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Abstract. The main purpose of this article is the investigation of the recent advances
on the exponential stability and dichotomy of autonomous and nonautonomous linear
differential systems, in both continuous and discrete cases i.e. ẋ(t) = Ax(t), ẋ(t) =
A(t)x(t), xn+1 = Axn and xn+1 = Anxn in terms of the boundedness of solutions of
some Cauchy problems, where A, An, and A(t) are square matrices, for any n ∈ Z+

and t ∈ R+.

1 Introduction

The natural tendency for abstraction and for generalization in the study of differential
systems has led to the theory of linear operator groups and linear operator semi-groups.
In 1888, Giuseppe Peano [44, 45], took the first step for writing a system of scalar
differential equations, briefly as one single matrix differential equation. Moreover,
Peano wrote the variation of constant formula with the help of the exponential of a
matrix with respect to the operatorial norm as:

etA =
∞∑

k=0

tk

t!
Ak.

The concept of asymptotic stability is fundamental in the theory of ordinary and partial
differential equations. In this way the stability theory leads to real applications. The
recent advances of the stability theory deeply interact with spectral theory, harmonic
analysis, modern topics of complex functions theory and also with control theory.
Finding of necessary and sufficient conditions for a system to be asymptotically stable,
is justified by the existence of a vast field of applications, especially in the domain of
equations of the mathematical physics.

In 1892, Alexander Lyapunov [36] proved that if A is a square matrix with complex
entries then the group of operators {etA}t∈R is asymptotically stable (or equivalently
exponentially stable), i.e. lim

t→∞
||etA|| = 0, if and only if the spectrum of the matrix
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A is included in the open left half-plane of the complex plane. This classical result
has already entered in the present mathematical folklore. In essence, the proof of this
result is based on the spectral mapping theorem which states that

σ(etA) = etσ(A) for all t ∈ R

and operates under the assumptions exposed before.
In 1930, Oscar Perron [46] introduced the concept of exponential dichotomy for

linear differential systems. Perron also established a connection between the expo-
nential dichotomy and the conditional stability of the system. Extensions of the
Perron problem to the general framework of the infinite dimensional Banach spaces
were obtained by M.G. Krein, R. Bellman, J.L. Massera and J.J. Schäffer in the pe-
riod 1948-1966. This vast domain of research is far from exhausted, as proved by
the existence in the mathematical literature of the last four decades of an impressive
number of papers and monographs dedicated to this interesting topic. We mention
here only some of the authors: W. Arendt, A.V. Balakrishnan, V. Barbu, B. Basit,
A.G. Baskakov, C.J.K. Batty, C. Buşe, C. Corduneanu, R. Datko, K. Engel, H.O.
Fattorini, C. Foiaş, I. Gohberg, J.A. Goldstein, A. Halanay, E. Hille, F.L. Huang, A.
Ichikawa, Yu. Latushkin, Yu.I. Lyubich, M. Megan, N.V. Minh, V. Müller, R. Nagel,
F. Neubrander, Jan van Neerven, A. Pazy, A. Pogan, G. Da Prato, C.I. Preda, P.
Preda, J. Prüss. M. Reghiş, A.L. Sasu, B. Sasu, R. Schnaubelt, Vu Quoc Phong, G.
Weiss [1, 4, 6, 8, 9, 10, 20, 21, 22, 24, 25, 23, 28, 27, 29, 30, 31, 32, 33, 34, 37, 40, 39,
38, 41, 42, 43, 50, 51, 49, 48, 47, 53, 54, 52, 55, 57].

In a particular case and using the most simple terms, Perron’s result may be for-
mulated as follows:

The system
ẋ(t) = A(t)x(t), t ∈ R (A(t))

is exponentially stable if and only if it is admissible relative to the space of all continuous
and bounded functions, i.e. for each input f, continuous and bounded function defined
on the semi-axis of all nonnegative real numbers (R+), the output, i.e. the solution of
the Cauchy problem

ẏ(t) = A(t)y(t) + f(t), t ≥ 0, y(0) = 0, (A(t), f, 0)

is bounded.
A more general concept of admissibility can be defined as follows: Let us denote

the solution of (A(t), f, 0) by yf (·, 0) and let X+ and Y+ be two nonempty sets of
functions defined on R+. The system (A(t)) is called (X+,Y+)-admissible if for each
input f ∈ X+, the output yf (·, 0) belongs to Y+.

The enunciation: the system (A(t)) is uniformly exponentially stable if and only if
it is (X+,Y+)-admissible, will be called (ad-hoc) theorem of Perron’s type.

In particular, when X+ = Y+ is a certain normed space of functions, the corre-
sponding theorem of Perron leads to a spectral mapping theorem for the so-called
evolution semigroup associated to the system (A(t)). For more details on this topic we
refer readers to the monograph [20], by Carmen Chicone and Yuri Latushkin.

It is well known that if a nonzero solution of the scalar differential equation ẋ(t) =
ax(t), t ∈ R is asymptotically stable then each other solution has the same property
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and this happens if and only if for each real number µ and each complex number b the
solution of the Cauchy problem:

ż(t) = az(t) + eiµtb, t ≥ 0, z(0) = 0,

is bounded.
This result can be extended with approximatively the same formulation for the case

of bounded linear operators acting on a Banach space X, [5]. The result can also be
extended for strongly continuous bounded semigroups, [14, 17, 16, 42]. For discrete
systems, see [15, 56, 61]. Under a slightly different assumption the result on stability is
also preserved for all strongly continuous semigroups acting on complex Hilbert spaces,
see for example [41, 47] and references therein. For counter-examples, see [13].

In 2008, A. Zada [58] extended the above result to the case of dichotomic matrices.
His proofs uses the Spectral Decomposition Theorem. Since then many papers have
been devoted to the study of the above subject in the continuous case as well as in the
discrete case.

The main aim of this article is to present recent results on the exponential stability
and exponential dichotomy of the autonomous systems ẋ(t) = Ax(t), xn+1 = Axn and
the nonautonomous systems ẋ(t) = A(t)x(t) and xn+1 = Anxn, where A, An and A(t)
are square matrices, in terms of the boundedness of the solutions of the corresponding
Cauchy problems.

This article is organized as follows: In the first section we give results on the de-
composition of the solutions of autonomous systems, in the second section we consider
results on the exponential stability and dichotomy of autonomous systems, in the third
section we present results on discrete characterization of the exponential stability and
dichotomy for nonautonomous systems and in the last section we discuss the exponen-
tial stability and dichotomy of nonautonomous systems in the continuous case.

2 Decomposition of the solutions of autonomous systems

Consider the following linear differential Cauchy problem{
ẋ(t) = Ax(t), t ∈ R
x(0) = x0,

(A, 0, x0)c

where A is a square matrix of order m and x0 is a fixed vector in Cm. It is clear that
the Cauchy problem (A, 0, x0)c has a unique solution given by

φ(t) = etAx0, t ∈ R.

Problem: How can we decompose φ(t) so that the stability of the system ẋ(t) = Ax(t)
can be easily discussed?

In [58], φ(t) was decomposed with the help of the spectral decomposition theorem.
Here we are recalling some background and lemmas, without proof, for the spectral
decomposition theorem.

Let p(λ) = a0 + a1λ+ · · ·+ akλ
k ∈ C[λ]. Then by p(A) we mean the matrix

p(A) = a0I + a1A+ · · ·+ akA
k.
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Clearly if p(λ) = 1, then p(A) = I, and if p(λ) = λ then p(A) = A. Also if p, q ∈ C[λ]
then (pq)(A) = p(A)q(A).

Lemma 2.1. [59] Let A be a square matrix of order m. The polynomial p(A) and the
exponential etA commutes i.e.

etAp(A) = p(A)etA.

Lemma 2.2. [59] Let p1 and p2 be complex-valued polynomials such that p1 and p2 are
relatively prime. Then

ker[p1p2(B)] = ker[p1(B)]⊕ ker[p2(B)].

The set of all eigenvalues of a matrix A is called the spectrum of A and is denoted
by σ(A). The polynomial of degree m defined by

PA(λ) = det(λI − A) = λm + a1λ
m−1 + · · ·+ am−1λ+ am

is called the characteristic polynomial associated with A. The spectrum of A is the set
of all roots of the polynomial PA. Let σ(A) = {λ1, λ2, . . . , λk}, k ≤ m be the spectrum
of A. Then

PA(λ) = det(λI − A) = (λ− λ1)
m1(λ− λ2)

m2 . . . (λ− λk)
mk ,

m1 +m2 + · · ·+mk = m.

Note that the polynomials p = (λ − λi)
mi and q = (λ − λj)

mj are relatively prime
because λi 6= λj when i 6= j. From the Hamilton-Cayley Theorem it follows that

PA(A) = 0 = (A− λ1I)
m1(A− λ2I)

m2 . . . (A− λkI)
mk .

Taking kernel of both sides, we get

ker(0) = ker[(A− λ1I)
m1(A− λ2I)

m2 . . . (A− λkI)
mk ].

As ker(0) = Cm, we have

Cm = ker[(A− λ1I)
m1(A− λ2I)

m2 . . . (A− λkI)
mk ].

Applying Lemma 2.2, we obtain

Cm = ker(A− λ1I)
m1 ⊕ ker(A− λ2I)

m2 ⊕ · · · ⊕ ker(A− λkI)
mk .

For each j ∈ {1, 2, . . . , k} let us denote Wj := ker(A− λjI)
mj . Then

Cm = W1 ⊕W2 ⊕ · · · ⊕Wk. (2.1)

Lemma 2.3. [59] The subspace ker(A− λjI)
mj is etA-invariant.

The following result shows that any solution of the Cauchy problem (A, 0, x0)c can
be split in the sum of k solutions of the system ẋ(t) = Ax(t). Moreover, each of such
summands has a relatively simple structure described as follows.
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Theorem 2.1. [59] Let A be a square matrix of order m. For each x ∈ Cm there exist
wj ∈ Wj (j ∈ {1, 2, . . . , k}) such that

etAx = etAw1 + etAw2 + · · ·+ etAwk, t ∈ R.

Moreover, if wj(t) := etAwj then wj(t) ∈ Wj for all t ∈ R and there exist Cm-valued
polynomials pj(t) with deg (pj) ≤ mj − 1 such that

wj(t) = eλjtpj(t), t ∈ R, j ∈ {1, 2, . . . , k}.

In the discrete case the Cauchy problem associated with matrix A is{
zn+1 = Azn, zn ∈ Cm, n = 0, 1, 2, . . .
z(0) = z0.

(A, 0, z0)d

Clearly the solution of (A, 0, z0)d is zn = Anz0.
Problem: How can we decompose the above solution Anz0 so that the exponential

stability of the system (A, 0, z0)d can be easily discussed?
In [18], the solution of (A, 0, z0)d was decomposed with the help of the Spectral

Decomposition Theorem (in discrete form).
Let us denote z(n + 1) − z(n) by ∆z(n). Then concerning ∆z(n) we have the

following lemma.

Lemma 2.4. [59] If ∆Nq(n) = 0 for all n = 0, 1, 2 . . . and N ≥ 1 is a natural number,
then q is a Cm-valued polynomial of degree less than or equal to N − 1.

The following result shows that any solution of the Cauchy problem (A, 0, z0)d can
be split in the sum of k solutions of the system xn+1 = Axn. Moreover, each of such
summands has a relatively simple structure described as follows.

Theorem 2.2. [18] Let A be a square invertible matrix of order m. For each y ∈ Cm

there exist wi ∈ Wi where Wi = ker(A− λiI)
ni, (i ∈ {1, 2, . . . , k}) such that

Any = Anw1 + Anw2 + · · ·+ Anwk.

Moreover, if wi(n) = Anwi then wi(n) ∈ Wi for all n = 0, 1, 2, . . . and there also exist
Cm-valued polynomials ti(n) with deg (ti) ≤ ni − 1 such that

wi(n) = λn
i ti(n), n = 0, 1, 2, . . . , i ∈ {1, 2, . . . , k}.

3 Stability and dichotomy of autonomous systems

In [58], the stability and dichotomy of the systems ẋ(t) = Ax(t) was discussed.
The authors decompose the complex plane as follows. Suppose that C+ =
{z ∈ C : Re(z) > 0}, C− = {z ∈ C : Re(z) < 0} and iR = {iη : η ∈ R}. Clearly
C = C+ ∪C− ∪ iR. With the help of above decomposition of C, we can now state the
following definition.
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Definition 3.1. [58] Consider the system

ẋ(t) = Ax(t) (A)c

The system (A)c is called

(i) stable if σ(A) belongs to C− or, equivalently, if there exist two positive constants
N and ν such that ‖etA‖ ≤ Ne−νt for all t ≥ 0,

(ii) expansive if σ(A) belongs to C+

and

(iii) dichotomic if σ(A) does not intersect the set iR.

With the help of the decomposition of C and the decomposition of the solution of
ẋ(t) = Ax(t) the following result was obtained.

Theorem 3.1. [58] The system (A)c is stable if and only if for each real number µ
and each non-zero vector b in finite dimensional space Cm the solution of the following
Cauchy problem {

ẇ(t) = Aw(t) + eiµtb, t ≥ 0,

w(0) = 0
(A, µ, b, 0)c

is bounded.

As the system (A)c is expansive if and only if (−A)c is stable, the following corollary
was also stated.

Corollary 3.1. [58] The system (A)c is expansive if and only if for each real number
µ and each non-zero vector b in finite dimensional space Cm the solution of the Cauchy
problem (−A, µ, b, 0)c is bounded.

In the same paper this result was also extended to dichotomy.

Theorem 3.2. [58] The system (A)c is dichotomic if and only if there exists a pro-
jection P with etAP = PetA for all t ≥ 0 such that for each real number µ and each
non-zero vector b in finite dimensional space Cm the following two Cauchy problems:{

u̇(t) = Au(t) + eiµtPb, t ≥ 0,

u(0) = 0
(A, µ, Pb, 0)c

and {
ẇ(t) = −Aw(t) + eiµt(I − P )b, t ≥ 0,

w(0) = 0
(−A, µ, (I − P )b, 0)c

are bounded.

The next problem was as follows.
Problem. Can we extend the results of [58] to any arbitrary value of the ini-

tial vector in the Cauchy problem (A, µ, b, 0)c i.e. can we replace the Cauchy problem
(A, µ, b, 0)c by (A, µ, b, x0)c?

Results concerning this problem were obtained in [64]. Thus the results of [58] were
extended as follows.
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Theorem 3.3. [64] The system (A)c is asymptotically stable if and only if for each
real number µ and each non-zero vector b in Cm the solution of the following Cauchy
problem: {

ẇ(t) = Aw(t) + eiµtb, t ≥ 0,

w(0) = w0

(A, µ, b, w0)c

is bounded.

Corollary 3.2. [64] The system (A)c is expansive if and only if for each real number
µ and each non-zero vector b in Cm the solution of (−A, µ, b, w0)c is bounded.

By using projection P , the above result was also extended to dichotomy as follows.

Theorem 3.4. [64] The system (A)c is dichotomic if and only if there exist a projection
P having the property etAP = PetA for all t ≥ 0 such that for each real number µ and
each non-zero vector b in Cm the solutions of the following Cauchy problems{

u̇(t) = Au(t) + eiµtPb, t ≥ 0,

u(0) = Pu0

and {
ẇ(t) = −Aw(t) + eiµt(I − P )b, t ≥ 0,

w(0) = (I − P )w0

are bounded.

After the publishing of [58], the following question arose.
Problem. Can we extend the results of [58] to discrete autonomous systems ?
Answer to the above problem was given in [18].
In [18], the stability and dichotomy of the system xn+1 = Axn were discussed. The

authors decomposed C in the following way. Suppose that Ω1 = {z ∈ C : |z| = 1} ,
Ω+

1 = {z ∈ C : | z| > 1} and Ω−
1 = {z ∈ C : | z| < 1}. Clearly C = Ω1 ∪ Ω+

1 ∪ Ω−
1 .

Definition 3.2. Consider a system

wn+1 = Awn. (A)d

The system (A)d is said to be

(i) stable if σ(A) is contained in Ω−
1 or, equivalently, if there exist two constants

N > 0 and ν > 0 such that ‖An‖ ≤ Ne−νn for all n = 0, 1, 2 . . . ,

(ii) expansive if σ(A) is contained in Ω+
1

and

(iii) dichotomic if σ(A) does not intersect set Ω1.
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Since any expansive matrix A with spectrum σ(A) = {λ1, λ2, . . . , λk} is invertible,
its inverse is stable, because

σ
(
A−1

)
=

{
1

λ1

,
1

λ2

, . . . ,
1

λk

}
⊂ Ω−

1 .

In [18], with the help of the above decomposition of C and from the decomposition
of the solution Anz0 of the system zn+1 = Azn the following results were obtained.

Theorem 3.5. [18] The matrix A is stable if and only if for each µ ∈ R and each
b ∈ Cm the solution of the discrete Cauchy problem{

un+1 = Aun + eiµnb, n ∈ Z+

u0 = 0,
(A, µ, b, 0)d

is bounded.

Corollary 3.3. [18] A matrix A is expansive if and only if it is invertible and for all
µ ∈ R and all b ∈ Cm the solution of the discrete Cauchy problem{

wn+1 = A−1wn + eiµnb, n ∈ Z+

w0 = 0,

is bounded.

Theorem 3.6. [18] The system (A)d is dichotomic if and only if there exists a projec-
tion P having the property AP = PA such that for each µ ∈ R and each vector b ∈ Cm

the solutions of the following two discrete Cauchy problems{
un+1 = Aun + eiµnPb, n ∈ Z+

u0 = 0

and {
wn+1 = A−1wn + eiµn(I − P )b, n ∈ Z+

w0 = 0

are bounded.

If in the above problem we replace a matrix A by an operator A, then still the same
theorem holds.

Theorem 3.7. [18] A bounded linear operator A acting on the complex Banach space
X is dichotomic if and only if there exists a projection P on X that commutes with
A and such that for each real number µ and each vector b ∈ X the solutions of the
following two Cauchy problems{

un+1 = Aun + eiµnPb, n ∈ Z+

u0 = 0

and {
wn+1 = A−1wn + eiµn(I − P )b, n ∈ Z+

w0 = 0

are bounded.
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The next problem was as follows.
Problem. Can we extend the results of [18] to any arbitrary value of the initial

vector in the Cauchy problem (A, µ, b, 0)d i.e. can we replace the Cauchy problem
(A, µ, b, 0)d by (A, µ, b, x0)d?

Results concerning this problem were obtained in [60]. Thus the results of [18] were
extended as follows:

Theorem 3.8. [60] The system (A)d is stable if and only if for each real number µ and
any arbitrary vector b in Cm the solution of the discrete Cauchy problem{

un+1 = Aun + eiµnb, n ∈ Z+

u(0) = u0,
(A, µ, b, 0)d

is bounded.

Corollary 3.4. [60] The system (A)d is expansive if and only if A is invertible and
for each real number µ and any arbitrary vector b in Cm the solution of the discrete
Cauchy problem {

un+1 = A−1un + eiµnb, n ∈ Z+

u(0) = u0,

is bounded.

Theorem 3.9. [60] The system (A)d is dichotomic if and only if there exists a projec-
tion P with AP = PA such that for each real number µ and each arbitrary vector b in
Cm the solutions of the following two discrete Cauchy problems{

un+1 = Aun + eiµnPb, n ∈ Z+

u(0) = Pu0

and {
wn+1 = A−1wn + eiµn(I − P )b, n ∈ Z+

w(0) = (I − P )w0

are bounded.

4 Discrete characterization of stability and dichotomy for
nonautonomous systems

After the results of [18], one of the natural question is as follows.
Problem. By using the idea of [18], can we extend the stability result of the system

xn+1 = Axn to nonautonomous systems xn+1 = Anxn i.e. can we replace the square
matrix A by a sequence of matrices An, where n ∈ Z+?

Working with nonautonomous systems is always more complicated than with au-
tonomous systems. In [2], a partial answer to the above problem was given for periodic
systems.
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Let Z+ be the set of all nonnegative integer numbers. A family U = {U(p, q) :
(p, q) ∈ Z+ × Z+} of square matrices having complex scalars as entries is called an
N -periodic discrete evolution family if it satisfies the following conditions:

(1) U(p, q)U(q, r) = U(p, r) for all nonnegative integers p ≥ q ≥ r.
(2) U(p, p) = I for all p ∈ Z+.
(3) U(p+N, q +N) = U(p, q) for all nonnegative integers p ≥ q.
We will use such families to solve the following discrete Cauchy problem.{

yn+1 = Anyn + eiµnb, n ∈ Z+

y0 = 0 ,
(An, µ, b, 0)

in the case when (An) are square N -periodic matrices, i.e. An+N = An for all n ∈ Z+.
Define

U(n, j) :=

{
An−1An−2 . . . Aj, j ≤ n− 1

I, j = n,

then the family {U(n, j)}n≥j≥0 is a discrete N -periodic evolution family and the solu-
tion (yn(µ, b)) of the Cauchy problem (An, µ, b)0 is given by:

yn(µ, b) =
n∑

j=1

U(n, j)eiµ(j−1)b. (4.1)

For further details related to the general theory of difference equations we refer to
[26]. The first result of [2] is stated in the following form.

Theorem 4.1. [2] The sequence (yn(µ, b)) given in (3.1) is bounded for any real number
µ and any m-vector b if the matrix U(N, 0) is stable.

Now the following natural question arises.
Problem. Is the converse of the above theorem is also true?
In [2], a partial converse of Theorem 4.1 was given as follows:

Theorem 4.2. [2] If for each µ ∈ R and each non zero b ∈ Cm the sequence (yNk(µ, b))k

is bounded and the matrix Vµ =
N∑

ν=1

U(N, ν)eiµν is invertible then the matrix U(N, 0) is

stable.

In [2], an example was also given which shows that the assumption on invertibility
of Vµ, for each real number µ, cannot be removed.

Open Problem. Can we find a strong version of Theorems 4.1 and 4.2 that
represents the results of both theorems as a single theorem?

In the same paper [2], a strong version of a Barbashin’s type theorem is also obtained
which states the following result.

Theorem 4.3. [2] Let (U(n, k))n≥k be an N-periodic evolution family. If for each
vector b ∈ Cm the inequality

sup
k≥1

Nk∑
j=1

‖U(Nk, k)b‖ = M(b) <∞

holds then the matrix U(N, 0) is stable.
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An interesting problem can be stated as follows.
Open Problem. If the following uniform inequality

sup
µ∈R

sup
k≥1

||y2k(µ, b)|| = K(b) <∞ (4.2)

holds for all b ∈ Cm then is the matrix U(N, 0) stable?
Under an assumption similar to (3.2), Jan van Neerven proved in [41] that a strongly

continuous semigroup acting on a complex Banach space is exponentially stable. More-
over, when the semigroup acts in a complex Hilbert space it is uniformly exponentially
stable. A transparent proof of this later result can be found in [47]. In connection with
(3.2) we also mention that in [11] it is proved that if a vector valued function has a
bounded holomorphic extension to the open right half plane then its primitive grows
like M(1 + t) for t ≥ 0.

Working further with equation (An, µ, b, 0), the following stronger results were ob-
tained in [7].

Let Z+ be the set of all nonnegative integers and m, q ∈ Z+, m ≥ 1, q > 1, be fixed.
Denote by Sq,0(Z+,Cm) the set of all Cm-valued, q-periodic sequences (zn), with z0 = 0.
Let us consider the following difference equation and discrete Cauchy problems:

xn+1 = Anxn, n ∈ Z+ (An){
yn+1 = Anyn + eiµnb, n ∈ Z+,

y0 = 0
(An, µ, b, 0)

and {
wn+1 = Anwn + eiµnzn, n ∈ Z+,

w0 = 0
(An, µ, zn, 0)

where An is a q-periodic, L(Cm)-valued sequence, zn ∈ Sq,0(Z+,Cm) and µ is a real
parameter. We know that the solution of (An, µ, b, 0) is given by (3.1) and similarly
the solution of (An, µ, z,0) can be obtained from (3.1) by replacing only b by zn. In [7]
the following theorem was obtained which is stronger than Theorems 4.1 and 4.2.

Theorem 4.4. The following four statements are equivalent.

1. The system (An) is uniformly asymptotically stable, i.e. there exist two positive
constants N and ν such that

‖U(n, j)‖ ≤ Ne−ν(n−k), ∀ n ≥ k ≥ 0

2. For each µ ∈ R and each (zn) ∈ Sq,0(Z+,Cm) the solution of (An, µ, zn, 0) is
bounded, i.e.

sup
n≥1

∥∥∥∥∥
n∑

j=1

U(n, j)eiµ(j−1)zj−1

∥∥∥∥∥ = M(µ, (zn)) <∞;



124 A. Zada, T. Li, R. Amin, G. Rahmat

3. For each b ∈ Cm the solution of (An, µ, b, 0) is uniformly bounded, i.e.

sup
µ∈R

sup
n≥1

‖yn(µ, b)‖ = M(b) <∞;

4. For each µ ∈ R and each b ∈ Cm Ѓthe solution of (An, µ, b, 0) is bounded, i. e.

sup
n≥1

∥∥∥∥∥
n∑

j=1

U(n, j)eiµ(j−1)b

∥∥∥∥∥ = M(µ, b) <∞;

and for each µ ∈ R the operator Vµ =
∑q

ν=1 e
iµνU(q, ν) is invertible.

In [58], the stability results were also extended to the case of dichotomy. So a
natural question can be stated as follows:

Problem. Is it possible to extend Theorems 4.1 and 4.2 for dichotomy?
In [62], Theorems 4.1 and 4.2 were extended for dichotomy in the following way.

Theorem 4.5. [62] Let N ≥ 2 be a fixed natural number. The Poincaré map U(N, 0)
is dichotomic if and only if for each µ ∈ R the matrix Vµ is invertible and there exists
a projection P with PU(N, 0) = U(N, 0)P and PVµ = VµP such that for each µ ∈ R
and each non-zero vector b in Cm, the solutions of discrete Cauchy problems{

un+1 = Anun + eiµnPb, n ∈ Z+

u0 = 0
(An, µ, b, 0)

and {
vn+1 = A−1

n vn + eiµn(I − P )b, n ∈ Z+

v0 = 0
(A−1

n , µ, (I − P )b, 0)

are bounded.

5 Characterization of exponential stability and dichotomy for
nonautonomous systems

The case of exponential stability for nonautonomous system is more complicated than
for autonomous systems. In [19], the following approach for the exponential stability
of such system was developed.

Consider the homogenous time-dependent differential system

ẋ = A(t)x, (A(t))

where A(t) is a 2-periodic continuous function, i.e. A(t + 2) = A(t) for all t ∈ R. It
is well known that the system (A(t)) is uniformly exponentially stable, i.e. there exist
two positive constants N and ν such that

‖Φ(t)Φ−1(s)‖ ≤ Ne−ν(t−s) for all t ≥ s,
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if and only if the spectrum of the matrix V := Φ(2) lies inside of the circle of radius
one, where Φ(t) is the resolvent matrix of (A(t)). See e.g. [16], where even the infinite
dimensional version of this result is stated. The following natural question arises:

Problem. Is the negativeness of all the eigenvalues of A(t) yields the exponential
stability of the system (A(t))?

Answer to this question is NO, for counter example, see [55].
So motivation for the paper [19] was to search some other tools to investigate the

exponential stability of the system ẋ(t) = A(t)x(t).
Consider two arbitrary functions h1, h2 : [0, 2] → C given by

h1(u) =

{
u, u ∈ [0, 1)

2− u, u ∈ [1, 2]
and h2(u) = u(2− u).

Now let us consider the vectorial non-homogenous Cauchy problem{
ẏ(t) = A(t)y(t) + eiµtf(t), t ∈ R+

y(0) = 0,
(A(t), µ, f(t), 0)

where f is some continuous function. Denote by P2,0(R+,Cn), the space of all contin-
uous and 2-periodic functions g with the property that g(0) = 0. We endow this space
with the norm “sup”. For each k ∈ {1, 2} let us consider the set Ak consisting of all
functions f ∈ P2,0(R+,Cn) given for t ∈ [0, 2] by f(t) = Φ(t)hk(t), where Φ(t) is the
resolvent matrix of (A(t)).

Theorem 5.1. [19] The following two statements hold true.
(i) If the system (A(t)) is uniformly exponentially stable then for each continuous

and bounded function f and each real number µ the solution of (A(t), µ, f, 0) is bounded.
(ii) Let A := A1 ∪ A2. If for each f ∈ A and for each real number µ the solu-

tion of the Cauchy Problem (A, µ, f, 0) is bounded then the system (A(t)) is uniformly
exponentially stable.

From Theorem 5.1, the following corollary was obtained.

Corollary 5.1. [19] The system (A(t)) is uniformly exponentially stable if and only if
for each real number µ and each function f belonging to P2,0(R+,Cn) the solution of
(A(t), µ, f, 0) is bounded.

Also the following corollary of Datko type was stated.

Corollary 5.2. [19] The system (A(t)) is uniformly exponentially stable if and only if
for each vector b

∞∑
j=1

||Φ(2j)b|| <∞. (5.1)

It is not difficult to see that the requirement (4.1) may be replaced by the apparently
weaker one, namely by the inequality

∞∑
j=1

|〈Φ(2j)b, b〉| <∞, ∀ b ∈ Cn.
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Now one more natural question arises here.
Problem. Can we extend the results of Theorem 5.1 from 2-periodic systems to

any q-periodic systems?
In [3], the following answer to the above problem was given.
Consider the q-periodic system

ẋ(t) = A(t)x(t). (A(t))

We know that the Cauchy problem{
ẋ(t) = A(t)x(t), t ∈ R
x(0) = I,

has a unique solution denoted by Φ(t). Also It is well known that Φ(t) is an invertible
matrix and that its inverse is the unique solution of the Cauchy problem{

ẋ(t) = −x(t)A(t), t ∈ R
x(0) = I.

The family U = {U(t, s), t, s ∈ R}, where U(t, s) := Φ(t)Φ−1(s), is called evolution
family and has the following properties:

(i) U(t, t) = I, for all t ∈ R;
(ii) U(t, s) = U(t, r)U(r, s) for all t, s, r ∈ R;
(iii) ∂

∂t
U(t, s) = A(t)U(t, s) for all t, s ∈ R;

(iv) ∂
∂s
U(t, s) = −U(t, s)A(s) for all t, s ∈ R;

(v) The map (t, s) 7→ U(t, s) : R2 →M(n,C) is continuous, where M(n,C) is the
space of all square matrices of order n. If, in addition, the map A(·) is q- periodic, for
some positive number q, then:

(vi) U(t+ q, s+ q) = U(t, s) for all t, s ∈ R;
(vii) There exist ω ∈ R and Mω ≥ 1 such that

‖U(t, s)‖ ≤Mωe
ω(t−s), t ≥ s.

Concerning the evolution family U = {U(t, s), t, s ∈ R} in [3], the following propo-
sition was presented.

Proposition 5.1. [3] Let U = {U(t, s), t, s ∈ R} be a strongly continuous and q-
periodic evolution family acting on the Banach space X. Then the following four state-
ments are equivalent:

1. The family U is uniformly exponentially stable, i.e. there exist two positive
constants N and ν such that

‖U(t, s)‖ ≤ Ne−ν(t−s), for all t ≥ s;

2. There exist two positive constants N and ν such that

‖U(t, 0)‖ ≤ Ne−νt, for all t ≥ 0;
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3. The spectral radius of U(q, 0) is less than one, i.e.

r(U(q, 0)) := sup{|λ| λ ∈ σ(U(q, 0))} = inf
n≥1

‖U(q, 0)n‖
1
n < 1.

4. For each real number µ, one has

sup
ν≥1

∥∥∥∥∥
ν−1∑
k=0

eiµkU(q, 0)ν−k

∥∥∥∥∥ := L(µ) <∞.

Let P 0
q (R+, X) be the set of all continuous X-valued functions f defined on R+,

with f(0) = 0 and f(t+ q) = f(t) for t ∈ R+. The following theorem is stated in [3].

Theorem 5.2. [3] Let U = {U(t, s), t, s ∈ R} be a strongly continuous and q-periodic
evolution family on the Banach space X. If for each µ ∈ R and each f ∈ P 0

q (R+, X)
one has

sup
t>0

‖
∫ t

0

eiµsU(t, s)f(s)ds‖ = K(µ, f) <∞

then U is uniformly exponentially stable.

For a given real number µ and a given family (A(t)) the following Cauchy problem
was considered. {

ẋ(t) = A(t)x(t) + eiµtI t ≥ 0
x(0) = 0.

(A(t), µ, I, 0)

Obviously, the solution of (A(t), µ, I, 0) is given by

Φµ(t) =

∫ t

0

U(t, s)eiµsds. (∗)

The next result is stated in [3].

Theorem 5.3. [3] The following two statements hold true:
1. For each real number µ and each vector b ∈ Cn, the solution of the Cauchy

Problem (A(t), µ, b, 0) is bounded on R+, if the spectral radius of (U(q, 0) is less than
one.

2. Conversely, if for each real µ and each vector b ∈ Cn, the solution of the Cauchy
Problem (A(t), µ, b, 0) is bounded on R+ and in addition for each real number µ the
matrix Φµ(q) is an invertible one, where Φµ(q) is given in (∗), then the system (A(t))
is uniformly exponentially stable.

One more result is stated in [3].

Theorem 5.4. [3] The system (A(t)) is uniformly exponentially stable if and only if
for each b ∈ Cn the solution of (A(t), µ, b, 0) is bounded on R+, uniform with respect to
the parameter µ on R, i.e.

sup
µ∈R

sup
t≥0

∥∥∥∥∫ t

0

U(t, s)eiµsbds

∥∥∥∥ = K(b) <∞,

for all b ∈ Cn.



128 A. Zada, T. Li, R. Amin, G. Rahmat

In [3], from Theorem 5.4 the following weak version of the Barbashin theorem is
stated.

Corollary 5.3. [3] The time varying q-periodic system (A(t)) is uniformly exponen-
tially stable if and only if for each x ∈ Cn one has

sup
t≥0

t∫
0

| < Φ(t)Φ−1(s)x, x > |ds <∞.

Open problem. Can we extend the result of Corollary 5.3 to infinite dimensional
space?

Theorem 4.4 also yields the following corollary for strong version of the Barbashin
Theorem.

Corollary 5.4. [3] The time varying q-periodic system (A(t)) is uniformly exponen-
tially stable if and only if for each b ∈ Cn one has

sup
t≥0

t∫
0

‖U(t, s)b‖ds = K(b) <∞.

Now one more natural question arises in this context.
Problem. Can we extend the results and ideas of [18] and [3] to Dichotomy, by

using the idea of [58] in autonomous case?
In this regards article [35] presents the following result.

The evolution family U is said to have a uniform exponential dichotomy with respect
to the projector P (i.e. P ∈ L(Cn) and P 2 = P ) if there exist positive constants
N1, N2, ν1 and ν2 such that

(1) U(t, s)P = PU(t, s), for all t ≥ s ∈ R

(2) ‖U(t, s)P‖ ≤ N1e
−ν1(t−s), for all t ≥ s ∈ R

(3 ) ‖QU(t, s)‖ ≤ N2e
−ν2(t−s), for all t ≥ s ∈ R.

Here, Q := I − P and U(s, t) is the inverse of U(t, s). It is clear that Q2 = Q and
PQ = QP = 0.

Then by using Proposition 5.1, the following result on dichotomy was obtained in
[35].

Theorem 5.5. [35] The following statements are equivalent:

i. The evolution family U has an exponential dichotomy with respect to the projector
P .

ii. The following holds:

1. supµ∈R supt∈R
∥∥ ∫ t

0
eiµsU(t, s)Pds

∥∥ <∞.
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2. the solution of the equation{
Ẏ (t) = −Y (t)A(t) + eiµtQ, Y (t) ∈ L(Cn), t ≥ s

Y (s) = 0

has a limit in L(Cn) as s tends to −∞ (i.e.
∫ t

−∞ eiµsQU(s, t)ds exists) and

sup
µ∈R

sup
t∈R

∥∥∫ t

−∞
eiµsQU(s, t)ds

∥∥ <∞,

In [63], a similar result of dichotomy, as in Theorem 5.5, was obtained. The main
theorem of [63] is stated as follows.

Theorem 5.6. [63] Let q > 0. If the matrix L := U(q, 0) is dichotomic and there
exists a projection P commuting with L, Φµ(q) and Ψµ(q) then for each µ ∈ R and
each non-zero vector b ∈ Cm the solutions of the following Cauchy problems{

Ẋ(t) = A(t)X(t) + eiµtPb, t ≥ 0
X(0) = 0,

(A(t), µ, P b, 0)

and {
Ẋ(t) = −X(t)A(t) + eiµt(I − P )b, t ≥ 0
X(0) = 0,

(−A(t), µ, (I − P )b, 0)

are bounded, where Φµ(q) and Ψµ(q) are the solutions of (A(t), µ, I, 0) and
(−A(t), µ, I, 0) respectively.

Conclusions. The main objective of this article is to discuss the recent results
on exponential stability and dichotomy of autonomous and nonautonomous first order
linear differential systems on finite dimensional spaces. This is very helpful for the
people working in this area of research.
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[7] D. Barbu, C. Buşe, Some remarks about Perron condition for strongly continuous C0 semi groups,
Analele univ. Timisora. 35 (1997), 3-8.

[8] B. Basit, Some problems concerning different types of vector-valued almost periodic functions,
Dissertationes Math. (Rozprawy Mat.) 338 (1995).

[9] A.G. Baskakov, Some conditions for invertibility of linear differential and difference operators,
Russian Acad. Sci. Dokl. Math. 48 (1994), 498-501.

[10] C.J.K. Batty, R. Chill, Y. Tomilov, Strong stability of bounded evolution families and semigroups,
Journal of Functional Analysis. 193 (2002), 116-139.

[11] C.J.K. Batty, M.D. Blake, Convergence of Laplace integrals, C. R. Acad. Sci. Paris. 330 (2000),
serie 1, 71-75.
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Verlag, Basel, 11 (2005), 1081-1088.
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