= χn(x),

vn|∂Ω = − wn|∂Ω , Tn|∂Ω = −Wn|∂Ω ,

(3.28)

where ψn(x), χn(x) are the known regular vector-functions.
We find wn from (3.18), (3.19), and Wn from (3.25). Now after excluding the

variable τ from (3.20), (3.27) we can uniquely define z(3)
n . Let (

0
un,

0
sn) be the solution

of the problem

∂u

∂τ
+∇s = fn, div u = 0, u(3)

∣∣
∂Ω

= −z(3)
n

∣∣
∂Ω
, < u >=< s >= 0, (3.29)

which is solvable due to the equality∫
∂Ω

z(3)
n ds = 0 (3.30)

(see [4, Lemma 4]).
Next by (3.21)

un =
∑

0<|k|≤m

(ik)−1ΠakTn exp(ikτ)+
0
un . (3.31)
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Substituting expression (3.31) for u0, un in (3.22), we find

Rn =
∑

0<|k|≤m

[k−2{(ΠakTn,∇T0) + (ΠakT0,∇Tn)} exp(ikτ)]

+
∂Ψ

∂u

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
vn +

∂Ψ

∂w

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
∂vn
∂x

+
∂Ψ

∂T

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
Tn

+
∂Ψ

∂S

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
∂Tn
∂x

+ dn(x, τ),

(3.32)

where dn(x, τ) is the known function. Let us substitute expressions (3.31), (3.32) for
un, Rn in (3.28). We get the problem

−ν∆vn +∇pn + (v0,∇)vn + (vn,∇)v0

+
∑

0<|k|≤m

k−2(ΠakT0,∇)Πa−kTn +
∑

0<|k|≤m

k−2(ΠakTn,∇)Πa−kT0

−
∑

0<|k|≤m

k−2ak(Πa−kT0,∇Tn)−
∑

0<|k|≤m

k−2ak(Πa−kTn,∇T0)

−
∑

0<|k|≤m

< ak

[
∂Ψ

∂u

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
vn

+
∂Ψ

∂w

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
∂vn
∂x

+
∂Ψ

∂T

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
Tn

+
∂Ψ

∂S

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
∂Tn
∂x

]
exp(ikτ) >

−
∑

0≤|k|≤m

[
<
∂ϕ1k

∂u

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
vn

+
∂ϕ1k

∂w

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
∂vn
∂x

+
∂ϕ1k

∂T

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
Tn

+
∂ϕ1k

∂S

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
∂Tn
∂x

>

]
= ln(x),

(3.33)

div vn = 0,

−χ∆Tn + (v0,∇Tn) + (vn,∇T0)

−
∑

0≤|k|≤m

[
<
∂ϕ2k

∂u

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
vn+
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+
∂ϕ2k

∂w

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
∂vn
∂x

+
∂ϕ2k

∂T

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
Tn+

+
∂ϕ2k

∂S

(
x, v0,

∂v0

∂x
, T0,

∂T0

∂x
, τ

)
∂Tn
∂x

>

]
= χn(x),

vn|∂Ω = −wn|∂Ω , Tn|∂Ω = −Wn|∂Ω .

In view of the equality ∫
∂Ω

w(3)
n ds = 0 (3.34)

[4, Lemma 4] the heterogeneity in boundary conditions is removed. So, one can con-

struct infinitely smooth couple (
0
vn,

0

T n), which satisfies the boundary conditions of
problem (3.33), and the condition div

0
vn= 0. As a result we get the problem like

(2.4), which is solvable by the hypothesis. We find functions Zn, z
(s)
n , s = 1, 2, gn, hn

from equations (3.23), (3.24), (3.26), (3.27). It is obvious now that our induction as-
sumption is satisfied for the set of coeffitients Pn. Thus construction of the formal
asymthotic expansion of the solution of problem (2.1) is completed. Its justification
and the proof of the second statement of Theorem 2.1 can be carried out as in [5].
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