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Abstract. The Cauchy problem for one-dimensional wave equations with a nonlinear
dissipative term is investigated. Under consideration are the problems of uniqueness
and existence of local, global and blow-up solutions. The paper’s originality is the
coalescence of the two standard methods: a priori estimate of solutions in the class
of continuous functions is given by energetic methods; basing on this result a priori
estimate in the class of continuously differentiable functions using classical method of
characteristics is obtained.

1 The statement of the problem

For one-dimensional wave equations with a nonlinear dissipative term [14], [13, p. 57],

Lu := utt − uxx + g(x, t, u)ut = f(x, t), (1.1)

in the half-plane Ω := {(x, t) : x ∈ R, t > 0}, let us consider the Cauchy problem with
the following initial conditions

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), x ∈ R, (1.2)

where f, g, ϕ, ψ are given real-valued functions, and u is the unknown real-valued func-
tion.

It should be noted that for nonlinear hyperbolic equations the questions of unique-
ness and existence of local, global and blow-up solutions for initial and other problems
are considered in numerous literature (see e.g., [1, 6-19, 21, 23, 25]).

Below we show that under certain requirements on the nonlinear function g(x, t, s)
with respect to the variable s problem (1.1), (1.2) is locally solvable. There are also
obtained conditions of global solvability, violation of which, generally speaking, may
cause the blow-up of the solution within finite interval of time.

Let P0 := P0(x0, t0) be an arbitrary point of the domain Ω and DP0 := {(x, t) : t+
x0−t0 < x < −t+x0+t0, t > 0} be the triangular domain bounded by the characteristic
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segments γ1,P0 : x = t+ x0 − t0, 0 ≤ t ≤ t0 and γ2,P0 : x = −t+ x0 + t0, 0 ≤ t ≤ t0 of
equation (1.1), and the segment γP0 : t = 0, x0 − t0 ≤ x ≤ x0 + t0.

First we consider the Cauchy problem for equation (1.1) in the bounded domain
DP0 : find a solution u = u(x, t), (x, t) ∈ DP0 , of equation (1.1) with the initial
conditions

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), x ∈ γP0 , (1.3)

where ϕ, ψ are given real-valued functions on γP0 .

Definition 1.1. Let f ∈ C(DP0), g ∈ C(DP0 × R), ϕ ∈ C1(γP0) and ψ ∈ C(γP0). We
say that a function u is a strong generalized solution of problem (1.1), (1.3) of class
C1 in the domain DP0 , if u ∈ C1(DP0) and there exists a sequence of the functions
un ∈ C2(DP0), such that un → u, Lun → f, un(·, 0) → ϕ and unt(·, 0) → ψ as n→∞
in the spaces C1(DP0), C(DP0), C

1(γP0), C(γP0), respectively.

Remark 1.1. It is obvious, that a classical solution of problem (1.1), (1.3) of the class
C2(DP0) is a strong generalized solution of this problem of the class C1 in the domain
DP0 . Inversely, if a strong generalized solution of problem (1.1), (1.3) of class C1 in
the domain DP0 belongs to the space C2(DP0), then it will also be a classical solution
of this problem.

Definition 1.2. Let f ∈ C(Ω), g ∈ C(Ω × R), ϕ ∈ C1(R), ψ ∈ C(R). We say that
problem (1.1), (1.3) is globally solvable in the class C1, if for any point P0 ∈ Ω the
problem has a strong generalized solution of class C1 in the domain DP0 in the sense
of Definition 1.1.

Definition 1.3. Let f ∈ C(Ω), g ∈ C(Ω × R), ϕ ∈ C1(R), ψ ∈ C(R). We say that
a function u ∈ C1(Ω) is a global strong generalized solution of problem (1.1), (1.2) of
class C1, if for any point P0 ∈ Ω it is a strong generalized solution of problem (1.1),
(1.3) of class C1 in the domain DP0 in the sense of Definition 1.1.

Remark 1.2. Note that in the case when the theorem of existence and uniqueness of
a strong generalized solution of problem (1.1), (1.3) of class C1 in the domain DP0 is
valid for any P0 ∈ Ω, then the existence follows of a unique global strong generalized
solution of problem (1.1), (1.2) of class C1 in the sense of Definition 1.3.

The paper is organized in the following way. In the second section under a certain
constraint on the function g an a priori estimate is obtained for a strong generalized
solution of problem (1.1), (1.3) of class C1 in the domain DP0 in the sense of Definition
1.1 in the space C(DP0), and then, basing on this, it is obtained in the space C1(DP0).
In the third section the equivalency is proved of the posed problem to the problem for
a system of nonlinear integral equations of Volterra type. In the fourth section the
local and global solvability is proved of problems (1.1), (1.3) and (1.1), (1.2). In the
fifth section the uniqueness of the solution is proved . In the sixth section, for the case
when condition (2.1) is violated, the question of nonexistence is studied of a strong
generalized solution of problem (1.1), (1.3) of class C1 in the domain DP0 in the sense
of Definition 1.1.
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2 A priori estimates for a strong generalized solution of prob-
lem (1.1), (1.3) in the classes C(DP0

) and C1(DP0
)

Consider the conditions

g(x, t, s) ≥ −M, (x, t, s) ∈ Ω× R, M := const > 0 (2.1)

and
f ∈ C(Ω), g ∈ C(Ω× R), ϕ ∈ C1(R), ψ ∈ C(R). (2.2)

Lemma 2.1. Let conditions (2.1), (2.2) be satisfied and P0 be an arbitrary point of the
domain Ω. Then if u is a strong generalized solution of problem (1.1), (1.3) of class
C1 in the domain DP0, then the following a priori estimate holds

‖u‖C(DP0
) ≤ c0

(
‖f‖C(DP0

) + ‖ϕ‖C1(γP0
) + ‖ψ‖C(γP0

)

)
, (2.3)

with a positive constant c0 = c0(t0,M) independent of u and f, ϕ, ψ, where

‖ϕ‖C1(γP0
) := max

{
‖ϕ‖C(γP0

), ‖ϕ′‖C(γP0
)

}
.

Proof. Let u be a strong generalized solution of problem (1.1), (1.3) of class C1 in
the domain DP0 . Then due to Definition 1.1 there exists a sequence of functions
un ∈ C2(DP0), such that

lim
n→∞

‖un − u‖C1(DP0
) = 0, lim

n→∞
‖Lun − f‖C(DP0

) = 0,

lim
n→∞

‖un(·, 0)− ϕ‖C1(γP0
) = 0, lim

n→∞
‖unt(·, 0)− ψ‖C(γP0

) = 0,
(2.4)

and, therefore
lim

n→∞
‖g(x, t, un)unt − g(x, t, u)ut‖C(DP0

) = 0. (2.5)

Here
‖u‖C1(DP0

) := max
{
‖u‖C(DP0

), ‖ux‖C(DP0
), ‖ut‖C(DP0

)

}
.

Consider the function un ∈ C2(DP0) as a solution to the following problem

Lun = fn, (2.6)

un|γP0
= ϕn, unt|γP0

= ψn. (2.7)

Here
fn := Lun, ϕn := un(·, 0), ψn := unt(·, 0). (2.8)

Let us fix the point P ′
0 := P ′

0(x
′
0, t

′
0) ∈ DP0 . Then, it is obvious, that DP ′

0
⊂ DP0 and

γP ′
0
⊂ γP0 . Multiplying both sides of equality (2.6) by unt and integrating the obtained

equality over the domain DP ′
0,τ :=

{
(x, t) ∈ DP ′

0
: 0 < t < τ

}
, 0 < τ < t′0, we have∫

DP ′
0,τ

(u2
nt)tdxdt− 2

∫
DP ′

0,τ

(unxunt)xdxdt+

∫
DP ′

0,τ

(u2
nx)tdxdt
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+2

∫
DP ′

0,τ

g(x, t, un)u2
ntdxdt = 2

∫
DP ′

0,τ

fnuntdxdt.

Let ωP ′
0,τ := DP ′

0
∩ {t = τ}. Then according to (2.7), integrating by parts the

left-hand side of the last equality we get

2

∫
DP ′

0,τ

fnuntdxdt− 2

∫
DP ′

0,τ

g(x, t, un)u2
ntdxdt

=
2∑

i=1

∫
γi,P ′

0,τ

ν−1
t

[(
νtunx − νxunt

)2
+ u2

nt

(
ν2

t − ν2
x

)]
ds

−
∫ x′0+t′0

x′0−t′0

[
ϕ′2n (x) + ψ2

n(x)
]
dx+

∫
ωP ′

0,τ

(
u2

nx + u2
nt

)
dx,

(2.9)

where ν := (νx, νt) is the unit vector of the outer normal to ∂DP ′
0,τ and γi,P ′

0,τ :=
γi,P ′

0
∩ {t ≤ τ}, i = 1, 2.

Taking into account that the relations (ν2
t − ν2

x)
∣∣
γi,P ′

0

= 0, i = 1, 2, which take place

everywhere on the characteristics γi,P ′
0
, i = 1, 2, of equation (1.1), due to (2.1) by (2.9)

we obtain
wn(τ) ≤ 2

∫
DP ′

0,τ

fnuntdxdt+ 2M

∫
DP ′

0,τ

u2
ntdxdt

+

∫ x′0+t′0

x′0−t′0

[
ϕ′2n (x) + ψ2

n(x)
]
dx.

(2.10)

Here

wn(τ) :=

∫
ωP ′

0,τ

(
u2

nx + u2
nt

)
dx+

2∑
i=1

∫
γi,P ′

0,τ

ν−1
t

(
νtunx − νxunt

)2
ds. (2.11)

Taking into account the obvious inequality

2

∫
DP ′

0,τ

fnuntdxdt ≤
∫

DP ′
0,τ

u2
ntdxdt+ ‖fn‖2

L2(DP0,τ )

by (2.10) it follows that

wn(τ) ≤
(
1 + 2M

) ∫
DP ′

0,τ

u2
ntdxdt+ ‖fn‖2

L2(DP0,τ ) +

∫ x′0+t′0

x′0−t′0

[
ϕ′2n (x) + ψ2

n(x)
]
dx.

Whence, due to (2.11), we have

wn(τ) ≤ β

τ∫
0

wn(σ)dσ + ‖fn‖2
L2(DP0,τ ) + αn, 0 < τ < t′0,
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where

β := 1 + 2M, αn :=

∫ x0+t0

x0−t0

[
ϕ′2n (x) + ψ2

n(x)
]
dx. (2.12)

From the last inequality, since the value ‖fn‖2
L2(DP0,τ ), as a function of τ is nonde-

creasing, and wn ≥ 0 due to νt|γi,P0
= 1√

2
> 0, i = 1, 2, by the Gronwall lemma (see

e.g., [3], p. 13) we obtain

wn(τ) ≤ eβτ
(
‖fn‖2

L2(DP0,τ ) + αn

)
. (2.13)

Taking into account, that the operator νt
∂
∂x
−νx

∂
∂t

is an interior differential operator
on γ1,P ′

0
, the integration on over segment γ1,P ′

0
, gives

un(P ′
0) = ϕn(x′0 − t′0) +

∫
γ1,P ′

0

(νtunx − νxunt)ds.

Squaring both sides of this equality and applying the Cauchy-Schwartz inequality
we have

|un(P ′
0)|2 ≤ 2ϕ2

n(x′0 − t′0) + 2

∫
γ1,P ′

0

ds

∫
γ1,P ′

0

(νtunx − νxunt)
2ds

≤ 2ϕ2
n(x′0 − t′0) + 2

√
2t0

∫
γ1,P ′

0

(νtunx − νxunt)
2ds,

whence due to (2.11)-(2.13) we get

|un(P ′
0)|2 ≤ 2ϕ2

n(x′0 − t′0) + 4t0e
βt0
(
‖fn‖2

L2(DP0
) + αn

)
≤ 2ϕ2

n(x′0 − t′0)

+4t0e
βt0
(
‖fn‖2

C(DP0
)
meas DP0 + 2t0‖ϕ′n‖2

C(γP0
) + 2t0‖ψn‖2

C(γP0
)

)
= 2ϕ2

n(x′0 − t′0) + 4t20e
βt0
(
t0‖fn‖2

C(DP0
)
+ 2‖ϕ′n‖2

C(γP0
) + 2‖ψn‖2

C(γP0
)

)
.

Here we used the obvious inequalities

‖ · ‖2
L2(DP0

) ≤ ‖ · ‖2
C(DP0

)
meas DP0 = t20‖ · ‖2

C(DP0
)
; ‖ · ‖2

L2(γP0
) ≤ 2t0‖ · ‖2

C(γP0
).

Therefore, using the inequality
√
a2 + b2 + c2 ≤ |a|+ |b|+ |c|, we get

|un(P ′
0)| ≤ c0

(
‖fn‖C(DP0

) + ‖ϕn‖C1(γP0
) + ‖ψn‖C(γP0

)

)
,

where c20 := max
{
4t30e

βt0 , 2 + 8t20e
βt0 , 8t20e

βt0
}
.

Passing in the last inequality to the limit as n→∞, due to (2.4), (2.8) we have

|u(P ′
0)| ≤ c0

(
‖f‖C(DP0

) + ‖ϕ‖C1(γP0
) + ‖ψ‖C(γP0

)

)
. (2.14)

Since P ′
0 is an arbitrary point of the domain DP0 , then we obtain estimate (2.3).
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Below, using the classical method of characteristics and taking into account (2.3),
we obtain a priori estimate in the space C1(DP0) for a strong generalized solution of
problem (1.1), (1.3) of class C1 in the domain DP0 .

The following lemma is valid.

Lemma 2.2. Under the conditions of Lemma 2.1 for a strong generalized solution of
problem (1.1), (1.3) of class C1 in the domain DP0 the following estimate

‖u‖C1(DP0
) ≤ c1 (2.15)

holds with a positive constant c1 = c1(P0, c0, ‖f‖C(DP0
), ‖ϕ‖C1(γP0

), ‖ψ‖C(γP0
)).

Proof. Let u be a strong generalized solution of problem (1.1), (1.3) of class C1 in the
domain DP0 . Then the limit equalities (2.4), (2.5) are valid, where un can be considered
as a solution of problem (2.6), (2.7) with the right-hand side fn and the initial Cauchy
data ϕn, ψn from (2.8).

Denote
li :=

∂

∂t
+ (−1)i ∂

∂x
, i = 1, 2.

For a fixed natural number n let us introduce the following functions

vin := liun, v3n := un, i = 1, 2, (2.16)

which due to (1.3) satisfy the initial conditions

v1n(x, 0) = ψn(x)− ϕ′n(x), v2n(x, 0) = ψn(x) + ϕ′n(x), v3n(x, 0) = ϕn(x). (2.17)

According to (1.1) and (2.16) the unknown functions vin, i = 1, 2, 3 satisfy the
following system of first order partial differential equations

l2v1n = fn(x, t)− 1
2
g(x, t, v3n)(v1n + v2n),

l1v2n = fn(x, t)− 1
2
g(x, t, v3n)(v1n + v2n),

l1v3n = v1n.
(2.18)

Let Pτ := (x − t + τ, τ), Qτ := (x + t − τ, τ). Integrating the equations of system
(2.18) along the corresponding characteristic curves and taking into account initial
conditions (2.17) we get

v1n(x, t) = −1
2

∫ t

0
g
(
Pτ , v3n(Pτ )

)(
v1n(Pτ ) + v2n(Pτ )

)
dτ

+F1n(x, t),

v2n(x, t) = −1
2

∫ t

0
g
(
Qτ , v3n(Qτ )

)(
v1n(Qτ ) + v2n(Qτ )

)
dτ

+F2n(x, t),

v3n(x, t) =
∫ t

0
v1n(Qτ )dτ + F3n(x, t),

(2.19)

where

F1n(x, t) := ψn(x− t)− ϕ′n(x− t) +

∫ t

0

fn(Pτ )dτ, F2n(x, t) :=

ψn(x+ t) + ϕ′n(x+ t) +

∫ t

0

fn(Qτ )dτ, F3n(x, t) := ϕn(x+ t).

(2.20)
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Passing in equalities (2.19), (2.20) to the limit as n→∞ in the space C(DP0) and
taking into account (2.4), (2.5), (2.8) and (2.16) we obtain

v1(x, t) = −1
2

∫ t

0
g
(
Pτ , v3(Pτ )

)(
v1(Pτ ) + v2(Pτ )

)
dτ + F1(x, t),

v2(x, t) = −1
2

∫ t

0
g
(
Qτ , v3(Qτ )

)(
v1(Qτ ) + v2(Qτ )

)
dτ + F2(x, t),

v3(x, t) =
∫ t

0
v1(Qτ )dτ + F3(x, t),

(2.21)

where vi := lim
n→∞

vin in the sense of the norm of the space C(DP0)), i = 1, 2, 3, and

F1(x, t) := ψ(x− t)− ϕ′(x− t) +

∫ t

0

f(Pτ )dτ,

F2(x, t) := ψ(x+ t) + ϕ′(x+ t) +

∫ t

0

f(Qτ )dτ, F3(x, t) := ϕ(x+ t).

(2.22)

Remark 2.1. Equalities (2.21) can be considered as a system of Volterra type
nonlinear integral equations.

It is obvious that v3 = u and that it is a strong generalized solution of problem (1.1),
(1.3) of class C1 in the domain DP0 . Besides, due to (2.16) the following equalities

v1 = ut − ux, v2 = ut + ux (2.23)

are valid.
Let GP0 :=

{
(x, t, s) ∈ R3 : (x, t) ∈ DP0 , |s| ≤ c0

(
‖f‖C(DP0

) + ‖ϕ‖C1(γP0
) +

‖ψ‖C(γP0
)

)}
and

K = K
(
P0, c0, f, ϕ, ψ

)
:=

1

2
sup

(x,t,s)∈GP0

|g(x, t, s)| < +∞. (2.24)

Then due to a priori estimate (2.3) for a strong generalized solution v3 = u of
problem (1.1), (1.3) of class C1 in the domain DP0 we get

|g
(
x, t, v3(x, t)

)
| ≤ 2K, (x, t) ∈ DP0 . (2.25)

Let

ωi(t) := sup
(ξ,τ)∈DP0,t

|vi(ξ, τ)|, i = 1, 2, 3, h(t) := sup
(ξ,τ)∈DP0,t

|f(ξ, τ)|. (2.26)

By (2.21), due to (2.22), (2.25) and (2.26), it follows that

|v1(x, t)| ≤ K

∫ t

0

(ω1(τ) + ω2(τ))dτ + ‖ϕ′‖C(γP0
) + ‖ψ‖C(γP0

) + th(t),

|v2(x, t)| ≤ K

∫ t

0

(ω1(τ) + ω2(τ))dτ + ‖ϕ′‖C(γP0
) + ‖ψ‖C(γP0

) + th(t),

|v3(x, t)| ≤
∫ t

0

ω1(τ)dτ + ‖ϕ‖C(γP0
).
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Whence for (ξ, τ) ∈ DP0,t we have

|v1(ξ, τ)| ≤ K

∫ τ

0

(ω1(τ1) + ω2(τ1))dτ1 + ‖ϕ′‖C(γP0
) + ‖ψ‖C(γP0

) + τh(τ),

|v2(ξ, τ)| ≤ K

∫ τ

0

(ω1(τ1) + ω2(τ1))dτ1 + ‖ϕ′‖C(γP0
) + ‖ψ‖C(γP0

) + τh(τ),

|v3(ξ, τ)| ≤
∫ τ

0

ω1(τ1)dτ1 + ‖ϕ‖C(γP0
),

and, therefore, in view of (2.26) and the fact that th(t) is a nondecreasing function, we
have

ω1(t) ≤ K

∫ t

0

(ω1(τ) + ω2(τ))dτ + ‖ϕ′‖C(γP0
) + ‖ψ‖C(γP0

) + th(t),

ω2(t) ≤ K

∫ t

0

(ω1(τ) + ω2(τ))dτ + ‖ϕ′‖C(γP0
) + ‖ψ‖C(γP0

) + th(t),

ω3(t) ≤
∫ t

0

ω1(τ)dτ + ‖ϕ‖C(γP0
).

Putting ω(t) := max
1≤i≤3

ωi(t), by obtained inequalities we have

ω(t) ≤ (2K + 1)

∫ t

0

ω(τ)dτ + ‖ϕ‖C1(γP0
) + ‖ψ‖C(γP0

) + th(t),

whence, using the Gronwall lemma, we obtain

ω(t) ≤ exp
(
(2K + 1)t

)(
‖ϕ‖C1(γP0

) + ‖ψ‖C(γP0
) + th(t)

)
≤ exp

(
(2K + 1)t0

)(
t0‖f‖C(DP0

) + ‖ϕ‖C1(γP0
) + ‖ψ‖C(γP0

)

)
, 0 ≤ t ≤ t0.

Now, by (2.23) it follows easily that

‖u‖C1(DP0
) ≤ ‖ω‖C[0,t0]

≤ exp
(
(2K + 1)t0

)(
t0‖f‖C(DP0

) + ‖ϕ‖C1(γP0
) + ‖ψ‖C(γP0

)

)
.

The statement of Lemma 2.2 follows with

c1 := exp
(
(2K + 1)t0

)(
t0‖f‖C(DP0

) + ‖ϕ‖C1(γP0
) + ‖ψ‖C(γP0

)

)
,

where K is defined by (2.24).



100 O. Jokhadze

3 Equivalency of problem (1.1), (1.3) and Volterra type system
of nonlinear integral equations (2.21)

In the second section we have reduced problem (1.1), (1.3) to a Volterra type system
of nonlinear integral equations (2.21). Before consideration the solvability of problem
(1.1), (1.3), let us prove the following lemma.

Lemma 3.1. If a function u ∈ C1(DP0) is a strong generalized solution of problem
(1.1), (1.3) of class C1 in the domain DP0, then v1 := l1u, v2 := l2u, v3 := u is a
continuous solution of Volterra type system of nonlinear integral equations (2.21) and
vice versa, if v1, v2, v3 is a continuous solution of system (2.21), then u := v3 is a
strong generalized solution of problem (1.1), (1.3) of class C1 in the domain DP0, and
the equalities v1 = l1u, v2 = l2u are valid.

Proof. Indeed, let v1, v2, v3 ∈ C(DP0) be a solution of system of equations (2.21). It is
clear that functions v1, v2, v3 satisfy the following system of partial differential equations
of the first order

l2v1 = H, l1v2 = H, l1v3 = v1, (3.1)

where
2H := 2f(x, t)− g(x, t, v3)(v1 + v2). (3.2)

Moreover, let us show that
l2v3 = v2. (3.3)

Indeed, due to equalities (3.1) for any test function w ∈ C∞
0 (DP0) the following

equalities are valid in the sense of the distribution theory of L. Schwartz [5]:

< l1(v2 − l2v3), w >= − < v2 − l2v3, l1w >= − < v2, l1w > + < l2v3, l1w >

=< l1v2, w > − < v3, l2l1w >=< l1v2, w > − < v3, l1l2w >

=< l1v2, w > + < l1v3, l2w >=< l1v2, w > + < v1, l2w >

=< l1v2, w > − < l2v1, w >=< l1v2 − l2v1, w >= 0.

Whence, due to Theorem 1.4.2 in [5] we conclude that (3.3) takes place in the classical
sense. Therefore, in view of (3.1) we have v3 ∈ C1 and

v1 + v2 = 2v3t. (3.4)

Let us extend functions f ∈ C(DP0) and g ∈ C(DP0 × R) continuously to R2,
R3 respectively, preserving the same notation. Analogously we extend functions
vi ∈ C(DP0), i = 1, 2 and v3 ∈ C1(DP0) to R2 with preservation the same class of
smoothness, not changing notation. Then the function H will be extended to the
whole plane R2 [24, 4].

Let

θε(y) =

{
Cε exp

[
− ε2

ε2−|y|2
]
, |y| < ε,

0, |y| ≥ ε,
(3.5)
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where y := (x, t) ∈ R2, and Cε is the positive constant, which is defined by the equality

Cεε
2

∫
|ξ|<1

exp
[
− 1

1− |ξ|2
]
dξ = 1, ξ := (ξ1, ξ2);

ε is any positive number, and | · | is the norm in the Euclidian space R2.
Consider the sequence of functions

n
vi:= vi ∗ θ 1

n
∈ C∞(R2), i = 1, 2, 3,

n

H:= H ∗ θ 1
n
, (3.6)

where ∗ denotes the convolution, and the function θε is defined by (3.5).
In view of the properties of convolutions we have [5]

lim
n→∞

‖ n
vi −vi‖C(DP0

) = 0, i = 1, 2, lim
n→∞

‖ n
v3 −v3‖C1(DP0

) = 0,

lim
n→∞

‖
n

H −H‖C(DP0
) = 0.

(3.7)

Below we prove that the sequence of functions un :=
n
v3

∣∣
DP0

∈ C2(DP0) satisfies
conditions (2.4) and (2.5) and, therefore, u := v3 is a strong generalized solution of
problem (1.1), (1.3) of class C1 in the domain DP0 due to Definition 1.1.

According to the properties of convolution and equalities (3.1), (3.3), the functions
n
vi, i = 1, 2, 3, defined by (3.6), satisfy the following equalities

l2
n
v1=

n

H, l1
n
v2=

n

H, l1
n
v3=

n
v1, l2

n
v3=

n
v2 . (3.8)

Further, according to the definition of the operator L by (1.1) and equalities (3.8)
we have

L
n
v3= l2l1

n
v3 +g(x, t,

n
v3)

n
v3t= l2

n
v1 +g(x, t,

n
v3)

n
v3t=

n

H +g(x, t,
n
v3)

n
v3t .

Whence due to equalities (3.7) it follows that L
n
v3→ H + g(x, t, v3)v3t as n → ∞ in

the space C(DP0). At the same time due to (3.2), (3.4) we have H + g(x, t, v3)v3t = f .
Therefore

lim
n→∞

‖L n
v3 −f‖C(DP0

) = 0. (3.9)

Now let us verify the validity of the initial conditions. Due to the properties of
convolutions and equalities (2.21), (2.22) we have

n
v3 (·, 0) → v3(·, 0) = ϕ (3.10)

as n→∞ in the space C1(γP0).
Analogously, due to the properties of convolutions and equalities (3.4), (2.21) and

(2.22), we have
n
v3t (·, 0) → v3t(·, 0) =

v1(·, 0) + v2(·, 0)

2
= ψ (3.11)

as n→∞ in the space C(γP0).
The equalities v1 = l1u, v2 = l2u immediately follow by the above considerations,

which together with (3.9)-(3.11) prove the statement of Lemma 3.1, since the inverse
proposition is obvious.
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4 Solvability of problem (1.1), (1.3)

First let us prove the local solvability of problem (1.1), (1.3), which is due to Lemma 3.1
equivalent to proving the local solvability of Volterra type system of nonlinear integral
equations (2.21).

Let, together with (2.2), the following conditions be satisfied

ϕ∞ := max
{

sup
x∈R

|ϕ(x)| < +∞, sup
x∈R

|ϕ′(x)| < +∞
}
,

ψ∞ := sup
x∈R

|ψ(x)| < +∞,
(4.1)

f∞ := sup
(x,t)∈Ω

|f(x, t)| < +∞ (4.2)

and
|g(x, t, s)| ≤M(R), |g(x, t, s2)− g(x, t, s1)| ≤ c(R)|s2 − s1| (4.3)

for all (x, t) ∈ Ω, |s|, |s1|, |s2| ≤ R, where M(R) and c(R) are some nonnegative
continuous functions of the argument R ≥ 0.

Theorem 4.1. Let the functions f, g, ϕ and ψ satisfy conditions (2.2), (4.1)-(4.3).
Then there exists a positive number t∗ := t∗(f, g, ϕ, ψ), such that, for t0 ≤ t∗ problem
(1.1), (1.3) has at least one strong generalized solution u of class C1 in the domain
DP0.

Proof. The unique solvability of system (2.21) we will proved below by the principle of
contracted mappings [see e.g., 22, p. 390].

Let V := (v1, v2, v3). Let us introduce the vector-operator Φ := (Φ1,Φ2,Φ3), by the
formula

(Φ1V )(x, t) = −1
2

∫ t

0
g
(
Pτ , v3(Pτ )

)(
v1(Pτ ) + v2(Pτ )

)
dτ + F1(x, t),

(Φ2V )(x, t) = −1
2

∫ t

0
g
(
Qτ , v3(Qτ )

)(
v1(Qτ ) + v2(Qτ )

)
dτ + F2(x, t),

(Φ3V )(x, t) =
∫ t

0
v1(Qτ )dτ + F3(x, t).

(4.4)

Then system (2.21) can be rewritten in the vector form

V = ΦV. (4.5)

Let
‖V ‖XP0

:= max
1≤i≤3

{
‖vi‖C(DP0

)

}
, V ∈ XP0 := C(DP0 ; R3),

where C(DP0 ; R3) is the set of all continuous vector-functions V : DP0 → R3.
Denote by BR := {V ∈ XP0 : ‖V ‖XP0

≤ R} the closed ball with radius R > 0 in
the Banach space XP0 and the center at the null element.

Below we prove that for R := 1 + ϕ∞ + ψ∞
(I) Φ maps the ball BR into itself;
(II) Φ is a contracted map on BR.
Indeed, in view of the first inequality (4.3), by (4.4) due to (2.22), for V such that

‖V ‖XP0
≤ R, we have

|(Φ1V )(x, t)| ≤ t0
(
RM(R) + ‖f‖C(DP0

)

)
+ ‖ϕ′‖C(γP0

) + ‖ψ‖C(γP0
),
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|(Φ2V )(x, t)| ≤ t0
(
RM(R) + ‖f‖C(DP0

)

)
+ ‖ϕ′‖C(γP0

) + ‖ψ‖C(γP0
),

|(Φ3V )(x, t)| ≤ t0R + ‖ϕ‖C(γP0
).

By these estimates it follows that

‖ΦV ‖XP0
≤ t0

(
RM(R) +R + ‖f‖C(DP0

)

)
+ ‖ϕ‖C(γP0

) + ‖ϕ′‖C(γP0
)

+‖ψ‖C(γP0
) ≤ t0

(
RM(R) +R + f∞

)
+ ϕ∞ + ψ∞,

where f∞, ϕ∞, ψ∞ are defined by (4.1) and (4.2).
Now for R := 1 + ϕ∞ + ψ∞ let us choose sufficiently small t0 > 0, so that

t0
(
RM(R) +R + f∞

)
≤ 1, (4.6)

hence ΦV ∈ B(R) and therefore condition (I) is satisfied.
Further, due to (4.3) by (4.4) for V i such that ‖V i‖XP0

≤ R, i = 1, 2, we have

|(Φ1V
2 − Φ1V

1)(x, t)| ≤ 1

2

∫ t

0

(
|g(Pτ , v

2
3(Pτ ))− g(Pτ , v

1
3(Pτ ))||v2

1(Pτ ) + v2
2(Pτ )|

+|g(Pτ , v
1
3(Pτ ))||v2

1(Pτ )− v1
1(Pτ ) + v2

2(Pτ )− v1
2(Pτ )|

)
dτ

≤ t0
(
Rc(R) +M(R)

)
‖V 2 − V 1‖XP0

.

Analogously,

|(Φ2V
2 − Φ2V

1)(x, t)| ≤ t0
(
Rc(R) +M(R)

)
‖V 2 − V 1‖XP0

and

|(Φ3V
2 − Φ3V

1)(x, t)| ≤
∫ t

0

|v2
1(Qτ )− v1

1(Qτ )|dτ ≤ t0‖V 2 − V 1‖XP0
.

By decreasing the number t0 > 0 we can assume that together with (4.6) the
following inequality

max
{
t0, t0

(
Rc(R) +M(R)

)}
≤ 1

2
< 1, (4.7)

is valid and hence
‖ΦV 2 − ΦV 1‖XP0

≤ 1

2
‖V 2 − V 1‖XP0

.

Thus the operator Φ is a contracted mapping on the set B(R), hence condition (II)
is satisfied.

By (4.6) and (4.7) it follows that if 0 < t0 ≤ t∗, where

t∗ := min

{
1

RM(R) +R + f∞
,
1

2
,

1

2
(
Rc(R) +M(R)

)}, (4.8)

then
‖ΦV ‖XP0

≤ R

and
‖ΦV 2 − ΦV 1‖XP0

≤ 1

2
‖V 2 − V 1‖XP0

for V, V 1, V 2 ∈ B(R). Therefore due to the principle of contracted mappings there
exists a solution V of equation (4.5) in the space XP0 for t0 ∈ (0, t∗].
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In view of the local solvability of problem (1.1), (1.3) and the global a priori estimate
(2.15), using standard considerations [see e.g., 20], we get the validity of the following
theorem on the global solvability of this problem.

Theorem 4.2. If the conditions (2.1), (2.2), (4.1)-(4.3) are satisfied, then problem
(1.1), (1.3) is globally solvable in the class C1 in the sense of Definition 1.2, i.e. for
any P0 ∈ Ω this problem has a strong generalized solution of class C1 in the domain
DP0.

Remark 4.1. We give the examples of functions g = g(x, t, s), satisfying the conditions
of Theorem 4.2, or, which is the same, conditions (2.1), g ∈ C(Ω× R) and (4.3). The
function

g(x, t, s) =
n∑

k=1

αk(x, t)|s|βk ,

where αk ∈ C(Ω), k = 1, ..., n; α1(x, t) ≥ const > 0, |αi(x, t)| ≤ const for (x, t) ∈ Ω
and β1 > βi ≥ 1, i = 2, ..., n; and also the function g(x, t, s) = α(x, t)g0(s), where α ∈
C(Ω), |α(x, t)| ≤ const for (x, t) ∈ Ω, g0 ∈ Liploc(R) and lim inf |s|→+∞ g0(s) > −∞,
satisfy the conditions of Theorem 4.2.

5 The uniqueness and the existence theorems

Theorem 5.1. Let conditions (2.2) and (4.3) be satisfied. Then for any fixed point
P0 ∈ Ω problem (1.1), (1.3) cannot have more than one strong generalized solution of
the class C1 in the domain DP0.

Proof. Indeed, suppose that problem (1.1), (1.3) has two different strong generalized
solutions u1 and u2 of class C1 in the domain DP0 . Then according to Definition 1.1
there exists a sequence of functions ui

n ∈ C2(DP0), such that

lim
n→∞

‖ui
n − ui‖C1(DP0

) = 0, lim
n→∞

‖Lui
n − f‖C(DP0

) = 0,

lim
n→∞

‖ui
n(·, 0)− ϕ‖C1(γP0

) = 0, lim
n→∞

‖ui
nt(·, 0)− ψ‖C(γP0

) = 0,

lim
n→∞

‖g(x, t, ui
n)ui

nt − g(x, t, ui)ui
t‖C(DP0

) = 0, i = 1, 2.

(5.1)

Let us use the well-known notation � := ∂2/∂t2 − ∂2/∂x2 and let ωn := u2
n − u1

n.
It is easy to see that the function ωn ∈ C2(DP0) satisfies the following equalities

� ωn + gn = fn, (5.2)

ωn

∣∣
γP0

= τn, ωnt

∣∣
γP0

= νn, (5.3)

where
gn := g(x, t, u2

n)u2
nt − g(x, t, u1

n)u1
nt, fn := Lu2

n − Lu1
n,

τn := (u2
n − u1

n)
∣∣
γP0

, νn := (u2
n − u1

n)t

∣∣
γP0

.
(5.4)

Due to the first equality of (5.1) there exists the number A := const > 0, independent
of indices i and n, such that

‖ui
n‖C1(DP0

) ≤ A. (5.5)
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By virtue of equalities (5.1) and (5.4) we have

lim
n→∞

‖τn‖C1(γP0
) = 0, lim

n→∞
‖νn‖C(γP0

) = 0, lim
n→∞

‖fn‖C(DP0
) = 0. (5.6)

By (4.3), (5.5) and the first equality of (5.4) it is easy to see that

g2
n =

(
g(x, t, u2

n)ωnt +
(
g(x, t, u2

n)− g(x, t, u1
n)
)
u1

nt

)2

≤ 2M2(A)ω2
nt + 2A2c2(A)ω2

n.
(5.7)

Multiplying both sides of the equality (5.2) by ωnt and integrating the obtained
equality over the domain DP ′

0,τ , 0 < τ < t′0, where P ′
0 := P ′

0(x
′
0, t

′
0) ∈ DP0 , in view of

(5.3), in the same way as getting equality (2.9) from (2.6), (2.7), we have

vn(τ) :=

∫
ΩP ′

0,τ

(ω2
nx + ω2

nt)dx+
2∑

i=1

∫
γi,P ′

0,τ

ν−1
t

(
νtωnx − νxωnt

)2
ds

= 2

∫
DP ′

0,τ

(fn − gn)ωntdxdt+ ‖τ ′n‖2
L2(γP ′

0
) + ‖νn‖2

L2(γP ′
0
).

(5.8)

Due to estimate (5.7) and the Cauchy inequality we get

2

∫
DP ′

0,τ

(fn − gn)ωntdxdt ≤ 2

∫
DP ′

0,τ

ω2
ntdxdt+

∫
DP0,τ

f 2
ndxdt+

∫
DP ′

0,τ

g2
ndxdt

≤ 2
(
1 +M2(A)

) ∫
DP ′

0,τ

ω2
ntdxdt+ ‖fn‖2

L2(DP0,τ ) + 2A2c2(A)

∫
DP ′

0,τ

ω2
ndxdt.

(5.9)

Further, according to the first equality (5.3) it is easy to see that

ωn(x, t) = τn(x) +

t∫
0

ωnt(x, σ)dσ, (x, t) ∈ DP ′
0,τ .

Squaring both sides of this equality and using the Cauchy-Schwartz inequality, we
get

|ωn(x, t)|2 ≤ 2τ 2
n(x) + 2t

∫ t

0

ω2
nt(x, σ)dσ, (x, t) ∈ DP ′

0,τ .

Whence putting

v(x, t) =

{
ωnt(x, t), (x, t) ∈ DP ′

0,τ ,

0, (x, t) 6∈ DP ′
0,τ ,
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and taking into account that t ≤ τ for (x, t) ∈ DP ′
0,τ , we obtain∫

DP ′
0,τ

ω2
ndxdt ≤ 2τ‖τn‖2

L2(γP0
) + 2τ

∫ x′0+t′0

x′0−t′0

dx

∫ τ

0

(∫ τ

0

v2(x, σ)dσ

)
dt

= 2τ‖τn‖2
L2(γP0

) + 2τ 2

∫ x′0+t′0

x′0−t′0

dx

∫ τ

0

v2(x, t)dt

= 2τ‖τn‖2
L2(γP0

) + 2τ 2

∫
DP ′

0,τ

ω2
ntdxdt.

(5.10)

By (5.8)-(5.10) it follows that

vn(τ) ≤ 2
(
2τ 2A2c2(A) +M2(A) + 1

) ∫
DP ′

0,τ

ω2
ntdxdt+ ‖fn‖2

L2(DP0,τ ) + ‖τ ′n‖2
L2(γP0

)

+‖νn‖2
L2(γP0

) + 4τA2c2(A)‖τn‖2
L2(γP0

) ≤ 2
(
2t20A

2c2(A) +M2(A) + 1)

τ∫
0

vn(σ)dσ

+‖fn‖2
L2(DP0

) + ‖τ ′n‖2
L2(γP0

) + ‖νn‖2
L2(γP0

) + 4t0A
2c2(A)‖τn‖2

L2(γP0
).

Therefore, due to the Gronwall lemma we get

vn(τ) ≤ c2
(
‖fn‖2

L2(DP0
) + ‖τ ′n‖2

L2(γP0
) + ‖νn‖2

L2(γP0
) + 4t0A

2c2(A)‖τn‖2
L2(γP0

)

)
,

where c2 := exp
{
2t0(2t

2
0A

2c2(A) + M2(A) + 1)
}
. Whence, taking into account (5.8),

we have ∫
γ1,P ′

0

(νtωnx − νxωnt)
2ds ≤

√
2c2
(
‖fn‖2

L2(DP0
) + ‖τ ′n‖2

L2(γP0
) + ‖νn‖2

L2(γP0
)

+4t0A
2c2(A)‖τn‖2

L2(γP0
)

)
.

Further, by the same considerations as those used for getting estimate (2.14), we find

|ωn(x′0, t
′
0)|2 ≤ 2τ 2

n(x′0 − t′0) + 4t20c2

(
t0‖fn‖2

C(DP0
)
+ 2‖τ ′n‖2

C(γP0
)

+2‖νn‖2
C(γP0

) + 8t0A
2c2(A)‖τn‖2

C(γP0

)
.

Therefore, in view of (5.6) we have lim
n→∞

|ωn(x′0, t
′
0)| = 0, i.e. u2(x′0, t

′
0) = u1(x′0, t

′
0) for

any (x′0, t
′
0) ∈ DP0 .

By Theorems 4.2 and 5.1 the following theorem immediately follows.

Theorem 5.2. If conditions (2.1), (2.2), (4.1)-(4.3) are satisfied, then problem (1.1),
(1.2) has a unique global strong generalized solution of class C1 in the sense of Defini-
tion 1.3.
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Proof. By Theorems 4.2 and 5.1, in the domain DP0 for t0 = k ∈ N problem (1.1), (1.3)
has a unique strong generalized solution uk of class C1 in the sense of Definition 1.1.
Since uk+1 is also a strong generalized solution to problem (1.1), (1.3) of class C1 in
the domain Dx0,k, due to Theorem 5.1 we have uk+1

∣∣
Dx0,k

= uk. Therefore the function
u, built in the domain Ω according to the rule u(x, t) = uk(x, t) for k = [t] + 1, where
[t] is the integer part of the number t, and the point (x, t) ∈ Ω, will be a unique global
strong generalized solution of problem (1.1), (1.2) of class C1 in the sense of Definition
1.3.

Remark 5.1. Under the conditions of Theorem 4.1 there exists the positive number
T∗ := T∗(f, g, ϕ, ψ) > 0, such that problem (1.1), (1.2) in the strip Ω1 := R × (0, T∗)
has a unique strong generalized solution u of class C1 in the domain Ω1, in the sense
that for any point P0 ∈ Ω1 the function u

∣∣
DP0

represents a strong generalized solution
of problem (1.1), (1.3) of class C1 in the domain DP0 in the sense of Definition 1.1. The
proof of this statement immediately follows by the uniqueness Theorem 5.1, Theorem
4.1 and considerations analogous to those given in the proof of Theorem 5.2.
Remark 5.2. From the proofs of Theorems 4.1, 4.2 and 5.2 it easily follows that they
remain valid without conditions (4.1), (4.2), under only the conditions of smoothness:
ϕ ∈ C1(R), ψ ∈ C(R), f ∈ C(Ω).

6 The case of absence of a global solution of the problem (1.1),
(1.3)

Remark 6.1. Violation of condition (2.1), generally speaking, may cause an absence
of global solvability of problem (1.1), (1.3) in the sense of Definition 1.2. Indeed, let
g(x, t, s) = −|s|αs, (x, t) ∈ Ω, s ∈ R with the exponent of nonlinearity α > −1. Below
we show that under certain conditions on the functions f ∈ C(Ω), ϕ ∈ C1(R), ψ ∈
C(R) for any fixed x0 ∈ R there exists a number t∗ := t∗(x0; f, ϕ, ψ) > 0, such that for
t0 ∈ (0, t∗) problem (1.1), (1.3) has a strong generalized solution of the class C1 in the
domain DP0 , while for t0 > t∗ it does not have such a solution in this domain.

Lemma 6.1. Let u be a strong generalized solution of problem (1.1), (1.3) of class C1

in the domain DP0 in the sense of Definition 1.1. Then the following integral equality∫
DP0

u�χdxdt =

∫ x0+t0

x0−t0

[ψ(x)χ(x, 0)− ϕ(x)χt(x, 0)]dx

+

∫
DP0

|u|αuutχdxdt+

∫
DP0

fχdxdt

(6.1)

is valid for any function χ, such that

χ ∈ C2(DP0), χ
∣∣
γi,P0

= 0, i = 1, 2. (6.2)

Proof. According to the definition of a strong generalized solution u of problem (1.1),
(1.3) of class C1 in the domain DP0 , the function u ∈ C1(DP0) and there exists a
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sequence of functions un ∈ C2(DP0), such that it is valid equalities (2.4) and (2.5) for
g(x, t, s) = −|s|αs, (x, t) ∈ Ω, s ∈ R.

Let fn := Lun. Multiply both sides of the equality Lun = fn by function χ and
integrate the obtained equality over the domain DP0 . By integrating by parts of the
left-hand side of this equality, due to (6.2) and conditions (2.7), we have∫

DP0

un�χdxdt =

∫ x0+t0

x0−t0

[ψn(x)χ(x, 0)− ϕn(x)χt(x, 0)]dx

+

∫
DP0

|un|αununtχdxdt+

∫
DP0

fnχdxdt.

Passing in the last equality to the limit as n→∞, due to (2.4), we get (6.1).

Let us use the method of test functions (see, e.g., [16], pp. 10-12). Consider the
function χ0 := χ0(x, t), such that

χ0 ∈ C2(D(0,1)), χ0 + χ0
t ≤ 0, χ0

∣∣
D(0,1)

> 0, χ0
∣∣
γi,(0,1)

= 0, i = 1, 2, (6.3)

и

κ0 :=

∫
D(0,1)

|�χ0|p′

|χ0|p′−1
dxdt < +∞, p′ =

α+ 2

α+ 1
. (6.4)

It is easy to verify that for the function χ0, satisfying conditions (6.3) and (6.4),
one may consider the function

χ0 = χ∗(x, t) := [(1− t)2 − x2]n, (x, t) ∈ D(0,1), (6.5)

for sufficiently large natural number n.
Now, putting χP0(x, t) = χ0

(
x−x0

t0
, t

t0

)
, in view of (6.3), it is easy to see that

χP0 ∈ C2(DP0), χP0 + t0
∂χP0

∂t
≤ 0, χP0

∣∣
DP0

> 0,

χP0

∣∣
γi,P0

= 0, i = 1, 2.
(6.6)

For fixed functions f, ϕ, ψ and a number x0, consider the following function of one
variable t0

ζ(t0) :=

∫ x0+t0

x0−t0

[
ψ(x)χP0(x, 0)− ϕ(x)

∂χP0(x, 0)

∂t

]
dx

+

∫
DP0

fχP0dxdt−
1

α+ 2

∫ x0+t0

x0−t0

|ϕ(x)|α+2χP0(x, 0)dx.
(6.7)

The following theorem on the absence of global solvability of problem (1.1), (1.3) is
valid.
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Theorem 6.1. Let g(x, t, s) = −|s|αs, (x, t) ∈ Ω, s ∈ R, α > −1, f ∈ C(Ω), and the
function u ∈ C1(DP0) be a strong generalized solution of problem (1.1), (1.3) of class
C1 in the domain DP0. If

lim inf
t0→+∞

ζ(t0) > 0, (6.8)

then there exists a positive number t0 := t0(x0; f, ϕ, ψ) > 0, such that for t0 > t0

problem (1.1), (1.3) cannot have a strong generalized solution of class C1 in the domain
DP0.

Proof. Suppose that under the conditions of this theorem there exists a strong gener-
alized solution u of problem (1.1), (1.3) of class C1 in the domain DP0 . Then due to
Lemma 6.1 we have equality (6.1), in which, in view of (6.6), for χ one may take the
function χ = χP0 , i.e.∫

DP0

u�χP0dxdt =

∫
DP0

|u|αuutχP0dxdt+

∫ x0+t0

x0−t0

[
ψ(x)χP0(x, 0)

−ϕ(x)
∂χP0(x, 0)

∂t

]
dx+

∫
DP0

fχP0dxdt.

(6.9)

Taking into account (1.3) and (6.6), we have∫
DP0

|u|αuutχP0dxdt =
1

α+ 2

∫
DP0

χP0

∂

∂t
|u|α+2dxdt

= − 1

α+ 2

(∫ x0+t0

x0−t0

|ϕ(x)|α+2χP0(x, 0)dx+

∫
DP0

|u|α+2∂χP0

∂t
dxdt

)

≥ 1

α+ 2

(
1

t0

∫
DP0

|u|α+2χP0dxdt−
∫ x0+t0

x0−t0

|ϕ(x)|α+2χP0(x, 0)dx

)
.

Whence, due to (6.7), from (6.9) it follows that

1

pt0

∫
DP0

|u|pχP0dxdt ≤
∫

DP0

u�χP0dxdt− ζ(t0), p := α+ 2 > 1. (6.10)

If in the Young inequality with the parameter ε > 0

ab ≤ ε

p
ap +

1

p′εp′−1
bp

′
; a, b ≥ 0,

1

p
+

1

p′
= 1, p > 1

we take a = |u|χ
1
p

P0
, b =

|�χP0
|

χ
1
p
P0

and ε = 1
t0

, then we get

|u�χP0| = |u|χ
1
p

P0

|�χP0|

χ
1
p

P0

≤ 1

pt0
|u|pχP0 +

tp
′−1

0

p′
|�χP0|p

′

χp′−1
P0

.
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By virtue of (6.10) and the last inequality we have

0 ≤ tp
′−1

0

p′

∫
DP0

|�χP0|p
′

χp′−1
P0

dxdt− ζ(t0). (6.11)

By (6.3), (6.4), after the following change of variables x = x0 + t0x1, t = t0t1, it is
easy to verify that∫

DP0

|�χP0|p
′

χp′−1
P0

dxdt =
1

t
2(p′−1)
0

∫
D(0,1)

|�χ0|p′

|χ0|p′−1
dx1dt1 =

κ0

t
2(p′−1)
0

.

Whence due to (6.11) we get
0 ≤ κ0

p′tp
′−1

0

− ζ(t0). (6.12)

Since p′ = p
p−1

> 1 and due to (6.4) we have

lim
t0→+∞

κ0

p′tp
′−1

0

= 0.

Therefore in view of (6.8) there exists a positive number t0 := t0(x0; f, ϕ, ψ) > 0,
such that for t0 > t0 the right-hand side of inequality (6.12) is negative, whereas the
left-hand side of this inequality is zero. This implies that if there exists a strong
generalized solution u of problem (1.1), (1.3) of class C1 in the domain DP0 , then
t0 ≤ t0 necessarily, and this proves Theorem 6.1.

Remark 6.2. In Remark 6.1 let us denote by t∗ := t∗(x0; f, ϕ, ψ) the supremum of
those t0 > 0, for which problem (1.1), (1.3) is solvable in the domain DP0 . By Theorems
4.1 and 6.1 it follows that 0 < t∗ ≤ t0, and that problem (1.1), (1.3) is solvable in the
domain DP0 for t0 < t∗ and does not have a solution for t0 > t∗.
Remark 6.3. It is easy to verify that if ϕ ≡ 0, f ≥ 0, ψ ≥ 0 and one of the following
conditions:

1) f(x, t) ≥ c, (x, t) ∈ Ω; 2) ψ(x) ≥ c, x ∈ R, (6.13)

is satisfied, where c := const > 0, and for function χP0 we take χP0(x, t) = χ∗
(

x−x0

t0
, t

t0

)
,

where χ∗ is defined by equality (6.5), then condition (6.8) will be satisfied, and therefore
in this case problem (1.1), (1.3) for sufficiently large t0 will not have a strong generalized
solution u of class C1 in the domain DP0 .

Indeed, by considering in the first integral in (6.7) the transformation of the in-
dependent variable x = x0 + t0τ , in the case in which, for example, the second of
conditions (6.13) is satisfied, after some transformations we have

ζ(t0) ≥
∫ x0+t0

x0−t0

ψ(x)χP0(x, 0)dx = t0

∫ 1

−1

ψ(x0 + t0τ)χ
∗(τ, 0)dτ

≥ ct0

∫ 1

−1

(1− τ 2)ndτ = 2ct0

∫ 1

0

(1− τ 2)ndτ = ct0B(2−1, n+ 1) > 0,

(6.14)

where B(a, b) is the well-known Euler integral of the first kind (see e.g., [2], p. 750). By
(6.14) immediately follows the validity of inequality (6.8). Analogously is considered
the case in which the first condition in (6.13) is satisfied.
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