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Abstract. The Cauchy problem for one-dimensional wave equations with a nonlinear
dissipative term is investigated. Under consideration are the problems of uniqueness
and existence of local, global and blow-up solutions. The paper’s originality is the
coalescence of the two standard methods: a priori estimate of solutions in the class
of continuous functions is given by energetic methods; basing on this result a priori
estimate in the class of continuously differentiable functions using classical method of
characteristics is obtained.

1 The statement of the problem
For one-dimensional wave equations with a nonlinear dissipative term [14], [13, p. 57],
Lu = uy — Uy + g(x, t,w)uy = f(2,1), (1.1)

in the half-plane Q := {(x,t) : x € R, t > 0}, let us consider the Cauchy problem with
the following initial conditions

u(z,0) = (x), w(z,0)=1¢(z), xR, (1.2)

where f, g, i, 1 are given real-valued functions, and u is the unknown real-valued func-
tion.

It should be noted that for nonlinear hyperbolic equations the questions of unique-
ness and existence of local, global and blow-up solutions for initial and other problems
are considered in numerous literature (see e.g., [1, 6-19, 21, 23, 25]).

Below we show that under certain requirements on the nonlinear function g(x,t, s)
with respect to the variable s problem (1.1), (1.2) is locally solvable. There are also
obtained conditions of global solvability, violation of which, generally speaking, may
cause the blow-up of the solution within finite interval of time.

Let Py := Py(xo,to) be an arbitrary point of the domain Q and Dp, := {(x,t) : t +
ro—ty < x < —t+xo+ty, t > 0} be the triangular domain bounded by the characteristic
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segments y1.p, 1 x =t +x9—1tp, 0 <t <tpand yop @ =—t+x0+1, 0 <t <1 of
equation (1.1), and the segment vp, 1t =0, xg —tog < & < g + 1.

First we consider the Cauchy problem for equation (1.1) in the bounded domain
Dp,: find a solution u = wu(z,t), (x,t) € Dp,, of equation (1.1) with the initial
conditions

u(x, O) = 90(1‘)7 ut(x’ 0) = ’g/)(l’), T € VP, (13)

where @, 1 are given real-valued functions on 7p,.

Definition 1.1. Let f € C(Dp,), g € C(Dp, x R), p € C'(yp,) and ¥ € C(yp,). We
say that a function wu is a strong generalized solution of problem (1.1), (1.3) of class
C' in the domain Dp,, if u € C*(Dp,) and there exists a sequence of the functions
u, € C%(Dp,), such that u, — u, Lu, — f, u,(-,0) — @ and uy(-,0) — ¥ as n — oo
in the spaces C'(Dp,), C(Dp,), C(yp,), C(vp,), respectively.

Remark 1.1. It is obvious, that a classical solution of problem (1.1), (1.3) of the class
C%(Dp,) is a strong generalized solution of this problem of the class C' in the domain
Dp,. Inversely, if a strong generalized solution of problem (1.1), (1.3) of class C! in
the domain Dp, belongs to the space C%(Dp,), then it will also be a classical solution
of this problem.

Definition 1.2. Let f € C(Q), g € C(Q x R), ¢ € C(R), v € C(R). We say that
problem (1.1), (1.3) is globally solvable in the class C, if for any point Py € Q the
problem has a strong generalized solution of class C'! in the domain Dp, in the sense
of Definition 1.1.

Definition 1.3. Let f € C(Q), g € C(Q x R), ¢ € C(R), ¢ € C(R). We say that
a function v € C*(Q) is a global strong generalized solution of problem (1.1), (1.2) of
class C1, if for any point Py € ) it is a strong generalized solution of problem (1.1),
(1.3) of class C* in the domain Dp, in the sense of Definition 1.1.

Remark 1.2. Note that in the case when the theorem of existence and uniqueness of
a strong generalized solution of problem (1.1), (1.3) of class C! in the domain Dp, is
valid for any Py € €2, then the existence follows of a unique global strong generalized
solution of problem (1.1), (1.2) of class C'' in the sense of Definition 1.3.

The paper is organized in the following way. In the second section under a certain
constraint on the function g an a priori estimate is obtained for a strong generalized
solution of problem (1.1), (1.3) of class C* in the domain Dp, in the sense of Definition
1.1 in the space C(Dp,), and then, basing on this, it is obtained in the space C'(Dp,).
In the third section the equivalency is proved of the posed problem to the problem for
a system of nonlinear integral equations of Volterra type. In the fourth section the
local and global solvability is proved of problems (1.1), (1.3) and (1.1), (1.2). In the
fifth section the uniqueness of the solution is proved . In the sixth section, for the case
when condition (2.1) is violated, the question of nonexistence is studied of a strong
generalized solution of problem (1.1), (1.3) of class C'! in the domain Dp, in the sense
of Definition 1.1.
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2 A priori estimates for a strong generalized solution of prob-
lem (1.1), (1.3) in the classes C(Dp,) and C!(Dp,)

Consider the conditions
g(z,t,8) > —M, (z,t,s) € A x R, M := const >0 (2.1)

and

feC), geCOQxR), pecC'R), e CR). (2.2)

Lemma 2.1. Let conditions (2.1), (2.2) be satisfied and Py be an arbitrary point of the
domain Q. Then if u is a strong generalized solution of problem (1.1), (1.3) of class
C' in the domain Dp,, then the following a priori estimate holds

[ullem,,) < CO(||f||C(EPO) + leller vy + 12l ctm)), (2.3)
with a positive constant cy = co(tg, M) independent of u and f,p, 1, where

leller(vey) = max {{lellcn) 19 llcte) }-

Proof. Let u be a strong generalized solution of problem (1.1), (1.3) of class C' in
the domain Dp,. Then due to Definition 1.1 there exists a sequence of functions

u, € C?(Dp,), such that

lim [ju, — u||01(5P0) =0, T}LIEO | Ly — fHC(ﬁpo) =0,

T . (2.4)
Jim Jun(-,0) = @llorie) = 0, i [une(,0) = Yllopp,) =0,
and, therefore

nhj& lg(z, t,up)un: — g(z,t, u)utHC@PO) = 0. (2.5)

Here

||U||CI(§PO) = maX{HUHC(BPOy ||u:c||0(ﬁpo)a ||ut||0(ﬁpo)}-
Consider the function u, € C?(Dp,) as a solution to the following problem

Lu,, = fp, (2.6)
Un|w:0 = ©n, Unt‘vpo = Un. (2'7)

Here
fr =Ly, ©n:=u,(-,0), U = uny(-,0). (2.8)

Let us fix the point Iy := Fj(zg,t,) € Dp,. Then, it is obvious, that Dp; C Dp, and
Yp; C vp,- Multiplying both sides of equality (2.6) by u,; and integrating the obtained
equality over the domain Dpy . := {(x,t) €Dp:0<t< 7'}, 0 <7 <t we have

/ (upy)eddt — 2 / (UnaUng)xdrdt + / (u2,)idxdt

DP(I),T DP(/),T DP(/),T
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+2 / g(x, t, up)u?,dedt = 2 / frtndzdt.
DP/,T

Dpr

07

Let wpr, == Dp N {t = 7}. Then according to (2.7), integrating by parts the
left-hand side of the last equality we get

2 / frtpidxdt — 2 / g(x,t, up)u?,dodt

DPé,T DPé,T
2
-y / Ui [ (Wit — Vet + 2, (v — v2) ] ds 29)
111%,196,7
x(+t;
[ e @) e [ (i) de
zy—t; ol
5
where v := (v, 14) is the unit vector of the outer normal to 0Dp; ; and v, p; . =
Yip Nt <7}, i=1,2.
Taking into account that the relations (v? —v?) ‘7_ L= 0, ¢ =1, 2, which take place
“ 0

everywhere on the characteristics ; pr, i = 1,2, of equation (1.1), due to (2.1) by (2.9)
we obtain

wy (1) <2 / frntmdxdt + 2M / u?, dwdt
DPIJ_

DPé,‘r

T 6 (2.10)
Zotto 2 2
[ o) + i) o

Here

2
wy(7) 1= / (up, +usy)de + Z / v (Vg — Vzunt)zds. (2.11)
i=1,

wP(/),T i,P(,),T

Taking into account the obvious inequality

5 / Fotydadt < / w2 drdt + | ful2yior
DP’,-r

D
0 o7

by (2.10) it follows that

z(+tg
wy (1) < (1 + 2M) / u?, drdt + an||i2(DPO)T) + / [gpf(w) + 1/12(:}0)]6&5
o !
Dy 0~ to

Whence, due to (2.11), we have

wn(7) < ﬁ/wn(a)da M allZ oy + O 0<7 < th,
0
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where

zo+to
B:=1+2M, o, = / (02 (x) + Y2 ()] da. (2.12)

o—to
From the last inequality, since the value || fn||%2( Dy .)» @S & function of 7 is nonde-
0T

creasing, and w,, > 0 due to Vt|%.’P0 = \/Li > 0, i = 1,2, by the Gronwall lemma (see
e.g., [3], p. 13) we obtain

wa(r) < ([ fullfaipr, ) + an)- (2.13)

Taking into account, that the operator l/ta% — I/x% is an interior differential operator
on 71, g, the integration on over segment 7y g, gives

wn(PY) = oulay — 1) + / (Vyttns — Vst ) ds.

71,P6

Squaring both sides of this equality and applying the Cauchy-Schwartz inequality
we have

(P2 < 262 (h — 1)) + 2 / ds / Vet — vrting)?dls

71,P] 71,P)

S 2§0$L<x6 - t6> + 2\/§t0 / (Vtun:v - Va:unt)2d5>

N,p}

whence due to (2.11)-(2.13) we get
[un(Fo)* < 207, (2 — to) + 4toe™ (I full Ly () + o) < 207 (20 — 1)
48067 (| 125, meas D, + 20|20,y + 2ol )

= 202 (zh — th) + 48" (toll ful2 5, + 2Nl + 202

Here we used the obvious inequalities
I 1 Zapr) < II- HQC@PO)meaS Dp, = tg| - ”20(3130)5 1 1z o) < 2t0ll - 1y
Therefore, using the inequality va2 + b2 + ¢2 < |a| + [b| + |c|, we get
[un(Fy)] < co([lfallo@e,) + enllereey + 1allown,),

where ¢ := max {4t3e?0, 2 + 8t2efl0, 8t}
Passing in the last inequality to the limit as n — oo, due to (2.4), (2.8) we have

[u(P)| < co(lfle@ny) + 1ollermy) + [1¥llcen,)- (2.14)

Since P} is an arbitrary point of the domain Dp,, then we obtain estimate (2.3). O
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Below, using the classical method of characteristics and taking into account (2.3),
we obtain a priori estimate in the space C'(Dp,) for a strong generalized solution of
problem (1.1), (1.3) of class C! in the domain Dp,.

The following lemma is valid.

Lemma 2.2. Under the conditions of Lemma 2.1 for a strong generalized solution of
problem (1.1), (1.3) of class C in the domain Dp, the following estimate

[ullerp,,) < (2.15)
holds with a positive constant ¢c; = ¢1(Py, co, ||fHC(5P0), “SOHCl('YPo)’ ||1/1”0(7P0)).

Proof. Let u be a strong generalized solution of problem (1.1), (1.3) of class C! in the
domain Dp,. Then the limit equalities (2.4), (2.5) are valid, where u,, can be considered
as a solution of problem (2.6), (2.7) with the right-hand side f,, and the initial Cauchy
data @, ¥, from (2.8).

Denote

=2y

For a fixed natural number n let us introduce the following functions

i=1,2.

Vin := lillp, U3, (= U,, ©=1,2, (2.16)
which due to (1.3) satisfy the initial conditions

Vin(2,0) = Y (x) = @ (%), van (2, 0) = ¥u(2) + ¢, (), v3n(2,0) = @n(x).  (2.17)

According to (1.1) and (2.16) the unknown functions vy,, i = 1,2,3 satisfy the
following system of first order partial differential equations

l2vln = fn<x7 t) - %g(fﬂ, t, 'USn)('Uln + U2n)>
llv2n = fn(x: t) - %g(l', t; USn)(Uln + U2n)> (218)
1035, = V1p-

Let P, :=(x —t+7,7), Q. := (x+t—7,7). Integrating the equations of system
(2.18) along the corresponding characteristic curves and taking into account initial
conditions (2.17) we get

Vi, t) = —% 09 (PT,Ugn(PT)) (vln(PT) + Uzn(PT))dT
VU2n, l’,t - — 3 fO (QTJ U3n QT)) (UITL(QT> + UQn(Qr))dT (219)

v (T, 1) fo V10 (Q)dT + F3,(2, 1),

where
Fiop(x,t) == p(x —t) — @l (x — t) + / fu(Pr)dr, Fy,(z,t) :=
, 0 (2.20)
%M+ﬂ+%@+ﬂﬁ£h@#ﬁFMLO:%@+ﬂ
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Passing in equalities (2.19), (2.20) to the limit as n — oo in the space C(Dp,) and
taking into account (2.4), (2.5), (2.8) and (2.16) we obtain

U1 =-1 f 9(Pr,v3(Pr)) (vi(Py) + va(Pr))dr + Fy(, ),
Vg = _t% fo (Q‘rv U3 QT)) (Ul(Q‘r) + UZ(QT))dT + FQ(xa t)a (221)
vg(x ) = fo v1(Q,)dr + F3(z,t),

where v; := lim v;, in the sense of the norm of the space C'(Dp,)), i = 1,2, 3, and

Fi(z,t) =v¢(x —t) — ¢ (x —t) + /tf(P dr
0 (2.22)

Fy(x,t) =z +t)+ ¢ (x+1t) + /0 f(Q)dr, Fz(x,t) :=p(x+1).

Remark 2.1. Equalities (2.21) can be considered as a system of Volterra type
nonlinear integral equations.

It is obvious that v3 = u and that it is a strong generalized solution of problem (1.1),
(1.3) of class C! in the domain Dp,. Besides, due to (2.16) the following equalities

V1 = Up — Uy, Vo = U + Uy (2.23)

are valid. B
Let GPO = {('T7t78) € ]R3 : (I,t) € DP07 |S| S CO(“fHC(EpO) + ||¢||Cl('ypo) +

[¥llc¢rp,)) } and

sup |g(z,t,s)| < +o0. (2.24)

1
K:K(Pmc()?f?ga’w) :25( t,s)€G
z,t,s Po

Then due to a priori estimate (2.3) for a strong generalized solution vy = u of
problem (1.1), (1.3) of class C! in the domain Dp, we get

l9(z,t,v3(z,1))| <2K, (x,t) € Dp,. (2.25)
Let
st = s el i=123 hH)= swp [fED.  (220)
(f,T)EDpO’t (£,T)€Dp0,t

By (2.21), due to (2.22), (2.25) and (2.26), it follows that
¢
or(, 1)] < K/O (wi(7) +wa(T)dT + (1€ lcrm,) + [Pl otre,) + th(E),
¢
[va(, 1)] < K/O (wi(7) +wa(7)dT + (1€ lcrm,) + [Pl otre,) + th(E),

t
lvg(z, )| S/ wi(7)dT + [[ollctrmy)-
0
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Whence for (¢,7) € Dp,; we have

[01(§, 7)| < K/ (wi(1) +wa(m))dm + €|ty + ¥ llote,) + Th(T),
0

[v2(€, 7)] < K/O (wi(m1) + w2(m))dm + €'l cr,) + 1Pllcer,) + Th(T),

m@wsﬁwmwm+wm%»

and, therefore, in view of (2.26) and the fact that th(t) is a nondecreasing function, we
have

t
wi(?) SK/O (wi(7) +wa(7)dT + (1€ lcrm,) + [Pl otre,) + th(E),
t
wy(t) SK/(wl(T)+W2(T))dT+||90’Hc<wp0)+||¢|Ic<wp0>+th(t),
0

t
ws(t) S/ wy (7)dT + ||90||C(VPO)'
0

Putting w(t) := max wi(t), by obtained inequalities we have

t
o(t) £ @K +1) [ wlr)dr + eloron) + Wllcan, + thit)
0
whence, using the Gronwall lemma, we obtain

w(t) <exp (2K + 1)t) (lellerr) + 19llcee,) + th(t))

< exp ((2K + Dto) (toll fllo,,) + 1€llcram) + 1¥lctr)), 0 <t <to.

Now, by (2.23) it follows easily that

lllor s,y < Illerou

< exp ((2K + D)to) (toll fllom,,) + 1€llcr ) + 1¥llctn,))-

The statement of Lemma 2.2 follows with

cr = exp (2K + Dto) (toll fllep,) + 19lcrrmy) + 1 lcan,),

where K is defined by (2.24). O
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3 Equivalency of problem (1.1), (1.3) and Volterra type system
of nonlinear integral equations (2.21)

In the second section we have reduced problem (1.1), (1.3) to a Volterra type system
of nonlinear integral equations (2.21). Before consideration the solvability of problem
(1.1), (1.3), let us prove the following lemma.

Lemma 3.1. If a function u € CY(Dp,) is a strong generalized solution of problem
(1.1), (1.3) of class C' in the domain Dp,, then vy := liu, vy = lyu, v3 = u is a
continuous solution of Volterra type system of nonlinear integral equations (2.21) and
vice versa, if vi,v9,v3 1S a continuous solution of system (2.21), then u = v3 is a
strong generalized solution of problem (1.1), (1.3) of class C* in the domain Dp,, and
the equalities v1 = lyu, vo = lou are valid.

Proof. Indeed, let v1,vs,v3 € C(Dp,) be a solution of system of equations (2.21). It is
clear that functions vy, vo, v3 satisfy the following system of partial differential equations
of the first order

lovi = H, lyvo=H, livs =y, (3.1)

where
2H = 2f(x,t) — g(x,t,v3)(v1 + v2). (3.2)
Moreover, let us show that
lQ’U3 = V9. (33)

Indeed, due to equalities (3.1) for any test function w € C°(Dp,) the following
equalities are valid in the sense of the distribution theory of L. Schwartz [5]:

< ll(vg — lgvg),w >=— < U2 — lg?}g,llw >=—< Ug,llw >+ < lQUg,llw >

=< llv2,w > — < U3, Lljw >=< l1U2,’UJ > — < s, lLilyaw >
=< ll"Ug,w >+ < ll’Ug,lzw >=< ll’Ug,w >+ < Ul,lgw >
=< llvg,w > — < lQth >=<ljvy — lg’Ul,w >=0.

Whence, due to Theorem 1.4.2 in [5] we conclude that (3.3) takes place in the classical
sense. Therefore, in view of (3.1) we have v3 € C'! and

V1 + U = 2’l)3t. (34)

Let us extend functions f € C(Dp,) and ¢ € C(Dp, x R) continuously to R?,
R3 respectively, preserving the same notation. Analogously we extend functions
v; € C(Dp,), i = 1,2 and v3 € CY(Dp,) to R? with preservation the same class of
smoothness, not changing notation. Then the function H will be extended to the
whole plane R? |24, 4].

Let

0 (y) _ C& €xp [_ ﬁ}? |y| <g, (3 5)
) 0, yl > e, '
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where y := (z,t) € R? and C. is the positive constant, which is defined by the equality

1— g

€ is any positive number, and | - | is the norm in the Euclidian space R
Consider the sequence of functions

ot [ e [~ yopli=1 6= 6

D= %01 € OF°(RY), i=1,2,3, Hi=Hx01, (3.6)

where * denotes the convolution, and the function 6, is defined by (3.5).
In view of the properties of convolutions we have [5]
nh—{{olo ” Ui _viHC(Epo) =0, =1, 27 7}1—{20 ” Us _03"01(5130) = 07
" (3.7)
7}1{2@ | H —HHC(EPO) =0.

Below we prove that the sequence of functions u, =0y ‘ﬁp € C*(Dp,) satisfies
0

conditions (2.4) and (2.5) and, therefore, u := v3 is a strong generalized solution of
problem (1.1), (1.3) of class C! in the domain Dp, due to Definition 1.1.
According to the properties of convolution and equalities (3.1), (3.3), the functions

v;, i = 1,2,3, defined by (3.6), satisfy the following equalities
ly $1=ﬁ, l 52217-117 I 3=V, Iy U3=0, . (3.8)

Further, according to the definition of the operator L by (1.1) and equalities (3.8)
we have

L V3= lyly Vs +9($7t7$3) Vgp= Iy Uy +g(z, t, Z3) Vg =H +g(z, t, 83) Vsy .

Whence due to equalities (3.7) it follows that L Us— H + g(x,t,v3)vy as n — o0 in
the space C'(Dp,). At the same time due to (3.2), (3.4) we have H + g(z,t,v3)vg = f.
Therefore

Tim [ L vs = fllogpy,) = 0- (3.9)

Now let us verify the validity of the initial conditions. Due to the properties of
convolutions and equalities (2.21), (2.22) we have

3 (+,0) — v3(-,0) = ¢ (3.10)

as n — oo in the space C'(yp,).
Analogously, due to the properties of convolutions and equalities (3.4), (2.21) and

(2.22), we have

?)1(', 0) + UQ(', 0)

5315 (70) - U3t<’70) = 92

— (3.11)

as n — oo in the space C(yp,).

The equalities vy = lju, v9 = lou immediately follow by the above considerations,
which together with (3.9)-(3.11) prove the statement of Lemma 3.1, since the inverse
proposition is obvious. O
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4 Solvability of problem (1.1), (1.3)

First let us prove the local solvability of problem (1.1), (1.3), which is due to Lemma 3.1
equivalent to proving the local solvability of Volterra type system of nonlinear integral
equations (2.21).

Let, together with (2.2), the following conditions be satisfied

Poo 1= max { sup |p(z)| < +o0, sup|¢'(z)| < +o0},
z€eR z€R

(4.1)
VYoo = sgg [P (x)] < 400,
fro= sup |f(a,t)] < +00 (4:2)
(z,t)eN
and
|g(l’,t, S)| < M(R)7 |g(1‘,t, 32) —g(CL’,t, Sl)| < C<R)|32_Sl (43)

for all (z,t) € Q, |s|,[s1],]52] < R, where M(R) and c¢(R) are some nonnegative
continuous functions of the argument R > 0.

Theorem 4.1. Let the functions f, g, and 1 satisfy conditions (2.2), (4.1)-(4.3).
Then there exists a positive number t, := t.(f, g, ¢, ), such that, for ty < t, problem

(1.1), (1.3) has at least one strong generalized solution u of class C* in the domain
Dp,.

Proof. The unique solvability of system (2.21) we will proved below by the principle of
contracted mappings [see e.g., 22, p. 390].

Let V := (v, v9,v3). Let us introduce the vector-operator ® := ($1, &y, $3), by the
formula

(®1V)(,t) = —%f 9(Pr,v3(Pr)) (vi(Pr) + va(Pr))dr + Fi(z, ),
(<I>2V = —% Jo 9(Qx,v3 QT)) (v1(Q7) +v2(Q7))dT + Fy(x,1), (4.4)
((I)gV) fO U1 QT dT + Fg(l' t)

Then system (2.21) can be rewritten in the vector form
V=9V (4.5)

Let
||VHXPO = 1n<la<}§ {HUZHC Dp } Ve XPO = C<DP07R3)

where C(Dp,; R?) is the set of all continuous vector-functions V : Dp, — R3.

Denote by Br := {V € Xp, : ||V][xp, < R} the closed ball with radius R > 0 in
the Banach space Xp, and the center at the null element.

Below we prove that for R := 1+ ¢ + ¥

(I) ® maps the ball Bg into itself;

(IT) @ is a contracted map on Bg.

Indeed, in view of the first inequality (4.3), by (4.4) due to (2.22), for V' such that
[Vllxp, < R, we have

|(@:V)(z, )] < to(RM(R) + Ifllomy,)) + 1€ lcem) + [1Pllotm):
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(@2V) (@, 1) < to(RM(R) + || flle@y,)) + 1€ lotr) + 1llons,).
[(@3V) (2, )] < toR + [[@llc(rp,)-
By these estimates it follows that
9V lxs, < to(RMR) + Rt /o) + Pl + ¢ letn,)

+H¢HC(WPO) < tO(RM(R> + R+ foo) + Yoo T wooa

where fo, Yoo, Yoo are defined by (4.1) and (4.2).
Now for R :=1+4 s + Yo let us choose sufficiently small ¢y > 0, so that

to(RM(R) + R+ fx) <1, (4.6)

hence @V € B(R) and therefore condition (I) is satisfied.
Further, due to (4.3) by (4.4) for V* such that [|[V’||x, < R, i = 1,2, we have

(@2 =@V < 5 [ (la(Pred(P) = o(Prob(P IR + 43P

Hg(Pr ey (P17 (Pr) = vl (Py) + 03(Py) — vd(P,)| ) dr
< to(Re(R) + M(R))[V? = V| xp, -
Analogously,
(@2 — DV (@, )] < to(Re(R) + M(R)) [V =V xp,
and

t
(@317 — @3V (2, 1)] < / [01(Qr) — 11 (Qr)ldT < to]|V? = V|x -
0

By decreasing the number ¢, > 0 we can assume that together with (4.6) the
following inequality

1
max {tg,to(RC(R) + M(R))} < § <1, (47)
is valid and hence .
[BVZ — BV |x,, < §|IV2 — V' xp,-

Thus the operator @ is a contracted mapping on the set B(R), hence condition (II)
is satisfied.
By (4.6) and (4.7) it follows that if 0 < ¢y < ¢, where

. 1 1 1
f- = min { RM(R) + R+ fx' 2 2(Re(R) + M(R)) } (48)
then
|V xp,, < R
and
V7 — @V, < 2IV2 = V']lx,,

for V, V1 V? € B(R). Therefore due to the principle of contracted mappings there
exists a solution V' of equation (4.5) in the space Xp, for ty € (0, t.]. O
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In view of the local solvability of problem (1.1), (1.3) and the global a priori estimate
(2.15), using standard considerations [see e.g., 20|, we get the validity of the following
theorem on the global solvability of this problem.

Theorem 4.2. If the conditions (2.1), (2.2), (4.1)-(4.3) are satisfied, then problem
(1.1), (1.3) is globally solvable in the class C' in the sense of Definition 1.2, i.e. for
any Py € Q this problem has a strong generalized solution of class C* in the domain
Dy

" -
Remark 4.1. We give the examples of functions g = g(z, t, s), satisfying the conditions

of Theorem 4.2, or, which is the same, conditions (2.1), g € C(Q x R) and (4.3). The
function

g(x,t,s) = Z oz, t)] 5],
k=1

where o, € C(Q), k= 1,...,n; ai(z,t) > const > 0, |a;(z,t)| < const for (z,t) € Q
and 51 > 3; > 1, i = 2,...,n; and also the function g(x,t,s) = a(z,t)go(s), where o €
C(Q), |a(z,t)] < const for (x,t) € Q, go € Lipie(R) and liminfis_ 4 go(s) > —oo,
satisfy the conditions of Theorem 4.2.

5 The uniqueness and the existence theorems

Theorem 5.1. Let conditions (2.2) and (4.3) be satisfied. Then for any fized point
Py € Q problem (1.1), (1.3) cannot have more than one strong generalized solution of
the class C' in the domain Dp,.

Proof. Indeed, suppose that problem (1.1), (1.3) has two different strong generalized
solutions u' and u* of class C' in the domain Dp,. Then according to Definition 1.1
there exists a sequence of functions u? € C?(Dp,), such that
7}1_{{}0 [y, — Ui”cubpo) =0, nh_{fc}o | Ly, — fHC(BPO) =0,
Jion, ln (5 0) = ellerray) =0, i o 0) = ¥llen,) =0, (5.)

%

nh—%lo Hg(m,t, u;)unt - g(x,t, ui)uzl‘:HC(ﬁpo) = 07 L= 17 2.

Let us use the well-known notation O := §%/0t* — 0% /02* and let w,, := u2 — u}.
It is easy to see that the function w, € C?(Dp,) satisfies the following equalities

Own + gn = fa, (5.2)

wn‘ = Tn, wnt"VPO = Vn, (53)

’YPO
where
gn = g(:z:, taui)uit - g(ZL’, tvu;)uim fn = Lu?z B Lu1117

T = (U2 —ul

21 (5:4)
)}vpo’ Up o= (ug u”)t‘wo'

Due to the first equality of (5.1) there exists the number A := const > 0, independent
of indices 7 and n, such that

||Uf1||01(5p0) < A (5.5)
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By virtue of equalities (5.1) and (5.4) we have
7}1_{20 ||7'n||cl(vpo) =0, nh—%lo |’Van(7PO) =0, nh—>nolo ”anc(ﬁpo) =0. (5.6)
By (4.3), (5.5) and the first equality of (5.4) it is easy to see that

2
g2 = (oot + ol 102) — gt t0) )y ) 57

<2MP(A)w2, + 242 (A)w?.

Multiplying both sides of the equality (5.2) by w,; and integrating the obtained
equality over the domain Dp -, 0 < 7 < t;, where Iy := Fy(7g,t;) € Dp,, in view of
(5.3), in the same way as getting equality (2.9) from (2.6), (2.7), we have

2
vnw»:=:(/"<wix+—wiadx-+j£j t/“ v (Vs — vionr) s
=1

QP(,),T B A/i,Pé,T (58)
=2 [ (= gulnladt 4 70y + Il
DP(/),T

Due to estimate (5.7) and the Cauchy inequality we get

2 / (fn — gn)wmdxdt < 2 / w2 dxdt + / fAdxdt + / g2dxdt

DPé,T DP(/),T DPOﬂT DPé,'r (5 9)
< 2(1+ M?*(A)) / wdrdt + || full2ypp, ) + 247 (A) / widxdt.
DP/ T DP/ T
0’ 0’

Further, according to the first equality (5.3) it is easy to see that

t

wp(x,t) = 7, () + /wnt(x,a)da, (x,t) € Dpy s
0

Squaring both sides of this equality and using the Cauchy-Schwartz inequality, we
get

t
lwn (2, 1) < 272(z) + 2t/ Wi (x,0)do, (z,t)€ Bpéfr.
0
Whence putting

_ wnt(x7t>7 (x7t) S EPé,T?
U($7t) - { O, (:U,t) QEPé,n
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and taking into account that ¢t < 7 for (z,t) € Epéﬂ-, we obtain

x[ 4t T T
/ widzdt < 27’”7'””%2(7130) +27/ dx/ (/ Uz(x,a)da>dt
x[—t]) 0 0

0—
Dy

PO,T

14
zo+ty

=215l + 2 [

= 27‘”7'””%2(7130) + 272 / witda:dt.

DPé,‘r

dx /T v (x, t)dt (5.10)

/4l
OitO

By (5.8)-(5.10) it follows that

(1) < 2(272 A2 (A) + M2(A) + 1) / w2 dxdt + ]\ani?(DPW) + HT,’LH"LQ(VPO)

DPé,T

T

—|—||l/n||%2(7po) + 47'14202(14)”7'””%2(71)0) < 2(215314202(14) + M?(A) +1) /vn(a)da

0
+||fn||%2(Dpo) + ||TT/LH%2(’YPO) + HVnH%Q('yPO) + 4t0A2c2(A)HTn||%2(7po)'

Therefore, due to the Gronwall lemma we get
op(T) < C2(an”%z(Dp0) + HTT/LH%Q(VPO) + H’/nH%Z(ypo) + 4750/4202(/4)“%”%2(@0))7

where ¢ := exp {2t(2t3A%c*(A) + M?*(A) 4+ 1)}. Whence, taking into account (5.8),
we have

/ (Ving — Vawny)?ds < \/502(an|’%2(DpU) + HTTI%|’%2(’YPO) T ”V”H%z(’wo)
71,P6
+4tOA2CQ(A)||7-n||%2(7130))'

Further, by the same considerations as those used for getting estimate (2.14), we find
oy 1g)[? < 272y — 1) + 4t (1ol Full ) + 20 2o

22y + S04 (A 72 ).

Therefore, in view of (5.6) we have lim |w,(z},t))| = 0, i.e. u*(xy,ty) = u'(zf,ty) for

any (x,th) € Dp,. O
By Theorems 4.2 and 5.1 the following theorem immediately follows.
Theorem 5.2. If conditions (2.1), (2.2), (4.1)-(4.3) are satisfied, then problem (1.1),

(1.2) has a unique global strong generalized solution of class C' in the sense of Defini-
tion 1.3.
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Proof. By Theorems 4.2 and 5.1, in the domain Dp, for ¢, = k € N problem (1.1), (1.3)
has a unique strong generalized solution u* of class C'! in the sense of Definition 1.1.
Since u*! is also a strong generalized solution to problem (1.1), (1.3) of class C! in

the domain D, 1, due to Theorem 5.1 we have uktl L= u®. Therefore the function
(0,

u, built in the domain 2 according to the rule u(z,t) = u*(z,t) for k = [t] + 1, where
[t] is the integer part of the number ¢, and the point (z,t) € €2, will be a unique global
strong generalized solution of problem (1.1), (1.2) of class C* in the sense of Definition
1.3. [

Remark 5.1. Under the conditions of Theorem 4.1 there exists the positive number
T, :=T.(f,g,¢,v) > 0, such that problem (1.1), (1.2) in the strip €y := R x (0, 7})
has a unique strong generalized solution u of class C' in the domain €, in the sense
that for any point P, € 2; the function u| Dry represents a strong generalized solution

of problem (1.1), (1.3) of class C! in the domain Dp, in the sense of Definition 1.1. The
proof of this statement immediately follows by the uniqueness Theorem 5.1, Theorem
4.1 and considerations analogous to those given in the proof of Theorem 5.2.

Remark 5.2. From the proofs of Theorems 4.1, 4.2 and 5.2 it easily follows that they
remain valid without conditions (4.1), (4.2), under only the conditions of smoothness:

o € CYR), v € C(R), f€C(Q).

6 The case of absence of a global solution of the problem (1.1),
(1.3)

Remark 6.1. Violation of condition (2.1), generally speaking, may cause an absence
of global solvability of problem (1.1), (1.3) in the sense of Definition 1.2. Indeed, let
g(x,t,8) = —|s|%, (x,t) € Q, s € R with the exponent of nonlinearity a > —1. Below
we show that under certain conditions on the functions f € C(Q), ¢ € CY(R), 1 €
C(R) for any fixed xy € R there exists a number t* := t*(x¢; f, p, %) > 0, such that for
to € (0,¢*) problem (1.1), (1.3) has a strong generalized solution of the class C'! in the
domain Dp,, while for ¢y > t* it does not have such a solution in this domain.

Lemma 6.1. Let u be a strong generalized solution of problem (1.1), (1.3) of class C*
in the domain Dp, in the sense of Definition 1.1. Then the following integral equality

[ ot = [ " [b(@)x(, 0) — ol e, 0))de
Pro (6.1)

+/|u|auutxd:vdt+/fxdxdt
Dp, Dp,

is valid for any function x, such that

X € CZ(EPO)’ X

=0, i=12 (6.2)

Vi, Py

Proof. According to the definition of a strong generalized solution u of problem (1.1),
(1.3) of class C! in the domain Dp,, the function u € C'(Dp,) and there exists a
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sequence of functions u, € C?(Dp,), such that it is valid equalities (2.4) and (2.5) for
g(x,t,5) = —|s|%, (x,t) € Q, s € R.

Let f,, := Lu,. Multiply both sides of the equality Lu, = f, by function x and
integrate the obtained equality over the domain Dp,. By integrating by parts of the
left-hand side of this equality, due to (6.2) and conditions (2.7), we have

/ unOxdadt = / Won(@)x(, 0) — gu(@)xel, 0))da

Dp,

+/|un|°‘unumxd:pdt—|—/fnxdxdt.
Dp, Dp,

Passing in the last equality to the limit as n — oo, due to (2.4), we get (6.1). [

Let us use the method of test functions (see, e.g., [16], pp. 10-12). Consider the
function x° := x°(z,t), such that

0

X' € C*(Doy), X"+xi <0, X[, >0, x =0, i=12 (6.3)

Yi,(0,1) o
u
_ Ox°[ ;a2
Ko = / N dzdt < +oo0, p = PR (6.4)

Do,1)

It is easy to verify that for the function X, satisfying conditions (6.3) and (6.4),
one may consider the function

X =x"(x,t) = [(1—t)> —2%", (x,t) € Dy, (6.5)

for sufficiently large natural number n.
rx—xo9 t

Now, putting yp,(z,t) = XD( oL, %), in view of (6.3), it is easy to see that

— IXR
Xp, € OQ(DPO)7 Xp, + to ato <0, XPO‘DPO >0, (66)
XPo ’Yz‘P0:07 i =1,2.

For fixed functions f, ¢, ¥ and a number z(, consider the following function of one
variable t

oty Dy (2,0
ctto) = [ [t (2.0) - o)
xo—to
/ Frmdadt — —— [ lo(@) 2 (5, 0)d &1)
+ Xp,aT _a+2 o—to ’@(m)‘ XPo(x7 ) £.
Dp,

The following theorem on the absence of global solvability of problem (1.1), (1.3) is
valid.
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Theorem 6.1. Let g(z,t,s) = —|s|%s, (z,t) €Q, s€R, a > —1, f € C(Q), and the
function u € C*(Dp,) be a strong generalized solution of problem (1.1), (1.3) of class
C*' in the domain Dp,. If

liminf {(¢9) > 0, (6.8)

to——+o0

then there exists a positive number t° := t°(xq; f,0,v) > 0, such that for ty > t°
problem (1.1), (1.3) cannot have a strong generalized solution of class C* in the domain
Dp,.

Proof. Suppose that under the conditions of this theorem there exists a strong gener-
alized solution w of problem (1.1), (1.3) of class C' in the domain Dp,. Then due to
Lemma 6.1 we have equality (6.1), in which, in view of (6.6), for x one may take the
function x = xp,, i.e.

zo+to

/uDXpdedt: / ]u|°‘uutxp0d:cdt+/ [w(:lr)xpo(x,(])
xo—to

Dp Dp

0 0 (6.9)
0
—go(x)axﬁ’a—(?)}dx—l—/fxpodxdt.
D

Po

Taking into account (1.3) and (6.6), we have

0
/ |u|“uwuy x pydzdt = XP0§|U’a+2d.Tdt

a+ 2
Dp, Dp,
1 zo+to o aXP
=— “ 0)d ot2 2200 dadt
3l o s+ [ S
Dp,
1 1 ) zo+to )
> (i [ s [ @ o, 0 ).
DPO xo—to
Whence, due to (6.7), from (6.9) it follows that
1
— ulPx p,drdt < uldxpdzdt — ((ty), p:=a+2>1. 6.10
pto 0 0
Dp, Dp,

If in the Young inequality with the parameter ¢ > 0

€ 1 / 1 1
ab < —-a? + ——V; a,b>0, —+—=1, p>1
P p/gp 1 D /
v Exy|
we take a = [u|x}, b=""r> ande = %, then we get
XPO
LDl 1 6" [Fxn,”
[ubxp| = |ulxp,—7— < EWV’XPO +—

P 0
Xp, Xpy
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By virtue of (6.10) and the last inequality we have

t;(l))/i1 |DXP0 ’p’

/ p—1
p Xp,

0<

dadt — C(to). (6.11)

By (6.3), (6.4), after the following change of variables x = x¢ + toxy, t = toty, it is
easy to verify that

Oxrl 1 OX°P” _ Ko
Xp,_l dxdt = 2 ) |X0|p,_1dl’1dt1 = S0
Dp, Po 0 Dio.1) 0
Whence due to (6.11) we get

Ko

P'ty
Since p' = -£5 > 1 and due to (6.4) we have
lim —9 =

to——+o0 p/tg/_ 1

Therefore in view of (6.8) there exists a positive number t° := t%(z; f, 0, 1) > 0,
such that for ¢y > % the right-hand side of inequality (6.12) is negative, whereas the
left-hand side of this inequality is zero. This implies that if there exists a strong
generalized solution u of problem (1.1), (1.3) of class C' in the domain Dp,, then
to < tY necessarily, and this proves Theorem 6.1. O

Remark 6.2. In Remark 6.1 let us denote by t* := t*(xo; f, ¢, %) the supremum of
those ¢ty > 0, for which problem (1.1), (1.3) is solvable in the domain Dp,. By Theorems
4.1 and 6.1 it follows that 0 < ¢t* <%, and that problem (1.1), (1.3) is solvable in the
domain Dp, for ¢y < t* and does not have a solution for ¢, > t*.

Remark 6.3. It is easy to verify that if o =0, f > 0, ¥ > 0 and one of the following
conditions:

D f(et) >0 (0.) €0 2 u() > e 1 eR, (6.13)
is satisfied, where ¢ := const > 0, and for function y p, we take xyp,(z,t) = x* (%7 %)’

where y* is defined by equality (6.5), then condition (6.8) will be satisfied, and therefore
in this case problem (1.1), (1.3) for sufficiently large ¢, will not have a strong generalized
solution u of class C'! in the domain Dp,.

Indeed, by considering in the first integral in (6.7) the transformation of the in-
dependent variable © = xy + to7, in the case in which, for example, the second of
conditions (6.13) is satisfied, after some transformations we have

xo+to 1
(C(to) > / ) Y(@)xp (7, 0)dz =t /_1¢(5€0 +to7)X"(7,0)dT

1 1
> cto/ (1—713"dr = 20750/ (1 —72)"dr = ctoB(27 " ,n +1) > 0,
- 0

1

(6.14)

where B(a, b) is the well-known Euler integral of the first kind (see e.g., [2], p. 750). By
(6.14) immediately follows the validity of inequality (6.8). Analogously is considered
the case in which the first condition in (6.13) is satisfied.
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