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Abstract. We study boundary value problems on hedgehog-type graphs for second-
order ordinary differential equations with general matching conditions. We establish
properties of spectral characteristics and investigate the inverse spectral problem of
recovering the coefficients of a differential equation from the spectral data. For this in-
verse problem we prove a uniqueness theorem and provide a procedure for constructing
its solution.

1 Introduction

We study an inverse spectral problem for Sturm-Liouville differential operators on
the so-called hedgehog-type graphs with general matching conditions in the interior
vertices. Inverse spectral problems consist in recovering operators from their spectral
characteristics. The main results on inverse spectral problems for Sturm-Liouville
operators on an interval are presented in the monographs [7], [11], [12] and other works.
Differential operators on graphs (networks, trees) often appear in natural sciences and
engineering (see [6], [9], [10], [14], [15], [18] and the references therein). Most of the
results in this direction are devoted to direct problems of studying properties of the
spectrum and the root functions for operators on graphs. Inverse spectral problems,
because of their nonlinearity, are more difficult to investigate, and nowadays there exists
only a small number of papers in this area. In particular, inverse spectral problems
of recovering the coefficients of differential operators on trees (i.e on graphs without
cycles) were solved in [1], [3], [22]. Inverse problems for Sturm-Liouville operators on
graphs with a cycle were studied in [23], [24], [25] and other papers but only in the case
of the so-called standard matching conditions. In particular, in this case the uniqueness
result was obtained in [24] for hedgehog-type graphs.

In the present paper we consider Sturm-Liouville operators on hedgehog-type graphs
with generalized matching conditions (see Section 2 for definitions). This class of
matching conditions appears in applications and produces new qualitative difficulties
in investigating nonlinear inverse coefficient problems. For studying this class of inverse
problems we develop the ideas of the method of spectral mappings [20], [21]. We
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prove a uniqueness theorem for this class of nonlinear inverse problems, and provide
a constructive procedure for finding their solution. In order to construct the solution,
we solve, in particular, an important auxiliary inverse problem for a quasi-periodic
boundary value problem on the cycle with discontinuity conditions in interior points.
The obtained results are natural generalizations of the well-known results on inverse
problems for differential operators on an interval and on graphs with standard matching
conditions.

We note that results and methods of the inverse spectral problem theory can be
useful for investigating inverse problems for partial differential equations (see [7]). In-
verse problems for partial differential equations are reflected in the monographs [5], [8],
[16], [17] and others.

The paper is organized as follows. In Section 2 we introduce the main notions and
give a formulation of the inverse problem. In Section 3 spectral properties are studied.
Section 4 is devoted to the solution of the inverse problem.

2 Formulation of the inverse problem

Consider a compact graph G in R™ with the set of edges £ = {eq, ..., e}, where ¢q is

a cycle, &' ={ey,...,e.} are boundary edges. Let {vy,...,v,.n} be the set of vertices,
where V' = {vy,..., v}, vx € e, are boundary vertices, and U = {v,41,...,v,.n} are
internal vertices, U = £’ Ney. The cycle ey consists of N parts:
N
€0 = U €riky Crik = [Ur+k7v7‘+k+1]a k= 17_N7 Ur4N+1 = Uprt1.
k=1

Each boundary edge e;, j = 1, r has the initial point at v;, and the end point in the set
U. The set £ consists of N groups of edges: & = &1 U.. . UEN,ENey = vy Let 1y be
the number of edges in &; hence r =r1+---+7ry. Denote mg =1, mp =r1+---+ 7y,
k=1,N. Then

my
gk:{ej}7 j:mk—1+17mk7 Urtk = ﬂ €j, k= 1aN
J=mg_1+1
Thus, the boundary edge e; € &, can be viewed as the segment e; = [v;, v,1y]. For

example, the graph G with N = 3 and r = 4 is on fig.1.

U3

Vg

Fig. 1
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Let T; be the length of the edge ¢;, j = 1,7+ N, and let T':= T, 11 +... +T,4n be
the length of the cycle eg. Put bg =0, bp =Trs1+ ...+ Trsk, k= 1,N. Then by =T.

Each edge €;, j = 1,7 + N is parameterized by the parameter z; € [0,7}], and
x; = 0 corresponds to the vertex v;. The whole cycle ey is parameterized by the
parameter z € [0, T], where z = x,,; + b;_; for x,.; € [0,T,1,], =1, N.

An integrable function Y on G may be represented as Y = {y;} j—Tr~» Where the
function y;(x;), x; € [0,T}], is defined on the edge e;. The function y(z), = € [0,7] on
the cycle eq is defined by y(z) = y,4(z44), 5 =1, N.

Let Q = {qj}j:m be an integrable real-valued function on G; @ is called the
potential. The function ¢(x), = € [0,T] is defined by ¢(z) = g1 j(z,4;), j = 1, N.
Denote U;(Y) = y;(0) — h;y;(0), 5 = 1,r + N, Upyni1 = Upyr, where hy are real
numbers. Consider the following differential equation on G:

v (z) + q;(x;)y;(z;) = Ay;(2;), 2; €[0, T3], j=1r+N, (2.1)

where A is the spectral parameter, the functions y;,y}, j = 1,7+ N, are absolutely
continuous on [0,7}] and satisfy the following matching conditions in each internal
vertex v,4q, =1+ 1,7+ N:

Yur1(0) = ay;(Ty) forall e; €&, 4,
Uin(Y) = Y BulT)). (22)

. ’
e; €5M7T+1

YriNt1 = Yril, Pogngn 3= oy, Envy1 =61, &y = Eu v Uey,
where «; and b; are real numbers, and «;3; # 0. For definiteness, let a;3; > 0. The
matching conditions (2.2) are a generalization of the standard matching conditions (see
[24]), where a; = 8; =1, h; = 0.
Let us consider the boundary value problem By on G for equation (2.1) with the
matching conditions (2.2) and with the following boundary conditions at the boundary
vertices vy, ...,V

U(Y)=0, j=Tr.

Denote by Ag = {Ano}n>0 the eigenvalues (counting with multiplicities) of By. More-
over, we also consider the boundary value problems B,, ., ,p= Lrl<uy<..p<
r for equation (2.1) with the matching conditions (2.2) and with the boundary condi-
tions

ue(0) =0, k=uv1,...,vp, U;(Y)=0, =17 j#v1,...,0,.

Denote by Ay, .., = { A1, fn>0 the eigenvalues (counting with multiplicities) of
Bul,...,yp'

It will be shown in Section 4 that an important role for solving inverse problems
on graphs is played by an auxiliary quasi-periodic boundary value problem on the
cycle with discontinuity conditions in interior points. The parameters of this auxiliary
problem depend on the parameters of By. More precisely, let us introduce real numbers
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v, M, (7 =1,N —1), h,a, 3 by the formulae

0{7" j . T —
oy = Yherior, j=LN =1, h=hu,

N-1

N-1 N-1 N
OZZOér+NH7jH5r+j7 p= H%‘Hﬁrﬂ‘-
J=1 Jj=1 j=1  j=1

(2.3)

Clearly, o > 0, 75 > 0, j = 1,N — 1. Using these parameters we consider the
following quasi-periodic discontinuity boundary value problem B on the cycle eq:

—y'(x) + q(z)y(x) = My(x), =€ (0,T), (2.4)

y(0) = ay(T), y'(0) — hy(0) = By'(T), (2.5)
y(bj 4 0) = y(b; — 0), y/'(b; +0) = 7; 'y (bj — 0) + njy(b; — 0), j =1,N —1, (2.6)
O<b <...<by_1<by=T.

Let S(z, A) and C(z, A) be solutions of equation (2.4) satisfying discontinuity conditions
(2.6) and the initial conditions S(0,A) = C’(0,A\) = 0, S’(0,\) = C(0,\) = 1. Put
o(x,\) = C(z,\) + hS(z, \). Eigenvalues {\,},>1 of B coincide with zeros of the
characteristic function

a(N) = ap(T,\) + BS"(T,\) — (1 + ap). (2.7)

Put d(\) = S(T, ), Q(\) = ap(T,\) — 8S'(T, ). All zeros {z,},>1 of the entire
, . di(z,

function d()) are simple, i.e. d(z,) # 0, where d()\) := 2L d()). Denote M, = — d1(<2 )),
Zn

where dy(\) := C(T,\). The sequence {M,},>1 is called the Weyl sequence. Put

Wp = SignQ(zn)a Q= {wn}nzl‘ _

We choose and fix one edge e, € & from each block &, i =1, N, ie. m;_1 +1 <

& < m;. Denote by € :={k: k=¢&,...,&{y} the set of indices &, i = 1, N. Let «;

and 3, j = 1,7+ N, be known a priori. The inverse problem is formulated as follows.

v <...<y, <7y €8, and Q, construct the potential Q on G and H = [h], 177

Obviously, in general it is not possible to recover also all coefficients «; and ;.
Note that this inverse problem is a generalization of the classical inverse problems for
Sturm-Liouville operators on an interval or on graphs.

Example 2.1. Let N =3, r =4 (see Fig.1).
Case 1. Take & = 2, & = 3, &3 = 4. Then we specify 2 and the following spectra:
Mo, Ay, Aoy Az, Ay, Ao, Aoy, Az, Aoz
Case 2. Take & =1, & = 3, &3 = 4. Then we specify 2 and the following spectra:
Ao, Avy Aoy Az, Agy Aig, Mgy, Az, Az

Let us formulate the uniqueness theorem for the solution of Inverse problem 1. For
this purpose together with ¢ we consider a potential q. Everywhere below if a symbol
a denotes an object related to ¢, then & will denote the analogous object related to q.
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Theorem 2.1. IfA —Aj,j—Or Ay, =/~\y1 77777 vy P=2,N, 1< <...<p,<
r,v; €&, and Q =, then Q) = Q and H =

This theorem will be proved in Section 4. We will also provide there a constructive
procedure for the solution of Inverse problem 1. In Section 3 we study properties of
spectral characteristics and prove some auxiliary assertions.

3 Properties of spectral characteristics

Let Sj(xj,A), Cj(z;,A), j =1,r+ N, z; € [0,T;], be the solutions to equation (2.1)
on the edge e; with the initial conditions

9j(0,4) = C5(0,A) =0, 5j(0,4) = C;(0,A) = 1. (3.1)
PU't QD](I', )\) (.ZU], ) + h]S](x],A) FOl“ eaCh ﬁXed LL'] (= [O’T]L the functions

S](.”)(xj,)\), C](.”)(azj,)\) gp( )(a:j,)\), j =1r+N, v = 0,1, are entire in A of order

1/2. Moreover,
(j(zj; ), i, M) =1,
where (y, z) := yz’ — ¢’z is the Wronskian of y and z.

Lemma 3.1. The following relations hold for k=1,N —1, v =0, 1:

S (brr — 0,A) = 1S (b — 0, Oy ks (Trgrans A) + 75 1S (b — 0, ) SV oy (Trsigs, )

+77/€S<bk -0, )‘>Sr+k+1(Tr+k+1, )\)7 (3'2)
O( )(bk—i-l - O /\) - 'ch(bk - O )\>Cr+kz+1 (TH—k—&-la )‘) + 'Vk_lcl(bk - Oa )‘>S£I-js-)k+1(Tr+k+17 /\)
‘H?krc(bk -0, A)Sr+k+1 (Tr+k+la )\)7 (3'3)

Indeed, fix k = 1, N — 1. Let © € [bg, bgr1], i.e. * = Tpypr1+bk, Trygr1 € [0, Trgpra]-
Using the fundamental system of solutions S,iri1(Zrikt1, A)s Crigr1(Trikir, A), on
€riki1, One has

SO (x,A) = ANCY, @k, A) + BOSY, (@i, A), v =0, 1.

r

Taking initial conditions (3.1) for j = r + k + 1 into account we find the coefficients
A(M) and B()), and arrive at (3.2). Relation (3.3) is proved similarly.

Let here and below A = p?, 7:=Imp >0, 11:={p: 7> 0}, Il;:={p: argp €
[0, 7 —d]}, & € (0,7/2). The following theorem describes the asymptotic behavior of
S(xz,\) and C(x, \) on each interval z € (b;, bj11) (see [26]).

Theorem 3.1. Fiz j =1, N — 1. For x € (bj,bj+1), v=0,1, m=1,2, |p| — oo,

- ()05 ¥ ([18) s

P k=1 1< <..<pp<j i=1
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_’_O(pu+m—3€7'a:)7

) T & d g
CW(x,\) = <H 5;:) T (cos px + Z Z (H f’i ) cos(pay, .. ,Lk(x))>
k=1 k=1 1<p1<..<pp<j i=1 >Hi
+O(pu+m73€7'm>’
where i
v+t .
& = (@) =2 (1) b+ (D)
i=1

Using Theorem 3.1, we obtain for |p| — oo, p € I;:

o) = LDy ==L e, =TT G

Moreover,
a\) = 0(™), d(\) = 0(peT), o] o0, pell (3.5)

Fix k = 1,7. Let ®, = {®4;},_1;7x, be the solution of equation (2.1) satisfying
(2.2) and the boundary conditions

Uj(®k) = dj, J =1, (3.6)

where §;;, is the Kronecker symbol. Denote M ()\) := @4 (0, A), k = 1, 7. The function
My () is called the Weyl function with respect to the boundary vertex v;. Clearly,

(IDkk(:)sk, )\) = Sk(ﬂfk, )\) + Mk()\)gpk(:vk, )\), TE € [O,Tk], k= 1,_T, (37)

and consequently,
(Pr(Tr, A); Par(, A)) = 1. (3.8)

Denote M;(A) := ®p;(0,X), MP;(X) := @,(0,\) — h;®;;(0, X). Then

(I)kj(flfj, )\) = M]%()\)S](Qf], )\) + M]g]()\)@]<l’], )\), X S [O,T}], j = 1,T + N, k= 1,7’.

(3.9)
In particular, M}, (\) =1, MY, (\) = Mi()\). Substituting (3.9) into (2.2) and (3.6) w
obtain a linear algebraic system D, with respect to Mk”j()\), v=201 7=1r+N.
The determinant Ag(\) of Dy does not depend on k and has the form

N k
B =oN (@M +Y. > awn WX %)) G0
k=1 1< <..<pp <N =1  e;€Ey,
where
: _ ﬁj@;(Tj’ )‘>

o(\) = [ (i@ A), - (0 (3.11)

- ajpi (T, \)’

ap(A) = a(A), ar(\) = ad(N). (3.12)

<
—
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We note that the coefficients ag()\) and a,,. ,, (A) in (3.10) depend only on S](.V) (T3, A)
and CJ(V)(T]-, A), for j =r+1,r+ N, and (3.12) follows from Lemma 3.1. We do not
need concrete formulae for the other coefficients a,,, .. ,,, (A). The function Ag(A) is entire
in A of order 1/2, and its zeros coincide with the eigenvalues of the boundary value
problem By. The function Agy(A) is called the characteristic function for the boundary
obtained from Ag(\) by the replacement of (,0;”) (T3, \) with S](V) (T;,\) for j =11,...,1p,
v =0, 1. More precisely,

k
<11 ( PRIV Q?(M)), (3.13)
i=1 ejeg//q‘,: JFVL,ees Vp €; Ggui, J=V1,eesy Vp
where
! B3;S4(T;, \)
v = T (e A) T (ST, 0), Q) = Al
J=1, j#v1 v J=V1,..,Vp ININET

(3.14)
,,,,, v,(A) is entire in A of order 1/2, and its zeros coincide with the
,,,,, v,- The function A, ., (A) is called

the characteristic function for the boundary value problem B, ., .
Solving the algebraic system Dy we get by Cramer’s rule: My (A) = Ag;(A)/Ag(N),
s =0,1,j = 1,7+ N, where the determinant Aj,()) is obtained from Ag(A) by the
replacement of the column which corresponds to M ;(\) with the column of free terms.

In particular,

.....

Mip(\) = —2’58), k=Tr. (3.15)

~—

It is known (see [13]) that for each fixed j = 1,7 + N, on the edge e;, there exists a
fundamental system of solutions of equation (1) {e;1(x;, p), eja(xj, p)}, x; € [0,T}], p €
I, |p| > p* with the properties:

(

1) the functions e ';) (zj,p), v = 0,1, are continuous for z; € [0,T;], p € II, |p| > p*;

j
2) for each x; € [0,7}], the functions eg-';)(:pj,p), v = 0,1, are analytic for Imp >
0, [p| > p;
3) uniformly in z; € [0,7}], the following asymptotical formulae hold
ei(wj, p) = (ip)" explipr;)[1], €3 (x;, p) = (—ip)” exp(—ipz;)[1], p € L, |p| — o0,
(3.16)
where [1] =1+ O(p™!).

Fix k = 1,7. One has

Dpi(;, N) = Ay (pleji (g, p) + A (p)eja(y, p), 2, €[0,T5], j=1,r+N. (3.17)
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Substituting (3.17) into (2.2) and (3.6) we obtain a linear algebraic system D{ with
respect to Ay (p), v =0,1, j = 1,7 + N. The determinant §(p) of D does not depend
on k, and has the form

r+N

5(p) = ((50 + O(%))pHN exp < — ipz T]>, (3.18)

where &y is the determinant obtained from §(p) by the replacement of egq)((),p),

e§.§) (Tj, p), e%)(o, 0, e%) (T}, p) and h; with 1,0, (—1)¥, (—1)” and 0, respectively. We as-
sume that §y # 0. This condition is called the regularity condition for matching. Differ-
ential operators on GG which do not satisfy the regularity condition, possess qualitatively
different properties in connection with the formulation and investigation of inverse
problems, and are not considered in this paper; they require a separate investigation.
We note that for classical Kirchhoft’s matching conditions we have a; = 8; = 1, h; = 0,
and the regularity condition is satisfied obviously. Solving the algebraic system D9 and

using (3.16)-(3.18) we get for each fixed zy € [0, T}):
(21, N) = (ip)" explipmi)[1],  p €T, |p] — oo. (3.19)

In particular, My (\) = (ip)~'[1], p € I;, |p| — oo. Moreover, uniformly in z; € [0, T}],

o x, V) = 5 (i) explipm)1] + (~ip)” exp(—ipz)[1]). p € TI, |o] = co. (320)

Using (3.10), (3.20), (3.4) and (3.5), by the well-known method (see, for example, [2]),
one can obtain the following properties of the characteristic function Ag(\) and the
eigenvalues Ay of the boundary value problem B.

1) For p € II, |p| — o0,

r+N

Ag(N) = O(exp (TZT}))

j=1
2) There exist h > 0, C}, > 0 such that

r+N

|Ag(N)| = Cpexp <7- ZTJ)

J=1

for 7 > h. Hence, the eigenvalues \,g = p2, lie in the domain 0 < 7 < h.

3) The number N¢ of zeros of Ay()) in the rectangle A = {p: 7 € [0,h], Rep €
£,€ 4+ 1]} is bounded with respect to £.

4) For n — oo,

1
Pno = ,020 + O<T)7
Pno

where \? = (p?)? are the eigenvalues of the boundary value problem B, with @ = 0
and H = 0.
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The characteristic functions A,
p € 1L, [p] — oo,

-----

Using the properties of the characteristic functions and Hadamard’s factorization
theorem [4, p. 289, one gets that the specification of the spectrum Ay uniquely
determines the characteristic function Ag(A), i.e. if Ag = Ao, then Ag(\) = Ag().
Analogously, if A, ., = /NXyl ,,,,, vy then Ay (X)) = Ayl v, (A). The characteristic
functions can be constructed as the corresponding infinite products (see [7] for details).

----------

4 Solution of Inverse problem 1

In this section we provide a constructive procedure for the solution of Inverse problem 1,
and prove its uniqueness.

Fix k = 1,7, and consider the following auxiliary inverse problem on the edge ez,
which is called IP (k).

IP (k). Given two spectra Ay and Ay, construct gx(xy), zx € [0, T}], and hy.

In TP(k) we construct the potential only on the edge ey, but the spectra bring a
global information from the whole graph. In other words, IP(k) is not a local inverse
problem related to the edge e;.

Let us prove the uniqueness theorem for the solution of IP (k).

Theorem 4.1. Fiz k = 1,r. If Ay = Ao and A, = Ay, then qu(zr) = Gu(zr), a.e.
on [0, Ty], and hy = hy. Thus, the specification of two spectra Ao and Ay uniquely
determines the potential q. on the edge ey, and the coefficient hy,.

Proof. Since Ag = Ao, Ax = Ay, it follows that

and according to (3.15),
Mi(A) = Mi()). (4.1)

Consider the functions

Pl (an, A) = (=1 (ol NG (o1 A) = 30 V@il V), s = 1,2
(4.2)
Using (3.8) we calculate

ok, A) = P (2, N @i(an, A) + Pk, @ (21, A). (4.3)
It follows from (3.19), (3.20) and (4.2) that

PP (z1,\) =615 +O(p™Y), pells, |p| — oo, a1 € (0,Tx]. (4.4)
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According to (3.7) and (4.2),

Pl 2) = (=1 (ol NS 2) = 67 @, VSl V)

(M) = M), VL @, V).

It follows from (4.1) that for each fixed zy, the functions Pf(zg, ) are entire in \ of
order 1/2. Together with (4.4) this yields PF (zg, \) = 1, Ph(xy, \) = 0. Substituting
these relations into (4.3) we get vi(2x, A) = @r(zk, A) for all x and A, and consequently,

qr(zx) = Gr(xg) ae. on [0,Tx], hg = hy .

[]

Using the method of spectral mappings [21] for the Sturm-Liouville operator on
the edge e, one can get a constructive procedure for finding g and hy,. Here we only
explain ideas briefly; for details and proofs see [21]. Take a boundary value problem By
with Q = 0, H = 0. Take a fixed ¢; > 0 such that [Im pyol, |Tm jno| < ¢i. In the p- plane
we consider the contour v (with counterclockwise circuit) of the form v = v U+~
where v* = {p: 4Imp = ¢;}. Denote

fk(xlw P 9) = <¢k<xk’ i\\)jbek(xk, 9)> <Mk(9) - Mk(e)) .

For each fixed x), € (0, T}), the function g (xg, A) is the unique solution of the following
linear integral equation

. 1 N
(2, A) = @r(2r, A) + 57 /Tk(xk,A,H)gok(xk,@) do. (4.5)
Y

Using the solution ¢ (xx, A) of equation (4.5) one can easily construct the coefficients
qr(zx) and hy (for details see [7]).

Let us study the following auxiliary inverse problem on the cycle ey, which is called
IP(0). Consider the boundary value problem B of the form (2.4)-(2.6), where the
parameters of By are defined by (2.3), and «a, 3 are known.

IP(0). Given a()), d(\) and Q, construct ¢(x), x € [0,T], h,7y; and n;, j =
LN 1

This inverse problem is a generalization of the classical periodic inverse problem.
Moreover, for the standard matching conditions (o; = 5; = 1, h; = 0), IP(0) coincides
with the classical periodic inverse problem.

This inverse problem IP(0) was solved in [26], where the following theorem is es-

tablished.

Theorem 4.2. The specification a(\),d(\) and Q uniquely determines q(x), h,~; and
nj, 7 =1,N — 1. The solution of IP(0) can be found by the following algorithm.
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Algorithm 4.1.
1) Construct D(A\) = a(A) + (1 + af).
2) Find zeros {z,},>1 of the entire function d(\).

3) Calculate Q(z,) via
Q(zn) = wa/ D?(z,) — 4afs.

4) Construct dy(z,) by

d(z) = 5 (D() +Q(z0).

5) Find d(z,). e

6) Calculate the Weyl sequence {M,,},>1 via M,, = — i)
ZTL
7) From the given data {z,, M, },>1 construct q(z),~;,n;, j = 1, N — 1, by solving the
inverse Dirichlet problem with discontinuities inside the interval (see [19]).
) Find S(T, \), S'(T,\) and C(T, \).
) Calculate h, using (2.7).
Let us go on to the solution of Inverse problem 1. Firstly, we give the proof of
Theorem 2.1.

AssumethatAk:[Xk,k;:O,_T,Ayl _____ ,,p:/i,,l 77777 vy D=2, N, 1< <...<y,<r,

© oo

Moreover, according to (2.3), v; = 7;, j = LN —1, and a = &, 8 = 3. Using
Theorem 4.1, we get qp(x) = Gr(zx) a.e. on [0,T}] and hy = hy, k = 1,7, and
consequently,

Ck($k, )\) = CN’k(]:k; )\), Sk(l’k, )\) = S'k(xk, >\), gok(xk, )\) = @k(xk, )\), k= ﬁ (46)
By virtue of (3.11), (3.14) and (4.6) one has

0<)‘) = &()‘)7 Ouy Vp<>‘) = 5_1/1 Vp()\)7 Q]()‘) = Q]()\)7 Qg()\) = Q?()‘)7 ] = W

..........

Using (3.10) and (3.13), we obtain, in particular, ag(A) = a(A), a;(A) = a1(N). In view
of (3.12), this yields .
a(A) =a(N), d(\) =d(\).

It follows from Theorem 4.1 that gx(zy) = Gr(2x) a.e. on [0,T;), k =7+ 1,7+ N, and
h=h,n; =n;, j=1,N—1. Taking (2.3) into account, we get H = H. Theorem 2.1
is proved.
The solution of Inverse problem 1 can be constructed by the following algorithm.
Algorithm 4.2. Given Ay, k=0,7, A, _,,p=2,N, 1<y <...<y, <
v; € &, and (L
1) Construct Ag(A) and A, ., ().

2) Calculate 7;, 7 =1,N — 1, a and §3, using (2.3).
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3) For each fixed k = 1,r, solve the inverse problem IP(k) and find g (), 21 € [0, Tk
on the edge e, and hy.

4) For each fixed k = 1,r, construct Cy(zy, A), Sk(zx, A) and @i(xs, N), 1 € [0, T)].

5) Calculate a(A) and d()\), using (3.10), (3.12) and (3.13).

6) From the given a()\),d()\) and Q, construct g(xy), [0,Tk], kK =r+ 1,r+ N, h and
mj=TLN—1.

7) Find H, using (2.3).
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