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Abstract. We introduce the moduli of the supporting convexity and the supporting
smoothness of a Banach space, which characterize the deviation of the unit sphere
from an arbitrary supporting hyperplane. We show that the modulus of supporting
smoothness, the Banas modulus, and the modulus of smoothness are all equivalent
at zero, the modulus of supporting convexity is equivalent at zero to the modulus of
convexity. We prove a Day—Nordlander type result for these moduli.

1 Introduction

The properties of a Banach space are completely determined by its unit ball. The
geometry of the unit ball of a Banach space X may be described, for instance, using
the properties of some moduli attached to X. (For example, the moduli of convexity, of
smoothness, Milman’s moduli, etc.) The aim of this paper is to introduce and explore
some new type of moduli, which characterize the deviation of the unit sphere from an
arbitrary supporting hyperplane.

In the sequel we shall need some additional notation. Let X be a real Banach space.
For a set A C X by 0A, int A we denote the boundary and the interior of A. We use
(p, z) to denote the value of a functional p € X* at a vector x € X. For R > 0andc € X
we denote by Br(c) the closed ball with center ¢ and radius R, by B7%(c) we denote the
ball in the conjugate space. By definition, put Ji(x) = {p € 9Bj(0) : (p,x) = |z|}.
For convenience, the length of segment ab is denoted by ||abl|, i.e., ||ab]| = ||a — b]| .

We say that y is quasiorthogonal to the vector x € X \ {o} and write y 'z if there
exists a functional p € Jy(z) such that (p,y) = 0. Note that the following conditions
are equivalent:

— g is quasiorthogonal to x

— for any A € R the vector x + Ay lies in the supporting hyperplane to the ball B, (0)
at x;

— for any A\ € R the following inequality holds ||z + Ay|| > ||z]|;

— z is orthogonal to y in the sense of Birkhoff-James (6], Ch. 2, §1).
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The functions 0x(+) : [0,2] — [0,1] and px(-) : RT — R are referred to as the moduli
of convexity and smoothness of X respectively.

Let f and g be two non-negative functions, each one defined on a segment [0, ¢].
We shall consider f and g as equivalent at zero, denoted by f(t) =< g(t) as t — 0, if
there exist positive constants a, b, ¢, d, e such that af(bt) < g(t) < cf(dt) for t € [0, €].

The rest of this paper is organized as follows. In Section 2 we prove several simple
technical lemmas, in Section 3 we introduce the definitions of the modulus of sup-
porting convexity and the modulus of supporting smoothness and consider their basic
properties, in Section 4 we show these modulus are equivalent at zero to the modulus
of convexity and smoothness respectively, in Section 5 we prove that the moduli of
smoothness, of supporting smoothness and the modulus of Banas are all equivalent at
zero, and, finally, in Section 6 we prove some estimates for these moduli concerning
the maximal value of the Lipschitz constant for the metric projection operator onto a
hyperplane.

r+y r—y
pr) = sup {02 B2y — 1y =1}

2 Technical results

In this section we prove several simple technical results.
The proof of the next lemma is trivial.

Lemma 2.1. Suppose the set B1(o) \ int B,.(01) is nonempty. Then it is arcwise
connected.

Lemma 2.2. Let X5 be a two-dimensional Banach space. Suppose a,b,c,d € 9B1(0)
and the segments ab, cd intersect in point x. Then the following inequality holds

min{|ez|], [lzd]|} < max{[laz]], [lzb]}.

Proof. Assume the converse. Then for some ¢ > 0 we get min{||cz|, ||zd||} >
max{||azx]|,||zb||} + & = r. Since the segment ab belongs to int B, (z) and separates
it into two parts, then we cannot connect points ¢, d in B4 (0) \ int 9B8,.(z). This contra-
dicts Lemma 2.1. The lemma is proved. O

Lemma 2.3. Let x,y € X, x # o, p € 0B}(0) such that (p,x) = ||x| . Then

)
!M+W<HM+@&HJWﬂm<%®- (2.1)

Proof. By definition of the modulus of smoothness, we get
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Multiplying both sides by 2 ||z, after some transformations we obtain:

Yy
e+ yll < 2 2ll - |le — yn+ﬂmmu(”H)<

Il [yl
2|l + (py —$>+2H$pr( ) = el oy + 2zl ox( o )

[l ]l
0
Lemma 2.4. For any vectors x,y € X \ {0} the following inequality is true
' B H 2|z —yl
[zl [yl ]l
Proof. Using the triangle inequality, we get
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3 Definitions and basic properties
Let x,y € 0%B1(0) be such that y x. By definition, put

Ax(z,y,r) =min{A e R: ||z +ry — Az|| = 1}
for any r € [0, 1]. Denote

Ax(@,y,7) = min{Ax (2, y,7), Ax(2,—y,7)}
Aj{(% Y, 7”) = maX{Ax(l’, Y, T)v Ax(l', -y, T)}

Definition 1. For any r € [0,1] and =z € 9%;(0) we define the modulus of local
supporting convezity as
Ay (z,r) =inf Ay (2,9, 1),

and respectively, the modulus of local supporting smoothness as
Ax(z,7) = sup Ay (2,9, 1),

where we choose (y,t) such that ||y|| = 1, y 'z, 0 < ¢ <r to minimize (maximize)
Ax(a,r) (A (7).

It is clear that Ay (z,7) < A% (z,7) < 1.
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Definition 2. For any r € [0, 1] we define the modulus of supporting convexity as
Ax(r) = inf A (z, 1),

and respectively, the modulus of supporting smoothness as
Ax(r) = sup Ay (z,1),

where we choose (z,t) such that x € B;(0), 0 < ¢ < r to minimize (maximize) Ay (r)
(Ax ().

Let us explain the geometrical meaning of the moduli of supporting convexity and
of supporting smoothness. Fix y,x € 0%(0) such that y'z. Consider the plane L =
Lin{y,z}. We use (aj,as) to denote the vector a = a1y + asz in this plane. The
coordinate line ¢ = {(a1,az2)|a; € R,as = 0} is a tangent to the unit "circle" S =
LN 0Bi(x). By the convexity of the ball, there is a convex function f : [-1,1] — R
such that for a; € [—1,1] the point (ai, f(a1)) belongs to the lower semicircle of S
(see Fig. 1). Hence for a; € [—1,1] the functions Ay (|ai|) and A} (]ai|) are the
lower and upper bounds to the f(a;) respectively, i.e. the following inequalities hold

Ax(Jar]) < flar) < Ax(laa )

Figure 1: Geometrical meaning of the At (r), A (7).

Lemma 3.1. Let X be an arbitrary Banach space, then:

(i) \5(0) = A5 (0) =0

(ii) for any r € [0,1] the following inequality holds: 0 < A\ (r) < A% (r) <7
(111) for any 0 <1y <1y <1 we have

%A;(m) < Ax(ra), (3.1)

o —7

Ax(r2) = Ax(r1) < (3.2)

1—7’1’

(iv) the modulus of supporting convexity is an increasing, continuous function on [0, 1)
and moreover it is a strictly increasing function on the set {r € [0,1] : Ay (r) > 0};
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(v) the modulus of supporting smoothness is a strictly increasing, conver and contin-
uous function on [0,1] and furthermore A% (1) = 1.

Proof. Let us introduce some notation. Fix z,y € 0%;(0) such that y'x, and real
numbers 1,75 such that 0 < r; <ry < 1. Let z = x+y, 2; = x+r;y where i = 1,2. Let
Y1, Y2 € 0B1(0) such that y;2; || ox and the intersection of the segment y;z; and the ball
B1(0) is the point y; where i = 1,2. (see Fig. 2). By construction ||y;z;|| = Ax(z,y,7;)
where 7 = 1, 2. The reader will have no difficulty in showing that it is enough to prove
all the assertions of this Lemma for Ax(z,y,r). Now, let us prove the Lemma.

_— N
/ Y
/ o Ill'w
_./ );(”: ;,-"\‘Tlf?l

/

Figure 2: Illustration for Lemma 3.1.
1. By the definitions, we have A% (0) = A3 (0) = 0.

2. The first two inequalities of assertion (ii) are trivial. By similarity, we have
Ax(z,y,r) < r. Indeed, 121 || zy and y;21 C Axyz. Taking the supremum we
get assertion (ii).

3. Taking into account that 9B (0) is convex, we get y;21 C xys2o. By construction
we have that 121 || zoy2. By the similarity, we get [[yo22f = 2 |lyrz1], iee.
ZAx (x,y,7m1) < Ax(z,y,72). Taking the infimum in Ax(z,y,rs), we complete the
proof of inequality (3.1).

By the convexity of the unit ball, we obtain that segment 1525 lies in trapezoid
y1212y. By construction ys2s || y121 || yz. By similarity, we get

9o —T1 To —T1
g2l = llyazall < (1= llyrz]) S :

1-— 1 1-— 1
Taking the infimum in [|y121]| — Ax(r1), we have |[ya22|| — Ay (r1) < = This
yields (3.2).

4. Assertion (iv) is the direct consequence of assertion (iii).

5. The function A% (+) is the supremum of the convex functions, therefore it’s convex.
Since A%(+) is a convex bounded function and Ax(z,y,r) is continuous in r, we
obtain that A% (+) is continuous on [0, 1]. We will prove that A% (r) > 0 on (0, 1]
in Lemma 4.2 below. By this and the equality A% (0) = 0 and convexity of the
modulus of supporting smoothness, we get that it is a strictly increasing function.
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The inequality A% (r) < r was proved in assertion (ii). The equality A% (1) = 1 is
the consequence of inequality (5.1) at » = 1, which will be proved below.

]

From Lemma 3.1 we have that in the definitions of the moduli of the supporting
smoothness and supporting convexity one may choose t = r.

Remark 1. Since any two plane central sections of the unit ball in a Hilbert space H
are equal, we have

Ni(r) = X (r) = dn(2r) =1 = VT =72,

4 Comparison of supporting moduli with the moduli of convex-
ity and smoothness

Theorem 4.1. Let X be an arbitrary Banach space. Then Ay () < dx(¢) ase — 0
and for any r € [0;1] :

Ix(r) < Ax(r) < dx(2r). (4.1)

Proof. 1) By the definition of the modulus of supporting convexity for any € > 0 there
exists a parallelogram xyzd such that z,z € 9%;(0), the point d lies in the segment
zo and ||zy|| = r, xzy oz, ||yz|| < Ax(r) + e. Therefore ||od|| =1 — ||yz||, consequently
dx(r) = ox(||zd||) < |lyz|]| < Ax(r) + ¢. Passing to the limit as ¢ — 0, we obtain the
left-hand side of chain (4.1).

2) Let us prove the right-hand side of chain (4.1).

Fix r € (0,1) (if » = 0 or r = 1 the inequality is trivial). By the definition of the
modulus of supporting convexity for any € > 0 there exist points a.,b. on the unit
sphere such that [la.b.|| > 2r and for the point ¢. = %kt the following inequality
holds:

1 — |loce|| < 0x(2r) +«. (4.2)

Let the ray oc. intersect the unit sphere in a point x. Denote by [; the supporting line
to the unit sphere such that [; lies in the plane oa.b. and x € [. Let [5 be a line such
that 4 || [z and ¢. € l5. Denote by f, g the points of intersections of 9%81(0) and the
line /5. From Lemma 2.2 it follows that ||f —c.|| = 7 or ||g — ¢.|| = r. Without loss of
generality, put ||g — c.|| = 7. Let I3 be a line such that I3 || oc. and g € I.. By definition,
we put y = I3 Ny (see Fig. 3). Then

_ y—x _ y—x _
5x(2r) + ¢ > [lecz] > A (:c,—,uy—xu) > (—) > (),
A\ ly — || A\ ly — = X

ie., dx(2r) +e > Ay (r). Passing to the limit as ¢ — 0, we complete the proof. O
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Figure 3: Illustration for Theorem 4.1.

Lemma 4.1. Let r € [0, 3]. Then
Ae(r) < px(2r). (4.3)

Proof. Denote A = A% (r) . Since A% (r) < r for any r € [0,1], then A < 5. Let 11 € (0, A).
By the Definitions 1, 2 there exist ,y € 9%B1(0) such that y 'z and Ax(z,y,r) =’ €
(1, A), and consequently ||z +ry — p/z|| = 1. Since y'x there exists p € Ji(x) =
Ji(x — p/x) such that (p,y) = 0.

Using Lemma 2.3, we get

.
L=z +ry—pzl < llo — pzl| + {p,ry) +2(1 - u’)px(l — u’) =

—1—u’+2(1—u’)px( : )

1—u

To complete the proof, it suffices to note that y/ < %, px(0) = 0 and the modulus of
smoothness is a convex function. O

Lemma 4.2. Let r € [0,1]. Then

,
px(5) <L), (4.4)
Proof. Taking into account the definition of the modulus of smoothness, it follows
that for any 7 € [0, 3] and ¢ € [0, px(7)) there exist  and y such that the following
inequality is true

lz+ 7yl + [z — 7yl = 2 = 2(px(7) —€). (4.5)

Without loss of generality, we can assume that ||z + 7y|| > |z —7y| (therefore
|z + 7yl = 1). Denote u = Hii—:z“,v = ﬁ By Lemma 2.4, we obtain

4T

T 4.6
e (4.6)

lu = o]l <
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By the triangle inequality, we get

2|z 1 1

lu+ ]| < +lz =7y -
=l + 7yl lz+7yll -z =7yl

1
=2 = (e + 7yl + [l — 7yl = 2).
lz + Tyll

Now, by inequality (4.5), we have that

2(px(T) — 5)_

lu 4l <2 =
[z + 7y

(4.7)

Let us consider the plane ouv. By w denote a point lying on the smallest arc uv
of the unit circle such that the supporting line to the unit ball at w is parallel to uwv.

Obviously, either A x (w . M) > 1—””2Lv” or Ax (w, — = M) > 1—”“2L””,

T lu=oll? 2 [u=ol> 2

ie. A} (@) >1- M Combining this with inequality (4.7), we get
s =) gy (1=l
|z + Tyl 2
Now, by inequality (4.6), we obtain

2
[ + 7y

2T 2
—e) < 2)\% < 2L (27).
(px(r) <) X(m+wm0 Te gl X 7

Multiplying both sides by w and passing to the limit as ¢ — 0, we obtain (4.4). O

Remark 2. By Lemma 4.2 and the properties of the modulus of smoothness, it follows
that A% (r) > 0 for all r > 0.

By Lemmas 4.1, 4.2 and the properties of the modulus of smoothness we have the
following result.

Theorem 4.2. Let X be an arbitrary Banach space. Then A% (1) < px(7) as 7 — 0

and for any r € [0, 3]:
r

PX(g) < Ax(r) < px(2r).

5 Comparison with the Bana$ modulus

In the paper [1] J. Bana$ defined and studied some new modulus of smoothness.
Namely, he defined

=+l

5% (e) :sup{l— s x,y € Bi(o), ||z —y < 5}, e €[0,2].

The function 6% () is called the Banas modulus. In the papers [1, 2, 3, 4] several
interesting results concerning this modulus were obtained. Particulary, in [1], J. Banas
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+
proved that a space is uniformly smooth iff 6XT(€) — 0 as ¢ — 0. However, from the

definition a space is uniformly smooth if and only if @ — 0 as e — 0. This leads to the
question: are the modulus of smoothness and the modulus of Banas equivalent at zero?
It is easy to check that there exist positive constant a, b such that 65 (¢) < apx(bt), but
the lower estimate of the modulus of Banas in terms of the modulus of smoothness is
unknown. In the next theorem we prove that the modulus of Banas and the modulus
of supporting smoothness are equivalent at zero, so Theorem 4.2 answers the above
question.

Theorem 5.1. Let X be an arbitrary Banach space. Then §%(g) =< 0x(g) as e — 0
and the following inequalities hold:

6% (2r) < A% (r) Vr e [0,1]; (5.1)

M) < 205(3r) e {0, ] (5.2)

Wl

Proof. 1) First we shall prove inequality (5.1) for r € [0,1).
Let a,b be points of the unit sphere such that ||a — b|| < 2r. By X5 denote the plane
aob.

There exists a point y, of the unit sphere of the plane X5 such that the supporting
line I to the unit ball at this point is parallel to ab. By definition, put y; = oy, N ab.
There exists a point ay in the projection of the point a on Il such that the segments
Y1Y2, aay are equal in length and parallel. The point by is defined in the same way,
such that 1,92 and bby are parallel (see Fig. 6). Without loss of generality we assume
that ||yeas|| < r < 1. Since the modulus of supporting smoothness is an increasing
function, we have ||y1y2|| = ||aaa|| < A% (y2, [|y2a2]]) < A (y2,7) . Taking the supremum,
we obtain inequality (5.1).

Taking into account that the modulus of Banas is a continuous and increasing
function, we obtain inequality (5.1) for r = 1.

2) Let us prove inequality (5.2).

By the definition of modulus of supporting smoothness for any £ € (0, A\%(r)) there
exist

— a point x € 0B (0);

— a line ¢, supporting to the unit ball at point x;

— a point y on ¢; and a point z € 981 (0) such that

oyl =, lly=ll > 0, 2y || oz and A*(=, 2y 7) = yzl| > X{(r) — £ > 0.

Let /5 be a line parallel to ¢; such that z € /5. Let z, z; be points of the intersections
of line /5 and 9B (0). By y; denote the projections of z; on ¢; such that zy; || ox (see
Fig. 4).

We shall prove that ||zz|| > 2. In the converse case, ||xy;| < r. Note that if we fix
x,y € 0B1(0) such that y 'z, then the function A*(x,y,-) is strictly increasing on the

set of its positive values. Since xy; and xy lie on the same line and by to the definition
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of \*, we obtain

zy zy
Mz )= llyzll = gzl < A 20— lew ) <
lzyl|

[zl
TY1 LY

< )\+(x, ,r) :)\+<x, —,r).
[E7] [zyll

This is a contradiction, consequently ||zz|| > 2r.

Figure 4: Illustration for the second part of Theorem 5.1.

By definition, put e = ox N zz;. By the continuity reasons there exists a point d on
the arc z;x of the unit sphere such that for the point f = zd N ox the following
equality holds ||d — f|| = ||f — z|| . Since ¢, is a supporting line to the unit sphere, we
have [lzf]] > 120, Note that ||dz|| < 2(||ze| + [lef]]) < 3r. Combining the last two
inequalities, we get
Ae(r) —e
550 > o) > XD
Passing to the limit as ¢ — 0, we obtain inequality (5.2). O

From Theorems 4.2 and 5.1 we have the following corollary.

Corollary 5.1. Let X be an arbitrary Banach space, then 6% () < px(¢) ase — 0 and
the following inequalities hold:

sox(Z) <t < outr). e fog]

The Day-Nordlander theorem (see [7]) asserts that dx(e) < dg(e) for € € [0,2],
where H denotes an arbitrary Hilbert space. On the other hand, repeating the argu-
ments from the paper [7] we can show that for any Banach space the following esti-
mate is true §5;(e) < 0% (r) for € € [0,2]. From this and Theorems 4.2, 5.1 we obtain
a Day—Nordlander type result for the moduli of supporting convexity and supporting
smoothness:
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Corollary 5.2. Let X be an arbitrary Banach space. Then
M (r) K Ap(r) =1—=V1—=7r2=X5(r) < XL(r) vr € [0, 1].

If at least one of these inequalities turns into equality, then X is a Hilbert space.

6 Estimates for Lipschitz constant for the metric projection
onto a hyperplane

Let us introduce the following characteristic of a space:

{x = sup sup |z — (p,z)yll.
lzlI=1. pe.Jy (y)
lyll=1
Note that if y € 9%B1(0), p € Ji(y), then the vector (z — (p,z)y) is a met-
ric projection of = onto the hyperplane H, = {z € X : (p,z) = 0}. So, {x =
SUDyem, (o) SUPpe; (2) &%, where &% is half of diameter of a unit ball’s projection onto
the hyperplane H,. Therefore, {x is the maximal value of the Lipschitz constant for

the metric projection operator onto a hyperplane. Obviously, {x < 2 and &g = 1 for a
Hilbert space H.

Theorem 6.1. For any Banach space X the following inequality is true:
1 1

= <éx < —.
1— )\;(<1—,\2X(1)> 1_ )\}(1—,\;(1))

(6.1)

Proof. First let us introduce some notation. Let xy be an arbitrary point on the unit
sphere. Let [ be a supporting line to the unit ball at the point xy. Define [, as the line
such that the following conditions hold:

a) ly || oxo;

b) lo N1 # B, by definition, put xo =l N,

¢) | a is supporting line to the unit ball at some point ys;

Q) llyszal] < 1.

Let 27 be a point on segment xgzs such that ||xoxq|| = 1, let I; be a line such that
x1 € I and 1y || ozg. By definition, put y; as the intersection point of line [; and the
segment oys. Let b be a point on 9%B4(0) such that the segment ob is parallel to xox;.
By construction, we have that xox,bo is a parallelogram, therefore b € [; and y; € x10b.
Let a be the intersection point of the line /; and the unit sphere such that a € z1y;.

From the intercept theorem, we have Hllm;y?HH = ”ﬁﬁl“”. Therefore
1 1
[zoz2| = = : (6.2)
logall 1= llyryell
Since zgx1bo is a parallelogram, we get ||z1b|| = ||oxo|| = 1. By construction we have
that ||zox;| = 1. Therefore,
labll < 1= Ax(1). (6.3)

Define ay as the projection of the point a on Iy such that aas || oys. In the same way
we
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Figure 5: Illustration for Theorem 6.1.

define the point by. Then the segments y,ys, aas and bb, are parallel and equal in length
(as parallel segments between two parallel lines). By the definition of the modulus of
supporting convexity and by inequality (6.3), we obtain

. ab 1—Ay(1
ol < A Gin ol Tetel) < 35 (Y50 ) <5 (A2 5H).

Combining this and equality (6.2), we finally prove the right-hand side of inequality
(6.1).

Let € be an arbitrary positive real number. Note that we could choose a point xg
such that ||z1a]] < A (1) + ¢, ie. [|ab]| = 1 — A% (1) — €. Like in (6.4), we obtain

_ _{|lab (1= )X%(1) —¢
[3192] = Ax (max{[lasgall, [ly2b2[]}) = Ax<H 2 ”) > Ay <%) '

Passing to limit as ¢ — 0 and using inequality (6.2), we prove the left-hand side of
inequality (6.1). O

Remark 3. The estimate (6.1) is reached in case of a Hilbert space. The right-hand
side of inequality (6.1) does not exceed 2, i.e. this estimate is not trivial.

Conjecture 6.1. The right-hand side of inequality (6.1) becomes an equality in case
of Ly, p € (1;400).

In the following lemma we obtain a lower estimate of the modulus of supporting
smoothness by the inverse function to the modulus of convexity.

Lemma 6.1. For any r € [0,1] the following inequalities hold:

1.4 r 1.4 r n
- — —— ) <]l == — ) K
1 25)( (1 2) <1 25)( <1 §X> < Ay(r). (6.5)
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Proof. The left-hand side of inequality (6.5) is a straightforward consequence of the
inequality £y < 2. Let us prove the right-hand side of inequality (6.5). In case of
r = 0 it is trivial. Let xy be an arbitrary point on the unit sphere. Define H,
as a supporting hyperplane to the unit ball at the point x(. Let x; be a point of the
supporting hyperplane H, such that ||zoz|| = . Denote the ray {oxo+azox; : « > 0}
as £. Let l1, 15 be the lines parallel to oxy such that

a) ly is a supporting line to the unit ball at the point yo and Iy N € = xo;

b) [y intersects the ray ¢ at x; and intersects the unit sphere at points a, b.

Let y; = oya Nab (see Fig. 6).

Figure 6: Illustration for Lemma 6.1 and for the first part of Theorem 5.1.

By the definition of A% (r) and since the unit ball is centrally symmetric, we get |lab|| >
2(1 — X%(r)). Obviously, |ly1y2|| = dx(]|abl]) . Consequently, we have

0x (2(1 = A% () < dx(flabl)) < [zl (6.6)

Using the intercept theorem, we obtain

10l = lrgell _ llzazall _ oozl = lzowll _ 7 7 6.7)
ozl [lzoz:| [zozs | |02 || &x
By inequalities (6.6) and (6.7), we have
5 (2(1 = Af(r) < 1-
Ex
]

It is easy to check that in a Hilbert space H the following equality holds
65 (1) =2¢/1 — (1 —7)2.

Substituting this in inequality (6.5) and since £y = 1, we obtain

Sin(2r) = 1= 507 (1 = 1) < N ().

According to (1), we have that if X is a Hilbert space, then the right hand estimate
in inequality (6.5) is reached.
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