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Abstract. The two-dimensional Lorentz space Lp,q
2 is defined as a special case from

the two-dimensional space Λp
2(w) just as was done in the classical dimension one. The

normability and duality of the space Lp,q
2 are discussed.

1 Introduction

In [7] (see also [3]), Lorentz introduced the classical Lorentz space, denoted by Λp(w)
which consists of all measurable functions for which

‖f‖Λp(w) =

(∫ ∞

0

(f ∗(t))pw(t)dt

)1/p

<∞,

where 0 < p < ∞, w is a weight function (a non-negative, locally integrable function
on (0,∞), not equivalent to 0) and

f ∗(t) = inf{λ ≥ 0 : µf (λ) ≤ t}, t ≥ 0

is the non-increasing rearrangement of f , µf being its distribution function.
In [2] (see also [1]), the authors defined a two-dimensional analogue of the space

Λp(w), denoted by Λp
2(w), as follows

Let E ⊂ R2 and for x1 ∈ R, ϕE(x1) = |{x2 ∈ R : (x1, x2) ∈ E}|. The decreasing
rearrangement of ϕE is given by

ϕ∗E(t1) = inf{λ : |{x1 ∈ R : ϕE(x1) > λ}| ≤ t1}, t1 ≥ 0.

Then, the two-dimensional decreasing rearrangement of the set E is defined by

E∗ = {(t1, t2) ∈ R2
+ : 0 < t2 < ϕ∗E(t1)}.

Now, with these notations, the two-dimensional Lorentz space Λp
2(w) is the space of all

measurable functions f on R2 for which

‖f‖Λp
2(w) =

(∫
R2

+

(f ∗(t1, t2))
pw(t1, t2)dt1dt2

)1/p

<∞, (1.1)
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where w is a non-negative, locally integrable function on R2
+, not equivalent to 0 and f ∗

is the two-dimensional decreasing rearrangement of f given by the so called Layer-cake
formula

f ∗(t1, t2) =

∫ ∞

0

χ{|f |>t}∗(t1, t2)dt.

In a rather surprising result ([2], Theorem 3.7), it was proved that for 1 ≤ p <∞,
the expression (1.1) is a norm if and only if w(t1, t2) = v(t2) for some decreasing weight
v on R+. This motivates us to define a variant of Λp

2(w), to be denoted by Lp,q
2 , which

consists of all measurable functions on R2 for which

‖f‖Lp,q
2

=

(∫
R2

+

(t2)
q/p−1f ∗(t1, t2)

qdt1dt2

)1/q

<∞. (1.2)

It is clear from the above discussion that for 1 ≤ q < p <∞, the space Lp,q
2 is a normed

space. We prove, in this paper that, in fact, the restriction 1 ≤ q < p <∞ is necessary
for Lp,q

2 to be normable. A similar situation exists in dimension one, see, e.g., [6].
Next, our aim is to overcome the restriction q < p in (1.2) to make it a norm. A

natural idea, similar to the one-dimensional case, is to replace f ∗ by f ∗∗ defined by

f ∗∗(t1, t2) =
1

t1t2

∫ t1

0

∫ t2

0

f ∗(s1, s2)ds1ds2.

However, this does not suffice the purpose. In fact, it was shown in [1] that f ∗∗ is not
sublinear. Those authors considered, instead, the function f ∗∗2,1 defined by

f ∗∗2,1(t1, t2) =
1

t1

∫ t1

0

(
1

t2

∫ t2

0

f ∗2 (., τ)dτ

)∗
1

(σ)dσ

and proved that this function is sublinear. Here f ∗2 denotes the one-dimensional rear-
rangement of the function f with respect to the second variable keeping the first vari-
able fixed and in the similar sense, the expression (...)∗1 should be understood. Taking
advantage of this fact, we replace f ∗ in (1.2) by f ∗∗2,1 and prove that the corresponding
expression

‖f‖′Lp,q
2

:=

(∫
R2

+

t
q/p−1
2 f ∗∗2,1(t1, t2)

qdt1dt2

)1/q

(1.3)

is a norm for 1 < p, q < ∞. It is noted, in view of ([1], Theorem 2.4) (see also [4]),
that for 1 < p, q <∞, the quasi-norm (1.2) and the norm (1.3) are equivalent.

Finally, from the one-dimensional case, it is known that the dual space of Lp,q, that
is, (Lp,q)∗ can be identified as Lp′,q′ , where 1

p
+ 1

p′
= 1 and 1

q
+ 1

q′
= 1. We shall prove

that the similar duality holds also in dimension two.

2 Normability

We prove the following normability result

Theorem 2.1. The Lorentz space Lp,q
2 is not normable for the following cases:
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(i) 0 < p <∞, 0 < q < 1; (ii) 0 < p < 1, 1 < q <∞.

Proof. Our strategy would be to construct a sequence of functions {fk}, k = 1, 2, ...
such that in both cases (i) and (ii), the ratio

Ak :=

∥∥∥∥∥
n∑

k=1

fk

∥∥∥∥∥
Lp,q

2

n∑
k=1

‖fk‖Lp,q
2

→∞ as n→∞

(i) For all x = (x1, x2) ∈ [0, 1]× [0, 1] and k = 1, 2, ..., define the functions fk as

fk(x) =


(

q
p

)1/q

2(1+p/q)k, 0 < x1 < 2−kp, 0 < x2 < 2−kp

0, otherwise .

Then

‖fk‖Lp,q
2

=

(∫ ∞

0

∫ ∞

0

t
q/p−1
2 ((fk)

∗(t1, t2))
qdt1dt2

)1/q

=

(∫ 2−kp

0

∫ 2−kp

0

t
q/p−1
2

((
q

p

)1/q

2(1+p/q)k

)q

dt1dt2

)1/q

=

((
q

p

)
2(q+p)k

∫ 2−kp

0

dt1

∫ 2−kp

0

t
q/p−1
2 dt2

)1/q

= 1

so that
n∑

k=1

‖fk‖Lp,q
2

=
n∑

k=1

1 = n.

Now, let

gn(x) =
1

n

n∑
k=1

fk(x),

i.e.,

gn(x) =



1
n

(
q
p

)1/q
(

n∑
i=1

2i(1+p/q)

)
, 0 < x1 < 2−np, 0 < x2 < 2−np

1
n

(
q
p

)1/q
(

n−1∑
i=1

2i(1+p/q)

)
, 2−np < x1 < 2−(n−1)p, 2−np < x2 < 2−(n−1)p

...
1
n

(
q
p

)1/q (
2(1+p/q) + 22(1+p/q)

)
, 2−3p < x1 < 2−2p, 2−3p < x2 < 2−2p

1
n

(
q
p

)1/q (
2(1+p/q)

)
, 2−2p < x1 < 2−p, 2−2p < x2 < 2−p

0, otherwise.
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Clearly, gn(x) is a decreasing function for each n = 1, 2, .... Also for p 6= q

‖gn‖q
Lp,q

2
=

∫ ∞

0

∫ ∞

0

t
q/p−1
2 ((gn)∗(t1, t2))

qdt1dt2

=
q

p

∫ 2−np

0

∫ 2−np

0

t
q/p−1
2

(
1

n

n∑
k=1

2(1+p/q)k

)q

dt1dt2

+
q

p

n−1∑
m=1

∫ 2−(n−m)p

2−(n−m+1)p

∫ 2−(n−m)p

2−(n−m+1)p

t
q/p−1
2

(
1

n

n−m∑
k=1

2(1+p/q)k

)q

dt1dt2

= I0 +
n−1∑
m=1

Im. (2.1)

Now,

I0 =
q

p

∫ 2−np

0

∫ 2−np

0

t
q/p−1
2

(
1

n

n∑
k=1

2(1+p/q)k

)q

dt1dt2

=
1

nq

(
n∑

k=1

2(1+p/q)k

)q

2−np2−nq

=
1

nq

(
2(1+p/q)

(
2(1+p/q)n − 1

)
2(1+p/q) − 1

)q

2−n(p+q)

=
1

nq

(
1− 2−(1+p/q)

)−q ((
2(1+p/q)n − 1

)
2−n(p+q)1/q

)q
=

1

nq

(
1− 2−(1+p/q)

)−q (
1− 2−(1+p/q)n

)q
(2.2)

and

Im =
q

p

∫ 2−(n−m)p

2−(n−m+1)p

∫ 2−(n−m)p

2−(n−m+1)p

t
q/p−1
2

(
1

n

n−m∑
k=1

2(1+p/q)k

)q

dt1dt2

=

(
q

p

)(
1

nq

)(n−m∑
k=1

2(1+p/q)k

)q ∫ 2−(n−m)p

2−(n−m+1)p

dt1

∫ 2−(n−m)p

2−(n−m+1)p

t
q/p−1
2 dt2

=
1

nq

(
2(1+p/q)

(
2(1+p/q)(n−m) − 1

)
2(1+p/q) − 1

)q (
2−(n−m)p − 2−(n−m+1)p

)



Normability and duality in the two-dimensional Lorentz spaces 83

×
(
2−q(n−m) − 2−q(n−m+1)

)
=

1

nq

(
1− 2−(1+p/q)

)−q (
2(1+p/q)(n−m) − 1

)q
2−(n−m)(p+q)

(
1− 2−p

) (
1− 2−q

)
=

1

nq

(
1− 2−(1+p/q)

)−q (
1− 2−(1+p/q)(n−m)

)q (
1− 2−p

) (
1− 2−q

)
. (2.3)

By using (2.3) and (2.4) in (2.2), we get

‖gn‖q
Lp,q

2
=

1

nq

(
1− 2−(1+p/q)

)−q (
1− 2−(1+p/q)n

)q
+

n−1∑
m=1

1

nq

(
1− 2−(1+p/q)

)−q (
1− 2−(1+p/q)(n−m)

)q (
1− 2−p

) (
1− 2−q

)
≥
(
1− 2−(1+p/q)

)−q
(

1

nq

(
1− 2−(1+p/q)n

)q
+

1

nq

(
1− 2−p

) (
1− 2−q

)(n−1∑
m=1

(
1− 2−(1+p/q)(n−m)

))q)

=
(
1− 2−(1+p/q)

)−q

(((
1− 2−(1+p/q)n

)
n

)q

+
(
1− 2−p

) (
1− 2−q

) 1

nq

(
(n− 1)n

2
+

2−(1+p/q)
(
1− 2−(n−1)(1+p/q)

)
2−(1+p/q) − 1

)q)

=
(
1− 2−(1+p/q)

)−q

(((
1− 2−(1+p/q)n

)
n

)q

+
(
1− 2−p

) (
1− 2−q

)((n− 1)

2
+

1− 2−(n−1)(1+p/q)

(1− 2(1+p/q))n

)q)
→∞ as n→∞.

Consequently

Ak =

∥∥∥∥∥
n∑

k=1

fk

∥∥∥∥∥
Lp,q

2

n∑
k=1

‖fk‖Lp,q
2

=
n‖gn‖Lp,q

2

n
→∞ as n→∞

and we are done in this case.

(ii) We define, in this case, for all x = (x1, x2) ∈ [0, 1] × [0, 1] and k = 1, 2, ..., the
functions fk as

fk(x) =
n∑

i=1

n

(1 + (i+ k) mod n)1/p
χ[0, 1

n)×[ i−1
n

i
n)(x). (2.4)
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Then

n∑
k=1

fk(x) =
n∑

i=1

n

i1/p
χ[0, 1

n)×[0, 1
n)(x) +

n∑
i=1

n

i1/p
χ[0, 1

n)×[ 1
n

, 2
n)(x) + ...+

n∑
i=1

n

i1/p
χ[0, 1

n)×[n−1
n

,1)(x)

=
n∑

i=1

n

i1/p
χ[0, 1

n)×[0,1)(x),

so that ∥∥∥∥∥
n∑

k=1

fk

∥∥∥∥∥
q

Lp,q
2

=

∫ ∞

0

∫ ∞

0

t
q/p−1
2

(
n∑

k=1

fk(t1, t2)

)∗q

dt1dt2

=

∫ ∞

0

∫ ∞

0

t
q/p−1
2

(
n∑

i=1

n

i1/p
χ[0, 1

n)×[0,1)(t1, t2)

)∗q

dt1dt2

=

∫ ∞

0

∫ ∞

0

t
q/p−1
2

(
n∑

i=1

n

i1/p

)q

χ([0, 1
n)×[0,1))

∗(t1, t2)dt1dt2

=

∫ ∞

0

∫ ∞

0

t
q/p−1
2

(
n∑

i=1

n

i1/p

)q

χ[0, 1
n)×[0,1)(t1, t2)dt1dt2

=

(
n∑

i=1

n

i1/p

)q ∫ 1/n

0

∫ 1

0

t
q/p−1
2 dt1dt2

=

(
n∑

i=1

n

i1/p

)q (
1

n

)(
p

q

)
. (2.5)

We rearrange the terms of f1(x) in (2.4) as follows:

f1(x) =
n+1∑
j=1

ajχEj
(x),

where

a1 =
n

11/p
, E1 =

[
0,

1

n

)
×
[
n− 2

n
,
n− 1

n

)
a2 =

n

21/p
, E2 =

[
0,

1

n

)
×
[
n− 1

n
, 1

)
a3 =

n

31/p
, E3 =

[
0,

1

n

)
×
[
0,

1

n

)
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and so on. It can be seen that a1 > a2 > ... > an > 0 and an+1 = 0. Now,

(f1)
∗(t1, t2) =

∫ ∞

0

χ{f1>t}∗(t1, t2)dt

=

∫ a1

a2

χE∗
1
(t1, t2)dt+

∫ a2

a3

χ(E1∪E2)∗(t1, t2)dt+ ...

+

∫ an

an+1

χ(E1∪E2∪...∪En)∗(t1, t2)dt

=
n−1∑
i=1

(
n

i1/p
− n

(i+ 1)1/p

)
χ[0, 1

n)×[0, i
n) +

n

n1/p
χ[0, 1

n)×[0,1) (2.6)

If we follow the same steps to calculate (f2)
∗, (f3)

∗,...,(fn)∗, we get the same expression,
i.e., (2.6). Consequently, for k = 1, 2, ..., n, by using Minkowski inequality, we get

‖fk‖Lp,q
2

=

(∫ ∞

0

∫ ∞

0

t
q/p−1
2 ((fk)

∗(t1, t2))
q dt1dt2

)1/q

≤
n−1∑
i=1

(∫ 1
n

0

∫ i
n

0

t
q/p−1
2

(
n

i1/p
− n

(i+ 1)1/p

)q

dt2dt1

)1/q

+

(∫ 1
n

0

∫ 1

0

t
q/p−1
2

( n

n1/p

)q

dt2dt1

)1/q

= n1−1/p−1/q

(
p

q

)1/q
(

n−1∑
i=1

(
(i+ 1)1/p − i1/p

(i+ 1)1/p

)
+ 1

)

≤ n1−1/p−1/q

(
p

q

)1/q
(

1

p

n−1∑
i=1

(
1

i+ 1

)
+ 1

)

< n1−1/p−1/q

(
p

q

)1/q (
1

p
(log n) + 1

)
which on using (2.5) gives that

Ak =

∥∥∥∥∥
n∑

k=1

fk

∥∥∥∥∥
Lp,q

2

n∑
k=1

‖fk‖Lp,q
2

>

(
n∑

i=1

1

i1/p

)(
n1/p−1

1
p
(log n) + 1

)
→∞ as n→∞.

The assertion is now proved completely.
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3 An equivalent norm

As mentioned in Section 1, the restriction q < p for (1.2) to be a norm for the space
Lp,q

2 is necessary. In the case of dimension one, this situation is handled by replacing
f ∗ with f ∗∗ which is the integral average of f ∗ taken over the interval of integration.
A natural extension in dimension two is the operator f ∗∗ defined by

f ∗∗(t1, t2) =
1

t1t2

∫ t2

0

∫ t1

0

f ∗(s1, s2)ds1ds2.

Remark 6. It can be noted that f ∗(t1, t2) ≤ f ∗∗(t1, t2). Indeed, as f ∗(t1, t2) is a
decreasing function, we have

f ∗∗(t1, t2) =
1

t1t2

∫ t2

0

∫ t1

0

f ∗(s1, s2)ds1ds2

≥ 1

t1t2

∫ t2

0

∫ t1

0

f ∗(t1, t2)ds1ds2

=
1

t1t2
f ∗(t1, t2)

∫ t2

0

∫ t1

0

ds1ds2

= f ∗(t1, t2).

Unfortunately, f ∗∗ is not the right operator to work with because of the fact that this
is not sublinear, see [1]. The correct operator which is also sublinear, also considered
in [1], is f ∗∗2,1 defined by

f ∗∗2,1(t1, t2) =
1

t1

∫ t1

0

(
1

t2

∫ t2

0

f ∗2 (., τ)dτ

)∗
1

(σ)dσ.

We replace f ∗∗ in (1.2) by f ∗∗2,1 and write

‖f‖′Lp,q
2

:=

(∫
R2

+

t
q/p−1
2 f ∗∗2,1(t1, t2)

qdt1dt2

)1/q

. (3.1)

We prove the following

Proposition 3.1. For 1 < p, q < ∞, the space Lp,q
2 is a normed space with the norm

given by (3.1).

Proof. This is straightforward in view of the fact that f ∗∗2,1 is sublinear and using
Minkowski’s inequality.

It is known ([1], Proposition 2.1) that

f ∗2,1(t1, t2) ≤ f ∗∗2,1(t1, t2) (3.2)

and that
f ∗∗2,1(t1, t2) ≤ f ∗∗(t1, t2). (3.3)

The equivalence of the quasi-norm (1.2) and the norm (3.1) is an easy consequence
of ([1], Theorem 2.4) (see also [4]). The precise result is the following

Proposition 3.2. Let 1 < p, q < ∞. The quasi-norm ‖.‖Lp,q
2

and the norm ‖.‖′
Lp,q

2

given respectively, in (1.2) and (3.1) are equivalent.
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4 Duality

The following result will be used in the main result of this section.
Lemma A. ([2], Theorem 2.13) If f is a measurable function on R2, then

f ∗(t1, t2) = f ∗2,1(t1, t2),

where
f ∗2,1(t1, t2) = [f ∗2 (., t2)]

∗
1 (t1).

The following result gives the description of the dual space of the space Lp,q
2 .

Theorem 4.1. For 1 < p, q < ∞, the space (Lp,q
2 )∗ is isomorphic to Lp′,q′

2 , where
1
p

+ 1
p′

= 1 and 1
q

+ 1
q′

= 1.

Proof. In view of the definition of the space Lp,q
2 and ([2], Theorem 3.1), we have for

p = q
(Lp,p

2 )∗ = (Lp
2)
∗ = Lp′

2 = Lp′,p′

2 ,

where Lp
2 denote the standard two-dimensional Lebesgue space. Thus the assertion

holds for p = q.
Assume that p 6= q. Let g ∈ Lp′,q′

2 be arbitrary but fixed. Define for f ∈ Lp,q
2 , the

functional φg by

φg(f) =

∫
R2

f(x1, x2)g(x1, x2)dx1dx2.

Clearly, φg is linear. It is known ([2], Theorem 2.11) that for measurable functions f, g
defined on R2,∫

R2

|f(x1, x2)g(x1, x2)|dx1dx2 ≤
∫

R2
+

f ∗(t1, t2)g
∗(t1, t2)dt1dt2

≤
∫ ∞

0

f ∗(t1)g
∗(t1)dt1. (4.1)

Now, by using (4.1), Lemma A, (3.2) and Hölder’s inequality, we have

|φg(f)| =
∣∣∣∣∫

R2

f(x1, x2)g(x1, x2)dx1dx2

∣∣∣∣
≤
∫

R2

|f(x1, x2)g(x1, x2)|dx1dx2

≤
∫ ∞

0

∫ ∞

0

f ∗(t1, t2)g
∗(t1, t2)dt1dt2

≤
∫ ∞

0

∫ ∞

0

f ∗∗2,1(t1, t2)g
∗∗
2,1(t1, t2)dt1dt2

≤
(∫ ∞

0

∫ ∞

0

t
q/p−1
2

(
f ∗∗2,1(t1, t2)

)q
dt1dt2

)1/q

×
(∫ ∞

0

∫ ∞

0

t
q′/p′−1
2

(
g∗∗2,1(t1, t2)

)q′
dt1dt2

)1/q′

= ‖f‖′Lp,q
2
‖g‖′

Lp′,q′
2
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which gives that φg ∈ (Lp,q
2 )∗. Moreover, the last inequality gives that

‖φg‖
′

(Lp,q
2 )

∗ := sup
‖f‖′

L
p,q
2

=1

|φg(f)|
‖f‖′

Lp,q
2

≤ ‖g‖′
Lp′,q′

2

. (4.2)

Conversely, let φ ∈ (Lp,q
2 )∗ be arbitrary. Let Σ denote the family of Lebesgue

measurable subsets of R2. Define ν(A) = φ(χA), where A ∈ Σ. Note that

ν(∅) = φ(χ∅) = φ(0) = 0.

If {An} is a sequence of pairwise disjoint measurable subsets of R2 such that A =
∞⋃

n=1

An, then

∞∑
k=1

ν(Ak) = lim
n→∞

n∑
k=1

ν(Ak)

= lim
n→∞

φ

(
n∑

k=1

χAk

)
= φ

(
lim

n→∞

n∑
k=1

χAk

)

= φ

(
∞∑

k=1

χAk

)
= φ (χA)

= ν(A).

Therefore, ν is a countably additive function on Σ. Also, if µ denote the Lebesgue
measure on Σ, then for any set A ∈ Σ such that µ(A) = 0, we have that χA = 0, µ
almost everywhere on R2. So

ν(A) = φ(χA) = 0.

Thus, µ(A) = 0 implies ν(A) = 0. So, ν is absolutely continues with respect to µ. By
the Radon-Nikodym Theorem, there exists g ∈ L1 = L1,1

2 such that

ν(A) =

∫
A

g(x)dx.

Let f be a simple function in Lp,q
2 such that f =

n∑
i=1

ciχAi
, where A1, A2, ..., An are

disjoint measurable subsets of R2 and c1, c2, ..., cn are real numbers. Then,

φ(f) =
n∑

i=1

ciφ (χAi
)

=
n∑

i=1

ciν(Ai)

=
n∑

i=1

ci

∫
Ai

g(x1, x2)dx1dx2

=

∫
Ai

g(x1, x2)f(x1, x2)dx1dx2
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This holds for all simple functions in Lp,q
2 . Simple functions are dense in Lp,q

2 , therefore,

φ(f) =

∫
R2

f(x1, x2)g(x1, x2)dx1dx2

for all f ∈ Lp,q
2 . Let us take f such that

f ∗(t1, t2) =

∫ ∞

t1/2

∫ ∞

t2/2

h(s1, s2)
ds1ds2

s1s2

where h(s1, s2) = s
q′/p′−1
2 (g∗(s1, s2))

q′−1. Then, by using Proposition 3.2 and the two-
dimensional Hardy inequality for the conjugate Hardy operator ([5], Theorem 2), we
have (

‖f‖′Lp,q
2

)q

≤ C
(
‖f‖Lp,q

2

)q
= C

∫ ∞

0

∫ ∞

0

t
q/p−1
2 (f ∗(t1, t2))

q dt1dt2

= C

∫ ∞

0

∫ ∞

0

t
q/p−1
2

(∫ ∞

t1/2

∫ ∞

t2/2

h(s1, s2)
ds1ds2

s1s2

)q

dt1dt2

= C

∫ ∞

0

∫ ∞

0

(∫ ∞

u1

∫ ∞

u2

h(s1, s2)
ds1ds2

s1s2

)q

u
q/p−1
2 du1du2

= C

∫ ∞

0

∫ ∞

0

u
q′/p′−1
2 (g∗(u1, u2))

q′ du1du2 = C‖g‖q′

Lp′,q′
2

. (4.3)

Now, on using ([6], Theorem 3.10), (4.1), Proposition 3.2 and (4.3), we obtain

‖φ‖′
(Lp,q

2 )
∗ = sup

f∈Lp,q
2

|φ(f)|
‖f‖′

Lp,q
2

≥ |φ(f)|
‖f‖′

Lp,q
2

=

∫
R2 f(x1, x2)g(x1, x2)dx1dx2

‖f‖′
Lp,q

2

=

∫∞
0
f ∗(t1)g

∗(t1)dt1

‖f‖′
Lp,q

2

≥
∫∞

0

∫∞
0
f ∗(t1, t2)g

∗(t1, t2)dt1dt2

‖f‖′
Lp,q

2

=
1

‖f‖′
Lp,q

2

∫ ∞

0

∫ ∞

0

(∫ ∞

t1/2

∫ ∞

t2/2

h(s1, s2)
ds1ds2

s1s2

)
g∗(t1, t2)dt1dt2

≥ 1

‖f‖′
Lp,q

2

∫ ∞

0

∫ ∞

0

(∫ t1

t1/2

∫ t2

t2/2

h(s1, s2)
ds1ds2

s1s2

)
g∗(t1, t2)dt1dt2

≥ 1

‖f‖′
Lp,q

2

∫ ∞

0

∫ ∞

0

(∫ t1

t1/2

∫ t2

t2/2

s
q′/p′−2
2 s−1

1 ds1ds2

)
(g∗(t1, t2))

q′ dt1dt2
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=
1− 21−q′/p′

‖f‖′
Lp,q

2

(
p′

q′ − p′

)
(log(t1)− log(t1/2)) (4.4)

×
∫ ∞

0

∫ ∞

0

t
q′/p′−1
2 (g∗(t1, t2))

q′ dt1dt2

=
1− 21−q′/p′

‖f‖′
Lp,q

2

(
p′

q′ − p′

)
(log 2) ‖g‖q′

Lp′,q′
2

≥ C
(
‖g‖′

Lp′,q′
2

)q′−q′/q

= C‖g‖′
Lp′,q′

2

i.e., g ∈ Lp′,q′

2 . The assertion now follows in view of (4.2) and (4.4).
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