EURASIAN MATHEMATICAL JOURNAL

ISSN 2077-9879

Volume 5, Number 4 (2014), 79 – 91

NORMABILITY AND DUALITY IN THE TWO-DIMENSIONAL LORENTZ SPACES

P. Jain, S. Jain

Communicated by T.V. Tararykova

Key words: Lorentz space, normability, duality, non-increasing rearrangement.

AMS Mathematics Subject Classification: 46E35.

Abstract. The two-dimensional Lorentz space $L_2^{p,q}$ is defined as a special case from the two-dimensional space $\Lambda_2^p(w)$ just as was done in the classical dimension one. The normability and duality of the space $L_2^{p,q}$ are discussed.

1 Introduction

In [7] (see also [3]), Lorentz introduced the classical Lorentz space, denoted by $\Lambda^p(w)$ which consists of all measurable functions for which

$$||f||_{\Lambda^p(w)} = \left(\int_0^\infty (f^*(t))^p w(t)dt\right)^{1/p} < \infty,$$

where $0 , w is a weight function (a non-negative, locally integrable function on <math>(0, \infty)$, not equivalent to 0) and

$$f^*(t) = \inf\{\lambda \ge 0 : \mu_f(\lambda) \le t\}, \qquad t \ge 0$$

is the non-increasing rearrangement of f, μ_f being its distribution function.

In [2] (see also [1]), the authors defined a two-dimensional analogue of the space $\Lambda^p(w)$, denoted by $\Lambda^p_2(w)$, as follows

Let $E \subset \mathbf{R}^2$ and for $x_1 \in \mathbf{R}$, $\varphi_E(x_1) = |\{x_2 \in \mathbf{R} : (x_1, x_2) \in E\}|$. The decreasing rearrangement of φ_E is given by

$$\varphi_E^*(t_1) = \inf\{\lambda : |\{x_1 \in \mathbf{R} : \varphi_E(x_1) > \lambda\}| \le t_1\}, \quad t_1 \ge 0.$$

Then, the two-dimensional decreasing rearrangement of the set E is defined by

$$E^* = \{(t_1, t_2) \in \mathbf{R}^2_+ : 0 < t_2 < \varphi_E^*(t_1)\}.$$

Now, with these notations, the two-dimensional Lorentz space $\Lambda_2^p(w)$ is the space of all measurable functions f on \mathbf{R}^2 for which

$$||f||_{\Lambda_2^p(w)} = \left(\int_{\mathbf{R}_+^2} (f^*(t_1, t_2))^p w(t_1, t_2) dt_1 dt_2\right)^{1/p} < \infty, \tag{1.1}$$

where w is a non-negative, locally integrable function on \mathbb{R}^2_+ , not equivalent to 0 and f^* is the two-dimensional decreasing rearrangement of f given by the so called Layer-cake formula

$$f^*(t_1, t_2) = \int_0^\infty \chi_{\{|f| > t\}^*}(t_1, t_2) dt.$$

In a rather surprising result ([2], Theorem 3.7), it was proved that for $1 \le p < \infty$, the expression (1.1) is a norm if and only if $w(t_1, t_2) = v(t_2)$ for some decreasing weight v on \mathbf{R}^+ . This motivates us to define a variant of $\Lambda_2^p(w)$, to be denoted by $L_2^{p,q}$, which consists of all measurable functions on \mathbf{R}^2 for which

$$||f||_{L_2^{p,q}} = \left(\int_{\mathbf{R}_+^2} (t_2)^{q/p-1} f^*(t_1, t_2)^q dt_1 dt_2\right)^{1/q} < \infty.$$
 (1.2)

It is clear from the above discussion that for $1 \le q , the space <math>L_2^{p,q}$ is a normed space. We prove, in this paper that, in fact, the restriction $1 \le q is necessary for <math>L_2^{p,q}$ to be normable. A similar situation exists in dimension one, see, e.g., [6].

Next, our aim is to overcome the restriction q < p in (1.2) to make it a norm. A natural idea, similar to the one-dimensional case, is to replace f^* by f^{**} defined by

$$f^{**}(t_1, t_2) = \frac{1}{t_1 t_2} \int_0^{t_1} \int_0^{t_2} f^*(s_1, s_2) ds_1 ds_2.$$

However, this does not suffice the purpose. In fact, it was shown in [1] that f^{**} is not sublinear. Those authors considered, instead, the function $f_{2,1}^{**}$ defined by

$$f_{2,1}^{**}(t_1, t_2) = \frac{1}{t_1} \int_0^{t_1} \left(\frac{1}{t_2} \int_0^{t_2} f_2^*(., \tau) d\tau \right)_1^*(\sigma) d\sigma$$

and proved that this function is sublinear. Here f_2^* denotes the one-dimensional rearrangement of the function f with respect to the second variable keeping the first variable fixed and in the similar sense, the expression $(...)_1^*$ should be understood. Taking advantage of this fact, we replace f^* in (1.2) by $f_{2,1}^{**}$ and prove that the corresponding expression

$$||f||'_{L_2^{p,q}} := \left(\int_{\mathbf{R}_+^2} t_2^{q/p-1} f_{2,1}^{**}(t_1, t_2)^q dt_1 dt_2 \right)^{1/q}$$
(1.3)

is a norm for $1 < p, q < \infty$. It is noted, in view of ([1], Theorem 2.4) (see also [4]), that for $1 < p, q < \infty$, the quasi-norm (1.2) and the norm (1.3) are equivalent.

Finally, from the one-dimensional case, it is known that the dual space of $L^{p,q}$, that is, $(L^{p,q})^*$ can be identified as $L^{p',q'}$, where $\frac{1}{p} + \frac{1}{p'} = 1$ and $\frac{1}{q} + \frac{1}{q'} = 1$. We shall prove that the similar duality holds also in dimension two.

2 Normability

We prove the following normability result

Theorem 2.1. The Lorentz space $L_2^{p,q}$ is not normable for the following cases:

(i)
$$0 , $0 < q < 1$; (ii) $0 , $1 < q < \infty$.$$$

Proof. Our strategy would be to construct a sequence of functions $\{f_k\}, k = 1, 2, ...$ such that in both cases (i) and (ii), the ratio

$$A_k := \frac{\left\| \sum_{k=1}^n f_k \right\|_{L_2^{p,q}}}{\sum_{k=1}^n \|f_k\|_{L_2^{p,q}}} \to \infty \quad \text{as} \quad n \to \infty$$

(i) For all $x = (x_1, x_2) \in [0, 1] \times [0, 1]$ and k = 1, 2, ..., define the functions f_k as

$$f_k(x) = \begin{cases} \left(\frac{q}{p}\right)^{1/q} 2^{(1+p/q)k}, & 0 < x_1 < 2^{-kp}, 0 < x_2 < 2^{-kp} \\ 0, & \text{otherwise} \end{cases}$$

Then

$$||f_k||_{L_2^{p,q}} = \left(\int_0^\infty \int_0^\infty t_2^{q/p-1} ((f_k)^*(t_1, t_2))^q dt_1 dt_2\right)^{1/q}$$

$$= \left(\int_0^{2^{-kp}} \int_0^{2^{-kp}} t_2^{q/p-1} \left(\left(\frac{q}{p}\right)^{1/q} 2^{(1+p/q)k}\right)^q dt_1 dt_2\right)^{1/q}$$

$$= \left(\left(\frac{q}{p}\right) 2^{(q+p)k} \int_0^{2^{-kp}} dt_1 \int_0^{2^{-kp}} t_2^{q/p-1} dt_2\right)^{1/q} = 1$$

so that

$$\sum_{k=1}^{n} ||f_k||_{L_2^{p,q}} = \sum_{k=1}^{n} 1 = n.$$

Now, let

$$g_n(x) = \frac{1}{n} \sum_{k=1}^n f_k(x),$$

i.e.,

$$g_n(x) = \begin{cases} \frac{1}{n} \left(\frac{q}{p}\right)^{1/q} \left(\sum_{i=1}^n 2^{i(1+p/q)}\right), & 0 < x_1 < 2^{-np}, 0 < x_2 < 2^{-np} \\ \frac{1}{n} \left(\frac{q}{p}\right)^{1/q} \left(\sum_{i=1}^{n-1} 2^{i(1+p/q)}\right), & 2^{-np} < x_1 < 2^{-(n-1)p}, 2^{-np} < x_2 < 2^{-(n-1)p} \end{cases}$$

$$\vdots$$

$$\frac{1}{n} \left(\frac{q}{p}\right)^{1/q} \left(2^{(1+p/q)} + 2^{2(1+p/q)}\right), & 2^{-3p} < x_1 < 2^{-2p}, 2^{-3p} < x_2 < 2^{-2p} \\ \frac{1}{n} \left(\frac{q}{p}\right)^{1/q} \left(2^{(1+p/q)}\right), & 2^{-2p} < x_1 < 2^{-p}, 2^{-2p} < x_2 < 2^{-p} \\ 0, & \text{otherwise.} \end{cases}$$

Clearly, $g_n(x)$ is a decreasing function for each n = 1, 2, ... Also for $p \neq q$

$$||g_{n}||_{L_{2}^{p,q}}^{q} = \int_{0}^{\infty} \int_{0}^{\infty} t_{2}^{q/p-1} ((g_{n})^{*}(t_{1}, t_{2}))^{q} dt_{1} dt_{2}$$

$$= \frac{q}{p} \int_{0}^{2^{-np}} \int_{0}^{2^{-np}} t_{2}^{q/p-1} \left(\frac{1}{n} \sum_{k=1}^{n} 2^{(1+p/q)k}\right)^{q} dt_{1} dt_{2}$$

$$+ \frac{q}{p} \sum_{m=1}^{n-1} \int_{2^{-(n-m)p}}^{2^{-(n-m)p}} \int_{2^{-(n-m+1)p}}^{2^{-(n-m)p}} t_{2}^{q/p-1} \left(\frac{1}{n} \sum_{k=1}^{n-m} 2^{(1+p/q)k}\right)^{q} dt_{1} dt_{2}$$

$$= I_{0} + \sum_{m=1}^{n-1} I_{m}. \tag{2.1}$$

Now,

$$I_{0} = \frac{q}{p} \int_{0}^{2^{-np}} \int_{0}^{2^{-np}} t_{2}^{q/p-1} \left(\frac{1}{n} \sum_{k=1}^{n} 2^{(1+p/q)k}\right)^{q} dt_{1} dt_{2}$$

$$= \frac{1}{n^{q}} \left(\sum_{k=1}^{n} 2^{(1+p/q)k}\right)^{q} 2^{-np} 2^{-nq}$$

$$= \frac{1}{n^{q}} \left(\frac{2^{(1+p/q)} \left(2^{(1+p/q)n} - 1\right)}{2^{(1+p/q)} - 1}\right)^{q} 2^{-n(p+q)}$$

$$= \frac{1}{n^{q}} \left(1 - 2^{-(1+p/q)}\right)^{-q} \left(\left(2^{(1+p/q)n} - 1\right) 2^{-n(p+q)1/q}\right)^{q}$$

$$= \frac{1}{n^{q}} \left(1 - 2^{-(1+p/q)}\right)^{-q} \left(1 - 2^{-(1+p/q)n}\right)^{q}$$

$$(2.2)$$

and

$$I_{m} = \frac{q}{p} \int_{2^{-(n-m)p}}^{2^{-(n-m)p}} \int_{2^{-(n-m+1)p}}^{2^{-(n-m)p}} t_{2}^{q/p-1} \left(\frac{1}{n} \sum_{k=1}^{n-m} 2^{(1+p/q)k}\right)^{q} dt_{1} dt_{2}$$

$$= \left(\frac{q}{p}\right) \left(\frac{1}{n^{q}}\right) \left(\sum_{k=1}^{n-m} 2^{(1+p/q)k}\right)^{q} \int_{2^{-(n-m)p}}^{2^{-(n-m)p}} dt_{1} \int_{2^{-(n-m+1)p}}^{2^{-(n-m)p}} t_{2}^{q/p-1} dt_{2}$$

$$= \frac{1}{n^{q}} \left(\frac{2^{(1+p/q)} \left(2^{(1+p/q)(n-m)} - 1\right)}{2^{(1+p/q)} - 1}\right)^{q} \left(2^{-(n-m)p} - 2^{-(n-m+1)p}\right)$$

$$\times \left(2^{-q(n-m)} - 2^{-q(n-m+1)}\right)
= \frac{1}{n^q} \left(1 - 2^{-(1+p/q)}\right)^{-q} \left(2^{(1+p/q)(n-m)} - 1\right)^q 2^{-(n-m)(p+q)} \left(1 - 2^{-p}\right) \left(1 - 2^{-q}\right)
= \frac{1}{n^q} \left(1 - 2^{-(1+p/q)}\right)^{-q} \left(1 - 2^{-(1+p/q)(n-m)}\right)^q \left(1 - 2^{-p}\right) \left(1 - 2^{-q}\right).$$
(2.3)

By using (2.3) and (2.4) in (2.2), we get

$$\begin{aligned} \|g_n\|_{L^{p,q}_2}^q &= \frac{1}{n^q} \left(1 - 2^{-(1+p/q)}\right)^{-q} \left(1 - 2^{-(1+p/q)n}\right)^q \\ &+ \sum_{m=1}^{n-1} \frac{1}{n^q} \left(1 - 2^{-(1+p/q)}\right)^{-q} \left(1 - 2^{-(1+p/q)(n-m)}\right)^q \left(1 - 2^{-p}\right) \left(1 - 2^{-q}\right) \\ &\geq \left(1 - 2^{-(1+p/q)}\right)^{-q} \left(\frac{1}{n^q} \left(1 - 2^{-(1+p/q)n}\right)^q \\ &+ \frac{1}{n^q} \left(1 - 2^{-p}\right) \left(1 - 2^{-q}\right) \left(\sum_{m=1}^{n-1} \left(1 - 2^{-(1+p/q)(n-m)}\right)\right)^q \right) \\ &= \left(1 - 2^{-(1+p/q)}\right)^{-q} \left(\left(\frac{\left(1 - 2^{-(1+p/q)n}\right)}{n}\right)^q \\ &+ \left(1 - 2^{-p}\right) \left(1 - 2^{-q}\right) \frac{1}{n^q} \left(\frac{(n-1)n}{2} + \frac{2^{-(1+p/q)} \left(1 - 2^{-(n-1)(1+p/q)}\right)}{2^{-(1+p/q)} - 1}\right)^q \right) \\ &= \left(1 - 2^{-(1+p/q)}\right)^{-q} \left(\left(\frac{\left(1 - 2^{-(1+p/q)n}\right)}{n}\right)^q \\ &+ \left(1 - 2^{-p}\right) \left(1 - 2^{-q}\right) \left(\frac{(n-1)}{2} + \frac{1 - 2^{-(n-1)(1+p/q)}}{(1 - 2^{(1+p/q)})n}\right)^q \right) \\ &\to \infty \quad \text{as} \quad n \to \infty. \end{aligned}$$

Consequently

$$A_k = \frac{\left\| \sum_{k=1}^n f_k \right\|_{L_2^{p,q}}}{\sum_{k=1}^n \|f_k\|_{L_2^{p,q}}} = \frac{n \|g_n\|_{L_2^{p,q}}}{n} \to \infty \quad \text{as} \quad n \to \infty$$

and we are done in this case.

(ii) We define, in this case, for all $x = (x_1, x_2) \in [0, 1] \times [0, 1]$ and k = 1, 2, ..., the functions f_k as

$$f_k(x) = \sum_{i=1}^n \frac{n}{(1 + (i+k) \mod n)^{1/p}} \chi_{\left[0, \frac{1}{n}\right) \times \left[\frac{i-1}{n} \frac{i}{n}\right)}(x). \tag{2.4}$$

Then

$$\sum_{k=1}^{n} f_k(x) = \sum_{i=1}^{n} \frac{n}{i^{1/p}} \chi_{\left[0,\frac{1}{n}\right) \times \left[0,\frac{1}{n}\right)}(x) + \sum_{i=1}^{n} \frac{n}{i^{1/p}} \chi_{\left[0,\frac{1}{n}\right) \times \left[\frac{1}{n},\frac{2}{n}\right)}(x) + \dots + \sum_{i=1}^{n} \frac{n}{i^{1/p}} \chi_{\left[0,\frac{1}{n}\right) \times \left[\frac{n-1}{n},1\right)}(x)$$

$$= \sum_{i=1}^{n} \frac{n}{i^{1/p}} \chi_{\left[0,\frac{1}{n}\right) \times \left[0,1\right)}(x),$$

so that

$$\left\| \sum_{k=1}^{n} f_{k} \right\|_{L_{2}^{p,q}}^{q} = \int_{0}^{\infty} \int_{0}^{\infty} t_{2}^{q/p-1} \left(\sum_{k=1}^{n} f_{k}(t_{1}, t_{2}) \right)^{*q} dt_{1} dt_{2}$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} t_{2}^{q/p-1} \left(\sum_{i=1}^{n} \frac{n}{i^{1/p}} \chi_{\left[0, \frac{1}{n}\right) \times \left[0, 1\right)}(t_{1}, t_{2}) \right)^{*q} dt_{1} dt_{2}$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} t_{2}^{q/p-1} \left(\sum_{i=1}^{n} \frac{n}{i^{1/p}} \right)^{q} \chi_{\left[0, \frac{1}{n}\right) \times \left[0, 1\right)}(t_{1}, t_{2}) dt_{1} dt_{2}$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} t_{2}^{q/p-1} \left(\sum_{i=1}^{n} \frac{n}{i^{1/p}} \right)^{q} \chi_{\left[0, \frac{1}{n}\right) \times \left[0, 1\right)}(t_{1}, t_{2}) dt_{1} dt_{2}$$

$$= \left(\sum_{i=1}^{n} \frac{n}{i^{1/p}} \right)^{q} \int_{0}^{1/n} \int_{0}^{1} t_{2}^{q/p-1} dt_{1} dt_{2}$$

$$= \left(\sum_{i=1}^{n} \frac{n}{i^{1/p}} \right)^{q} \left(\frac{1}{n} \right) \left(\frac{p}{q} \right). \tag{2.5}$$

We rearrange the terms of $f_1(x)$ in (2.4) as follows:

$$f_1(x) = \sum_{j=1}^{n+1} a_j \chi_{E_j}(x),$$

where

$$a_1 = \frac{n}{1^{1/p}}, \quad E_1 = \left[0, \frac{1}{n}\right) \times \left[\frac{n-2}{n}, \frac{n-1}{n}\right)$$

$$a_2 = \frac{n}{2^{1/p}}, \quad E_2 = \left[0, \frac{1}{n}\right) \times \left[\frac{n-1}{n}, 1\right)$$

$$a_3 = \frac{n}{3^{1/p}}, \quad E_3 = \left[0, \frac{1}{n}\right) \times \left[0, \frac{1}{n}\right)$$

and so on. It can be seen that $a_1 > a_2 > ... > a_n > 0$ and $a_{n+1} = 0$. Now,

$$(f_{1})^{*}(t_{1}, t_{2}) = \int_{0}^{\infty} \chi_{\{f_{1} > t\}^{*}}(t_{1}, t_{2}) dt$$

$$= \int_{a_{2}}^{a_{1}} \chi_{E_{1}^{*}}(t_{1}, t_{2}) dt + \int_{a_{3}}^{a_{2}} \chi_{(E_{1} \cup E_{2})^{*}}(t_{1}, t_{2}) dt + \dots$$

$$+ \int_{a_{n+1}}^{a_{n}} \chi_{(E_{1} \cup E_{2} \cup \dots \cup E_{n})^{*}}(t_{1}, t_{2}) dt$$

$$= \sum_{i=1}^{n-1} \left(\frac{n}{i^{1/p}} - \frac{n}{(i+1)^{1/p}} \right) \chi_{\left[0, \frac{1}{n}\right) \times \left[0, \frac{i}{n}\right)} + \frac{n}{n^{1/p}} \chi_{\left[0, \frac{1}{n}\right) \times \left[0, 1\right)}$$

$$(2.6)$$

If we follow the same steps to calculate $(f_2)^*$, $(f_3)^*$,..., $(f_n)^*$, we get the same expression, i.e., (2.6). Consequently, for k = 1, 2, ..., n, by using Minkowski inequality, we get

$$||f_{k}||_{L_{2}^{p,q}} = \left(\int_{0}^{\infty} \int_{0}^{\infty} t_{2}^{q/p-1} \left((f_{k})^{*}(t_{1}, t_{2}) \right)^{q} dt_{1} dt_{2} \right)^{1/q}$$

$$\leq \sum_{i=1}^{n-1} \left(\int_{0}^{\frac{1}{n}} \int_{0}^{\frac{i}{n}} t_{2}^{q/p-1} \left(\frac{n}{i^{1/p}} - \frac{n}{(i+1)^{1/p}} \right)^{q} dt_{2} dt_{1} \right)^{1/q}$$

$$+ \left(\int_{0}^{\frac{1}{n}} \int_{0}^{1} t_{2}^{q/p-1} \left(\frac{n}{n^{1/p}} \right)^{q} dt_{2} dt_{1} \right)^{1/q}$$

$$= n^{1-1/p-1/q} \left(\frac{p}{q} \right)^{1/q} \left(\sum_{i=1}^{n-1} \left(\frac{(i+1)^{1/p} - i^{1/p}}{(i+1)^{1/p}} \right) + 1 \right)$$

$$\leq n^{1-1/p-1/q} \left(\frac{p}{q} \right)^{1/q} \left(\frac{1}{p} \sum_{i=1}^{n-1} \left(\frac{1}{i+1} \right) + 1 \right)$$

$$< n^{1-1/p-1/q} \left(\frac{p}{q} \right)^{1/q} \left(\frac{1}{p} (\log n) + 1 \right)$$

which on using (2.5) gives that

$$A_k = \frac{\left\| \sum_{k=1}^n f_k \right\|_{L_2^{p,q}}}{\sum_{k=1}^n \|f_k\|_{L_2^{p,q}}} > \left(\sum_{i=1}^n \frac{1}{i^{1/p}} \right) \left(\frac{n^{1/p-1}}{\frac{1}{p} (\log n) + 1} \right) \to \infty \quad \text{as} \quad n \to \infty.$$

The assertion is now proved completely.

3 An equivalent norm

As mentioned in Section 1, the restriction q < p for (1.2) to be a norm for the space $L_2^{p,q}$ is necessary. In the case of dimension one, this situation is handled by replacing f^* with f^{**} which is the integral average of f^* taken over the interval of integration. A natural extension in dimension two is the operator f^{**} defined by

$$f^{**}(t_1, t_2) = \frac{1}{t_1 t_2} \int_0^{t_2} \int_0^{t_1} f^*(s_1, s_2) ds_1 ds_2.$$

Remark 6. It can be noted that $f^*(t_1, t_2) \leq f^{**}(t_1, t_2)$. Indeed, as $f^*(t_1, t_2)$ is a decreasing function, we have

$$f^{**}(t_1, t_2) = \frac{1}{t_1 t_2} \int_0^{t_2} \int_0^{t_1} f^*(s_1, s_2) ds_1 ds_2$$

$$\geq \frac{1}{t_1 t_2} \int_0^{t_2} \int_0^{t_1} f^*(t_1, t_2) ds_1 ds_2$$

$$= \frac{1}{t_1 t_2} f^*(t_1, t_2) \int_0^{t_2} \int_0^{t_1} ds_1 ds_2$$

$$= f^*(t_1, t_2).$$

Unfortunately, f^{**} is not the right operator to work with because of the fact that this is not sublinear, see [1]. The correct operator which is also sublinear, also considered in [1], is $f_{2,1}^{**}$ defined by

$$f_{2,1}^{**}(t_1, t_2) = \frac{1}{t_1} \int_0^{t_1} \left(\frac{1}{t_2} \int_0^{t_2} f_2^*(., \tau) d\tau \right)_1^*(\sigma) d\sigma.$$

We replace f^{**} in (1.2) by $f_{2,1}^{**}$ and write

$$||f||'_{L_2^{p,q}} := \left(\int_{\mathbf{R}_+^2} t_2^{q/p-1} f_{2,1}^{**}(t_1, t_2)^q dt_1 dt_2 \right)^{1/q}.$$
 (3.1)

We prove the following

Proposition 3.1. For $1 < p, q < \infty$, the space $L_2^{p,q}$ is a normed space with the norm given by (3.1).

Proof. This is straightforward in view of the fact that $f_{2,1}^{**}$ is sublinear and using Minkowski's inequality.

It is known ([1], Proposition 2.1) that

$$f_{2,1}^*(t_1, t_2) \le f_{2,1}^{**}(t_1, t_2) \tag{3.2}$$

and that

$$f_{2,1}^{**}(t_1, t_2) \le f^{**}(t_1, t_2). \tag{3.3}$$

The equivalence of the quasi-norm (1.2) and the norm (3.1) is an easy consequence of ([1], Theorem 2.4) (see also [4]). The precise result is the following

Proposition 3.2. Let $1 < p, q < \infty$. The quasi-norm $\|.\|_{L_2^{p,q}}$ and the norm $\|.\|'_{L_2^{p,q}}$ given respectively, in (1.2) and (3.1) are equivalent.

4 Duality

The following result will be used in the main result of this section.

Lemma A. ([2], Theorem 2.13) If f is a measurable function on \mathbb{R}^2 , then

$$f^*(t_1, t_2) = f_{2,1}^*(t_1, t_2),$$

where

$$f_{2,1}^*(t_1, t_2) = [f_2^*(., t_2)]_1^*(t_1).$$

The following result gives the description of the dual space of the space $L_2^{p,q}$.

Theorem 4.1. For $1 < p, q < \infty$, the space $(L_2^{p,q})^*$ is isomorphic to $L_2^{p',q'}$, where $\frac{1}{p} + \frac{1}{p'} = 1$ and $\frac{1}{q} + \frac{1}{q'} = 1$.

Proof. In view of the definition of the space $L_2^{p,q}$ and ([2], Theorem 3.1), we have for p=q

$$(L_2^{p,p})^* = (L_2^p)^* = L_2^{p'} = L_2^{p',p'},$$

where L_2^p denote the standard two-dimensional Lebesgue space. Thus the assertion holds for p = q.

Assume that $p \neq q$. Let $g \in L_2^{p',q'}$ be arbitrary but fixed. Define for $f \in L_2^{p,q}$, the functional ϕ_g by

$$\phi_g(f) = \int_{\mathbf{R}^2} f(x_1, x_2) g(x_1, x_2) dx_1 dx_2.$$

Clearly, ϕ_g is linear. It is known ([2], Theorem 2.11) that for measurable functions f, g defined on \mathbf{R}^2 ,

$$\int_{\mathbf{R}^{2}} |f(x_{1}, x_{2})g(x_{1}, x_{2})| dx_{1} dx_{2} \leq \int_{\mathbf{R}^{2}_{+}} f^{*}(t_{1}, t_{2})g^{*}(t_{1}, t_{2}) dt_{1} dt_{2}
\leq \int_{0}^{\infty} f^{*}(t_{1})g^{*}(t_{1}) dt_{1}.$$
(4.1)

Now, by using (4.1), Lemma A, (3.2) and Hölder's inequality, we have

$$\begin{aligned} |\phi_g(f)| &= \left| \int_{\mathbf{R}^2} f(x_1, x_2) g(x_1, x_2) dx_1 dx_2 \right| \\ &\leq \int_{\mathbf{R}^2} |f(x_1, x_2) g(x_1, x_2)| dx_1 dx_2 \\ &\leq \int_0^\infty \int_0^\infty f^*(t_1, t_2) g^*(t_1, t_2) dt_1 dt_2 \\ &\leq \int_0^\infty \int_0^\infty f^{**}_{2,1}(t_1, t_2) g^{**}_{2,1}(t_1, t_2) dt_1 dt_2 \\ &\leq \left(\int_0^\infty \int_0^\infty t_2^{q/p-1} \left(f^{**}_{2,1}(t_1, t_2) \right)^q dt_1 dt_2 \right)^{1/q} \\ &\times \left(\int_0^\infty \int_0^\infty t_2^{q'/p'-1} \left(g^{**}_{2,1}(t_1, t_2) \right)^{q'} dt_1 dt_2 \right)^{1/q'} \\ &= \|f\|'_{L_2^{p,q}} \|g\|'_{L_2^{p',q'}} \end{aligned}$$

which gives that $\phi_g \in (L_2^{p,q})^*$. Moreover, the last inequality gives that

$$\|\phi_g\|'_{(L_2^{p,q})^*} := \sup_{\|f\|'_{L_2^{p,q}=1}} \frac{|\phi_g(f)|}{\|f\|'_{L_2^{p,q}}} \le \|g\|'_{L_2^{p',q'}}. \tag{4.2}$$

Conversely, let $\phi \in (L_2^{p,q})^*$ be arbitrary. Let Σ denote the family of Lebesgue measurable subsets of \mathbf{R}^2 . Define $\nu(A) = \phi(\chi_A)$, where $A \in \Sigma$. Note that

$$\nu(\emptyset) = \phi(\chi_{\emptyset}) = \phi(0) = 0.$$

If $\{A_n\}$ is a sequence of pairwise disjoint measurable subsets of \mathbf{R}^2 such that $A = \bigcup_{n=1}^{\infty} A_n$, then

$$\sum_{k=1}^{\infty} \nu(A_k) = \lim_{n \to \infty} \sum_{k=1}^{n} \nu(A_k)$$

$$= \lim_{n \to \infty} \phi\left(\sum_{k=1}^{n} \chi_{A_k}\right) = \phi\left(\lim_{n \to \infty} \sum_{k=1}^{n} \chi_{A_k}\right)$$

$$= \phi\left(\sum_{k=1}^{\infty} \chi_{A_k}\right) = \phi\left(\chi_A\right)$$

$$= \nu(A).$$

Therefore, ν is a countably additive function on Σ . Also, if μ denote the Lebesgue measure on Σ , then for any set $A \in \Sigma$ such that $\mu(A) = 0$, we have that $\chi_A = 0$, μ almost everywhere on \mathbb{R}^2 . So

$$\nu(A) = \phi(\chi_A) = 0.$$

Thus, $\mu(A)=0$ implies $\nu(A)=0$. So, ν is absolutely continues with respect to μ . By the Radon-Nikodym Theorem, there exists $g\in L^1=L_2^{1,1}$ such that

$$\nu(A) = \int_A g(x)dx.$$

Let f be a simple function in $L_2^{p,q}$ such that $f = \sum_{i=1}^n c_i \chi_{A_i}$, where $A_1, A_2, ..., A_n$ are disjoint measurable subsets of \mathbf{R}^2 and $c_1, c_2, ..., c_n$ are real numbers. Then,

$$\phi(f) = \sum_{i=1}^{n} c_i \phi(\chi_{A_i})$$

$$= \sum_{i=1}^{n} c_i \nu(A_i)$$

$$= \sum_{i=1}^{n} c_i \int_{A_i} g(x_1, x_2) dx_1 dx_2$$

$$= \int_{A_i} g(x_1, x_2) f(x_1, x_2) dx_1 dx_2$$

This holds for all simple functions in $L_2^{p,q}$. Simple functions are dense in $L_2^{p,q}$, therefore,

$$\phi(f) = \int_{\mathbf{R}^2} f(x_1, x_2) g(x_1, x_2) dx_1 dx_2$$

for all $f \in L_2^{p,q}$. Let us take f such that

$$f^*(t_1, t_2) = \int_{t_1/2}^{\infty} \int_{t_2/2}^{\infty} h(s_1, s_2) \frac{ds_1 ds_2}{s_1 s_2}$$

where $h(s_1, s_2) = s_2^{q'/p'-1} (g^*(s_1, s_2))^{q'-1}$. Then, by using Proposition 3.2 and the two-dimensional Hardy inequality for the conjugate Hardy operator ([5], Theorem 2), we have

$$\left(\|f\|_{L_{2}^{p,q}}^{\prime}\right)^{q} \leq C\left(\|f\|_{L_{2}^{p,q}}\right)^{q}
= C \int_{0}^{\infty} \int_{0}^{\infty} t_{2}^{q/p-1} \left(f^{*}(t_{1},t_{2})\right)^{q} dt_{1} dt_{2}
= C \int_{0}^{\infty} \int_{0}^{\infty} t_{2}^{q/p-1} \left(\int_{t_{1}/2}^{\infty} \int_{t_{2}/2}^{\infty} h(s_{1},s_{2}) \frac{ds_{1} ds_{2}}{s_{1} s_{2}}\right)^{q} dt_{1} dt_{2}
= C \int_{0}^{\infty} \int_{0}^{\infty} \left(\int_{u_{1}}^{\infty} \int_{u_{2}}^{\infty} h(s_{1},s_{2}) \frac{ds_{1} ds_{2}}{s_{1} s_{2}}\right)^{q} u_{2}^{q/p-1} du_{1} du_{2}
= C \int_{0}^{\infty} \int_{0}^{\infty} u_{2}^{q'/p'-1} \left(g^{*}(u_{1},u_{2})\right)^{q'} du_{1} du_{2} = C \|g\|_{L_{2}^{p',q'}}^{q'}.$$

$$(4.3)$$

Now, on using ([6], Theorem 3.10), (4.1), Proposition 3.2 and (4.3), we obtain

$$\begin{split} \|\phi\|'_{(L_{2}^{p,q})^{*}} &= \sup_{f \in L_{2}^{p,q}} \frac{|\phi(f)|}{\|f\|'_{L_{2}^{p,q}}} \geq \frac{|\phi(f)|}{\|f\|'_{L_{2}^{p,q}}} \\ &= \frac{\int_{\mathbf{R}^{2}} f(x_{1}, x_{2}) g(x_{1}, x_{2}) dx_{1} dx_{2}}{\|f\|'_{L_{2}^{p,q}}} \\ &= \frac{\int_{0}^{\infty} f^{*}(t_{1}) g^{*}(t_{1}) dt_{1}}{\|f\|'_{L_{2}^{p,q}}} \\ &\geq \frac{\int_{0}^{\infty} \int_{0}^{\infty} f^{*}(t_{1}, t_{2}) g^{*}(t_{1}, t_{2}) dt_{1} dt_{2}}{\|f\|'_{L_{2}^{p,q}}} \\ &= \frac{1}{\|f\|'_{L_{2}^{p,q}}} \int_{0}^{\infty} \int_{0}^{\infty} \left(\int_{t_{1}/2}^{\infty} \int_{t_{2}/2}^{\infty} h(s_{1}, s_{2}) \frac{ds_{1} ds_{2}}{s_{1} s_{2}} \right) g^{*}(t_{1}, t_{2}) dt_{1} dt_{2} \\ &\geq \frac{1}{\|f\|'_{L_{2}^{p,q}}} \int_{0}^{\infty} \int_{0}^{\infty} \left(\int_{t_{1}/2}^{t_{1}} \int_{t_{2}/2}^{t_{2}} h(s_{1}, s_{2}) \frac{ds_{1} ds_{2}}{s_{1} s_{2}} \right) g^{*}(t_{1}, t_{2}) dt_{1} dt_{2} \\ &\geq \frac{1}{\|f\|'_{L_{2}^{p,q}}} \int_{0}^{\infty} \int_{0}^{\infty} \left(\int_{t_{1}/2}^{t_{1}} \int_{t_{2}/2}^{t_{2}} s_{2}^{q'/p'-2} s_{1}^{-1} ds_{1} ds_{2} \right) (g^{*}(t_{1}, t_{2}))^{q'} dt_{1} dt_{2} \end{split}$$

$$= \frac{1 - 2^{1 - q'/p'}}{\|f\|'_{L_{2}^{p,q}}} \left(\frac{p'}{q' - p'}\right) (\log(t_{1}) - \log(t_{1}/2))$$

$$\times \int_{0}^{\infty} \int_{0}^{\infty} t_{2}^{q'/p'-1} (g^{*}(t_{1}, t_{2}))^{q'} dt_{1} dt_{2}$$

$$= \frac{1 - 2^{1 - q'/p'}}{\|f\|'_{L_{2}^{p,q}}} \left(\frac{p'}{q' - p'}\right) (\log 2) \|g\|_{L_{2}^{p',q'}}^{q'}$$

$$\geq C \left(\|g\|'_{L_{2}^{p',q'}}\right)^{q'-q'/q}$$

$$= C \|g\|'_{L_{2}^{p',q'}}$$
(4.4)

i.e., $g \in L_2^{p',q'}$. The assertion now follows in view of (4.2) and (4.4).

Acknowledgements

The first author acknowledges with thanks DST (India) for its research grant no. SR/S4/MS-536/08.

References

- [1] S. Barza, A. Kamińska, L.E. Persson, J. Soria, Mixed norm and multidimensional Lorentz spaces, Positivity. 10 (2006), 539–554.
- [2] S. Barza, L.E. Persson, J. Soria, Multidimensional rearrangement and Lorentz spaces, Acta Math. Hungar. 104 (2004), 203–224.
- [3] C. Bennett, R. Sharpley, Interpolation of operators, Academic Press, 1988.
- [4] A.P. Blozinski, Multidimensional rearrangement and Banach function spaces with mixed norms, Trans. Amer. Math. Soc. 263 (1981), 149–167.
- [5] P. Jain, D. Verma, Two-dimensional mean inequalities in certain Banach function spaces, Real Analysis Exchange. 33 (2007-08), 125–141.
- [6] E. Kristiansson, Decreasing rearrangement and Lorentz L(p,q) spaces, Master's Thesis, Luleå University of Technology, 2002.
- [7] G.G. Lorentz, Some new functional spaces, Ann. of Math. 51 (1950), 37–55.

Pankaj Jain
Department of Mathematics
South Asian University
Akbar Bhawan, Chanakya Puri
New Delhi -110021, India
E-mails: pankajkrjain@hotmail.com, pankaj.jain@sau.ac.in

Sandhya Jain Department of Mathematics Vivekananda College (University of Delhi) Vivek Vihar, Delhi - 110095, India E-mail: singhal.sandhya@gmail.com

Received: 08.07.2014