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Abstract. We investigate generalized spaces of Besov type defined with the help of
certain positive infinitely differentiable functions of polynomial growth and describe
the K-functionals for pairs of H—spaces and for the pairs of B-spaces. We prove
interpolation theorems for spaces with different anisotropy. Spaces of functions of
mixed smoothness are characterized as “B-products” and interpolation theorems for
these spaces are proved. Moreover, we establish embedding and trace theorems.

Introduction

The aim of this paper is to define and investigate the spaces By , (1; Ry,) of Besov type
defined with the help of a positive infinitely differentiable function p with polynomial
growth. If

aim_ 1 (§) = o0 (5.1)
then we use the decomposition method (see [B-2,B-3]) to define the spaces B , (u; R,)
as in the classical case (see [T-2,T-3,B-L]). However, in order to investigate problems
such as interpolation of the pairs of spaces with different anisotropy and the problem
of traces, we have to define and study the spaces B;  (u; R,) with a function p for
which (5.1) does not hold. In this case we use an interpolation approach to define and
investigate the appropriate B-spaces.

The crucial role here plays the property of quasi-linearizability of the pair
{H} (1o) , H} (1)} of spaces of Sobolev-Liouville type (see [B-1]). These spaces were
investigated in [V-P] and [T-1]. Then we define B-spaces of Besov type as the real
interpolation spaces between the appropriate spaces of H-type and prove interpolation
formulas and embedding theorems for the spaces of B-type defined in this way. The
introduced spaces have a number of important particular cases (see Section 2).

One of the goals of this paper is to prove interpolation theorems for the pairs of H
and for the pairs of B-spaces with different anisotropy. This problem was formulated
by H. Triebel in [T-3|. For the pairs of H-spaces the appropriate formula for the real
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method was proved in |B-4] using the property of quasi-linearizability. For the complex
method an interpolation theorem for the pairs of H-spaces was proved in [T-1].

Considering the problem of interpolation for B-spaces with different anisotropy we
note that the norm of the interpolation space is equivalent to a certain “mixture” of two
norms of two spaces of B-type. Spaces of such type we call “B-products”. These spaces
(“B-products”) have certain interesting properties which are established in Theorem 5.1
and its Corollaries.

In terms of “B-products” we prove interpolation formulas for the pairs of H and
for the pairs of B-spaces with different anisotropy (see Theorems 5.2, 5.3, 6.4). In the
considered case the pairs of H and the pairs of B-spaces have, in contrast to classical
isotropic case, in general different real interpolation spaces.

Further we consider spaces of functions of mixed smoothness (see [L-N,Sc-T,Sc-S])
as “B-products”. We give certain characterizations of these spaces and prove interpola-
tion formulas. Applying the interpolation theorems we investigate the trace operator.
We consider the H-space generated by a certain convex polyhedron R and prove that
the trace operator is a retract from this H-space onto the appropriate interpolation
space, which is already characterized. It is remarkable that the space of traces depends
only on a part of the polyhedron R. The rest of the polyhedron R does not play any
role.

We shall use the following notation:

Ny — the set of nonnegative integers,

R, — the Euclidean n-space,

Z+T = Np x ... x Ny — the set of multi-indices,

n

S — the Schwartz space,
S’ — its topological dual space,
M,, — the space of (p, p)-type Fourier multipliers,

C — the space of uniformly continuous and bounded functions with the standard
norm,

F' — the operator of the Fourier transform,

F~1 — its inverse,

the symbol f ~ g means that J¢;, co > 0 such that ¢;9 < f < cog (f, g are positive
functions),

the symbol Ay C A; means that the Banach space Ag is continuously embedded in
the Banach space Aj,

the symbol T': Ag — A; means that T" is a continuous operator from Ay to Aj,
L (Ap, A1) — the space of linear and bounded operators from Aj to A;,
Ao+ A; — the sum of the Banach spaces Ay, A; in the sense of interpolation theory,

Ap () A1 — the intersection of the Banach spaces Ag, A; in the sense of interpolation
theory,

(Ao, A1)y, — the real interpolation space,
[Ag, A1), — the complex interpolation space .
We shall assume that the same letter ¢ may denote different constants.
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1 Spaces with fixed anisotropy. The decomposition method

Let a convex polyhedron R (with verticies (0,...,0),0f = (a{, Lad) € ZF =

1,.., M) be such that R has verticies different from (0,...,0) on all co-ordinate axes.
We denote
Mvon \ /2
w0~ (1Te) )
j=1 i=1

Definition 1.1. Let 1 < p < co. We define @ (p, R") as the collection of all systems
{¢r e with the following properties:
(i) pr € S(R™), (Fer) (&) 20, k=0,1,...,
(ii) suppFo, C U = {& € R2 P <p () <2} k=1,
suppFpo C Qo = {§ € R0 () < 2},

(iii) Je; > 0 such that Y (Fex) (§) = 1, € € R™,

k=0
(iv) Jes > 0 such that €D (Fp) () < e b = 1,0, 1& # 0% =
0,1 (i=1,...,n). -

We construct an example of such a system.
Example. Let w be a non-negative, infinitely differentiable function on R with supp

1
wC [0;1] such that [ w(t)dt =1. We put
172

bk (€)
(P © = [ wa
ak(§)

where ay, (€) =2 =27V (&), b (§) =4 —27FVp (), k=1,....
We are going to prove that the system {¢y }-, (with an appropriate by chosen function
©o) belongs the ® (u, R™).

Property (i) is clear. To prove property (ii) let us note that by, (€) < 0 if p (£)>2F+1
and ay, (€) > 1if p(£)<2%71 (k=1,...,). In both cases (Fiy) (£) = 0.

Let us check property (iii). For each & ; p(§)>2, there exists an integer ko
SoliCh that 3 - 2072 < (&) < 3 - 2%~ (this follows from the equality[2;00) =
U [3-25723-2%7]). But
k=1

plg) <3-2%7 [ g, (%) <3
p (&) =3 - 2002 >1

So, for each & ; 11 (§)>2, there exists an integer ko such that [ay, (&) ; b, ()] D [3:1].
Hence we have

b (§0) 1

Foow, (€) = / w(t)dt}/w(t)dtzl.

akq (o) 1/2
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If the function ¢y is chosen appropriately then for the system {pg},-, property (iii)
holds.

To check the last property (iv), we first of all note that for the function x (§) from
(1.1) there exists a positive number ¢ such that the following inequality holds

€7D (&) < (§), (1.2)

Hgl#oafyz(fyla7’771)7'71:071(2217771)
=1

Sofor £ € (k=1,...,)andi=1,...,n
OFpi|

& o&; =276V SZ agl Nw (br) = w (ar)| < 8¢ maxw (1).
For the mixed derivatives we have (j =1,...,n)
aQFgok
615] afzafj

2
=27EDgg) - ‘82(%][ (ar) — w (by)] — 27 ¢ gg ag W' (ar) — o' (be)]| <

<27E D (€) - 2maxw (1) + 2720 D2 (€) - 2max ) (1) < o

In the same way we can also prove the appropriate inequalities for the remaining
derivatives. So, we have proved that {¢y},-, belongs to ® (p, R™). O
If we put

(Fr) (€) = (Fer) (

00 -1
1D (Fer) ( ] k=0,1,...,
k=0

then the system {4}, satisfies
(o.¢]
S (Fyw) () =1, (€ R, (1.3)
k=0
Using Lizorkin’s multiplier theorem (see [L-1]) and property (iv) , we see that there
exists a constant ¢’ > 0 such that
1E ey, <dk=0,1,.... (1.4)

Further we shall assume that the systems {¢g},o€®P (1, R,) have properties
(1.3), (1.4).

Definition 1.2. Let 1 < p < 00, —00 < s < co. We put

s/2

Ef

HS (13 R") = HS (1) = {f € S"(R")5 1f sy = HF*1 (1+47) Ly OO} '
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Definition 1.3. Let 1 < p < 00, 1 < ¢ < 00, —00 < § < 00, {@}rep € @ (1, R"). We
put

By (1) = { £ € 8 (R 15y, 0 = 1S * 06 lgqa,y = 127417 5 @il ll, < 00}

If the vertices of R instead of ZI (vectors, whose co-ordinates are non-negative

+
integers or 0) belong to R, (vectors with non-negative co-ordinates), then we define H
and B-spaces as closurer of S in the norms introduces in definitions 1.2, 1.3.
If (&) = [€] then the defined spaces are classical spaces of Sobolev-Liouville and
Besov.

Theorem 1.1. Let 1 < p < 00, 1 < g < 00, —00< 8§ # 81 <00, 0<6 <1,
s=(1—0)sg+0s1. Then

(Hy" (1), Hy' (1), = By g (1) -

Proof. Let f €(H (), Hs (£))
We obtain

o Then f = fo + fi, where f; € Hyi (u),i=0,1.

1S erlly, < Wfox@rlly, + 1% wnllp, =

QkSOFng 2kleg0k
-1 —kso 18 -1 —ks1 18
— HF {—( F(2 O]uofO)} F {—( 7l (27F=1 151 £)

s0/2 +
1+ p2) 1+ p?)

Ly

N

Ly
<c(z*pefl, +2 LA,
where I% f; = F~' (1 + ,uQ)S"/2 Ff;,i=0,1. So, we obtain that
17 % gully, < 2 R0 (25000 fF () H (u).
Using the discrete K-method (Theorem 1.7a of [T-2]) we have

/1

By, S €1 HfH(Hzfo(u),H;l(u))g’q

Now we are going to use the discrete J-method (Theorem 1.7b of [T-2]). Let f €
By, (). Then, using the properties of the system {@y},,, we get
) ] (K00, iy D () (1) =

2k(5750) . 2]{(80781) Hf % S0k| <

HZI(u)} =

= max {270 || 5 yll o

< 2 max {250 | £l 25 1 oy, | = <21 F sl

This estimate shows that the inequality

1l 00,0552, < €2 1115 40
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will be proved if we check that f = Z [ isin H3° () + Hpt (11). Let so < s then
H3o () + Hav ()= H3° (). Using (1 3) (1.4) and Holder’s inequality, we have

[e.e]

< Y I+l

By RN

(e} 00 1/(1,
<e Y 2 f el <cllfllpo ( > 2N (5081)) :

O () S

Now it is clear that f = 37 f *pp in H3° (p) + H' (1)= H° (). O
k=0

Theorem 1.2. Let 1 <p < o0, 1 < g <00, —o0 < s <oo. Then the space B, , () is
a retract (see [T-2], [B-L]) of the space I} (L,).

Proof. Let {¢i};—,€® (1, R"). We put @, = Z ©r+; (pr, =0 for k < 0). Then

j=—1
Ek*@k:g@k, k?:071,
ForfES’andg:{gj}‘;io,gj €S,j=0,1,... we define

Sf=Af*eehiy, Rg= Z@j * ;-
j=0

It is clear that 5 € L (B;S;,q (1), 13 (L,)) and RS = E. Using the properties of systems
{or}iey and {@, 1, we have

- ket A
S 2N B kg =
k=0 Jj=k—1 Ly
1/q
Z 2k Z Plotr * Pk * Gitr < cl{g;} l5(Lp)
r=—1

LP
So Re L(I5(Ly), B, (1)) O

Remark 1.1. Let p be a continuous positive function on R™, infinitely differentiable

outside of the co-ordinate azes, of polynomial growth and such that |£l|im (&) = oo,
—0Q

|él‘m w1 (&) = 0 and inequality (1.2) is satisfied. We denote the collection of all such
0

functions by G . It is clear that Definitions 1.1-1.8 can be given and Theorems 1.1,1.2
are true also for functions ue Gy .

Remark 1.2. With the help of Theorem 1.2 using interpolation theorems for the spaces
17 (L) we find the interpolation formulas for the pairs of B-spaces. These formulas have
the same form and the same proofs as the corresponding formulas in the classical case.
We shall prove these formulas in a more general case.
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2 Interpolation approach. Estimation of the K-functional

Let p be an infinitely differentiable on R™ positive function of polynomial growth
satisfying inequality (1.2). We denote the collection of all such functions by G*. As
an example of a function from GTwe can consider the following function:

k 8/2 m 7'/2
a; 2b;
@+25)-@+z@),
i=1 j=1

where a;,b; (j = 1,...,m; i = 1,...,k; 1 < k,m < n ) non-negative are integers,
—00 < 8,1 < 00 (See also Examples at the end of this section).

Definition 2.1. Let p €G", 1 < p < 00, —00 < s < oo. We put
3 (i R7) = H ) = { £ € 8 (R gy = 1P~ 0]l gy < 0}

Remark 2.1. Let us note that if the function p€G*is bounded then it belongs to M,.
This follows from inequality (1.2) and Lizorkin’s multiplier theorem (see [L-1] ) because

€7D (§)| S en(§) <, €€ R,
where ¢, are independent of &.

It is clear that H () = H; (u®). For this reason we shall consider H- spaces with
the upper index equal to one. The same fact will be valid also for B-spaces (see Section

3).

Theorem 2.1. Let u, v € G, 1 < p < oo. Then the interpolation pair
{H} (n), H} (v)}is quasi-linearizable (see [T-2]).  The appropriate operators are

(t>0):
o :F_l{uijtuF}’Vl(t) :F_l{uftuF}'

Proof. Let us verify the quasi-linearizability (see Definition 1.8.4 of [T-2]). First of
all, it is clear that
Vo) +Vi(t) =1, t>0.

Now we check that for all ¢ > 0
Vo(t) € L (H, (u) + H, (v), H, (n)) Vi (t) € L (H, (n) + H, (v), H, (v)). (2.1)
We have for f € H) (u) + H, (v), f = fo+ f1, fo € H) (1), fL € H) (v)
Vo (&) Fll iy < Vo (&) Soll gy + V0 () Fill sy =

W
+ tv

Ffo

Ff <

Hy(v)

_ tv
B A+ ty

+tHF—1
ol

HE ()
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< (Iollmyn + 1 illaye) < emax (10« (ol + Willmy) - (2:2)

Here we used that y
' e, —H
o+ ty o+ ty
with bounded norms with respect to t. Taking the infimum in (2.2) we see that V; () €
L (H} (u) + H} (v),Hy (11)). The same proof can be used also for V; (¢). Hence (2.1)
follows. All other conditions of quasi-linearizability can be checked in the same way
with help of (2.3):

€ M,,t>0, (2.3)

V6 0) g = | P 7 A <ty
IV () Flyy = || P2 Sl
Vi) gy = | 7 E . <2 g
IVi () lligey = |F 5 S , Sl
The proof is complete. O

The main corollary of the property of quasi-linearizability for a given pair {Ag, A1}
is the possibility to identify the K- functional of Peetre (see Lemma 1.8.4 of [T-2|):

K, f; Ao, Av) ~ (Vo (8) fllag + IV (8) flla, > f € Ao+ A1t > 0.

Thus, we have

Corollary 2.1. Let p, v € G*, 1 < p < oo. Then for f € H) (u) + H, (v), t >0

tuy
o+ ty

K (6 fi 8 0 1 00) ~ [P0

LP
Corollary 2.2. Let p, ve G, 1 < p < oo. Then
(1) ﬂHl Yu+v),

(i4) H; () + H: (v) = H; (M"fy) .

Proof. Parts (i) and (ii) follow from (2.3), (2.4) respectively, with ¢ = 1. O]
Now we are going to define the B-spaces of Besov type generated by functions in
G*. Let I, = F' {u 'F}, p € G* be the lift operator.

Definition 2.2. Let 1 <p<oo, 1 <g< 00, —00< s <00, u€GT. We put
Byy (15 Ra) = By (1) = (H, (1), H, ' (1),
B;,q (N’) = ‘[MSBZ()),Q (M) :
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Remark 2.2. If in Definition 2.2 we put p = 1, then for arbitrary 1 < q < oo and
—00 < 8 < —00 we get that By (1) = L,, 1 < p < oc.

Corollary 2.3. Let 1 <p<oo, 1 <g< oo, —c0<s<oo, ue G, Then
1
(2t dt "
() By 0) = | £ € 5" (R /HF | I IS
T Ly(R)
o A e
. . S / 1 (4 —
@) B = Fes R = ( 3 [F 2ty <o
i Ly(R")

(with usual modification if ¢ = 00).

Proof. Both of parts of the corollary can be obtained from Definition 2.2, using
(2.4) and the K-method of real interpolation. In part (ii) we have to use the discrete
K-method (see Theorem 1.7a of [T-2]). O

Remark 2.3. If 3¢; > 0 such that p(§) > ¢q for all £ € R™ then the sum in (i) can
be taken in k =0,1,...; if Jcg > 0 such that p (&) < o for all € € R™ then the sum in
(ii) can be taken in k =0,—1,-2,.... d

Remark 2.4. The following calculation

£1/2 2 dt [odt
2 2 2
1715 G [ [
2 Rn 0
~ [Ept©de~ 11,
Rn
shows that B, () = Ly for arbitrary p € G*. O

Corollary 2.4. Let p e GT, 1 <p<oo, 1 <qg<oo, 1/p+1/p =1/¢g+1/¢ = 1.
Then we have the following formula for the dual space

(B, () = BY (1)

Equality holds also in the case ¢ = oo if instead of Bgm (1) we use the closure of S in
By (1)
p,00

Proof. From the duality theorem of the real method (see Theorem 1.11.2 in [T-2])

and the equality (H) (,u))l = Hz;l (1) (see Theorem 4.1/2 of [T-2]) we get

(Bry () = (Hy (1) H,' (1)), = (Hy' (1) Hy (1)), 0 = By ().
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Proposition 2.1. Let u € GT, 1 <p<oo, 1 <q¢< oo, a#0. Then
0 _ 0 a
Bp,q (l’[’) - Bp,q (M ) .
Proof. Step 1. First we consider the case a = —1. Then we have
0 (,—1 1(,—1 1, -1 ~1 1
Bpq ('“ ) - (Hp (,u )’Hp (,u ))%7(1 - (Hp (w), H, (,u)) -

= (Hy (), Hy' (), = By ().

1
PR

a\1"a
Step 2. Let a > 1. Because of t2/a+t < %, t > 0, it holds (tm“ > €M, 1-— % >0

N2a+t
(see Remark 2.1). Therefore by Corollary 2.3 it follows that
1 q
t1/2 a - t1/2/.1/a a dt
1115 / . PN gy o
u +t 20+t t
LP
N t1/2 a E t1/2a q dt
< Cl/ F_l a CQ/ F~ ! f —.
p2e +t p? 4 ti/a 1, t
0

By the change of variables: u = t*/® in the last integral, we obtain for f € Bgy o (1)
1l g, ey < €l f g, -

We obtain the reverse inequality using duality arguments (see Corollary 2.4).
Step 3. Let 0 < a < 1. It follows by Step 2 that

By, (1n) = By, (1)) = BY, ().

Step 4. Let a < 0. Then the formula is a corollary of Step 1. O
Proposition 2.2. Let p € G, 1 <p<oo, 1 <¢g< o0, —c0o<s<o0,0<6<1.
Then
1/q
s ! n ltl Opuits ! dt
By, (1) = { £ e 5 (B 71 /HF Epy ) <
+1
H Ly(R")

(with usual modification if ¢ = 00 ).

Proof. It is sufficient to prove the proposition in the case s = 0. The other cases can
be obtained therefrom using the lift operator. First let us to prove that for 0 =
(a,b>0)

at
(Hy (1) Hy" (1), = Bpg (1) (2.5)
Let us denote v = p**. Theorem 2.1 implies

q ~ o
||f||(Hz‘,‘(M):HP_b('U“))9,q /t '
0

Lttt

,ua + t[l,_b
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tl 0 a q dt % tl—@ 0
-l 2=l e
pett -t + t ot v+t
P 0
Let a number m be chosen in such a way that ﬁ < 0 and ﬁ < 1 —46. We shall check
that

Tdt
=, (2.6)
Ly t

(10,0 w21/ 2m)

<c
v4um o vlmgy

,u>0,¢>0. (2.7)

Let us denoteazl—G—ﬁ,ﬁzl—H—i—ﬁ. Becauseofﬁ < # and ﬁ <1-—46, we
have 0 < a, f < 1. We rewrite inequality (2.7) as

um(l—G)VO—i—l/m + um(1—9)+11/9 < Cul/2V1/2m (1/ + um) . (28)

We note that

um(l—G)VG—‘rl/m + um(l—@)—‘rlye _ u1/2yl/2mumaljl—a + u1/2yl/2mumﬁyl—ﬁ —

U1/2V1/2m (umayl—oz + umﬂyl—ﬁ) < CU1/2V1/2m (l/ + um) )

This implies (2.8) and hence (2.7). The change of variables: t = u™ in the last integral
of (2.6) leads to

q
du
— <
L, ¢

_ltl 0 6’
v+t

q
_1u 0),0
—F
/H v+um f

1ul/z 1/2m
< HF el

using (2.7) and Proposition 2.1. From (2.6) we have

qdu

— HfH 9, (v1/2m) ~ Hfﬂ%g,q(“) ;

Lp

(Hy (1) Hy (1), D Bpg (1) -

Using duality arguments we obtain the reverse embedding. The proof of (2.5) is com-
plete. From (2.5) and (2.6) we have

oo
tl—Gye
q -1
g 0~ [ |7
0

Finally, from Proposition 2.1, using (2.9) for the function p'/(**%) we get

110 o~ I o [t
Bp.q(1) BY ,(ul/(at0)) [+t
0

The proof is complete. O

Tdt
—. (2.9)
Ly t

T qt

L, t
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Theorem 2.2. Let pt € Gt, 1 <p<oo, 1 <g< o0, —00< sy # 8 <00, 0<6<1,
=(1—0)so+0sy. Then

(Hy" (1), Hyt (1) g, = By g (1) -

Proof. From Theorem 2.1 and Proposition 2.2 we have

! tpsots “odt
A0 o)~ / |

(H0 (), Hp (1), / 150 + st L, t

x B = QMSO s B = 0 (so—s1)0 ) q dt
:/HF ! S0—S1 t /H ' 50 S1 t M Ff ? ~
) M + + L,
o Y2 T odt .
2 +t ; ? ~ ||f‘ Bqu(u) .

Remark 2.5. Let u € Gf{, then (1+u2)1/2 € G*. Theorem 2.2 and Theorem 1.1
show that for p € G both Definitions of B-spaces are equivalent (Definition 1.3 and

Definition 2.2) : By (1) = By, <(1+,u2)1/2>, pe Gl <p<oo, 1< q< oo,
—00 < § < 00. In particular if pn (&) = |£| then we obtain the classical spaces of Besov

By (Ra) = By, (i) = By, (1+16P)"

Corollary 2.5. Let p € G, —co < s <00, l <p<oo, 1 <qg<oo, 1/p+1/p =
1/q+1/¢ = 1. Then we have the following formula for the dual space

(Bpq (1) = By, (1)

Equality holds also in the case ¢ = oo if instead of By (1) we use the closure S in
B} oo (1)
p,00

Proof. The same as of Corollary 2.4 using Theorem 2.2. 0
Proposition 2.3. Let u, v € GT, 1 <p< oo, 1 < q<oo. Then

(W) (B, o (Lt V),

(i) B;,q<u>+B;,q<> B! (Mi)

Proof. Part (i) follows from the inequalities (see Remark 2.1 and Corollary 2.3 (i))

t1/2N2 _ t1/2(u+l/)2 £1/2,2 _ t1/2(#+’/)2
2t S (vt vt T (pt )2+t
1/2 2 1/2,,2 1/2, 2
t(u+1/)<tu 2t v
(L+v)+t p?+t v+t

Part (ii) follows from part (i) using duality arguments (see Corollary 2.5). O
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Theorem 2.3. Let,uEG*,0<6’<1,8*:(1—0)304—0517%:1(];094_%,
(i) If 1 <p<oo, 1 <7,qo,q <00, —00 < Sg # 1 < 00, then

(Byiy (1), By, (1), = By (1),
(i) if l <p<oo, 1 <qo#q <00, —00 < s <00, then
(Bao (1) Bpgy (1)) g o = Bpgr (1),
(i1i) if 1 <p<oo,1<qr<oo, —00< Sy # S < oo, then
(Bysy (), Hy' (1)), = By (1) -

Proof. Step 1. To prove (i) we use Theorem 2.2 and the reiteration theorem (see
Theorem 1.10.2 of [T-2]). We have

00,90

(B () Byt (), = (C ) B () o G ) (1), ) =

= (H™ (), Hy" (1), = By (1)

where s; = (1 —6;) mo +60;m1(i =0,1), n = (1 —0) 0y + 66,.
Step 2. In the same way we prove part (iii):

(Bt () 13 0)),, = (H3 o) H32 (), S () =

1,90 ! 9’7‘

= (H3* () 3 (1) 1), = Brar (1)
where sop = (1 —n) s1 +1s2, 0 <1 < 1.
Step 3. To prove part (ii) we use Theorem 3.5.4 in [B-L]|. Then we have using Theorem
2.2.

(Bpao (1) Bygy (1)) = ((H;”“ (1) Hy (), o (Y (), Hy™ (M))n,tn)e,q* -

= (Hy° (), H}" (1), . = Byg (1),

where s = (1 —n)mog+nmy, 0 <n < 1. O
To prove other interpolation formulas for B-spaces we start with the following
proposition.

n7q

Proposition 2.4. Let p € G7, 1 <p< o0, 1 < ¢ < 00,—00 < s <oo. If a number a
is chosen in such a way that a > 2 |s|, then
q 1/q
) .
Lp(R™)

@) [ N ks
By (n) = ( > 2k

By (n) =4 feS (R):|f]

21@/2’“1/2 a
-1
r <u+2’“> ki

k=—o00

(with usual modification if ¢ = 00).
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Proof. We note that 0 < § — £ < 1if a > 2]s|. Let us put § = 1 — £. It follows from

Theorem 2.2 that

s
a

By, (1) = (Hy* (u), H, " (1), - (2.10)

We use the discrete K-method to describe the interpolation space in (2.10). As in
Section 1.7 in |T-2| we have (b > 1)

be o~ D VTR0, fHY R () H R () (2.11)

k=—o00

/]

In contrast to Theorem 1.7 (a) of [T-2] we have used here the number b > 1, instead
of the number 2. It is clear that we are allowed to do this.
The K-functional in (2.11) can be calculated by Corollary 2.1. Then we have

> L. bklua/Z q
£ 1%, ~ pra(3-3) HF‘l - Ff (2.12)
p%q(“) kz_oo I + bk L
Using b = 2% in (2.12) we obtain
o0 2ka/2lua/2 q o0 2k/2,u1/2 a q
11 Bs () ~ 2k F—l—FfH ~ 2k | ! ( ) Ff
Bp,q(lu’) k:z_:oo ,ua + Qka L kzz_:oo 1 + 2]<: L

The proof is complete.

Theorem 2.4. Let p € G*, 1 < pg,p1 < 00, 1 < qo,q1 < 00,—00 < Sp, 81 < 00,0 <
0 <1, s*z(l—@)so—kﬁsl,i:lp—;e%—i izlq—_oe—I—[%. Then

p* p1’q*

(1) [Broao (1), Byl gy ()] = By g ().
If in addition p* = q*, then

(it) (ByS, (1) Byt gy (1)) .. = By g (10)-

Proof. It follows from Proposition 2.4 (1 < p < 00,1 < ¢ < 00, —00 < m < 00,a > 2|m|)

that
s 2k/2M1/2 a q
o () ™~ kam || o=t F ~
g~ 3 (5t ) §
00 ok/2,,1/2  ok/2,,1/2\ * q
~ Yok Fl( TS i > Ff (2.13)
prd o+ 2 1428 L

Let us denote G =G (f) = {gx}, where g, = F~! {(Qk/Qul/Z 4 2k/2u1/2)aFf}, k=

pu+2k 1+2kp
0,1,.... Then we can rewrite (2.13) as

s 1/q
1 g ~ (Z ghom ||gk||%p> — Gl - (2.14)
k=0
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This shows that G € L (B (1) ;17" (L,)). Let us put p = p;, ¢ = ¢;,m = s; (i = 0,1) in
(2.14). Here a is chosen in such a way that a > 2|s;|,i = 0, 1. Using the interpolation
property of the complex method, from Theorems 5.6.3 and 5.1.1 of |B-L| we obtain

s* ~ G
1l o~

l;:(Lp*) ch”[ ;0 a0 (1) Bp1 q1(M)]9 ’

We can get the reverse inequality using duality arguments (see Corollary 2.5). Formula
(ii) can be proved in the same way using (2.14) and Theorems 5.6.2, 5.2.1 in [B-LJ.
The proof is complete.

Definition 2.1 contains a number of important spaces corresponding to various par-
ticular functions u. All of these spaces are real interpolation spaces of the pairs of the
appropriate H spaces.

Examples. (i) Let (&) = (1+ |§|2)1/2. Then we get the classical Besov spaces
(see [N, T-2,T-3,B-L]).

1/2
(ii) Let p (&) = (1 + Z g2 ) , where \; (i = 1,...,n) are positive integers. Then
we get the anisotropic Besov spaces (see [N,B-I-N| and Theorem 2.13.2 of [T-2]).
1/2
(iii) Let p(§) = {1+ Z €2’ , where o/ € ZF (j=1,..., M) are vertices of

j=1
some polyhedron # such that the point (0,...0) is a vertex of R and R has vertices
on each co-ordinate axis, different from (0, ...0). Then we have the B-spaces from |B-
2,B-3] (see Theorem 1 of [B-2]).

(iv) Let p(&,&) = (1+ 5%)1/2 (1+ 5%)1/2. Then we get the approximation spaces
from [Sc-S| (see Proposition 5 of [Sc-S]).

1/2
(v) Let u (&) = (1 + H {2) . Then we get the approximation spaces from [D-K-
T| (see Corollary 3.3 of [D K-T)).

3 Embedding theorems

Since

B;,q (:U’) = INSBS,q (/,L) = ]#SB;S,q (/JJS) = B;,q (:us) )
peGT, 1<p<oo 1<qg<oo,s#0 (see Definition 2.2 and Proposition 2.1), we
can restrict ourselves to B-spaces whose upper indices are 0 or 1.

Proposition 3.1. Let u, v € Gt, 1 <p < oo, 1 < q<oo. Then
9 B, 0 (B0 ()~ B 1+ VB (),
(ii) B, (1) + B, (v) = BY, (n+v) + BY, ().

Proof. From Proposition 2.1 we have

BO nv — BO K + v
p,q //[/ + I/ p.q //LV '
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Then using Corollary 2.3(i) and Proposition 2.1 we get

t2(n+v) oat
Pl F —
(- /H TEm il M
P
s 1/2u+u a
dt
T, SEf TS
/ (B2 +t N
0 P
#1/21 dt /21 dt
e () I A e cwit] B
1 1
0 “ ” +t Lp 0 (l_‘+’7) + Ly

< (11 0+ 1M+ 17Ty (o) + 17T 1)) ~ WA

In the same way we obtain

—1,41/2 K v ]
11 o0 < [ [0 g ] 1
0

—1,1/2 | MV N"‘V)*’t(/i"‘l/)} ’q dt
o[ [ e

r “dt
C//HF_1t1/2[ . 5”(#"’2’/) . }Ff at
) pPv? 4+t (p? + v?) Ly
7 - q
_i_cl\/HF—ltl/Q I;(N’—i_ZV) 2:| Ff @
J Lt (p? +v?) +t L,

q
oo " 00 q
0 #Tv) +t L, : 0 (pt+v) +t Lpt
Wy ey + 1M ~ 19T ) 1
Thus, part (i) is proved. Part (ii) can be proved using duality arguments. OJ

Remark 3.1. From Proposition 3.1 and Proposition 2.1 we have for uye G*, 1 < p <
00, 1 <g< oo

1 1+ p? u
0 _ o o _ o
Bp,q (M) - Bp,q (;) - Bp,q ( 1 ) - Bp,q (1 + 12 :
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Let us note that u + i>1. Thus, considering the zero spaces we may assume that
w(&)>1 or u(§)<1 (see Remark 2.3). If u = % then we have

A P A2+ p? Ap
0 _ o 0 _ o
Bnq (;) - prq (X) qu ( A\p - Bp,q A2 4 p2 : (3‘1)

A

Remark 3.2. If we use in Proposition 3.1 i = =1, then it follows (see Proposition

3.1, Remark 2.2 and Proposition 2.1 ) that

B, @) (L, =B, ( ) (A T p) (3.2)
B (p) + Lo =B ( ) (A +P>

for X\, peGT, 1 <p<oo,1<q< .

E

Theorem 3.1. Let pe G, 1 < p < oo. Then

Bgmm(p 2) <lu) - L - Bp max(p,2) (/11) (33)

Proof. Step 1. For 1 < p,q < oo let us define

2k /2 q\ V1
ng(u): fES/QHfHngq(N): ( 'F_ 2+2ka ) < 0
LP
We shall prove that
LPCFZSQ(#)71<Z9<OO>M€G+- (3.4)

We apply Lizorkin’s multiplier theorem for vector valued functions (see [L-2]). We
show that there exists a positive number ¢ such that

( 0o
k=—o00

From (1.2) we have
2\ 1/2 2\ 1/2
— (2 (©)
) “(Z (mw;c)) :

( =
k=—o0
0o 1/2

r 21 (€) 2 dt t | m
“ 0/(u2(£)+t) * /u‘* +t2 Ve

0

o 2720(€)
p? (§) + 2k

2\ 1/2
) <ca€Zba=01(=1,...,n),§ € R,.

o 2720 (8)
p?(§) + 2%

N

The second inequality we have got in the same way as in the proof of Lemma 3.1.3
of [B-L]. Now, Lizorkin’s multiplier theorem implies embedding (3.4).
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Step 2. It is clear (see Corollary 2.3 (ii)) that as in the classical case (1 < p,q < 00)

Bg,min(p,q) (:u) C Fz?,q (M) C Bg,max(p,q) (/J“) : (35)

From (3.4), (3.5) we obtain
LpCFyg,z(M) CBg,z(M)>1<p<2,

L, CF () C FO (1) = BY, (1),2 < p < oo

The right embedding in (3.3) is proved.
Step 3. The left embedding in (3.3) can be obtained from the right one using duality
arguments (see Corollary 2.5). The proof is complete.

Theorem 3.2. Let p, v € G, 1 < p < 00, 1 < ¢ < co. If there exists a positive
number ¢ such that

v(§) <cu(), §€ R, (3.6)

then embedding
B, (n) C B}, () (37)

holds.

Proof. Assume that inequality (3.6) holds. Then there exists ¢’ > 0 such that
v? ,

<c , t>0.
v+t 4t

Using Lizorkin’s multiplier theorem (see [L-1]) and Corollary 2.3 (i) we see that

r N | A 22 17 dt
1 ~ F! F — < F1 F — ~ 4 :
1715, o !H it G C/H s i
(3.8)
(3.8) means that embedding (3.7) holds. O

Remark 3.3. If u and v are equivalent functions from G (u ~ v), then for arbitrary
indices p,q,s; 1 < p <00, 1 <q< 00, —00<s<ooitholds: By (n) = B;,(v). If
s # 0 then this follows from Theorem 3.2. If s = 0 then this follows from the Definition
2.2 and the equalities HY' (n) = HX' (v) (see [V-P]).

Theorem 3.3. Let p € G, 1 <p<oo,1<qg< oo, 1/p+1/p=1/qg+1/¢ =1. The
following embedding
1
B,,(n)CC (3.9)

holds if and only if

F! (i) € By, (1. (3.10)

If ¢ = oo, then instead of B, (1) in (3.9) we consider the closure of S in B} . (11).
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Proof. Step 1. Assume the embedding (3.9). Then
£ (0)] < C”f”Ble(u) fE€S(R,).

It means that the J-function belongs to the dual space (B;,q (,u))l which is (see Corollary
2.5) B;}q, (). Then

1
-1
H(;HBp_/,lq/(N) ~ ||Iu5||32,7q,(u) ~ HF (_>

0

Bg/’q/ (1)

Step 2. Let (3.10) hold and f €B, (n). From Theorem 2.2 we have B, (u) =
(H? (1), Ly) . o, We are going to use the J-method (see Theorem 1.6.1 of [T-2]). Let
27

us represent f as f = [u(t) %, where u(t) is a function with values in H? (n) + L.

0
Then using Holder’s inequality we have

t12 1 B
B /’ {M +1 u}*F

2
et dt
{tl/“’u MFu(t)H ¢S

<[l e )] | (it} 4 -
12 1 |1Y dt v T ) i)
<\l Gl 5) (freie o monng) -
0o O 1/q
¢ F‘I% /t—q/2Jq (t, f; H? (M),Lp)%

0
Bp/ . (1) 0

Taking infimum over the all representations of the function f of the form f = [ (¢) %,

0
from Theorem 2.2 and Theorem 1.6.1 of [T-2] we obtain

1

1

fl<e] o N

BS’,q’ ()

/
By, ) | H(Hg(H)’L”)l/z,q

This means that embedding (3.9) holds. O

4 Interpolation of pairs of spaces with different anisotropy

Theorem 4.1. Let u, v € GT, 1 < p < o0, 1 < ¢ < oo. Then the interpolation pair
{B!,(n),B,(v)} is quasi-lincarizable. The appropriate operators are (t >0):

Wy (t) = F! el Fe Wi (t)=F U F
o 2zt [0 2+ 22
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Proof. It is clear that Wy (t) + Wi (t) = 1, t > 0. As was shown in the proof of
Theorem 2.2 (see (2.2)) we can obtain

W0<t>;{H5<v>fH5<u> ,W1<t>;{H5<LLa>if?<>

Then, using the interpolation property of the real method, we obtain

Wo ()« (Hy (v) 7Lp)1/2,q = (H, (1), Lp)1/2,q’

Wi (t) : (Hi () 7Lp)1/2,q -

o
iy
—~
T
—~
R
~—

L)y,

Theorem 2.2 gives
ct c/t
Wo (t): By, (v) = By, (1), Wi (t) : By, (1) = B, , (v) .
In the same way we obtain
W (8): Bly (0) S By (v) W (6): Bl (1) 5 Bly (). = 0.1
The proof is complete. O

Corollary 4.1. Let u, v € Gt, 1 < p < o0, 1 < ¢ < co. Then for f € le,,q (1) +
B, (v),t>0

t2v?

—F
12 + 1212 f

K (B!, (u), B, (v)) ~ HF

B} (1)

So in formulas (2.4) and (4.1) we have complete descriptions the K-functionals
for the pairs of H and for the pairs B-spaces. Now we can formulate and prove the
appropriate interpolation theorems. We start with following remark, which shows the
difference between our case and the classical one.

Remark 4.1. Let us prove that in general the interpolation spaces for the pairs of B-
spaces depend on the second lower indezes (in contrast to the case of classical spaces).
Otherwise, we have (u,v € GT,1 < p < 00,1 < ¢,q0, 1 < 0,q0 # q1,0 <0 < 1)

(B @)+ Bogy (1 +1))g = (Bpgy ), By, (1 +1),,

Then taking the intersections, from Proposition 2.3 and [M] we obtain

B;qo(ﬂ—i_y <pqo ﬂ pqo pqo(ru—i_V)) =

0,q
= (Bygo (1), By (1)) () (Bl () By (14 1)) =

= (Bpg (1) Bhgy (1 +1))y [\ (B ), By, (n+ 7)), =
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( pan ( ﬂ pan pq1(”+y))9 _B;(Il(/’L—i_V)'
If we assume 11 (§)+v (€) = (1+ |£|2)1/2, then we get that B, , = B, . for the classical

Besov spaces (see Remark 2.5). This holds if and only if qo = q1 (see Theorem 2.3.9
of [T-3]). In the same way assuming

(HE ) HE (14 1),., = (BLy, (0). Bl (u+ 1)),

we get from [M] and Corollary 2.2 that H; = B;ql for the classical spaces. This holds
if and only if p = q1 = 2 (see Remark 2.3.9 of [T-3]). Thus, in general the interpolation
spaces of the pairs of the spaces of Besov type depend on the second lower indices and
the pairs of H and the pairs of B-spaces have different interpolation spaces. O

Theorem 4.2. Let u, v € GT, 1 <p<oo,1<g< o0, 0<0<1. Then

(H;(u),H;(y))e’qz{feS’( W) il Wy, = 1E7 A0 B} g 5)<O°}

Proof. From (2.4) and the definition of the K-method (see 1.3 of [T-2]) we have

; _oq T dt
(Al ~ [t
(HEG).HY ),
0

Y gy
o+ ty

L,

d
N R i [

V

B tl_e m 0 B q
F 1 H_{(—Vt) ,ul el/eFf

y

0

Ly

At the last step we have used Proposition 2.2.

Theorem 4.3. Let u, v € GT, 1 <p<oo, 1 <g< o0, 0<0<1. Then

(B 10854 1), = {1 €8 )i W0y 00, =

0,9

1 dt
t

—1 1-60.,0
/H ﬂ+tu2“ vES

Proof. From (4.1) and the definition of the K —method we have

Bp o (w) N B 4(v)

r 212 I dt
171 o e L i
(580 Py q WA g g !
R 2 q
_9 _ H dt
+tq/ ¢ || F me b = A+ Ay (4.2)
0 p,q
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Let us consider the first integral in (4.2) which we denote by A,. The change of
variables: u = t? and Corollary 2.3 lead to

i 2 q
P Y P
J e+ uv Bl () U
w2  dudt

(4.3)

w4+ uv? i+t L, ot

[c’elle’e)

_ Y4

~ u 2
0 0

From (2.4) we can note that the expression HF 1 1;1552 t;ft

Ff H is equivalent to
Lp

1/2
K (u F- 1t2+th;H5 (1), H? (1/)) Furthermore
t1/2 t1/2 dt
AON/HFl : H e 1”Ff —.
= (H2< L), it By,(2) ¢
(4.4)

At last step we have used Theorem 4.2 and Proposition 2.1. In the same way we
estimate the second integral in (4.2) which we denoted by A;:

i 12,2 q i 2 q
O B NI F] ISy
/ w2+ uy B, () U ) we +uv B, () U
/ /u—“*f” IRRTIZTE e £y  dudt
) ) w2 +urv? v+t L, Ut
/ -l tl/z ! / 1 t/%y A f q dt (4.5)
A (H?( JHZ() 140 et mae)
From (4.2),(4.4),(4.5) we obtain
1
t1/2 t1/2V o 9F q dt /e
+ oy — ~
0 /H (u + v2+t)“ g,
Hf”(Bl (1), qu(,,)) (4.6)

The proof is complete.

Later we shall see that in the norm || f ||z we may use each of the spaces

Bl (1).B3,(1),
B, (1), B, (v) instead of the intersection B, (1) (B}, (v) (see Corollary 5.3). In
Section 5, with the help of so-called “B-products”, we shall obtain more symmetric
representations for the interpolation spaces (B}, (1), B}, (v)) 00 and prove a more

general interpolation theorem for the pairs of spaces of Besov type.
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5 “B-products”

Definition 5.1. Let p, v € Gt, 1 < p < o0, 1 < g < 00, —00 < s,m < oo. The
following space

By, (1) - By (v) = Luwm (Byy (1) - By (v))

where

B£g<u>-££g<u>=:{f’e;S’cR">;HfHBg4u)BgAV>::

1
12 w2y fa
w2+t 24

(with usual modification if ¢ = oo) we call “B-product” of the spaces B, ,(u) and
B (v).
P

" dtdu

Ly(rm) U U

We start the considerations with the case s = m = 0. This “operation” has in
fact certain properties of multiplication of the real numbers, which follow from the
definition (see also Remark 5.1):

(i) By, (1) - By, (v)=By, (v)- B, (1) (commutativity)

(i) [BY, () - B, ()] - BY, (\) = BY, () - [BO (v)- B2, (N)] assomatlwty)

(i) B, () - [BY, (1) BY, ()] = B2, (A) - B, (1) (V BL, (\) - BY, (v) (distribu-
tivity),

(iv) By, (1) - Ly=B, , (1) (existence of the unity).

In addition we have also the following property of the “B-product” (it will be formulated

as Corollary 5.1):
(V) By (1) - Byg (1) =By ().

Remark 5.1. It is clear that the norm of the “B-product” ng (1) -Bg’q (v) is equivalent
to the each of the expressions (see Corollary 2.3)
1/q 1/q

/HF—l tl/2M Y q dt /HF—l Y2, q dt
[ A ’ v+t
0 : 0

t
Theorem 5.1. Let p, v € GT, 1 <p < oo, 1 <g<oo. Then

BY (1)

W
BY, () B, (v) = BY, () - BY, (L)

v

Proof. From Definition 5.1 we have

|’f\|qu7q(u).3g7q(y) ://
0 0

Let us put k = (ut)"? pv, 1 =(uw)? + ut, m = tv* + up?.

(ut)?
2 fout + tr? + up?

dt du
t ou’

P

(5.1)




On interpolation of pairs of generalized space of Besov type 55

Then using the following simple inequality:

koo oEE o kNE k2
- i <_ = - 7kal) )
[+m Eik 2([) (m) m >0

from (5.1) we obtain

rr 1 (ut)"? pv i (ut)"? pw i dt du
g i < o [ [ |77 (L0522 ) () |
pal s (uv)” + ut tv? + up tu

LP
The change of variables: x = (ut)1/2 Yy = (%)1/2 and Proposition 2.1 lead to.
q

00 00 1/2 u 1/2
x,uu v, dx dy
Iy o <o [ [P () (i) o S
P.q ba _|_ T (H) _|_y2 Ty
0 0 v L

P

T 21/2 (/W)l/z yl/? %)1/2 a dz dy
pv + x Pty Ty
0 0 Ly
N// P A H de dy (5.3)
)2 Ty’ '
- ()" +x (%) + y
Inequality (5.3) means that
v
B, (uw)- BY, (5) c B, (1) B, (v). (5.4)

The reverse embedding we can obtain from (5.4), Proposition 2.1 and Remark 5.1:
B, () By (B) 5 B, (1) - BY, () = B, () Bl ().

The proof is complete.

Corollary 5.1. Let pye Gt, 1 <p<oo, 1 < q < oo. Then

By, (1) - Byy (1) = By, (1)

Proof. From Theorem 5.1, Proposition 2.1, Remark 2.2 and the property (iv) of the
“B-product” we have

By, (w)- By, (n) =By, (u*) B, (1) =B, (1) - L, =By, ().
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Corollary 5.2. Let p, ve GT, 1 <p < oo, 1 < qg<oo. Then

0 o (K _ po 0 Ky
B, (uw)- BY, (;> — B (u+v)- B, <u - V) . (5.5)

Proof. From Remarks 3.1 (see (3.1)) and 3.2 we have (see also Remark 5.1)
0 o (H 0 0 MY 0 0 [
Bp,q (IMV) . Bp,q <;> == Bp,q (Iuy) . Bp,q (m) = Bp,q (,LLV) . Bp,q (m) . (56)

From Theorem 5.1 using Proposition 2.1 we obtain

~BY, < ad ) B (u+v). (5.7)

ptv
Equalities (5.6) and (5.7) give (5.5). O

Corollary 5.3. Let p, ve GT, 1 <p < oo, 1 <qg<oo. Then

B, (u)- BY, (5) — B, (v)- B, (5) = (5.80)
=By, (1) - By, (wv) = B, (v) - By, (nv) = (5.8b)
= By, () - By, (2) = BY, () - B, (). (5.8¢)

The analogous equalities also hold if instead of the spaces By (1), By, (v) we use the

spaces
0 Hy 0
By, (m) Byt v).

Proof. Step 1.We have (see explanations below)

0 0o (M 0o (M 0 0o (M o (M 0 2 0o (M
Bp,q () - Bp,q <_> = Bp,q <_> ' Bp,q () - BM <_> = Bp,q <_> ' Bp,q (,u ) : Bp,q <_> =

v v v v v
3 3
_ RO H 0 0 H _ no 0 0 1% .
- Bpﬁq <;) ) Bp,q () - Bp,q (7) - Bp,q () - Bp,q (v) - Bp,q (7) -
3
0 H’ 0 0 0 ,Uz
=D, (7) By (1) - By, (v) - By, (;) : (5.8)

The first equality of (5.8) follows by Corollary 5.1 and properties (i), (ii) of “B-products”.
The second one follows by Proposition 2.1 and Remark 5.1. The third and forth
equalities follow by Theorem 5.1. The last one follows by property (i), Theorem 5.1
and Corollary 5.1. In the same way we obtain (using the analogues of the three steps

in (5.8))

V3

B, (v)-BY, (5) - B, (g) . BY, (uv)- BY, (F) . (5.9)
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Let us insert (5.9) in (5.8). Then we have

3 3
0 o (MY _ po (M 0 o (Y 0 o (H\ _
Bp,q (,u) ) Bp,q (_> - Bp,q <_) ’ Bp,q (,u) ’ Bp,q (_> ) Bp,q (luy) ) Bp,q <_> -

v v W v

0 0 0 v 0 0
= Bp,q <_) ' Bp,q (_> ' Bp,q (1) - Bp,q (v).

v 1
The obtained expression is symmetric with respect to the functions p and v. This same
expression we can get for BY (v) - BS (%). This means that (5.8a) holds.

Step 2. Let us use (5.8a) for the functions p and % Then we obtain from Proposition
2.1

1
B2, 0 B ) = B2, (3 ) B ) = B2, () B2, ()

This proves (5.8b).
Step 3. To prove that the expressions in (5.8a) and (5.8¢c) are equal we use Theorem
5.1, Corollary 5.1 and equalities (5.8a), (5.8b). We obtain

0 o (M 0 0o (M 0 o (M
Bp,q (1) - Bp,q <_> = Bp,q () - Bnq (_> ' Bp,q () - prq (_> =

14 14 14

0 0o (M o (M 0 o (M
= Bp,q () - prq <_> ) Bp,q <_> = Bnq () - Bp,q <_> :

v v v
In the same way we prove that the expressions in (5.8b) and (5.8¢) are equal.
0 v 0 .
Step 4. For the spaces By, <M’fw) , By, (1 + v) the proofs are the same (with the help
of Corollary 5.2). The proof is complete.

Corollary 5.4. Let p, v € G, 1 <p<oo, 1 <qg<00,—00< 8,1 <00, s+r#0.

Then

s, T ILL
By, () Bl (5) = By, (w)- B, (v).

Proof. If either s = 0 or r = 0, then the statement follows from Corollary 5.3 and
Proposition 2.1. Let r # 0. We have (explanations below)

S, T /"L S, T /"L T
Bl ) By () = B ) B, () ) =

=B, () B, ((8)) = B0y () BY, () = BY, () BY, (). (5.10)

v 14

The first and third equalities in (5.10) follow by Proposition 2.1. The second and forth
equalities follow by Corollary 5.3. OJ

Corollary 5.5. Let p, v € GT, 1 < p < 0.
(i) If 1< q < min (p,2), then BS,QO(M) - By, ((,),) C B O(M)-
(ii) If max (p,2) < q < oo, then B) (1) C By, (1) - B, , (V).
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Proof. This follows from Theorem 3.1, Remark 5.1 and property of “B-products” (iv):
By, (1) - Byy(v) C By, (1) - Ly = By, (), 1 < g <min(p,2).

In the same way we prove (ii). O
Coming back to the interpolation spaces, we can reformulate Theorem 4.2 in terms
of “B-products”.

Theorem 5.2. Let u, v € GT, 1 <p<oo,1<g< o0, 0<0<1. Then

g) 196)

Theorem 5.3. Let u, v € GT, 1 <p<oo,1<g< o0, 0<0<1. Then

(Bpg (1), By (), = By’ (1) - By (v). (5.11)

»q

(H} () H (v % (

Proof. From (4.6), Definition 5.1, property (iii) of “B-products” and Corollary (5.3)
we have

(Bl (1) By (1), = Luour (B0, (5) - B, 0V B0, (5) - B, ) =

= 1,1-0,0 (B}?’q () - B}g’q (1/)) = B;;e () - qu (v).

The proof is complete.

Remark 5.2. In the same way using Corollary 5.4 we have

(B;,q (,u) 7Bp},q (V>)97q = [,ul—eu‘g (ng (:u) ’ Bzoz,q (V)) =
o (5 (5) 200 = 2, (2) )

Coming back to the spaces generated by the functions in G (see Remark 1.1) we
can rewrite Theorem 5.3 for this type of spaces.

Theorem 5.4. Let po,vo € Gy (see Remark 1.1), {px}ply € @ (o; B"), {1}, €

O (vp; R") (see Definition 1.1), u = (1+u3)1/2, v=(1 +1/0)1/2 l<p<oo,1<¢q<
o0, 0 <0< 1. Then

(B (1), Byy (1), = {f € S"(Bn) s 1A sy .83 40 Doy

- - 1/q
- (Z oka(1-0) Z 29 || o * 1h; * quL,,(Rn)> < 0

k=0 §=0

(with usual modification if ¢ = 00).
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Proof. From Definition 1.3 and Theorem 1.1 we have

oo

1/q
kq(1—60
11 H)BA,,))Q,(I:(Z?‘“ >||sok*f||"Bg,q(m)) ~

k=0

0 1/q
“’(§:2““_®H¢k*fmhu%@w%q> : (5.12)

k=0

Here spaces H, (1) and B), (1) are understood in sense of Definitions 1.2, 1.3 (sce
Remark 2.5). On the other hand, the interpolation space in the (5.12) can be described
by Theorem 2.2. Then from (5.12), Definition 5.1 and Corollary 2.3 we have

1/q
t1/2 1460 q dt
kq(1-0) —1 — ~
p\L{in
1/q 1/q
/H _1t1/2 146 f q @ N /H _1t1/2 1+6 f q @
2 2
T B e o) L),
12,20 41/2,1+6 q e
u t2ptt dt du
/ / et M=) I T PP
[1/ +U 1% +t Lp(Rn) t u Pq p.q
The proof is complete due to Theorem 5.3. 0

Remark 5.3. In the same way we can also rewrite other interpolation formulas and
formulas with “B-products” for the spaces generated by functions in G¢. This can be
done also for the appropriate formulas in Section 6.

6 Interpolation of pairs of B-spaces with different anisotropy.
Interpolation of “B-products”

Now we would like to describe the interpolation space (B, (1), B, (V))e . in terms of

“B-products”. We need to define “B-products” of the spaces with different second lower
indices and prove some interpolation formulas for “B-products”.

Definition 6.1. Let p,v € G, 1 < q,r < 00, —00 < s,m < co. The following space

B, (1) B (0) = Leum (BS, (1) B, ()
where
Bqu <'U’) ’ Bz()],r (V) -

1/q

1 dt
t

t1/2

=9/ €5 (Ra); [ fll sy, u-m9,0) = /MF p2 4t
0

<00y,

By (v)

2
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(with usual modification if ¢ = oo) we call “B-product” of the spaces B, ,(n) and
By, (v).
Let us fix B =By, (p), where p € GF, 1 < q. < 00, —00 < 5, < 00.

Definition 6.2. Let p € G*. We put
HY (1) - B = {1 € 8" (B) | ll g = | F 1 f 5 < 00}

Remark 6.1. If in Section 2 we start with the space H) (1) - B instead of H, (n) =
H; (i) - L, then almost all of the propositions in Section 2 have their analogues for
“B-products” with the fized second space B. Below we formulate those of them that we
shall use.

Proposition 6.1. Let pi,v € G. Then for f € H) (u)- B+ H) (v)- B, t >0

4 tpv
K(t, f:H (1) -B,H (v)-B) ~ ||F! F
(t.f:H,(n)- B,H, (v)-B) e f

p

(6.1)

B
Proof. It is clear that as in Remark 2.1, if a function A € G is bounded, then for

some ¢ > 0
|F-AF S|, <cllfllss feB.

Then using this fact we have

_ tv
K (4, f HY () - BHL (v) - B) < HF 1

o+ ty

1 M 4 tpv
t|Ft F =2||F'———F
i H A+ tv / H W+t /

On the other hand for f = fo + f1, fo € H) - B, fi € H} (v) - B we have

Hi(v)-B

t t t
F*l Hv Ff < Ffl Hv Ff(] + Ffl 24 Ffl —
W+ ty B o+ ty B W+ ty B
t
- HF—1 Y Ff, +tHF—1 i Ffi <
Pt 8 prt s

<e (Mol +t1Aillim) -

Taking infimum over all representations f = fo + fi, fo € H; - B, fi € H; (v) - B we
get the reverse of inequality (6.2). This proves (6.1).

Theorem 6.1. Let u € G™.
(1) If1<g<o00, —00<sg#£s1<00,0<0<1,s=(1—0)sy+0s1, then

(Hy" (1) - B, Hy' (1) - B),, = By, (n) - B.
(1) If, 1 < 7, qo, 1 < 00, —00 < S9# 81 <00,0<0<1,s=(1—0)sg+0sq, then

(B (1) - B By, () - By, = By, () - B
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Proof. The same as for the appropriate formulas for H and B-spaces in Section 2
(see Theorem 2.2 and Theorem 2.3 (i)). In the proof of part (i) we use (6.1). Part
(i) is proved with the help of part (i) and the reiteration theorem (see Theorem 1.10.2
of [T-2]).

Theorem 6.2. Let p, v € GT, 1 <p<oo,1 <qg<o0,0<0<1. Then

(H} () - B, HY (0) - B),,, = Lo | BS, (2) - B (6.3)

14

Proof. From (6.1) and the definition of the K-method (see 1.3 of [T-2]) we have

i ¢ ¢ dt
171, o e
(H}(w)-B,H}(v): B) - Wty gt
0
T t1 ( "t
/ (2) ul_eueFf —. (6.4)
0 B
In the same way as in Proposition 2.2 we get that (6.4) is equivalent to
~14,1-0, 9 q —14,1-600 q
I G E Yy oy 1 (P Y [y ey
This proves (6.3). O]
Proposition 6.2. Let uye Gt,1 <p<oo, 1 <q,r < oo. Then
0 0 _ po
Bp,q (N) ' Bp,r (NJ) - Bp,q (:u) : (65)
Proof. We use formula (i) of Theorem 2.3. Then we have
115 (o ~ ILFIIY ~ [ EEK(t fi By, (1), By (1) @ (6.6)
Bg, (Bl (1), BPT(M))l/qu yJ oy Hpr ) p,r ¢
The proof of (6.1) gives
K (t,f;B., (1), B; ]! Mg 6.7
(7f7 p,T(M)? p,T‘(/"L))N 2+t f ()
H B, ()
If we insert (6.7) in (6.6), then we obtain (6.5). O

Proposition 6.3. Let u,v € Gt, 1 < ¢q,r < 0co. Then
(i) B, (2) - BY, (1) =B2, (%) - B, (1) =BL, (%) - BY, (),
(ii) By, () - By, (1) =B, (1) - B,E, (v) =B, (1) - B;Om (£)-
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Proof. Step 1. Let us verify that

B8, (5)-Bo, =85, (5)- |80, (5) - BL, )] (6.8)

14 14

Let us use Theorem 6.1 (ii) with B = B, (u). We have

q q _
ey, 2o ~ WMo ) 22 0), 0, =
e (B nm @) 0L e
yJ oy Hpr v y “p,r v n . .
0
As in (6.1), (6.7) we have
0 f o
K (t,f;B;,, (-) .B, B} (-) -B) ~ | —r—Ff (6.10)
AN % AN (/i) 1t
v BY,.(%)-B
If we insert (6.10) in (6.9), then we obtain (6.8).
Step 2. From Corollary 5.3 and (6.8) we have
o (K 0 _po (K o (K 0 _
B () B0 =50, () (35 () - 35 0] =
o (M o (K 0 o (M 0
=5 () 1B () B )] = B (5) - B3 () =
_po (M o (K 0 _npo (K 0
=5 () 1B () - B ] = B3 () - ).
Step 3. In the same way we prove part (ii). O

Instead of the property of commutativity (see Section 5) in the case of different

lower indices for “B-products” we only have the following proposition (see Theorem
5.1).

Proposition 6.4. Let yu, v € Gt, 1 <p<oo, 1 <r <qg<oo. Then
(i) By, (n) - By, (v)C By, (v) - By, (k)
(”) B;?,'r (%) ) B;?,q (/‘LV)C Bg,q (/‘L> ’ B;?,r (V)

Proof. Let us prove part (ii). As in the proof of Theorem 5.1 we have

N ~1 (ut)l/2 v 2 %1/2
ity g0 < | |17 (Wﬂ) '<((&))2+

0 0

S |+ NS
N——
=
[\
&
~
| &
|&
N

1/2

The change of variables: (ﬁ) = x leads to

o0

00 1/2
iF / / ww V" (et ) o] I
<c —s O B e — —.
BO (N BO7(1/ 1 / /,LI/)2+<U,'L')2 (%)2+$2 T U
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Using Minkowski’s inequality we may change the order of integration. With the help
of the change of variables: ux = y and Proposition 2.1 we obtain

115 5. 09

Q3

T my 1/2 pl/2u 12 ! dy dr
<c/ / F1<—> -} mp Y gy . .
2 () + y? (&) +a y 10 2500

0 0 Ly

Part (ii) is proved. To prove part (i) we use only Minkowski’s inequality. The proof is
complete. 0]

Remark 6.2. It is clear that using Propositions 6.2, 6.3 we can get other embeddings
similar to the proved ones.

Theorem 6.3. Let p, v € GT, 1 <p<oo,1<qr<oo, 0<0<1. Then

(B (0, Bya 1)y, = oo (B, (3) - [BRa 0 Ba]). - 010

Proof. From (4.1) and the definition of the K-method we obtain

o0 212 " dt
r ~ [ FT 5 F i
||f||(B;,q(u),glg’q(u))g’r 0/ p? + 202 / Bl
00 , ) Iu2 T dt
I ) T = =Ag+ A (6.12)
J Bpq@)

Let us estimate Ay. As in the proof of Theorem 4.3 by change of variables we get

i 2 p*? " dt [ o d
T o PN Ly Pt PR
/ AT i B Pt g U
It is clear that (see (6.1))
2.2
-1 _upv 2 2 -1
Pl K (u, f; HZ () - By o (1) , H. B :
,UQ + UJ/2 B;,llz(u) (U,, f7 p (,UJ) D,q (M) ( ) D,q (M))
Then from Theorem 6.2 we get
1,2-0,0 1,100
Ao 12 e oy = IF 0V g gymp - (6:13)
In the same way for A; we have
— (48 1 uptv ' @N 1,166
A~ [urt P +W2FfHBp_éy 1E= 0=y oy (61)
o :

If we insert the obtained estimates (6.13), (6.14) for Ay and A; in (6.12), then we
obtain (6.11). The proof is complete. O

Based on the proved properties of the "B-products” we can give other representations

for the interpolation space (B, , (1), B, , (¥)),,-
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Theorem64 Let,u,uEG*l<p<ool q,r <00, 0<8<1. Then
(i) (Byq (1), By (V) 5, =Liaou [By, (5) - By (v w),
(ii) (B (n),B V))GT*B;?T(V) Bl o (10,
fid) (BLy (1), BLy () ~B1? () - B, ().

Proof. Step 1. Part (i) follows from Theorem 6.3 and Proposition 6.3.
Step 2. To prove part (i) we use (6.8) and Corollary 5.4. We have

o (M 0 o (M o (MK 0 _
B (5) Bl i) = B (5) 81 () - B ) =

=B, (5) B ()

v

Now part (ii) follows from part (i).
Step 3. Part (iii) follows from part (i), Proposition 6.3 and Proposition 2.1. We have

z z
Lo | BY, () - B, (w)] = Lo |BY, (2) - BD, )] =

v 14

H —0 (M
= [1(5)193;3’7, <Z>] (nBy, )] = B (L) Bl ).
The proof is complete. O

The following proposition shows that “B-products” are the interpolation spaces for
certain B-spaces.

Proposition 6.5. Let p, v € GT, 1 <p<oo, 1 <qr<oo, ssm#0,0<6<1.
Then

By (1) Byly (v) = (B (u/""0v™) By, (),
Proof. This follows from Theorem 6.4 (iii). O

Theorem 6.5. Let i, v € G, 1 <p<oo,1<qr < oo, %—l—%:%—i—%:%—k%:l,
—00 < §,m < 0o. Then

(By, (1) B, (1) = By () - Byl (). (6.15)

pq

Equality also holds in case r = co (or q = 00) if instead of B, , (1) (or B, (v)) we
use the closure S in By  (u) (or B]', (v)).

Proof. Step 1. Let s,m # 0. Then from Proposition 6.5, Corollary 2.5 and Theorem
3.7.1 of |B-L] we have

(B3, () By, ) = ((BLy (0/0-00m) By, (0),,) =

= (Byly (/™) B (v)), = By5 (1) Byl (v).

If r = 0o (or ¢ = c0) then we use Remark 3.7.1.
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Step 2. Let m # 0,5 = 0. We put B = B}, (). Then from Theorem 6.1 (ii) and Step
1 we have

(B, () By, () = (BY, ()~ B) = ((BLy ) B. By (1) - B), ) =
= (Bl ) B) (B () BY) | =Bl (i) Byly ().
Step 3. Let m = 0,5 = 0. As in Step 2 we have
(B, (1) - By () = (B, ()~ B) = ((BLy () B. By (1) - B), ) =
= (BB (B ) B)) | =
= (B ) B, ) (B () B, 00)), | =
= (B 0B, ) (B, ) By ))

where B = B) (). Using Step 2 and Theorem 6.1(ii) from (6.16) we obtain (6.15). O

(6.16)

7 Spaces of functions of mixed smoothness as “B-products”.
Interpolation formulas

In this Section we show that spaces of functions of mixed smoothness (see |L-N, Sc-
T, Sc-S]) can be considered as “B-products” of approximation spaces (see |L-N, Sc-S])
and classical Besov spaces. In this way we obtain the new characterizations of spaces
of functions of mixed smoothness. We start with certain particular spaces of Hand
B-type.

Definition 7.1. Let 1 <p < o0, —00 < s < o0, i =1,2. We put

H[s),i (R2> _ {f cs (Rg) : ||f| HE (Rg) = HF—l (1 ‘f‘f?)s/? EFf (§1a§2)

< 00 p.
Lp(R2) }

I

In terms of Definition 2.1 we have H3' (Ry) =H} <(1 + 5?)1/2 ; Rg).
Definition 7.2. Let 1 <p<o00,1 < q¢g< 00, —o0<s<o00,t=1,2. We put

By (Re) =

~ 1/q
_ feS’(Rz);HfHB;:Z(Rz):(ZQkSqHF_lek(&)Ff <§1’€2)MP<R2)> o
k=0

(with usual modification if ¢ = 00), where {pr} € ® (R) (see Definition 2.3.1/2 of [T-
2]). Fy denoted the Fourier transform in one variable.
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Proposition 7.1. Let 1 < p < oo, 1 < ¢g< 00, —00 < § #s51 <00, 0<60 <1,
=(1—-0)sy+0sy,i=1,2. Then

(Hy (Ra), 2 (o)), = By (R).

Proof The same as the proof of Theorem 1.1. O
Corollary 7.1. Let 1 <p<o0, 1 <g< 00, —00< 8§ <00, [l = (1+§Z-2)1/2, 1=1,2.
Then

Byy (Ra) = By, (pa),
where By (u;) are the spaces defined in Definition 2.2.

Proof. This follows from Proposition 7.1 and Theorem 2.2. U

Definition 7.3. Let 1 <p < oo, 1 <g< o0, —o0 < s < oo. We put

S4B () = {f € S/ (Ra): |1f

SS Rz) -

— (Z Z 2210 || P { Fyop (&) Frg (&) FIf (&4, f?””i,,(m)) < o0
=0 k=0

(with usual modification if ¢ = o0).

Remark 7.1. It is clear that we can rewrite the norm in Definition 7.3 as follows:

I/

- 1/q
52 B(R) = (Z 22U || P~ {Fip; (&) Ff (£1,6)}] quzé(RQ)> :

J=0

Theorem 7.1. Let 1 <p < o0, 1< qg< 00, —00<5<00, [t = (1—1—52)1/2 i=1,2.
Then

S;,qB (R2> = B;,q (:ul) ’ B;,q (MQ) :

This means that

S4B (R2) = {f € 8" (B3 I

S5 4(R2) —
1/2, 1+ 1/2 1+ q Ha
//H prlpt eyt A

(with usual modification if ¢ = c0).

Proof. From Corollary 7.1, Remark 7.1 and Corollary 2.3 we have

o 1/q
1 llss,, B ~ (Z |F~ {Fip; (§2>Ff}Hqu,q(m)> ~
=0
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o0 g 1/‘]
dt
/ 1 I
Jj= 0 Lp(R2)
12 g 1/q
t dt
- /HF_I 2 & Ef - ~
) S VN
1/q
/ / T I I 1
Pt ptu g, tou BYq11)-BY o (k2) °

This proves the theorem in the case s = 0. Using an operator of lifting type I (
where p = (1+ p2)'"%, po (€1.62) = (& + & + €363)"? we obtain

14p2)°/2

Sy B (Ry) = 1,:5) B (Ry) = 1,5 [By,, (11) - By, (12)] =

p;

Corollary 7.2. Let 1 <p < oo, 1 < g < oo, uz—(1+§2)1/2 i=1,2. Then

Sy B (Re) = By (papiz) - By, (1 + p2) = B (ape) - By (Ra)

where B), (Ry) is the classical Besov space (see [T-2, T-3, B-L]) and the space
B) , (n1p2) is defined in Definition 2.2.

Proof. From Theorem 7.1 and Corollary 5.3 we have
S;?,qB (RQ) = B](J),q (/“) ’ B;g,q (ﬂZ) =

= By, (mp2) - By (i + p2) = By (ppiz) - By o (Ra) .

The last equality follows from Remark 3.3 using that pq + g ~ (1 + ¢ ]2)1/2. Corollary
7.2 and Remark 2.5 show that we can give another characterization of the spaces
S0 B (R,).

Theorem 7.2. Let 1 <p< oo, 1 <qg< o0, —o0<s<oo. Then

S34B (R2) = {f € 8/ (Ra); 15

Ss . B(R2)

0o 00 1/q
= (szsq HF*l {F@kFlbij}Hqu(R2)> < 00 (7.1)

k=0 j=0
(with usual modification if ¢ = o), where {or} € ® (R2) (see Definition 2.3.1/2 of [T-
2]), {¢;} € ® (po; Ra), po (&1,&) = (2 + & + f%ﬁ%)lﬂ (see Definition 1.1).
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Proof. We put p = (1+ pg)m, wi = (1+ 5?)1/2, i =1,2. Then

1/2
g+ pip ~ (L4 1E7) 7 g ~ p. (7.2)

From Theorem 6.2.4 of [B-L| and Theorem 2.2 we have

YN {For PO FAY|] ryy = Z |7 {Fl/’ij}H%gq(Rg)

=0 k=0

NZHF EE LY 1y oy 7 1)

1/2,q

<7 t1/2 ot
=0 9 (/4111 + MZ) + Lp(RQ)

//H oL MJF“Z) - ul/zpr boodtdu
(p1 + p2) ‘4t pPPtu Lo(Rs) t u

Hf” o(1+p2)-Bp 4 (p) ©

Applying Corollary 7.2 we obtain (7.1) in the case s = (. Using the lift property of the
spaces Sp B (R,) and B; , (p) (see property (i) of Definition 1.1) we obtain (7.1). O

Let us define the approximation spaces A; , (Rg) (see [Sc-S]).
We consider the set

Hm = {(61762) € RQ;HT € {O, . ,m} ; ‘€1| < 27’7-‘-’ |£2’ < 2m7r7_r} '

Using these sets we define the hyperbolic best approximation of order m in L, (R») as

Em <f7 Lp) = inf ||f - gHLp(Rz)

where the infimum is taken with respect to all functions g € L, (Ry) such that
suppFg C H,,.

Definition 7.4. Let 1 <p <oo, 1 <qg< o0, s>0. We put

[e.9]

1/q
us iy = £, + (ZW B, (. Lpnq) < o0

m=0

Apq (Ro) = f € Ly (R2) || ]

(with usual modification if ¢ = 00).

Theorem 7.3. Let 1 <p<oo, 1 <qg<o0,s>0. Then
S4B (Ro) = A3, (Ro) - BY, (Ry) (73)

where ng (Ry) is the classical Besov space.
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Proof. Let us consider the functions p and pu; (see (7.2)):

po(61,6) = (E+ &+ p=(1+)"" =0+ i=12

From Corollary 7.2 and the lift property of the spaces S; B (Rz) and By | (p112) (see
(7.2)) we have

Sp B (Ra) =1,:5) B (Ry) = 1,5 [By, (pap2) -By, (Re)| =

P*p.q
= [IBy, (1)) - By, (Ra) = By, (pap2) - By, (Ra) . (7.4)
On the other hand from Proposition 5 of [Sc-S| and Theorem 2.2 we have
A5 (R2)=B;  (1p2). If we insert this equality in (7.4) we obtain (7.3). O

As in (13) of [Sc-S] we put
SHf(x) = F ' [xm, () Ff(€)] (x),
SH (@) = F7 [xu, (€) o F'f ()] (x) 4. k € Ny,

where g, is the characteristic function of H; and x; =xf, is the characteristic function
of the following set

Kp={(&.&) € Ry 6] <28, =1,2} — {(&.&) € Ry & <2871, =1,2}.

Applying Lizorkin’s representation of B-spaces (see |L-3] and Theorem 2.5.4 of |T-
3]) and Proposition 3 of [Sc-S| we obtain the following characterization of spaces

Sy B (Rg).
Proposition 7.2. Let 1 <p<oo, 1 <qg< o0, s>0. Then

S5qB(Ra) = {f € BY, (o)

ok ok

1/q
= 11£llpy, rey + (ZZWH S - sfkaip<R2>> <00

k=0 5=0

(with usual modification if ¢ = oo).

Proof. From Theorem 7.3 and Proposition 3 of [Sc-S| we have

1/q
q Y
Az’q(Rg)

1/q
<ZHF Cor ! (RQ) +

I.f]

S5.,B(R2) ™ (Z | F~ {xuF f}]
k=0

1/q
(ZZ”“’”% HOwF ] - [Fl(Xka)]”ip(Rz)) i

k=0 7=0
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oo 00 1/q
S H H q
~ 1 g ) + (Z > 2 ISt Sj,kaL,,(Rz)) -
k=0 j=0

O

Applying the results of Section 5 to the spaces of functions of mixed smoothness

characterised as “B-products” we obtain following two propositions.

Proposition 7.3. Let 1 < p < oo, 1 < g< o0, s#0,0<0 <1, p; = (14",
1=1,2. Then
S3B (Ba) = (Bi (1) Bla (o), .

where the spaces Bpl? (1) and Bpg,q (u2) are defined in Definition 2.2 (see also Corollary
7.1).

Proof. This follows from Theorem 7.1 and Theorem 5.3. ]

Proposition 7.4. Let 1 < p < 0.

(i) If 1 < ¢ < min (p,2) then S) B (Ry)C By, (Ra),

(i) if max (p,2) < q < oo then B) , (Ry) CS) B (Ry), where By  (Ry) is the clas-
sical Besov space. The embeddings of the same type also hold if instead of Bg,q (R2) we
use the space Bg’q (p1a2) from Corollary 7.2.

Proof. This follows from Corollary 7.2 and Corollary 5.5. Now we are going to formu-

late and prove the interpolation formulas for spaces of functions of mixed smoothness.
O

Theorem 7.4. Let 1 < p < oo, 1 < qg< 00, —00 < 81 # S <00, [l = (1—1—@2)1/2,
1 =1,2. Then the pair {S;}qB, S;?QB} 18 quast-linearizable. The appropriate operators
are (t >0):

(o)™ 4t (papo bt ()™

Proof. We verify all required properties of quasi-linearizability in the same way as in
the proof of Theorem 2.1 (see also the proof of Proposition 6.1). For the K-functional
we have (see Corollary 2.1):

s1+s2

: (7.5)

Sp.qB

_ t(pipe)
K (t, f;85.B,82B) ~ ||[F~!
<7f7 p,q " ~pgq ) H (M1M2)81+t(ﬂlﬂ2>82

feSLB+S2B, t>0.

Theorem 7.5. Let 1 < p < oo, 1 < qr <00, —00< 8§ # 59 <00, 0 <6 <1,
s=(1—10)s; +0sy. Then

(S;4B. 5% B), = By, (11p2) - S, B. (7.6)

L 21}
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Proof. From the definition of the K-method (see |T-2| or |B-L|) and (7.5) we have

o0
e
0

|

Applying Theorem 7.1 and Propositions 2.1, 2.2 we obtain (7.6). O

s1+s2 r

F-l t (p1pt2)
(p1p2)™ +t (papan)™

ﬂ
t

0
Sp.qB

tl—@ s1—52)0 "

-l (MLUQ)(
(pip2)™ 7+t

dt

(M1M2)s Ff

S B

Remark 7.2. If we define appropriate “product” A; . - SS’qB, then using Proposition 5
of [Sc-S] we can rewrite (7.6) as

(SSl B, 5,,B )9 = A, S;S,qB

To formulate other interpolation formulas we generalize Definition 7.35.

Definition 7.5. Let 1 < p < 00, 1 < q1,¢2 < 00, —00 < 81,89 < 00, ¢ = (q1,q2),
S = (s1,52), {¢r} € P(R) (see Deﬁmtwn 2.3.1/2 of [T-2]). We put

5B (R2) = {F €8 (R): 1 s iy =

a\ l/a

Z oksia1 (Z Q75242 HFﬁl {Fior (&) Fipj (&) F f (&, £2>}Hqup(Rg)> < 00
k=0 §=0

(with usual modification if ¢ = 00 ).

Remark 7.3. Using the terms of Definition 7.2 we can rewrite the norm in Definition

7.5 as
1/Q1
a1 _
32 2(R2) —

1 (B2 (R2)) (7.7)

I/

S3_B(R2) (Z 2 || F Ry (6) FIf (6,8

= |F7 Figr (&) Ff (&, 6)

Let {¢r}reo€® (R). As in Section 1 we put p, = Z Ort+j (r = 0 for k < 0).
j=—1
Then
Pr * Pk = Pk k’ZO,l,....
For f € 5" (Ry) and g = {g]}] 0195 € S"(Ry),j=0,1,... we put

Sf={F"'"Fip,(&)Ff(&,&)},,, Rg= ZF_IF@J- (&) Fgj (&,&).  (7.8)

j=0
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Theorem 7.6. Let 1 < p < 00, ¢ = (q1,42), 5 = (51,82),1 < ¢ < 00, —00 < §; <
o0, i = 1,2. Then space S; B (Ry) is a retract of the space I3} (B;qu (RQ)). The
appropriate operators are deﬁned in (7.8).

Proof. From (7.7), (7.8) we see that S € L (S5.B (Rs) 15! (Bs22(R,))) and RS = E.

7 q1 P,q2

Using the properties of the systems {¢x} o, and {@,}r—, we have (see Remark 7.3)

e k+1 q1 Va
1R9llss _p(rs) = POPARE Z F Py (&) Fig; (&) Fyg; (6,6) =
w0 =k By (Fa)
-~ 1 @ 1/q1
= Z 2o Z FT R (&) Fify, (&1) Forrr (61, 62) <
k=0 r=-1 B,%3 (Rz)
o) 1/
ksiq q1 — .
i (ZQ ol B;,%;;(Rz)) = ¢ N9l (322 o)
So Re L (I3 (B:22(Ry)),S5.:B (Ry)). O
Theorem 7.7. Let 5 = (s1,82), m = (my1,m2), ¢ = (q1,q2), T = (7’1,7“2) 1 <q,r <
00, —00 < §;,Mm; < 00,1 =1,2, 1<pp0,p1<oo,0<9<1 =(1- )51+0m1,
, _ 1_19 19, 0 1 _ 1-9 e
m_(1_0>82+8m2’q_* ( 7“1’7" _q_2+_2’p__ Po p_ then
(Z)[pqu’Sgllr } _Ssm )B,

5 ™ s m*)
(”) (Sp@B’Sp,? ) - Sp (g*,q* )B
If in addition p* = q*, then ( :
(111) ( voa B Sm ) b = Sp*y(’q*7q*)B.

7 pL,r

Proof. Step 1. From Theorem 7.6 we have for a certain interpolation functor ¥
1 lagsy ms o) ~ ILE T Fron (60) FF €0 oo sz o (mzzyy - (T9)

Let us denote Ag = B22 (Ry), A; = B™?2(R,). Then using, as the functor ¥, the

Ppo,q2 p1,72

functor of the complex method, from (7.9) and Theorem 5.6.3 of [B-L| we get

1 sy, s e, ~ IRE™ Frow (€0 B (€0 €)Ml (s, yms (a2, ~

~ | F T Fupr (&) Ff (61,6) 2 (40, (7.10)

We use the description of the interpolation space [Ag, A1], given in Theorem 2.4 (i)
(see also Corollary 7.1). Then from (7.10) we have

||f||[ S5, aBST B ~ H{F Fipy (§1) Ff (§1,62)

HCCONEEES

Now (i) follows from (7.11) and (7.7).
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Step 2. Let ¥ be a functor of the real method. Then using Theorem 5.6.2 of |B-L| we
obtain from (7.9)

HfH(S;HB’SzTFB)g,q* ~ ||{F_1F1§0k (51) Ff (£17€2)} l(slj ((AO’A)(;,q*) ) (712)

where Ay = B3%?(R), A1 = B}'2* (Ry). Using Theorem 2.3(i), Corollary 7.1 and
Theorem 7.6 we get (ii).

Step 3. If in (7.12), we use as in Step 1, Ay = B22 (Rz), Ay = BJ'%2(Ry), then
we need to describe the interpolation space (AO,Al)&q*. The additional assumption

p* = ¢* allows us to apply Theorem 2.4(ii). Then we obtain (iii). O

Remark 7.4. In the same way we can also obtain other interpolation formulas using
other interpolations formulas for B-spaces (see Theorem 2.3). If we assume that Ay =
Ay = Avin (7.7) then using interpolation theorems for the spaces I (A) (see [T-2, B-L])
we can obtain other interpolation formulas for spaces of functions of mized smoothness.

8 Traces

Let, as in Section 1, R be a convex polyhedron (with vertices (0,...,0),0/ € Z j =
1,.., M) such that R has vertices on the each co-ordinate axes different from (0,...,0).
We put (see (1.1))

M 1/2
v(©) =1+ )" = (1+Z£2°“’> . (8.1)

We denote the co-ordinates of the vertices of the vertices of polyhedron R by
mo, My, ..., my where 0 = myg < my; < ... < my. Assume that the points (0,m;),
j=0,1,..., N belong to . We consider the hyper-planes

P,={z=(x1,...2,) € Ryyx, =m;},j=0,1,...,N. (8.2)

Let us denote by R; the projections onto R,,_; = {x € R,;x, = 0} of the cross-sections
of the polyhedron R by the hyper-planes P; (j = 0,1,...,N). According to (8.1) the
polyhedrons ®; have their own functions v; ('), ¢ = (&,...,&-1), J = 0,1,..., N.
Then for the function v (§) of the polyhedron R we have

N 1/2
v (&) ~ (Z&i%? (5')) . (8:3)

We formulate two lemmas, which were proved in [B-4].

Lemma 8.1. Let R be a convex polyhedron of considered type, 1 < p < 00, 0; = I#j’

7 =0,1,...,N. Then there exists a positive number ¢, such that the following inequality
—0; 0; —01 1
w7 () vy (€) ey ™ () (€)
holds for all ¢’ € R,_1 and all  =0,1,... N.
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With the help of Lemma 8.1 the following lemma is proved (in [B-4]).

Lemma 8.2. Let R be a convex polyhedron of considered type. Then there exists a
positive number cy such that

1/2

VO <o ( ©+emie) (28" ) CeR (54

Let us consider the trace operator:

(Trf) () = f(2',0), f € S(Rn).

Theorem 8.1. Let R be a convex polyhedron of considered type, 1 < p < 0o, § = —1—.

pmi
Then the trace operator is a retract from H; (v; R,) onto B Elugf%f [ng (l’j—?) ;Rn_l} ,
where the mentioned H and B-spaces are defined in Definition 2.1 and Definition 2.2.

Proof. We denote by R* the part of the polyhedron R between hyper-planes F, and
P;. We denote the appropriate function (see (8.1)) by v* (§):

« m 1/2
v (€)= [ (€) + &Mt (€] (8.5)
The function in the right-hand side of inequality (8.4) we denote by v** (§):
AN
% m v ™
0= (@@ (2E) ) 86
v (£)
From (8.3), (8.4) we have
v (&) Sv(§) <@ (§).€ € Ra. (8.7)
Inequalities (8.7) (see [V-P]) are equivalent to the embeddings
H, (v*;R,) C H) (v; R,) C H, (V"; Ry,) (8.8)

for the appropriate H-spaces from Definition 2.1. From Theorem 2.1 we have that both
_mN N

pairs {HI} (vo; Rn—1) H; (v1; Rn—l)} and {H; (vo; Rn—1) ,HI} (V; "oy ;Rn_l)}

are quasi-linearizable. Hence we can apply Theorem 1.8.5 of [T-2| for the spaces

H) (v*; R,) and H) (v**; R,) with functions v* (§) and v** (¢) from (8.5),(8.6). From

Theorem 1.8.5 of [T-2| (see also Lemma 2.9.1 and Theorem 2.9.1 of [T-2]|) we obtain
that the trace operator is a retract

from H) (v*;R,) onto (H, (vo;Ra-1),H, (v1;Ry-1)) (8.9)

0,p

and
1-N TN
from H, (V**;R,) onto (H; (vo; Ru-1) , H,, <1/0 2 ;Rn_1>) . (8.10)
On.p

where Oy = 1/pmy.

Applying Theorem 4.2 and Proposition 2.1 after simple calculations we can see that
both of the interpolation spaces in (8.9) and (8.10) are equal to B. Now the proof is
complete due to (8.8). O
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Remark 8.1. Theorem 8.1 shows that space of traces of the H-space generated by the
polyhedron R depends only on R*(the part of R between hyper-plans Py and Py from
(8.2)). Other parts of R do not play any role.

Remark 8.2. To find the space of traces for the space H; (v; R,) as we see in Theorem
8.1, we need to write down the functions vy (&) and vy (£'). From (8.3) we have

N
V2 (€) ~ D Mt (E).
j=0

The functions 1/]2 (&) can be found as the coefficients of the polynomial. Then we have

anl 1/2

~ aé-%ml

v (&) ~v?(€,0),17 (€) (€,0).
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