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Abstract. We study boundary value problems on hedgehog-type graphs for second-
order ordinary differential equations with general matching conditions. We establish
properties of spectral characteristics and investigate the inverse spectral problem of
recovering the coefficients of a differential equation from the spectral data. For this in-
verse problem we prove a uniqueness theorem and provide a procedure for constructing
its solution.

1 Introduction

We study an inverse spectral problem for Sturm-Liouville differential operators on
the so-called hedgehog-type graphs with general matching conditions in the interior
vertices. Inverse spectral problems consist in recovering operators from their spectral
characteristics. The main results on inverse spectral problems for Sturm-Liouville
operators on an interval are presented in the monographs [7], [11], [12] and other works.
Differential operators on graphs (networks, trees) often appear in natural sciences and
engineering (see [6], [9], [10], [14], [15], [18] and the references therein). Most of the
results in this direction are devoted to direct problems of studying properties of the
spectrum and the root functions for operators on graphs. Inverse spectral problems,
because of their nonlinearity, are more difficult to investigate, and nowadays there exists
only a small number of papers in this area. In particular, inverse spectral problems
of recovering the coefficients of differential operators on trees (i.e on graphs without
cycles) were solved in [1], [3], [22]. Inverse problems for Sturm-Liouville operators on
graphs with a cycle were studied in [23], [24], [25] and other papers but only in the case
of the so-called standard matching conditions. In particular, in this case the uniqueness
result was obtained in [24] for hedgehog-type graphs.

In the present paper we consider Sturm-Liouville operators on hedgehog-type graphs
with generalized matching conditions (see Section 2 for definitions). This class of
matching conditions appears in applications and produces new qualitative difficulties
in investigating nonlinear inverse coefficient problems. For studying this class of inverse
problems we develop the ideas of the method of spectral mappings [20], [21]. We
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prove a uniqueness theorem for this class of nonlinear inverse problems, and provide
a constructive procedure for finding their solution. In order to construct the solution,
we solve, in particular, an important auxiliary inverse problem for a quasi-periodic
boundary value problem on the cycle with discontinuity conditions in interior points.
The obtained results are natural generalizations of the well-known results on inverse
problems for differential operators on an interval and on graphs with standard matching
conditions.

We note that results and methods of the inverse spectral problem theory can be
useful for investigating inverse problems for partial differential equations (see [7]). In-
verse problems for partial differential equations are reflected in the monographs [5], [8],
[16], [17] and others.

The paper is organized as follows. In Section 2 we introduce the main notions and
give a formulation of the inverse problem. In Section 3 spectral properties are studied.
Section 4 is devoted to the solution of the inverse problem.

2 Formulation of the inverse problem

Consider a compact graph G in Rm with the set of edges E = {e0, . . . , er}, where e0 is
a cycle, E ′ = {e1, . . . , er} are boundary edges. Let {v1, . . . , vr+N} be the set of vertices,
where V = {v1, . . . , vr}, vk ∈ ek, are boundary vertices, and U = {vr+1, . . . , vr+N} are
internal vertices, U = E ′ ∩ e0. The cycle e0 consists of N parts:

e0 =
N⋃

k=1

er+k , er+k = [vr+k, vr+k+1], k = 1, N, vr+N+1 := vr+1.

Each boundary edge ej, j = 1, r has the initial point at vj, and the end point in the set
U. The set E ′ consists of N groups of edges: E ′ = E1∪ . . .∪EN , Ek∩e0 = vr+k. Let rk be
the number of edges in Ek; hence r = r1 + · · ·+ rN . Denote m0 = 1, mk = r1 + · · ·+ rk,
k = 1, N. Then

Ek = {ej}, j = mk−1 + 1,mk, vr+k =

mk⋂
j=mk−1+1

ej , k = 1, N.

Thus, the boundary edge ej ∈ Ek can be viewed as the segment ej = [vj, vr+k]. For
example, the graph G with N = 3 and r = 4 is on fig.1.
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Let Tj be the length of the edge ej, j = 1, r +N, and let T := Tr+1 + . . .+Tr+N be
the length of the cycle e0. Put b0 = 0, bk = Tr+1 + . . .+ Tr+k, k = 1, N. Then bN = T.

Each edge ej, j = 1, r +N is parameterized by the parameter xj ∈ [0, Tj], and
xj = 0 corresponds to the vertex vj. The whole cycle e0 is parameterized by the
parameter x ∈ [0, T ], where x = xr+j + bj−1 for xr+j ∈ [0, Tr+j], j = 1, N.

An integrable function Y on G may be represented as Y = {yj}j=1,r+N , where the
function yj(xj), xj ∈ [0, Tj], is defined on the edge ej. The function y(x), x ∈ [0, T ] on
the cycle e0 is defined by y(x) = yr+j(xr+j), j = 1, N.

Let Q = {qj}j=1,r+N be an integrable real-valued function on G; Q is called the
potential. The function q(x), x ∈ [0, T ] is defined by q(x) = qr+j(xr+j), j = 1, N.
Denote Uj(Y ) := y′j(0) − hjyj(0), j = 1, r +N, Ur+N+1 := Ur+1, where hj are real
numbers. Consider the following differential equation on G:

−y′′j (xj) + qj(xj)yj(xj) = λyj(xj), xj ∈ [0, Tj], j = 1, r +N, (2.1)

where λ is the spectral parameter, the functions yj, y
′
j, j = 1, r +N, are absolutely

continuous on [0, Tj] and satisfy the following matching conditions in each internal
vertex vµ+1, µ = r + 1, r +N :

yµ+1(0) = αjyj(Tj) for all ej ∈ E ′µ−r+1,

Uµ+1(Y ) =
∑

ej∈E ′µ−r+1

βjy
′
j(Tj),

 (2.2)

yr+N+1 := yr+1, hr+N+1 := hr+1, EN+1 := E1, E ′µ−r+1 := Eµ−r+1 ∪ eµ,

where αj and bj are real numbers, and αjβj 6= 0. For definiteness, let αjβj > 0. The
matching conditions (2.2) are a generalization of the standard matching conditions (see
[24]), where αj = βj = 1, hj = 0.

Let us consider the boundary value problem B0 on G for equation (2.1) with the
matching conditions (2.2) and with the following boundary conditions at the boundary
vertices v1, . . . , vr:

Uj(Y ) = 0, j = 1, r.

Denote by Λ0 = {λn0}n≥0 the eigenvalues (counting with multiplicities) of B0. More-
over, we also consider the boundary value problems Bν1,...,νp , p = 1, r, 1 ≤ ν1 < . . . νp ≤
r for equation (2.1) with the matching conditions (2.2) and with the boundary condi-
tions

yk(0) = 0, k = ν1, . . . , νp, Uj(Y ) = 0, j = 1, r, j 6= ν1, . . . , νp.

Denote by Λν1,...,νp := {λn,ν1,...,νp}n≥0 the eigenvalues (counting with multiplicities) of
Bν1,...,νp .

It will be shown in Section 4 that an important role for solving inverse problems
on graphs is played by an auxiliary quasi-periodic boundary value problem on the
cycle with discontinuity conditions in interior points. The parameters of this auxiliary
problem depend on the parameters of B0. More precisely, let us introduce real numbers
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γj, ηj, (j = 1, N − 1), h, α, β by the formulae

γj =

√
αr+j

βr+j

, ηj = γjhr+j+1, j = 1, N − 1, h = hr+1,

α = αr+N

N−1∏
j=1

γj

N−1∏
j=1

βr+j, β =
N−1∏
j=1

γj

N∏
j=1

βr+j.

 (2.3)

Clearly, αβ > 0, γj > 0, j = 1, N − 1. Using these parameters we consider the
following quasi-periodic discontinuity boundary value problem B on the cycle e0:

−y′′(x) + q(x)y(x) = λy(x), x ∈ (0, T ), (2.4)

y(0) = αy(T ), y′(0)− hy(0) = βy′(T ), (2.5)

y(bj + 0) = γjy(bj − 0), y′(bj + 0) = γ−1
j y′(bj − 0) + ηjy(bj − 0), j = 1, N − 1, (2.6)

0 < b1 < . . . < bN−1 < bN = T.

Let S(x, λ) and C(x, λ) be solutions of equation (2.4) satisfying discontinuity conditions
(2.6) and the initial conditions S(0, λ) = C ′(0, λ) = 0, S ′(0, λ) = C(0, λ) = 1. Put
ϕ(x, λ) = C(x, λ) + hS(x, λ). Eigenvalues {λn}n≥1 of B coincide with zeros of the
characteristic function

a(λ) = αϕ(T, λ) + βS ′(T, λ)− (1 + αβ). (2.7)

Put d(λ) := S(T, λ), Q(λ) = αϕ(T, λ) − βS ′(T, λ). All zeros {zn}n≥1 of the entire

function d(λ) are simple, i.e. ḋ(zn) 6= 0, where ḋ(λ) := d
dλ
d(λ). Denote Mn = −d1(zn)

ḋ(zn)
,

where d1(λ) := C(T, λ). The sequence {Mn}n≥1 is called the Weyl sequence. Put
ωn = signQ(zn), Ω = {ωn}n≥1.

We choose and fix one edge eξi
∈ Ei from each block Ei, i = 1, N, i.e. mi−1 + 1 ≤

ξi ≤ mi. Denote by ξ := {k : k = ξ1, . . . , ξN} the set of indices ξi, i = 1, N. Let αj

and βj, j = 1, r +N, be known a priori. The inverse problem is formulated as follows.
Inverse problem 1. Given 2N +r−N spectra Λj, j = 0, r, Λν1,...,νp , p = 2, N, 1 ≤

ν1 < . . . < νp ≤ r, νj ∈ ξ, and Ω, construct the potential Q on G and H := [hj]j=1,r+N .
Obviously, in general it is not possible to recover also all coefficients αj and βj.

Note that this inverse problem is a generalization of the classical inverse problems for
Sturm-Liouville operators on an interval or on graphs.

Example 2.1. Let N = 3, r = 4 (see Fig.1).
Case 1. Take ξ1 = 2, ξ2 = 3, ξ3 = 4. Then we specify Ω and the following spectra:
Λ0,Λ1,Λ2,Λ3,Λ4,Λ23,Λ24,Λ34,Λ234.
Case 2. Take ξ1 = 1, ξ2 = 3, ξ3 = 4. Then we specify Ω and the following spectra:
Λ0,Λ1,Λ2,Λ3,Λ4,Λ13,Λ14,Λ34,Λ134.

Let us formulate the uniqueness theorem for the solution of Inverse problem 1. For
this purpose together with q we consider a potential q̃. Everywhere below if a symbol
α denotes an object related to q, then α̃ will denote the analogous object related to q̃.
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Theorem 2.1. If Λj = Λ̃j, j = 0, r, Λν1,...,νp = Λ̃ν1,...,νp, p = 2, N, 1 ≤ ν1 < . . . < νp ≤
r, νj ∈ ξ, and Ω = Ω̃, then Q = Q̃ and H = H̃.

This theorem will be proved in Section 4. We will also provide there a constructive
procedure for the solution of Inverse problem 1. In Section 3 we study properties of
spectral characteristics and prove some auxiliary assertions.

3 Properties of spectral characteristics

Let Sj(xj, λ), Cj(xj, λ), j = 1, r +N, xj ∈ [0, Tj], be the solutions to equation (2.1)
on the edge ej with the initial conditions

Sj(0, λ) = C ′
j(0, λ) = 0, S ′j(0, λ) = Cj(0, λ) = 1. (3.1)

Put ϕj(x, λ) = Cj(xj, λ) + hjSj(xj, λ). For each fixed xj ∈ [0, Tj], the functions
S

(ν)
j (xj, λ), C

(ν)
j (xj, λ), ϕ

(ν)
j (xj, λ), j = 1, r +N, ν = 0, 1, are entire in λ of order

1/2. Moreover,
〈ϕj(xj, λ), Sj(xj, λ)〉 ≡ 1,

where 〈y, z〉 := yz′ − y′z is the Wronskian of y and z.

Lemma 3.1. The following relations hold for k = 1, N − 1, ν = 0, 1:

S(ν)(bk+1 − 0, λ) = γkS(bk − 0, λ)C
(ν)
r+k+1(Tr+k+1, λ) + γ−1

k S ′(bk − 0, λ)S
(ν)
r+k+1(Tr+k+1, λ)

+ηkS(bk − 0, λ)S
(ν)
r+k+1(Tr+k+1, λ), (3.2)

C(ν)(bk+1− 0, λ) = γkC(bk− 0, λ)C
(ν)
r+k+1(Tr+k+1, λ)+ γ−1

k C ′(bk− 0, λ)S
(ν)
r+k+1(Tr+k+1, λ)

+ηkC(bk − 0, λ)S
(ν)
r+k+1(Tr+k+1, λ), (3.3)

Indeed, fix k = 1, N − 1. Let x ∈ [bk, bk+1], i.e. x = xr+k+1+bk, xr+k+1 ∈ [0, Tr+k+1].
Using the fundamental system of solutions Sr+k+1(xr+k+1, λ), Cr+k+1(xr+k+1, λ), on
er+k+1, one has

S(ν)(x, λ) = A(λ)C
(ν)
r+k+1(xr+k+1, λ) +B(λ)S

(ν)
r+k+1(xr+k+1, λ), ν = 0, 1.

Taking initial conditions (3.1) for j = r + k + 1 into account we find the coefficients
A(λ) and B(λ), and arrive at (3.2). Relation (3.3) is proved similarly.

Let here and below λ = ρ2, τ := Imρ ≥ 0, Π := {ρ : τ ≥ 0}, Πδ := {ρ : arg ρ ∈
[δ, π − δ]}, δ ∈ (0, π/2). The following theorem describes the asymptotic behavior of
S(x, λ) and C(x, λ) on each interval x ∈ (bj, bj+1) (see [26]).

Theorem 3.1. Fix j = 1, N − 1. For x ∈ (bj, bj+1), ν = 0, 1, m = 1, 2, |ρ| → ∞,

S(ν)(x, λ) =
( j∏

k=1

ξ+
k

) dν

dxν

(sin ρx

ρ
+

j∑
k=1

∑
1≤µ1<...<µk≤j

( k∏
i=1

ξ−µi

ξ+
µi

)sin(ραµ1,...,µk
(x))

ρ

)
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+O(ρν+m−3eτx),

C(ν)(x, λ) =
( j∏

k=1

ξ+
k

) dν

dxν

(
cos ρx+

j∑
k=1

∑
1≤µ1<...<µk≤j

( k∏
i=1

ξ−µi

ξ+
µi

)
cos(ραµ1,...,µk

(x))
)

+O(ρν+m−3eτx),

where

ξ±j :=
γj + γ−1

j

2
, αµ1,...,µk

(x) := 2
k∑

i=1

(−1)i−1bµi
+ (−1)kx.

Using Theorem 3.1, we obtain for |ρ| → ∞, ρ ∈ Πδ:

a(λ) =
(α+ β)ξ

2
e−iρT [1], d(λ) = − ξ

2iρ
e−iρT [1], ξ :=

N−1∏
j=1

ξ+
j . (3.4)

Moreover,
a(λ) = O(eτT ), d(λ) = O(ρ−1eτT ), |ρ| → ∞, ρ ∈ Π. (3.5)

Fix k = 1, r. Let Φk = {Φkj}j=1,r+N , be the solution of equation (2.1) satisfying
(2.2) and the boundary conditions

Uj(Φk) = δjk, j = 1, r, (3.6)

where δjk is the Kronecker symbol. Denote Mk(λ) := Φkk(0, λ), k = 1, r. The function
Mk(λ) is called the Weyl function with respect to the boundary vertex vk. Clearly,

Φkk(xk, λ) = Sk(xk, λ) +Mk(λ)ϕk(xk, λ), xk ∈ [0, Tk], k = 1, r, (3.7)

and consequently,
〈ϕk(xk, λ), Φkk(xk, λ)〉 ≡ 1. (3.8)

Denote M1
kj(λ) := Φkj(0, λ), M0

kj(λ) := Φ′
kj(0, λ)− hjΦ

′
kj(0, λ). Then

Φkj(xj, λ) = M1
kj(λ)Sj(xj, λ) +M0

kj(λ)ϕj(xj, λ), xj ∈ [0, Tj], j = 1, r +N, k = 1, r.
(3.9)

In particular, M1
kk(λ) = 1, M0

kk(λ) = Mk(λ). Substituting (3.9) into (2.2) and (3.6) we
obtain a linear algebraic system Dk with respect to M ν

kj(λ), ν = 0, 1, j = 1, r +N.
The determinant ∆0(λ) of Dk does not depend on k and has the form

∆0(λ) = σ(λ)
(
a0(λ) +

N∑
k=1

∑
1≤µ1<...<µk≤N

aµ1...µk
(λ)

k∏
i=1

( ∑
ej∈Eµi

Ωj(λ)
))
, (3.10)

where

σ(λ) =
r∏

j=1

(αjϕj(Tj, λ)), Ωj(λ) =
βjϕ

′
j(Tj, λ)

αjϕj(Tj, λ)
, (3.11)

a0(λ) = a(λ), a1(λ) = αd(λ). (3.12)
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We note that the coefficients a0(λ) and aµ1...µk
(λ) in (3.10) depend only on S(ν)

j (Tj, λ)

and C
(ν)
j (Tj, λ), for j = r + 1, r +N, and (3.12) follows from Lemma 3.1. We do not

need concrete formulae for the other coefficients aµ1...µk
(λ). The function ∆0(λ) is entire

in λ of order 1/2, and its zeros coincide with the eigenvalues of the boundary value
problem B0. The function ∆0(λ) is called the characteristic function for the boundary
value problems B0. Let ∆ν1,...,νp(λ), p = 1, r, 1 ≤ ν1 < . . . < νp ≤ r, be the function
obtained from ∆0(λ) by the replacement of ϕ(ν)

j (Tj, λ) with S(ν)
j (Tj, λ) for j = ν1, . . . , νp,

ν = 0, 1. More precisely,

∆ν1,...,νp(λ) = σν1,...,νp(λ)
(
a0(λ) +

N∑
k=1

∑
1≤µ1<...<µk≤N

aµ1...µk
(λ)

×
k∏

i=1

( ∑
ej∈Eµi , j 6=ν1,...,νp

Ωj(λ) +
∑

ej∈Eµi , j=ν1,...,νp

Ω0
j(λ)

))
, (3.13)

where

σν1,...,νp(λ) =
r∏

j=1, j 6=ν1,...,νp

(αjϕj(Tj, λ))
∏

j=ν1,...,νp

(αjSj(Tj, λ)), Ω0
j(λ) =

βjS
′
j(Tj, λ)

αjSj(Tj, λ)
.

(3.14)
The function ∆ν1,...,νp(λ) is entire in λ of order 1/2, and its zeros coincide with the
eigenvalues of the boundary value problem Bν1,...,νp . The function ∆ν1,...,νp(λ) is called
the characteristic function for the boundary value problem Bν1,...,νp .

Solving the algebraic system Dk we get by Cramer’s rule: M s
kj(λ) = ∆s

kj(λ)/∆0(λ),
s = 0, 1, j = 1, r +N, where the determinant ∆s

kj(λ) is obtained from ∆0(λ) by the
replacement of the column which corresponds to M s

kj(λ) with the column of free terms.
In particular,

Mk(λ) = −∆k(λ)

∆0(λ)
, k = 1, r. (3.15)

It is known (see [13]) that for each fixed j = 1, r +N, on the edge ej, there exists a
fundamental system of solutions of equation (1) {ej1(xj, ρ), ej2(xj, ρ)}, xj ∈ [0, Tj], ρ ∈
Π, |ρ| ≥ ρ∗ with the properties:

1) the functions e(ν)
js (xj, ρ), ν = 0, 1, are continuous for xj ∈ [0, Tj], ρ ∈ Π, |ρ| ≥ ρ∗;

2) for each xj ∈ [0, Tj], the functions e(ν)
js (xj, ρ), ν = 0, 1, are analytic for Im ρ >

0, |ρ| > ρ∗;
3) uniformly in xj ∈ [0, Tj], the following asymptotical formulae hold

e
(ν)
j1 (xj, ρ) = (iρ)ν exp(iρxj)[1], e

(ν)
j2 (xj, ρ) = (−iρ)ν exp(−iρxj)[1], ρ ∈ Π, |ρ| → ∞,

(3.16)
where [1] = 1 +O(ρ−1).

Fix k = 1, r. One has

Φkj(xj, λ) = A1
kj(ρ)ej1(xj, ρ) + A0

kj(ρ)ej2(xj, ρ), xj ∈ [0, Tj], j = 1, r +N. (3.17)
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Substituting (3.17) into (2.2) and (3.6) we obtain a linear algebraic system D0
k with

respect to Aν
kj(ρ), ν = 0, 1, j = 1, r +N. The determinant δ(ρ) of D0

k does not depend
on k, and has the form

δ(ρ) =
(
δ0 +O

(1

ρ

))
ρr+N exp

(
− iρ

r+N∑
j=1

Tj

)
, (3.18)

where δ0 is the determinant obtained from δ(ρ) by the replacement of e(ν)
j1 (0, ρ),

e
(ν)
j1 (Tj, ρ), e

(ν)
j2 (0, ρ), e

(ν)
j2 (Tj, ρ) and hj with 1, 0, (−1)ν , (−1)ν and 0, respectively. We as-

sume that δ0 6= 0. This condition is called the regularity condition for matching. Differ-
ential operators on G which do not satisfy the regularity condition, possess qualitatively
different properties in connection with the formulation and investigation of inverse
problems, and are not considered in this paper; they require a separate investigation.
We note that for classical Kirchhoff’s matching conditions we have αj = βj = 1, hj = 0,
and the regularity condition is satisfied obviously. Solving the algebraic system D0

k and
using (3.16)-(3.18) we get for each fixed xk ∈ [0, Tk):

Φ
(ν)
kk (xk, λ) = (iρ)ν−1 exp(iρxk)[1], ρ ∈ Πδ, |ρ| → ∞. (3.19)

In particular, Mk(λ) = (iρ)−1[1], ρ ∈ Πδ, |ρ| → ∞. Moreover, uniformly in xk ∈ [0, Tk],

ϕ
(ν)
k (xk, λ) =

1

2

(
(iρ)ν exp(iρxk)[1] + (−iρ)ν exp(−iρxk)[1]

)
, ρ ∈ Π, |ρ| → ∞. (3.20)

Using (3.10), (3.20), (3.4) and (3.5), by the well-known method (see, for example, [2]),
one can obtain the following properties of the characteristic function ∆0(λ) and the
eigenvalues Λ0 of the boundary value problem B0.

1) For ρ ∈ Π, |ρ| → ∞,

∆0(λ) = O
(

exp
(
τ

r+N∑
j=1

Tj

))
.

2) There exist h > 0, Ch > 0 such that

|∆0(λ)| ≥ Ch exp
(
τ

r+N∑
j=1

Tj

)
for τ ≥ h. Hence, the eigenvalues λn0 = ρ2

n0 lie in the domain 0 ≤ τ < h.
3) The number Nξ of zeros of ∆0(λ) in the rectangle Λξ = {ρ : τ ∈ [0, h], Re ρ ∈

[ξ, ξ + 1]} is bounded with respect to ξ.
4) For n→∞,

ρn0 = ρ0
n0 +O

( 1

ρ0
n0

)
,

where λ0
n0 = (ρ0

n0)
2 are the eigenvalues of the boundary value problem B0 with Q = 0

and H = 0.
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The characteristic functions ∆ν1,...,νp(λ) have similar properties. In particular, for
ρ ∈ Π, |ρ| → ∞,

∆ν1,...,νp(λ) = O
(
|ρ|−p exp

(
τ

r+N∑
j=1

Tj

))
.

Using the properties of the characteristic functions and Hadamard’s factorization
theorem [4, p. 289], one gets that the specification of the spectrum Λ0 uniquely
determines the characteristic function ∆0(λ), i.e. if Λ0 = Λ̃0, then ∆0(λ) ≡ ∆̃0(λ).
Analogously, if Λν1,...,νp = Λ̃ν1,...,νp , then ∆ν1,...,νp(λ) ≡ ∆̃ν1,...,νp(λ). The characteristic
functions can be constructed as the corresponding infinite products (see [7] for details).

4 Solution of Inverse problem 1

In this section we provide a constructive procedure for the solution of Inverse problem 1,
and prove its uniqueness.

Fix k = 1, r, and consider the following auxiliary inverse problem on the edge ek,
which is called IP(k).

IP(k). Given two spectra Λ0 and Λk, construct qk(xk), xk ∈ [0, Tk], and hk.
In IP(k) we construct the potential only on the edge ek, but the spectra bring a

global information from the whole graph. In other words, IP(k) is not a local inverse
problem related to the edge ek.

Let us prove the uniqueness theorem for the solution of IP(k).

Theorem 4.1. Fix k = 1, r. If Λ0 = Λ̃0 and Λk = Λ̃k, then qk(xk) = q̃k(xk), a.e.
on [0, Tk], and hk = h̃k. Thus, the specification of two spectra Λ0 and Λk uniquely
determines the potential qk on the edge ek, and the coefficient hk.

Proof. Since Λ0 = Λ̃0, Λk = Λ̃k, it follows that

∆0(λ) ≡ ∆̃0(λ), ∆k(λ) ≡ ∆̃k(λ),

and according to (3.15),
Mk(λ) = M̃k(λ). (4.1)

Consider the functions

P k
1s(xk, λ) = (−1)s−1

(
ϕk(xk, λ)Φ̃

(2−s)
kk (xk, λ)− ϕ̃

(2−s)
k (xk, λ)Φkk(xk, λ)

)
, s = 1, 2.

(4.2)
Using (3.8) we calculate

ϕk(xk, λ) = P k
11(xk, λ)ϕ̃k(xk, λ) + P k

12(xk, λ)ϕ̃′k(xk, λ). (4.3)

It follows from (3.19), (3.20) and (4.2) that

P k
1s(xk, λ) = δ1s +O(ρ−1), ρ ∈ Πδ, |ρ| → ∞, xk ∈ (0, Tk]. (4.4)
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According to (3.7) and (4.2),

P k
1s(xk, λ) = (−1)s−1

((
ϕk(xk, λ)S̃

(2−s)
k (xk, λ)− ϕ̃

(2−s)
k (xk, λ)Sk(xk, λ)

)
+(Mk(λ)− M̃k(λ))ϕk(xk, λ)ϕ̃

(2−s)
k (xk, λ)

)
.

It follows from (4.1) that for each fixed xk, the functions P k
1s(xk, λ) are entire in λ of

order 1/2. Together with (4.4) this yields P k
11(xk, λ) ≡ 1, P k

12(xk, λ) ≡ 0. Substituting
these relations into (4.3) we get ϕk(xk, λ) ≡ ϕ̃k(xk, λ) for all xk and λ, and consequently,

qk(xk) = q̃k(xk) a.e. on [0, Tk], hk = h̃k .

Using the method of spectral mappings [21] for the Sturm-Liouville operator on
the edge ek one can get a constructive procedure for finding qk and hk. Here we only
explain ideas briefly; for details and proofs see [21]. Take a boundary value problem B̃0

with Q̃ = 0, H̃ = 0. Take a fixed c1 > 0 such that |Im ρn0|, |Im ρ̃n0| < c1. In the ρ- plane
we consider the contour γ (with counterclockwise circuit) of the form γ = γ+ ∪ γ−,
where γ± = {ρ : ±Im ρ = c1}. Denote

r̃k(xk, ρ, θ) =
〈ϕ̃k(xk, λ), ϕ̃k(xk, θ)〉

λ− θ

(
Mk(θ)− M̃k(θ)

)
.

For each fixed xk ∈ (0, Tk), the function ϕk(xk, λ) is the unique solution of the following
linear integral equation

ϕ̃k(xk, λ) = ϕk(xk, λ) +
1

2πi

∫
γ

r̃k(xk, λ, θ)ϕk(xk, θ) dθ. (4.5)

Using the solution ϕk(xk, λ) of equation (4.5) one can easily construct the coefficients
qk(xk) and hk (for details see [7]).

Let us study the following auxiliary inverse problem on the cycle e0, which is called
IP(0). Consider the boundary value problem B of the form (2.4)-(2.6), where the
parameters of B0 are defined by (2.3), and α, β are known.

IP(0). Given a(λ), d(λ) and Ω, construct q(x), x ∈ [0, T ], h, γj and ηj, j =
1, N − 1.

This inverse problem is a generalization of the classical periodic inverse problem.
Moreover, for the standard matching conditions (αj = βj = 1, hj = 0), IP(0) coincides
with the classical periodic inverse problem.

This inverse problem IP(0) was solved in [26], where the following theorem is es-
tablished.

Theorem 4.2. The specification a(λ), d(λ) and Ω uniquely determines q(x), h, γj and
ηj, j = 1, N − 1. The solution of IP(0) can be found by the following algorithm.
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Algorithm 4.1.
1) Construct D(λ) = a(λ) + (1 + αβ).
2) Find zeros {zn}n≥1 of the entire function d(λ).
3) Calculate Q(zn) via

Q(zn) = ωn

√
D2(zn)− 4αβ.

4) Construct d1(zn) by

d1(zn) =
1

2α
(D(zn) +Q(zn)).

5) Find ḋ(zn).

6) Calculate the Weyl sequence {Mn}n≥1 via Mn = −d1(zn)

ḋ(zn)
.

7) From the given data {zn,Mn}n≥1 construct q(x), γj, ηj, j = 1, N − 1, by solving the
inverse Dirichlet problem with discontinuities inside the interval (see [19]).
8) Find S(T, λ), S ′(T, λ) and C(T, λ).
9) Calculate h, using (2.7).

Let us go on to the solution of Inverse problem 1. Firstly, we give the proof of
Theorem 2.1.

Assume that Λk = Λ̃k, k = 0, r, Λν1,...,νp = Λ̃ν1,...,νp , p = 2, N, 1 ≤ ν1 < . . . < νp ≤ r,

νj ∈ ξ, and Ω = Ω̃. Then one has

∆k(λ) ≡ ∆̃k(λ), k = 0, r,

∆ν1,...,νp(λ) ≡ ∆̃ν1,...,νp(λ), p = 2, N, 1 ≤ ν1 < . . . < νp ≤ r, νj ∈ ξ.

Moreover, according to (2.3), γj = γ̃j, j = 1, N − 1, and α = α̃, β = β̃. Using
Theorem 4.1, we get qk(xk) = q̃k(xk) a.e. on [0, Tk] and hk = h̃k, k = 1, r, and
consequently,

Ck(xk, λ) ≡ C̃k(xk, λ), Sk(xk, λ) ≡ S̃k(xk, λ), ϕk(xk, λ) ≡ ϕ̃k(xk, λ), k = 1, r. (4.6)

By virtue of (3.11), (3.14) and (4.6) one has

σ(λ) ≡ σ̃(λ), σν1,...,νp(λ) ≡ σ̃ν1,...,νp(λ), Ωj(λ) ≡ Ω̃j(λ), Ω0
j(λ) ≡ Ω̃0

j(λ), j = 1, r.

Using (3.10) and (3.13), we obtain, in particular, a0(λ) = ã(λ), a1(λ) = ã1(λ). In view
of (3.12), this yields

a(λ) = ã(λ), d(λ) = d̃(λ).

It follows from Theorem 4.1 that qk(xk) = q̃k(xk) a.e. on [0, Tk], k = r + 1, r +N, and
h = h̃, ηj = η̃j, j = 1, N − 1. Taking (2.3) into account, we get H = H̃. Theorem 2.1
is proved.

The solution of Inverse problem 1 can be constructed by the following algorithm.
Algorithm 4.2. Given Λk, k = 0, r, Λν1,...,νp , p = 2, N, 1 ≤ ν1 < . . . < νp ≤ r,

νj ∈ ξ, and Ω.
1) Construct ∆k(λ) and ∆ν1,...,νp(λ).

2) Calculate γj, j = 1, N − 1, α and β, using (2.3).
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3) For each fixed k = 1, r, solve the inverse problem IP(k) and find qk(xk), xk ∈ [0, Tk]
on the edge ek and hk.
4) For each fixed k = 1, r, construct Ck(xk, λ), Sk(xk, λ) and ϕk(xk, λ), xk ∈ [0, Tk].
5) Calculate a(λ) and d(λ), using (3.10), (3.12) and (3.13).
6) From the given a(λ), d(λ) and Ω, construct qk(xk), [0, Tk], k = r + 1, r +N, h and
ηj, j = 1, N − 1.
7) Find H, using (2.3).
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