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Abstract. The two-dimensional Lorentz space LY? is defined as a special case from
the two-dimensional space Ab(w) just as was done in the classical dimension one. The
normability and duality of the space L5? are discussed.

1 Introduction

In |7] (see also [3]), Lorentz introduced the classical Lorentz space, denoted by AP(w)
which consists of all measurable functions for which

NNMWVZ(AWUVﬂVw@MQUP<ax

where 0 < p < 0o, w is a weight function (a non-negative, locally integrable function
on (0,00), not equivalent to 0) and

fr@) =mf{A>0:p,(N) <t}, t>0

is the non-increasing rearrangement of f, y1; being its distribution function.

In [2] (see also [1]), the authors defined a two-dimensional analogue of the space
AP(w), denoted by Ab(w), as follows

Let £ C R? and for z; € R, pgr(z;) = [{z2 € R: (z1,72) € E}|. The decreasing
rearrangement of ¢g is given by

SO*E(tl) = mf{)\ : ‘{33'1 eR: ng(xl) > )\}’ < tl}, t; > 0.
Then, the two-dimensional decreasing rearrangement of the set E is defined by
E* ={(t1,t2) ER2 : 0 <ty < l(t1)}-

Now, with these notations, the two-dimensional Lorentz space Ab(w) is the space of all
measurable functions f on R? for which

\mmw:<42

+

1/p
(f*(t1, t2))Pw(t, t2>dt1dt2> < 00, (1.1)
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where w is a non-negative, locally integrable function on R% , not equivalent to 0 and f*
is the two-dimensional decreasing rearrangement of f given by the so called Layer-cake
formula

f*(tl,lb)_/ X{If>tp+ (t1, t2)dt.
0

In a rather surprising result ([2], Theorem 3.7), it was proved that for 1 < p < oo,
the expression (1.1) is a norm if and only if w(¢y,t3) = v(t2) for some decreasing weight
v on R*. This motivates us to define a variant of A5(w), to be denoted by L5?, which
consists of all measurable functions on R? for which

I fllge = ( /.

+

1/q
(t2)q/p71f*<t1, tg)thldt2> < 0Q0. (12)

It is clear from the above discussion that for 1 < ¢ < p < oo, the space LY? is a normed
space. We prove, in this paper that, in fact, the restriction 1 < ¢ < p < oo is necessary
for L%? to be normable. A similar situation exists in dimension one, see, e.g., [6].
Next, our aim is to overcome the restriction ¢ < p in (1.2) to make it a norm. A
natural idea, similar to the one-dimensional case, is to replace f* by f** defined by

1 t1 to
f**(tth) = _/ / f*(ShSQ)dSldSQ.
tita Jo Jo

However, this does not suffice the purpose. In fact, it was shown in [1] that f** is not
sublinear. Those authors considered, instead, the function f3% defined by

1 (/1 [P :
s1(t,t2) = —/ (—/ fQ*(.,T)dT> (o)do
t o\t J, )

and proved that this function is sublinear. Here f; denotes the one-dimensional rear-
rangement of the function f with respect to the second variable keeping the first vari-
able fixed and in the similar sense, the expression (...); should be understood. Taking
advantage of this fact, we replace f* in (1.2) by f57 and prove that the corresponding
expression

1/q
1 g = (/RQ g7 §,§(t1>t2)th1dt2> (1.3)

+

is a norm for 1 < p,q < oco. It is noted, in view of ([1], Theorem 2.4) (see also [4]),
that for 1 < p,q < oo, the quasi-norm (1.2) and the norm (1.3) are equivalent.

Finally, from the one-dimensional case, it is known that the dual space of LP4, that
is, (LP9)* can be identified as LP"? | where % + ;z% =1 and % + & = 1. We shall prove
that the similar duality holds also in dimension two.

2 Normability

We prove the following normability result

Theorem 2.1. The Lorentz space LYY is not normable for the following cases:
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i) 0<p<oo, 0<g<l;(i))0<p<l, 1<g<oo.
1,2

Proof. Our strategy would be to construct a sequence of functions {fx},k = 1,

such that in both cases (i) and (ii), the ratio

Z Ji
L3

Ay = ——>oo as n — oo

Z 1/l g

(i) For all © = (x1,22) € [0,1] x [0,1] and k = 1,2, ..., define the functions f; as

PRER

<ﬂ>1/q 20HP/Ok () < gy < 27FP 0 < a2y < 27FP
fu(@) = 4 \7
0, otherwise .
Then
00 o] / 1 1/q
[ fellpze = (/ t" (i) (t1,t2))th1dt2)
1/!] q 1/q
( [ e ((z) ) dtldm)
2= kp 1/q
((g) lH-p)k/ dtl/ tq/p_ldt2> =1
p
so that . .
S Wellige =S 1 =n.
k=1 k=1
Now, let
1 n
- Z Jr(@)
k=1
ie.,
l/q "
% % (Z 2’(Hp/q)> 7 0<z1 <270 <@y <27
1/q -
% % Zgl(lw/q) ’ 2 < gy < 2-(=1p 9mmp gy < 2= (n=1p
gn(x) =
1 (g)” T (2000) 4 Q20400 | 2 <y < 9 2 < gy < 9
1/q
1 () (20+9/2)) | 27 < xy <2727 < gy < 2P
0, otherwise.
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Clearly, g,(x) is a decreasing function for each n = 1,2, .... Also for p # ¢

lonllge = [ [ 877 (0n) 0.1t
0 0

92—np 9—np 1 n q
— 14 / / /Pt = 20Ok )yt
P Jo 0 n.3

n—1 L9—(n—m)p —(n—m)p 1 n—m q
+ 4 Z/ / tQ/P Lz oU+p/Dk N gt dt,
D == Jo-(n—m+1)p Jo—(n—m+1)p n

m=1 k=1

Now,

9—np 9—np 1 n q
=1 / / /(=N 2ok ) gty
P Jo 0 n--

n q
— iq (Z 2(1+p/q)k> 9—npo—ng
n

1 1 n q
1 (2( +/a) (201+p/) _1)> N
n4

21+p/a) — 1
— 1 _ o9—(1+p/9)) 74 (A+p/g)n _ —n(p+q)1/q\?
(1-2 ) (2 1)2 )

nd
L (1ot i (1 g amjany
nd

and

9—(n—m)p 9—(n—m)p 1 n—m q
I, = g/ / tQ/P*1 = Z o(+p/ak |\ gt dt.,
P Jo-(n—-m+1)p Jo—(n—m+1)p n 1

n—m 4 g—(n—m)p g—(n—m)p
—1
o +p/a)k / dt / t3/7 " dty
92— (n—m+1)p 2—(n—m+1)p
2

’BI»Q

k=1

9(1+p/g)(n—m) _

1 [ 20+»/9)
- nd (I+p/a) — 1

q
1)) (27(nfm)p . 27(nfm+1)p)

(2.1)
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> (2—Q(n—m) _ Q—Q(n—m-f-l))

= (12 ) () ) ymremipa) (1977 (1 27)
= (1 _ 27(1+p/q))*q (1 _ 27(1+p/q)(n7m))q (1 B 2,p) (1 _ 27(1) . (2.3)
By using (2.3) and (2.4) in (2.2), we get
lgnll7pa = % (1 — 27 (/D)™ (1 — g~ Ctp/amy

n—1
+ Zl % (1 — 2—(1+p/Q))7q (1 _ 2—(1+p/q)(n—m))q (1 _ 2—19) (1 _ 2—q)

(1
_o=(tp/a\ 1 [ L (1 _ 9—(1+p/a)n)1
2(1 2 1+pQ) (nq (1 9 1+pq)
1 n—1 q
~(1—9" _9- _ o9—(1+p/g)(n-m)
+ (1-277) (1 2Q)<§1(1 2~ (1+p/a )))

n

_ —(14p/a) (1 — 9—(n—1)(1+p/a)) \ ?
+(1-27) (1—2q)i<<n o 2 (-2 )> )

. Y
— (1— 2 (Hr/0) " (((1 _ 9~ (1+p/a) ))

nd 2 2-(+p/a) — 1

= (1— 2~ (p/0) 7 <((1 — 9-(i+p/an) > a

n

B B (n—1) 1—2-(-Dl+p/a\?
F2 -2 (O

— OO as n — Q.

Consequently

n

2 I

o lugr nllgallige

= — = — 00 as n — 00
> Ml
k=1

and we are done in this case.

Ak

(ii) We define, in this case, for all z = (z1,25) € [0,1] x [0,1] and k = 1,2, ..., the
functions f; as

o) = ; TG k) mod mpw X5 (24)
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Then

ka )= l/px[o’i)x[o”ll)(x)+;ﬂ%x[°’i)x[i73)<x>+"'+Zi1%x[o,i)x[";l,1)(ﬂf)

=1

n
- Z Z'IWX[O,%)X[OJ)(:C)?

i=1

3

so that

:/ / tg/p_l

0 0

:/ / tg/p—l
0 0

:/ / tg/p—l
0 0
o0 o0 / o

- /0 /0 ta'? Z 1/p> L)x(o, 1)(t17t2)dt1dt2

- ( 1/p> / / tq/p ldt dt2
=1

:< ”p> < >( ) (2.5)
=1

We rearrange the terms of fi(x) in (2.4) as follows:

*q
/pX[0.2 x[0,1)(t1,t2)> dt,dts

= n
Z 1/p )
i=1
n q

n
Zm) X([o,2)fo,1))" (t1: t2)dtrdtz
i=1

fl(x)zgi%‘XE( )
=1
where
=7 Bi= 0%) x _”;2,";1>
as %, 2 _0’%> y :n;1’1>
as % 3 = :0,%) X :0,%)
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and so on. It can be seen that a; > ay > ... > a, > 0 and a,,.1 = 0. Now,

(f1)"(ts, t2) :/ X{fi>ty+(t1, t2)dt
0

ay a
- / XEf(tlatQ)dt‘f’/ X(EluEQ)*(tl,tg)dt+

az as

+ / X(ErUEU...UE)* (t1, t2)dt

An41

n—1
n n n
- Z_; (117 N m) XJo.2)x[0.2) T 71/ X[0.2)x[o.) (2.6)

If we follow the same steps to calculate (f2)*, (f3)*,...,(fn)*, we get the same expression,
i.e., (2.6). Consequently, for k = 1,2, ..., n, by using Minkowski inequality, we get

[e%e) [e'e) 1/(1
Villgs = ( / / /o1 <<fk>*<t1,t2>>th1dt2)

n—1

w ol n n q 1/q
< n n tq/pfl e n dt dt
_;</0 /0 2 i1/p (Z'+1)1/p 2al

q 1/q
n
<n1 p) dtzdtl)
1 n—1 . )
_ . 1-1/p—1/q I_) /a (Z + 1)1/p _ Z1/p
- 4 +1
q A (i + 1)1/
1/q n—1
o () (£ ()
q L i+1
1/q
1
< npt-t/r-la (I_)) (_ (logn) + 1)
q D

which on using (2.5) gives that
> fi /
M=t g 1 nt/p=1

D Il fell g .

k=1

The assertion is now proved completely.
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3 An equivalent norm

As mentioned in Section 1, the restriction ¢ < p for (1.2) to be a norm for the space
L5? is necessary. In the case of dimension one, this situation is handled by replacing
f* with f** which is the integral average of f* taken over the interval of integration.
A natural extension in dimension two is the operator f** defined by

[t t) = / / f*(s1,82)ds1dss.
t1to

Remark 6. It can be noted that f*(t1,t2) < f**(t1,t2). Indeed, as f*(t1,t2) is a
decreasing function, we have

[ (t,t) = / / (51, 82)ds1dss
t1t2

Z / / f tl,tg d81d82
t1t2

= t1t2 t]_,tQ / / dSldSQ

= f (tht?)'

Unfortunately, f** is not the right operator to work with because of the fact that this
is not sublinear, see [1]. The correct operator which is also sublinear, also considered
in [1], is f57 defined by

st =+ [ (3 [ i) e

We replace f** in (1.2) by f37 and write

£l = ( /.

We prove the following

1/q
137 fr (t, 1) dtldt2> . (3.1)

+

Proposition 3.1. For 1 < p,q < oo, the space L5 is a normed space with the norm
given by (3.1).

Proof. This is straightforward in view of the fact that f3% is sublinear and using

Minkowski’s inequality. [
It is known (|1], Proposition 2.1) that
foi(ti,t2) < f34 (¢, ta) (3.2)
and that
21 (t1,t2) < f7 (1, t2). (3.3)

The equivalence of the quasi-norm (1.2) and the norm (3.1) is an easy consequence
of ([1], Theorem 2.4) (see also [4]). The precise result is the following

Proposition 3.2. Let 1 < p,q < co. The quasi-norm ||.|[ze and the norm H||/qu
given respectively, in (1.2) and (3.1) are equivalent.
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4 Duality

The following result will be used in the main result of this section.
Lemma A. ([2], Theorem 2.13) If f is a measurable function on R?, then

f*<tla t2) = f2*,1<t1ﬂ t2>7
where

for(ti,te) = [f5 (., t2)]7 (t).

The following result gives the description of the dual space of the space L5,

Theorem 4.1. For 1 < p,q < oo, the space (L5")" is isomorphic to Lgl’ql, where
1,1 101
5+I7—1andq+q,—1.
Proof. In view of the definition of the space LY? and (|2], Theorem 3.1), we have for
p - q / A
(7Y = (1) = 1 = 147,

where L5 denote the standard two-dimensional Lebesgue space. Thus the assertion
holds for p = q. o

Assume that p # q. Let g € L5 be arbitrary but fixed. Define for f € L5? the
functional ¢, by

:/ f('rlaxZ)g(ml,x2>d$1dQ]2.
R2

Clearly, ¢, is linear. It is known ([2], Theorem 2.11) that for measurable functions f, g
defined on R?,

/|f(l‘1,$2)g($1,$2)|d$1d$2 / fr(t1,t2)g" (t1, to)dt 1 dts
R2

/ [H(t)g" (t)dty. (4.1)

Now, by using (4.1), Lemma A, (3.2) and Hoélder’s inequality, we have

|¢g(f)| =

f(Ih xz)g(Il, $2)d961d$2
RQ

</ |f(3717372)g($1,$2)|d561d$2

/ / fr(t1,t2)g" (t1, to)dt 1 dts

/ / fah(t1,t2)g5 7 (th, ta)dtrdty

1 1/q
(/ / 577 (fa tl,tg))thldt2>
// /1 / 1/q,
X (/ / tg P (g;:*l(tl,tg))q dtldtg)
0 0

/ !
= 1 Flzpallgll e
2 Ly,
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which gives that ¢, € (Ly?)". Moreover, the last inequality gives that

H(bgH/(Lg,q)* = sup |¢g(f>|

!
mgfﬂﬂ@g

< Nl (12)

Conversely, let ¢ € (L5?)* be arbitrary. Let 3 denote the family of Lebesgue
measurable subsets of R?. Define v(A) = ¢(xa), where A € X. Note that

v(0) = o(xo) = ¢(0) = 0.

If {A,} is a sequence of pairwise disjoint measurable subsets of R? such that A =

U A,,, then

n=1
Y vlAp) = lim Y w(Ay)
k=1 -
= Jim ¢ (Z XAk> =4 (JH&ZXAk)
k=1 k=1

=9 (i XAk> = ¢ (xa)
=v(A).

Therefore, v is a countably additive function on Y. Also, if i denote the Lebesgue
measure on X, then for any set A € ¥ such that u(A) = 0, we have that x4 = 0, u
almost everywhere on R?. So

v(A) = d(xa) = 0.

Thus, ©(A) = 0 implies ¥(A) = 0. So, v is absolutely continues with respect to pu. By
the Radon-Nikodym Theorem, there exists g € L' = Lé’l such that

V(A) = /A o(x)dz.

n

Let f be a simple function in LY? such that f = ZCiXAm where Ay, Ay, ..., A, are
i=1

disjoint measurable subsets of R? and ¢i, ¢a, ..., ¢,, are real numbers. Then,

O(f) =Y i (xa)
i=1
= i Cﬂ/(Ai)
i=1
= ;Ci /AZ g(xl,l‘g)dﬂfldl'g

:/ 9($1,$2)f($1,$2)d$1d$2
A;
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This holds for all simple functions in L7, Simple functions are dense in LY?, therefore,
o(f) = [ flz1,22)9(1, v2)dz1d2s
R2

for all f € LY9. Let us take f such that

R e dsyds
f*(tlatQ):/ / h(s1,s2) B
t1/2 Jt2/2 5152

where h(sy, s2) = sq G (g*(s1,2))? ", Then, by using Proposition 3.2 and the two-

dimensional Hardy inequality for the conjugate Hardy operator (|5], Theorem 2), we
have

(1150)" < € (U l5)°

/ / P (5 (4, 8)) dtydts
0 0
o0 o0 d d q
C/ / tq/p ! </ / 81,82 il 82) dtldtg
0 0 t1/2 Jt2/2 5152
d dss \ ! _
C'/ / (/ / (s1,82) il 82) ug/p 1du1du2
0 5152

_C// ud 7 (g (ur, u2))? dunduy = Cllg|”,

(4.3)

LPq

Now, on using (|6], Theorem 3.10), (4.1), Proposition 3.2 and (4.3), we obtain

[¢l11pay = sup 2Nl o 160

fert1 ||fHqu - HfHqu

fRz $1,$2 $1,$2)dI1d$2

HfHqu
fo g*(t1)dt;
HfHqu
fo fo *(t1,t2)g*(t1, t2)dt dts
- A1z

= 7 / / </ / h’<817 82) o1 82) g*<t17t2)dtldt2
”fHqu 0 0 t1/2 Jta/2 8152
1 o) o] t1 to d d
Z 7 / / (/ / h(sh 82) o 82) g*(tth)dtldtQ
Hf”LM t1/2 Jta/2 8152
/ / (/ / q /p 281 1d81d82> (g* (tl, tg))q, dtldtg
HfHqu t1/2 t2/2
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1 —9t=d/p

= T (ﬁlp/) (log(t1) — log(t1/2)) (1.4)

x/ / £V (g (4, 80)) dtidts
0 0

1 — 2=/ ' :
_ (q,ﬁ p,) (10g2) [lg]"

7Tz
, 7—d/q
> C (lgll )
= Clall
i.e., g€ LY. The assertion now follows in view of (4.2) and (4.4). O
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