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Abstract. We introduce the moduli of the supporting convexity and the supporting
smoothness of a Banach space, which characterize the deviation of the unit sphere
from an arbitrary supporting hyperplane. We show that the modulus of supporting
smoothness, the Banaś modulus, and the modulus of smoothness are all equivalent
at zero, the modulus of supporting convexity is equivalent at zero to the modulus of
convexity. We prove a Day–Nordlander type result for these moduli.

1 Introduction

The properties of a Banach space are completely determined by its unit ball. The
geometry of the unit ball of a Banach space X may be described, for instance, using
the properties of some moduli attached to X. (For example, the moduli of convexity, of
smoothness, Milman’s moduli, etc.) The aim of this paper is to introduce and explore
some new type of moduli, which characterize the deviation of the unit sphere from an
arbitrary supporting hyperplane.

In the sequel we shall need some additional notation. Let X be a real Banach space.
For a set A ⊂ X by ∂A, intA we denote the boundary and the interior of A. We use
〈p, x〉 to denote the value of a functional p ∈ X∗ at a vector x ∈ X. For R > 0 and c ∈ X
we denote by BR(c) the closed ball with center c and radius R, by B∗

R(c) we denote the
ball in the conjugate space. By definition, put J1(x) = {p ∈ ∂B∗

1(o) : 〈p, x〉 = ‖x‖}.
For convenience, the length of segment ab is denoted by ‖ab‖ , i.e., ‖ab‖ = ‖a− b‖ .

We say that y is quasiorthogonal to the vector x ∈ X \ {o} and write yqx if there
exists a functional p ∈ J1(x) such that 〈p, y〉 = 0. Note that the following conditions
are equivalent:
– y is quasiorthogonal to x
– for any λ ∈ R the vector x+λy lies in the supporting hyperplane to the ball B‖x‖(o)
at x;
– for any λ ∈ R the following inequality holds ‖x+ λy‖ > ‖x‖ ;
– x is orthogonal to y in the sense of Birkhoff–James ([6], Ch. 2, §1).



Modulus of supporting convexity and supporting smoothness 27

Let
δX(ε) = inf

{
1− ‖x+ y‖

2
: x, y ∈ B1(0), ‖x− y‖ ≥ ε

}
and

ρX(τ) = sup

{
‖x+ y‖

2
+
‖x− y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = τ

}
.

The functions δX(·) : [0, 2] → [0, 1] and ρX(·) : R+ → R+ are referred to as the moduli
of convexity and smoothness of X respectively.

Let f and g be two non-negative functions, each one defined on a segment [0, ε].
We shall consider f and g as equivalent at zero, denoted by f(t) � g(t) as t → 0, if
there exist positive constants a, b, c, d, e such that af(bt) 6 g(t) 6 cf(dt) for t ∈ [0, e].

The rest of this paper is organized as follows. In Section 2 we prove several simple
technical lemmas, in Section 3 we introduce the definitions of the modulus of sup-
porting convexity and the modulus of supporting smoothness and consider their basic
properties, in Section 4 we show these modulus are equivalent at zero to the modulus
of convexity and smoothness respectively, in Section 5 we prove that the moduli of
smoothness, of supporting smoothness and the modulus of Banaś are all equivalent at
zero, and, finally, in Section 6 we prove some estimates for these moduli concerning
the maximal value of the Lipschitz constant for the metric projection operator onto a
hyperplane.

2 Technical results

In this section we prove several simple technical results.
The proof of the next lemma is trivial.

Lemma 2.1. Suppose the set B1(o) \ int Br(o1) is nonempty. Then it is arcwise
connected.

Lemma 2.2. Let X2 be a two-dimensional Banach space. Suppose a, b, c, d ∈ ∂B1(o)
and the segments ab, cd intersect in point x. Then the following inequality holds

min{‖cx‖ , ‖xd‖} 6 max{‖ax‖ , ‖xb‖}.

Proof. Assume the converse. Then for some ε > 0 we get min{‖cx‖ , ‖xd‖} >
max{‖ax‖ , ‖xb‖} + ε = r. Since the segment ab belongs to int Br(x) and separates
it into two parts, then we cannot connect points c, d in B1(o) \ int Br(x). This contra-
dicts Lemma 2.1. The lemma is proved.

Lemma 2.3. Let x, y ∈ X, x 6= o, p ∈ ∂B∗
1(o) such that 〈p, x〉 = ‖x‖ . Then

‖x+ y‖ 6 ‖x‖+ 〈p, y〉+ 2 ‖x‖ ρX
(
‖y‖
‖x‖

)
. (2.1)

Proof. By definition of the modulus of smoothness, we get

1

2

(
‖x+ y‖
‖x‖

+
‖x− y‖
‖x‖

)
− 1 6 ρX

(
‖y‖
‖x‖

)
.
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Multiplying both sides by 2 ‖x‖ , after some transformations we obtain:

‖x+ y‖ 6 2 ‖x‖ − ‖x− y‖+ 2 ‖x‖ ρX
(
‖y‖
‖x‖

)
6

2 ‖x‖+ 〈p, y − x〉+ 2 ‖x‖ ρX
(
‖y‖
‖x‖

)
= ‖x‖+ 〈p, y〉+ 2 ‖x‖ ρX

(
‖y‖
‖x‖

)
.

Lemma 2.4. For any vectors x, y ∈ X \ {o} the following inequality is true∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥ 6
2 ‖x− y‖
‖x‖

.

Proof. Using the triangle inequality, we get∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥ =

∥∥∥∥( x

‖x‖
− y

‖x‖

)
+

(
y

‖x‖
− y

‖y‖

)∥∥∥∥ 6

6

∥∥∥∥( x

‖x‖
− y

‖x‖

)∥∥∥∥+

∥∥∥∥( y

‖x‖
− y

‖y‖

)∥∥∥∥ 6

6
1

‖x‖
‖x− y‖+ ‖y‖

∣∣∣∣ 1

‖x‖
− 1

‖y‖

∣∣∣∣ 6 2 ‖x− y‖
‖x‖

.

3 Definitions and basic properties

Let x, y ∈ ∂B1(o) be such that yqx. By definition, put

λX(x, y, r) = min {λ ∈ R : ‖x+ ry − λx‖ = 1}

for any r ∈ [0, 1]. Denote

λ−X(x, y, r) = min{λX(x, y, r), λX(x,−y, r)};
λ+
X(x, y, r) = max{λX(x, y, r), λX(x,−y, r)}.

Definition 1. For any r ∈ [0, 1] and x ∈ ∂B1(o) we define the modulus of local
supporting convexity as

λ−X(x, r) = inf λ−X(x, y, t),

and respectively, the modulus of local supporting smoothness as

λ+
X(x, r) = supλ+

X(x, y, t),

where we choose (y, t) such that ‖y‖ = 1, yqx, 0 6 t 6 r to minimize (maximize)
λ−X(x, r) (λ+

X(x, r)).

It is clear that λ−X(x, r) 6 λ+
X(x, r) 6 1.
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Definition 2. For any r ∈ [0, 1] we define the modulus of supporting convexity as

λ−X(r) = inf λ−X(x, t),

and respectively, the modulus of supporting smoothness as

λ+
X(r) = supλ+

X(x, t),

where we choose (x, t) such that x ∈ B1(o), 0 6 t 6 r to minimize (maximize) λ−X(r)
(λ+

X(r)).

Let us explain the geometrical meaning of the moduli of supporting convexity and
of supporting smoothness. Fix y, x ∈ ∂B1(o) such that yqx. Consider the plane L =
Lin{y, x}. We use (a1, a2) to denote the vector a = a1y + a2x in this plane. The
coordinate line ` = {(a1, a2)|a1 ∈ R, a2 = 0} is a tangent to the unit "circle" S =
L ∩ ∂B1(x). By the convexity of the ball, there is a convex function f : [−1, 1] → R
such that for a1 ∈ [−1, 1] the point (a1, f(a1)) belongs to the lower semicircle of S
(see Fig. 1). Hence for a1 ∈ [−1, 1] the functions λ−X(|a1|) and λ+

X(|a1|) are the
lower and upper bounds to the f(a1) respectively, i.e. the following inequalities hold
λ−X(|a1|) 6 f(a1) 6 λ+

X(|a1|) .

Figure 1: Geometrical meaning of the λ+
X(r) , λ−X(r) .

Lemma 3.1. Let X be an arbitrary Banach space, then:

(i) λ+
X(0) = λ−X(0) = 0;

(ii) for any r ∈ [0, 1] the following inequality holds: 0 6 λ−X(r) 6 λ+
X(r) 6 r;

(iii) for any 0 < r1 < r2 < 1 we have

r2
r1
λ−X(r1) 6 λ−X(r2) , (3.1)

λ−X(r2)− λ−X(r1) 6
r2 − r1
1− r1

; (3.2)

(iv) the modulus of supporting convexity is an increasing, continuous function on [0, 1)
and moreover it is a strictly increasing function on the set {r ∈ [0, 1] : λ−X(r) > 0};
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(v) the modulus of supporting smoothness is a strictly increasing, convex and contin-
uous function on [0, 1] and furthermore λ+

X(1) = 1.

Proof. Let us introduce some notation. Fix x, y ∈ ∂B1(o) such that yqx, and real
numbers r1, r2 such that 0 < r1 < r2 < 1. Let z = x+y, zi = x+riy where i = 1, 2. Let
y1, y2 ∈ ∂B1(o) such that yizi ‖ ox and the intersection of the segment yizi and the ball
B1(o) is the point yi where i = 1, 2. (see Fig. 2). By construction ‖yizi‖ = λX(x, y, ri)
where i = 1, 2. The reader will have no difficulty in showing that it is enough to prove
all the assertions of this Lemma for λX(x, y, r). Now, let us prove the Lemma.

Figure 2: Illustration for Lemma 3.1.

1. By the definitions, we have λ+
X(0) = λ−X(0) = 0.

2. The first two inequalities of assertion (ii) are trivial. By similarity, we have
λX(x, y, r) 6 r. Indeed, y1z1 ‖ zy and y1z1 ⊂ 4xyz. Taking the supremum we
get assertion (ii).

3. Taking into account that B1(o) is convex, we get y1z1 ⊂ xy2z2. By construction
we have that y1z1 ‖ z2y2. By the similarity, we get ‖y2z2‖ > r2

r1
‖y1z1‖ , i.e.

r2
r1
λX(x, y, r1) 6 λX(x, y, r2). Taking the infimum in λX(x, y, r2), we complete the

proof of inequality (3.1).
By the convexity of the unit ball, we obtain that segment y2z2 lies in trapezoid
y1z1zy. By construction y2z2 ‖ y1z1 ‖ yz. By similarity, we get

‖y2z2‖ − ‖y1z1‖ 6 (1− ‖y1z1‖)
r2 − r1
1− r1

6
r2 − r1
1− r1

.

Taking the infimum in ‖y1z1‖ → λ−X(r1) , we have ‖y2z2‖ − λ−X(r1) 6 r2−r1
1−r1 . This

yields (3.2).

4. Assertion (iv) is the direct consequence of assertion (iii).

5. The function λ+
X(·) is the supremum of the convex functions, therefore it’s convex.

Since λ+
X(·) is a convex bounded function and λX(x, y, r) is continuous in r, we

obtain that λ+
X(·) is continuous on [0, 1]. We will prove that λ+

X(r) > 0 on (0, 1]
in Lemma 4.2 below. By this and the equality λ+

X(0) = 0 and convexity of the
modulus of supporting smoothness, we get that it is a strictly increasing function.
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The inequality λ+
X(r) 6 r was proved in assertion (ii). The equality λ+

X(1) = 1 is
the consequence of inequality (5.1) at r = 1, which will be proved below.

From Lemma 3.1 we have that in the definitions of the moduli of the supporting
smoothness and supporting convexity one may choose t = r.

Remark 1. Since any two plane central sections of the unit ball in a Hilbert space H
are equal, we have

λ+
H(r) = λ−H(r) = δH(2r) = 1−

√
1− r2.

4 Comparison of supporting moduli with the moduli of convex-
ity and smoothness

Theorem 4.1. Let X be an arbitrary Banach space. Then λ−X(ε) � δX(ε) as ε → 0
and for any r ∈ [0; 1] :

δX(r) 6 λ−X(r) 6 δX(2r) . (4.1)

Proof. 1) By the definition of the modulus of supporting convexity for any ε > 0 there
exists a parallelogram xyzd such that x, z ∈ ∂B1(o), the point d lies in the segment
xo and ‖xy‖ = r, xyqox, ‖yz‖ 6 λ−X(r) + ε. Therefore ‖od‖ = 1− ‖yz‖ , consequently
δX(r) = δX(‖zd‖) 6 ‖yz‖ 6 λ−X(r) + ε. Passing to the limit as ε → 0, we obtain the
left-hand side of chain (4.1).
2) Let us prove the right-hand side of chain (4.1).
Fix r ∈ (0, 1) (if r = 0 or r = 1 the inequality is trivial). By the definition of the
modulus of supporting convexity for any ε > 0 there exist points aε, bε on the unit
sphere such that ‖aεbε‖ > 2r and for the point cε = aε+bε

2
the following inequality

holds:
1− ‖ocε‖ 6 δX(2r) + ε. (4.2)

Let the ray ocε intersect the unit sphere in a point x. Denote by l1 the supporting line
to the unit sphere such that l1 lies in the plane oaεbε and x ∈ l1. Let l2 be a line such
that l1 ‖ l2 and cε ∈ l2. Denote by f, g the points of intersections of ∂B1(o) and the
line l2. From Lemma 2.2 it follows that ‖f − cε‖ > r or ‖g − cε‖ > r. Without loss of
generality, put ‖g − cε‖ > r. Let l3 be a line such that l3 ‖ ocε and g ∈ lε. By definition,
we put y = l3 ∩ l1 (see Fig. 3). Then

δX(2r) + ε > ‖cεx‖ > λ−X

(
x,

y − x

‖y − x‖
, ‖y − x‖

)
> λ−X

(
x,

y − x

‖y − x‖
, r

)
> λ−X(r) ,

i.e., δX(2r) + ε > λ−X(r) . Passing to the limit as ε→ 0, we complete the proof.
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Figure 3: Illustration for Theorem 4.1.

Lemma 4.1. Let r ∈ [0, 1
2
]. Then

λ+
X(r) 6 ρX(2r) . (4.3)

Proof. Denote λ = λ+
X(r) . Since λ+

X(r) 6 r for any r ∈ [0, 1], then λ 6 1
2
. Let µ ∈ (0, λ).

By the Definitions 1, 2 there exist x, y ∈ ∂B1(o) such that yqx and λX(x, y, r) = µ′ ∈
(µ, λ), and consequently ‖x+ ry − µ′x‖ = 1. Since yqx there exists p ∈ J1(x) =
J1(x− µ′x) such that 〈p, y〉 = 0.

Using Lemma 2.3, we get

1 = ‖x+ ry − µ′x‖ 6 ‖x− µ′x‖+ 〈p, ry〉+ 2(1− µ′)ρX

(
r

1− µ′

)
=

= 1− µ′ + 2(1− µ′)ρX

(
r

1− µ′

)
.

To complete the proof, it suffices to note that µ′ < 1
2
, ρX(0) = 0 and the modulus of

smoothness is a convex function.

Lemma 4.2. Let r ∈ [0, 1]. Then

ρX

(r
2

)
6 λ+

X(r) . (4.4)

Proof. Taking into account the definition of the modulus of smoothness, it follows
that for any τ ∈

[
0, 1

2

]
and ε ∈ [0, ρX(τ)) there exist x and y such that the following

inequality is true
‖x+ τy‖+ ‖x− τy‖ − 2 > 2(ρX(τ)− ε). (4.5)

Without loss of generality, we can assume that ‖x+ τy‖ > ‖x− τy‖ (therefore
‖x+ τy‖ > 1). Denote u = x+τy

‖x+τy‖ , v = x−τy
‖x−τy‖ . By Lemma 2.4, we obtain

‖u− v‖ 6
4τ

‖x+ τy‖
; (4.6)
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By the triangle inequality, we get

‖u+ v‖ 6
2 ‖x‖

‖x+ τy‖
+ ‖x− τy‖

∣∣∣∣ 1

‖x+ τy‖
− 1

‖x− τy‖

∣∣∣∣
= 2− 1

‖x+ τy‖
(‖x+ τy‖+ ‖x− τy‖ − 2).

Now, by inequality (4.5), we have that

‖u+ v‖ 6 2− 2(ρX(τ)− ε)

‖x+ τy‖
. (4.7)

Let us consider the plane ouv. By ω denote a point lying on the smallest arc uv
of the unit circle such that the supporting line to the unit ball at ω is parallel to uv.
Obviously, either λX

(
ω, u−v

‖u−v‖ ,
‖u−v‖

2

)
> 1− ‖u+v‖

2
or λX

(
ω,− u−v

‖u−v‖ ,
‖u−v‖

2

)
> 1− ‖u+v‖

2
,

i.e. λ+
X

(
‖u−v‖

2

)
> 1− ‖u+v‖

2
. Combining this with inequality (4.7), we get

2(ρX(τ)− ε)

‖x+ τy‖
6 2λ+

X

(
‖u− v‖

2

)
.

Now, by inequality (4.6), we obtain

2

‖x+ τy‖
(ρX(τ)− ε) 6 2λ+

X

(
2τ

‖x+ τy‖

)
6

2

‖x+ τy‖
λ+
X(2τ) .

Multiplying both sides by ‖x+τy‖
2

and passing to the limit as ε→ 0, we obtain (4.4).

Remark 2. By Lemma 4.2 and the properties of the modulus of smoothness, it follows
that λ+

X(r) > 0 for all r > 0.

By Lemmas 4.1, 4.2 and the properties of the modulus of smoothness we have the
following result.

Theorem 4.2. Let X be an arbitrary Banach space. Then λ+
X(τ) � ρX(τ) as τ → 0

and for any r ∈ [0, 1
2
]:

ρX

(r
2

)
6 λ+

X(r) 6 ρX(2r) .

5 Comparison with the Banaś modulus

In the paper [1] J. Banaś defined and studied some new modulus of smoothness.
Namely, he defined

δ+
X(ε) = sup

{
1− ‖x+ y‖

2
: x, y ∈ B1(o), ‖x− y‖ 6 ε

}
, ε ∈ [0, 2].

The function δ+
X(·) is called the Banaś modulus. In the papers [1, 2, 3, 4] several

interesting results concerning this modulus were obtained. Particulary, in [1], J. Banaś



34 G.M. Ivanov

proved that a space is uniformly smooth iff δ+X(ε)

ε
→ 0 as ε → 0. However, from the

definition a space is uniformly smooth if and only if ρX(ε)
ε
→ 0 as ε→ 0. This leads to the

question: are the modulus of smoothness and the modulus of Banaś equivalent at zero?
It is easy to check that there exist positive constant a, b such that δ+

X(t) 6 aρX(bt) , but
the lower estimate of the modulus of Banaś in terms of the modulus of smoothness is
unknown. In the next theorem we prove that the modulus of Banaś and the modulus
of supporting smoothness are equivalent at zero, so Theorem 4.2 answers the above
question.

Theorem 5.1. Let X be an arbitrary Banach space. Then δ+
X(ε) � δX(ε) as ε → 0

and the following inequalities hold:

δ+
X(2r) ≤ λ+

X(r) ∀r ∈ [0, 1] ; (5.1)

λ+
X(r) ≤ 2δ+

X(3r) ∀r ∈
[
0,

2

3

]
. (5.2)

Proof. 1) First we shall prove inequality (5.1) for r ∈ [0, 1).
Let a, b be points of the unit sphere such that ‖a− b‖ 6 2r. By X2 denote the plane
aob.

There exists a point y2 of the unit sphere of the plane X2 such that the supporting
line l2 to the unit ball at this point is parallel to ab. By definition, put y1 = oy2 ∩ ab.
There exists a point a2 in the projection of the point a on l2 such that the segments
y1y2, aa2 are equal in length and parallel. The point b2 is defined in the same way,
such that y1y2 and bb2 are parallel (see Fig. 6). Without loss of generality we assume
that ‖y2a2‖ 6 r < 1. Since the modulus of supporting smoothness is an increasing
function, we have ‖y1y2‖ = ‖aa2‖ 6 λ+

X(y2, ‖y2a2‖) 6 λ+
X(y2, r) . Taking the supremum,

we obtain inequality (5.1).
Taking into account that the modulus of Banaś is a continuous and increasing

function, we obtain inequality (5.1) for r = 1.

2) Let us prove inequality (5.2).
By the definition of modulus of supporting smoothness for any ε ∈ (0, λ+

X(r)) there
exist
– a point x ∈ ∂B1(o);
– a line `1 supporting to the unit ball at point x;
– a point y on `1 and a point z ∈ ∂B1(o) such that
‖xy‖ = r, ‖yz‖ > 0, zy ‖ ox and λ+

(
x, xy

‖xy‖ , r
)

= ‖yz‖ > λ+
X(r)− ε > 0.

Let `2 be a line parallel to `1 such that z ∈ `2. Let z, z1 be points of the intersections
of line `2 and ∂B1(o). By y1 denote the projections of z1 on `1 such that z1y1 ‖ ox (see
Fig. 4).

We shall prove that ‖zz1‖ > 2r. In the converse case, ‖xy1‖ < r. Note that if we fix
x, y ∈ ∂B1(o) such that yqx, then the function λ+(x, y, ·) is strictly increasing on the
set of its positive values. Since xy1 and xy lie on the same line and by to the definition



Modulus of supporting convexity and supporting smoothness 35

of λ+, we obtain

λ+

(
x,

xy

‖xy‖
, r

)
= ‖yz‖ = ‖y1z1‖ 6 λ+

(
x,

xy1

‖xy1‖
, ‖xy1‖

)
<

< λ+

(
x,

xy1

‖xy1‖
, r

)
=λ+

(
x,

xy

‖xy‖
, r

)
.

This is a contradiction, consequently ‖zz1‖ > 2r.

Figure 4: Illustration for the second part of Theorem 5.1.

By definition, put e = ox ∩ zz1. By the continuity reasons there exists a point d on
the arc z1x of the unit sphere such that for the point f = zd ∩ ox the following
equality holds ‖d− f‖ = ‖f − z‖ . Since `1 is a supporting line to the unit sphere, we
have ‖xf‖ > ‖yz‖

2
. Note that ‖dz‖ 6 2(‖ze‖ + ‖ef‖) 6 3r. Combining the last two

inequalities, we get

δ+
X(3r) > ‖xf‖ >

λ+
X(r)− ε

2
.

Passing to the limit as ε→ 0, we obtain inequality (5.2).

From Theorems 4.2 and 5.1 we have the following corollary.

Corollary 5.1. Let X be an arbitrary Banach space, then δ+
X(ε) � ρX(ε) as ε→ 0 and

the following inequalities hold:

1

2
ρX

(r
6

)
6 δ+

X(r) 6 ρX(r) , r ∈
[
0,

1

2

]
.

The Day-Nordlander theorem (see [7]) asserts that δX(ε) 6 δH(ε) for ε ∈ [0, 2],
where H denotes an arbitrary Hilbert space. On the other hand, repeating the argu-
ments from the paper [7] we can show that for any Banach space the following esti-
mate is true δ+

H(ε) 6 δ+
X(r) for ε ∈ [0, 2]. From this and Theorems 4.2, 5.1 we obtain

a Day–Nordlander type result for the moduli of supporting convexity and supporting
smoothness:
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Corollary 5.2. Let X be an arbitrary Banach space. Then

λ−X(r) 6 λ−H(r) = 1−
√

1− r2 = λ+
H(r) 6 λ+

X(r) ∀r ∈ [0, 1].

If at least one of these inequalities turns into equality, then X is a Hilbert space.

6 Estimates for Lipschitz constant for the metric projection
onto a hyperplane

Let us introduce the following characteristic of a space:

ξX = sup
‖x‖=1,
‖y‖=1

sup
p∈J1(y)

‖x− 〈p, x〉y‖.

Note that if y ∈ ∂B1(0), p ∈ J1(y), then the vector (x − 〈p, x〉y) is a met-
ric projection of x onto the hyperplane Hp = {x ∈ X : 〈p, x〉 = 0}. So, ξX =
supy∈B1(o) supp∈J1(x) ξ

p
X , where ξpX is half of diameter of a unit ball’s projection onto

the hyperplane Hp. Therefore, ξX is the maximal value of the Lipschitz constant for
the metric projection operator onto a hyperplane. Obviously, ξX ≤ 2 and ξH = 1 for a
Hilbert space H.

Theorem 6.1. For any Banach space X the following inequality is true:

1

1− λ−X

(
1−λ−X(1)

2

) 6 ξX 6
1

1− λ+
X

(
1−λ−X(1)

2

) . (6.1)

Proof. First let us introduce some notation. Let x0 be an arbitrary point on the unit
sphere. Let l be a supporting line to the unit ball at the point x0. Define l2 as the line
such that the following conditions hold:
a) l2 ‖ ox0;
b) l2 ∩ l 6= ∅, by definition, put x2 = l2 ∩ l;
c) l a is supporting line to the unit ball at some point y2;
d) ‖y2x2‖ 6 1.
Let x1 be a point on segment x0x2 such that ‖x0x1‖ = 1, let l1 be a line such that
x1 ∈ l1 and l1 ‖ ox0. By definition, put y1 as the intersection point of line l1 and the
segment oy2. Let b be a point on ∂B1(o) such that the segment ob is parallel to x0x1.
By construction, we have that x0x1bo is a parallelogram, therefore b ∈ l1 and y1 ∈ x1b.
Let a be the intersection point of the line l1 and the unit sphere such that a ∈ x1y1.
From the intercept theorem, we have ‖x0x2‖

‖oy2‖ = ‖x0x1‖
‖oy1‖ . Therefore

‖x0x2‖ =
1

‖oy1‖
=

1

1− ‖y1y2‖
. (6.2)

Since x0x1bo is a parallelogram, we get ‖x1b‖ = ‖ox0‖ = 1. By construction we have
that ‖x0x1‖ = 1. Therefore,

‖ab‖ 6 1− λ−X(1) . (6.3)

Define a2 as the projection of the point a on l2 such that aa2 ‖ oy2. In the same way
we
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Figure 5: Illustration for Theorem 6.1.

define the point b2. Then the segments y1y2, aa2 and bb2 are parallel and equal in length
(as parallel segments between two parallel lines). By the definition of the modulus of
supporting convexity and by inequality (6.3), we obtain

‖y1y2‖ 6 λ+
X(min{‖a2y2‖ , ‖y2b2‖}) 6 λ+

X

(
‖ab‖

2

)
6 λ+

X

(
1− λ−X(1)

2

)
. (6.4)

Combining this and equality (6.2), we finally prove the right-hand side of inequality
(6.1).

Let ε be an arbitrary positive real number. Note that we could choose a point x0

such that ‖x1a‖ 6 λ−X(1) + ε, i.e. ‖ab‖ > 1− λ−X(1)− ε. Like in (6.4), we obtain

‖y1y2‖ > λ−X(max{‖a2y2‖ , ‖y2b2‖}) > λ−X

(
‖ab‖

2

)
> λ−X

(
1− λ−X(1)− ε

2

)
.

Passing to limit as ε → 0 and using inequality (6.2), we prove the left-hand side of
inequality (6.1).

Remark 3. The estimate (6.1) is reached in case of a Hilbert space. The right-hand
side of inequality (6.1) does not exceed 2, i.e. this estimate is not trivial.

Conjecture 6.1. The right-hand side of inequality (6.1) becomes an equality in case
of Lp, p ∈ (1; +∞).

In the following lemma we obtain a lower estimate of the modulus of supporting
smoothness by the inverse function to the modulus of convexity.

Lemma 6.1. For any r ∈ [0, 1] the following inequalities hold:

1− 1

2
δ−1
X

(
1− r

2

)
6 1− 1

2
δ−1
X

(
1− r

ξX

)
6 λ+

X(r) . (6.5)
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Proof. The left-hand side of inequality (6.5) is a straightforward consequence of the
inequality ξX ≤ 2. Let us prove the right-hand side of inequality (6.5). In case of
r = 0 it is trivial. Let x0 be an arbitrary point on the unit sphere. Define Hx

as a supporting hyperplane to the unit ball at the point x0. Let x1 be a point of the
supporting hyperplane Hx such that ‖x0x1‖ = r. Denote the ray {ox0+αx0x1 : α > 0}
as `. Let l1, l2 be the lines parallel to ox0 such that
a) l2 is a supporting line to the unit ball at the point y2 and l2 ∩ ` = x2;
b) l1 intersects the ray ` at x1 and intersects the unit sphere at points a, b.
Let y1 = oy2 ∩ ab (see Fig. 6).

Figure 6: Illustration for Lemma 6.1 and for the first part of Theorem 5.1.

By the definition of λ+
X(r) and since the unit ball is centrally symmetric, we get ‖ab‖ >

2(1− λ+
X(r)). Obviously, ‖y1y2‖ > δX(‖ab‖) . Consequently, we have

δX
(
2(1− λ+

X(r))
)

6 δX(‖ab‖) 6 ‖y1y2‖ . (6.6)

Using the intercept theorem, we obtain

‖y1y2‖ =
‖y1y2‖
‖oy2‖

=
‖x1x2‖
‖x0x2‖

=
‖x0x2‖ − ‖x0x1‖

‖x0x2‖
= 1− r

‖x0x2‖
6 1− r

ξX
. (6.7)

By inequalities (6.6) and (6.7), we have

δX
(
2(1− λ+

X(r))
)

6 1− r

ξX

It is easy to check that in a Hilbert space H the following equality holds

δ−1
H (τ) = 2

√
1− (1− τ)2.

Substituting this in inequality (6.5) and since ξH = 1, we obtain

δH(2r) = 1− 1

2
δ−1
H (1− r) 6 λ+

H(r).

According to (1), we have that if X is a Hilbert space, then the right hand estimate
in inequality (6.5) is reached.
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