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Abstract. Conditions on the coefficients of a class of higher order operator-differential
equations that provide solvability of some boundary value problems well-posed for these
equations, are obtained in the paper. These boundary value problems are generaliza-
tions of some mixed problems for a semiharmonic equation. Relation of solvability of
boundary value problems with the sharp value of the norms of intermediate deriva-
tive operators in some subspaces are found. The obtained results are applied to the
proof of multiple completeness of some system of derivatives of chains of eigen and
adjoint vectors corresponding to eigenvalues of the appropriate polynomial operator
bundle on the half-plane, and to the completeness of decreasing elementary solutions
of a homogeneous equation.

1 Introduction

Many problems of mechanics, mathematical physics, and the theory of partial differ-
ential equations are reduced to investigation of solvability of boundary value problems
for operator-differential equations in different spaces, and also to investigation of com-
pleteness of a part of a system of eigen and adjoint vectors of polynomial operator
bundles corresponding to the given operator-differential equation and completeness of
elementary decreasing solutions of a homogeneous equation [1], [3], [4], [7-12], [14], [15],
[19-21], [25-28].

Note that some problems of the theory of elasticity in the half-strip [19], [20],
[25] the problems of the theory of vibrations of mechanical systems, vibrations of an
elastic cylinder [10] are reduced to investigation of solvability of some boundary value
problems for operator-differential equations and construction of the spectral theory of
quadratic bundles and higher order bundles. For example, the stress-strain state of a
plate is reduced to solving of the problems of the theory of elasticity in the half-strip.
In the papers of P.F. Popkovich [19], [20], Yu.A. Ustinov and Yu.I. Yudovich [25],
M.B. Orazov [18], the boundary value problem of the theory of elasticity in the strip
t > 0, |x| ≤ 1 is reduced to the solvability of different boundary value problems for a
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second order equation, and the solution is obtained in the form of limits of decreasing
elementary solutions of a homogeneous equation which is closely connected with double
completeness of the system of eigen and adjoint vectors.

Further, note that many problems of mechanics and physics are reduced to investi-
gation of solvability of operator- differential equations and spectral problems of various
type operator bundles [9-11], [12], [19], [20], [25], [26-28]. In the papers [7], [8] M.V.
Keldysh gave the notion of multiple completeness of the system of eigen and adjoint
vectors for some classes of operator bundles and showed its relation with solvability
of the Cauchy problem for the appropriate operator-differential equations. Further, in
this area, sufficiently important results were obtained [2-4], [10-12], [14], [15], [21]. In
his paper [3], M.G. Gasymov suggested a method connecting the multiple complete-
ness of a part of root vectors corresponding to eigenvalues on the left half-plane with
solvability of some boundary value problems. Later on, in the papers [11], [14], [15]
these ideas were developed and new theorems on solvability of boundary value prob-
lems and multiple completeness of a part of systems of eigen and adjoint vectors were
obtained. Relation of solvability of boundary value problems with the sharp value of
the norms of intermediate derivatives operators, that enables to find a wider class of
operator-differential equations for which the stated problem is well posed, is shown in
the paper [15].

Note that finding of the sharp values of the norms of intermediate derivatives op-
erators is of an independent interest, and has numerous applications in different fields
of analysis [13], [14], [16], [22-24], [25], for example, in approximation theory [23, 24].

For substantiation of the Fourier method for solving boundary value problems, it is
necessary to use the completeness of the system of root vectors in the space of traces of
solutions. This enables to prove the completeness of the system of elementary solutions
of a homogeneous equation [4].

In papers [6], [17] conditions on the coefficients of a class of higher order operator-
differential equations that provide solvability of some boundary value problems well-
posed for these equations. These boundary value problems are generalizations of some
mixed problems for the semiharmonic and the finite segment equation. The obtained
results are applied to the proof of multiple completeness of some system of derivatives
of chains of eigen and adjoint vectors corresponding to eigenvalues on the half-plane
and finite segment of the appropriate polynomial operator bundle, and completeness
of decreasing elementary solutions of a homogeneous equation.

2 Auxiliary facts and problem statement

Let H be a separable Hilbert space, A be a positive-definite operator with the domain
of definition D (A). By Hγ denote the scale of Hilbert spaces generated by the operator
A, i.e. Hγ = D (Aγ) , (x, y)γ = (Aγx,Aγ) , x, y ∈ Hγ, γ ≥ 0. For γ = 0 assume that
H0 = H.

By L2 (R+;H) we denote the Hilbert space of all vector-function f(t) defined on
R+ = (0,∞) almost everywhere with the values in H such that

‖f‖L2(R+;H) =

(∫ ∞

0

‖f(t)‖2 dt

) 1
2

<∞.
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Further, define the following Hilbert spaces (n ≥ 1) [13]:

W 2n
2 (R+;H) =

{
u : u(2n) ∈ L2 (R+;H) , A2nu ∈ L2 (R+;H)

}
with the norm

‖u‖W 2n
2 (R+;H) =

(∥∥u(2n)
∥∥2

L2(R+;H)
+
∥∥A2nu

∥∥2

L2(R+;H)

) 1
2
.

Here and in the sequel, the derivatives are understood in the sense of distribution
theory [13].

We define some subspaces of the space W 2n
2 (R+;H) , namely

W 2n
2

(
R+;H; {sν}n−1

ν=0

)
=
{
u : u ∈ W 2n

2 (R+;H) , u(sν)(0) = 0, ν = 0, n− 1
}
,

where the integer 0 ≤ s0 < s1 < ... < sn−1 ≤ 2n− 1, and

W 2n
2

(
R+;H; {ν}2n−1

ν=0

)
=
{
u : u ∈ W 2n

2 (R+;H) , u(ν)(0) = 0, ν = 0, 2n− 1
}
.

It follows by the trace theorem that W 2n
2

(
R+;H; {sν}n−1

ν=0

)
and W 2n

2

(
R+;H; {ν}2n−1

ν=0

)
are complete Hilbert spaces [13].

The spaces L2 (R;H) and W 2n
2 (R;H), where R = (−∞,∞), are defined similarly.

We also define the spaces D (R+;H) and D (R;H) as the set of infinitely-
differentiable functions with compact supports on [0, ∞), R respectively. Assume
that

D
(
R+;H; {sν}n−1

ν=0

)
=
{
u : u ∈ D (R+;H) , u(sν)(0) = 0

}
.

It follows by the density theorem [13] that the linear set D (R+;H) is dense in
W 2n

2 (R+;H) , D (R;H) is dense in W 2n
2 (R;H), and D

(
R+;H; {sν}n−1

ν=0

)
is dense in

the space W 2n
2

(
R+;H; {sν}n−1

ν=0

)
.

In the separable Hilbert space H, consider the initial boundary value problem

(
− d2

dt2
+ A2

)n

u(t) +
2n−1∑
j=0

A2n−ju
(j)(t) = f(t), t ∈ R+ = (0,∞) , (2.1)

u(sν)(0) = 0, ν = 0, n− 1, 0 ≤ s0 ≤ s1 ≤ ... ≤ sn−1 ≤ 2n− 1, (2.2)

where the operator coefficients satisfy the conditions :
1) A is a positive-definite self-adjoint operator;
2) Bj = AjA

−j
(
j = 1, 2n

)
are bounded operators in H.

Definition 2.1. If for f(t) ∈ L2 (R+;H) there exists a vector-function u(t) ∈
W 2n

2 (R+;H) that satisfies equation (2.1) almost everywhere in R+, then it is said
to be a regular solution of equation (2.1).
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Definition 2.2. If for any f(t) ∈ L2 (R+;H) there exists a regular solution u (t) of
equation (2.1) that satisfies boundary condition (2.2) in the sense of convergence

lim
t→+0

∥∥u(sν)(t)
∥∥

2n−sν− 1
2

= 0, ν = 0, n− 1,

and the estimate
‖u‖W 2n

2 (R+;H) ≤ const ‖f‖L2(R+;H)

holds, then problem (2.1) ,(2.2) is said to be regularly solvable.

We state the following problem: under which conditions on the coefficients of
operator-differential equation (2.1), problem (2.1), (2.2) is regularly solvable?

Operator coefficients should be chosen in such a way that problem (2.1), (2.2)
were regularly solvable for sufficiently wide class of operator-differential equations. For
obtaining such conditions, it is necessary to find the sharp values of the norms of
intermediate derivative operators.

Note that for Aj = 0
(
j = 1, 2n

)
, the boundary value problem(

− d2

dt2
+ A2

)n

u(t) = f(t), t ∈ R+ = (0,∞) , (2.3)

u(sν)(0) = 0, ν = 0, n− 1, (2.4)

covers in particular, mixed problems for the semiharmonic equation in infinite cylinder.
Really, if in the cylinder Ω = R+ × x (0, π) we consider the semiharmonic equation(

− ∂2

∂t2
− ∂2

∂x2

)n

u (t, x) = f (t, x) , (t, x) ∈ Ω = R+ × x (0, π) , (2.5)

u(2k)
x (t, 0) = u(2k)

x (t, π) = 0, u
(sν)
t (0, x) = 0, t ∈ R+, x ∈ (0, π) , k = 0, n− 1, ν = 0, n− 1.

(2.6)
We assume that A2y = − ∂2y

∂x2 with the domain of definition

D
(
A2
)

= {y ∈ L2 (0, π) : y′ is absolutely continuous, y′′ ∈ L2 (0, π) , y(0) = y (π) = 0} .

It follows by Lemma 2.1 that mixed problem (2.5), (2.6) is regularly solvable in the
space L2 (R+ × [0, π]). We state the following problem: under which conditions on the
function on the coefficients Pj (x) the problem(

∂2

∂t2
+

∂2

∂x2

)n

u (x, t) +
2n−1∑
j=0

P2n,j (x)
∂2nu (x, t)

∂tj∂x2n−j
= f (t, x) , (t, x) ∈ Ω = R+ × (0, π)

(2.7)
u(2k)

x (t, 0) = u(2k)
x (t, π) = 0, u

(sν)
t (0, x) = 0, k = 0, n− 1, ν = 0, n− 1 (2.8)

is also regularly solvable in the space L2 (R+ × [0, π])?
Further, we are interested in how problem (2.1), (2.2) can be solved by the Fourier

method. For that we shall prove the n- fold completeness of the system of eigen and
adjoint vectors of the bundle P (λ) = (−λ2E + A2)

n
+
∑2n−1

j=0 λjA2n−j corresponding to
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eigen-values on the left half-plane in the space of traces, and completeness of elementary
solutions of the homogeneous equation P ( d

dt
)u(t) = 0 in the space of regular solutions.

Obviously, the considered bundle

P (λ) =
(
−λ2E + A2

)n
+

2n−1∑
j=0

λjA2n−j

corresponds to operator-differential equation (2.1).

Definition 2.3. If a non-zero vector ϕi,j,0 6= 0 is a solution of the equation P (λi)ϕ = 0,
then λ i is said to be an eigenvalue of the bundle P (λ), and ϕi,j,0

(
j = 1, p

)
is

an eigenvector of the bundle P (λ) corresponding to eigenvalue λ i. If the system{
ϕi,j,1, ϕi,j,2, ..., ϕi,j,mij

}
satisfies the equation

q∑
s=0

1

s !

(
d s

dλs
P(λ)

)∣∣∣∣
λ=λi

· ϕi ,j ,q−s = 0 , q = 1 ,mij ,

then the system
{
ϕi,j,1, ϕi,j,2, ..., ϕi,j,mij

}
is said to be a system of eigen and adjoint

vectors corresponding to the eigenvalue λi.

Definition 2.4. If the system
{
ϕi,j,0, ..., ϕi,j,mij

}
is a chain of eigen and adjoint vectors

corresponding to the eigenvalue λi, then the vector-functions

ui,j,h(t) = eλit

(
th

h!
ϕi,j,0 +

th−1

(h− 1)!
ϕi,j,1 + ...+ ϕi,j,h

)
, h = 0,mij

satisfy the equation P (d/dt)u(t) = 0 and are said to be its elementary solutions. If
Reλi < 0, we shall call them decreasing elementary solutions of this homogeneous
equation.

Definition 2.5. Let Reλi < 0. Denote by

u(sν)
i,j,h

(0) ≡ dsν

dtsν
ui,j,h(t)/t=0 = ϕ(sν)

i,j,h
, ν = 0, n− 1.

If the system
{(

ϕ(sν)
i,j,h

)n−1

ν=0

}
⊂ Hn

2n = H2n ×H2n × · · · ×H2n︸ ︷︷ ︸
n

is complete in the space

H̃ =
n−1
⊕

ν=0
H2n−sν− 1

2
, we shall say that the K (Π−) - system of eigen and adjoint vectors

corresponding to eigenvalues from the left half-plane is n- fold complete in the space
of traces.

It follows from the expansion of the resolvent of the operator bundle P−1(λ) in the
vicinity of the point λi that, under conditions 1), 2) and A−1 ∈ σ∞ (H) , for n-fold
completeness of K (Π−) in the space of traces to hold, it is necessary and sufficient
that it follows from the holomorphy property of the vector-function

R(λ) =
(
A2n−sν− 1

2P−1
(
λ̄
))∗ n−1∑

ν=0

λsνAn−sν− 1
2fν , (2.9)

in the left half-plane where fν = 0, ν = 0, n− 1 [2-4], [8].
First we prove the following lemma.
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Lemma 2.1. Let condition 1) be satisfied. Then problem (2.3), (2.4) is regularly
solvable.

Proof. Write problem (2.3), (2.4) in the form of the equation P0u = f , where
f ∈ L2 (R+;H), u ∈ W 2n

2

(
R+;H; {sν}2n−1

ν=0

)
and P0u = P0(d/dt)u for u ∈

W 2n
2

(
R+;H; {sν}2n−1

ν=0

)
. Show that KerP0 = {0} and ImP0 = L2 (R+;H).

It is obvious that the equation P0(d/dt)u = 0 has a general solution from the space
W 2n

2 (R+;H) in the form

u0(t) =
n−1∑
k=0

tk

k!
Ake−tAck,

where e−tA is a semi-group of bounded operators generated by the operator (−A), the
vectors ck ∈ H2n− 1

2
(see [4], [5]). By using the conditions

u0 ∈ W 2n
2

(
R+;H; {sν}n−1

ν=0

) (
u

(sν)
0 = 0, ν = 0, n− 1

)
,

we shall find the vectors ck
(
k = 1, n

)
. We set

∆0 =


E 0 0 · · · 0
−E E 0 · · · 0
E −2E E · · · 0
...

...
... . . . ...

−E (2n− 1)E − Cp
2n−1 E · · · E

 ,

and let ∆0

(
(sν)

n−1
ν =0

)
be the matrix of dimension n×n obtained from ∆0 by deleting the

(sν+1)-th rows and columns
(
ν = 0, n− 1

)
. Since ∆0 is a triangular operator-matrix,

then ∆0

(
(sν)

n−1
ν=0

)
will also be a triangular operator-matrix. Then, by the conditions

u
(sν)
0 (0) = 0 we get

∆0

(
(sν)

n−1
ν=0

)
c̃ = 0, c̃ = (c0, c1, ..., cn−1) .

Hence, we get c̃ = 0, i.e. u0(t) = 0.
Now, let us show that ImP0 = L2 (R+;H). Denote by f1(t) a continuation of the

vector-function f(t) on (−∞, 0] as a zero vector-function. Then, by using the Fourier
transformation, we see that the vector-function

u1(t) =
1

2π

∫ ∞

−∞

(
ξ2E + A2

)−n
f̂1(ξ)e

iξtdξ, t ∈ R = (−∞,∞)

satisfies equation (2.3) in R+ almost everywhere. Show that u1(t) ∈ W 2n
2 (R;H)

(R = (−∞,∞)) . By the Plancherel theorem, it suffices to prove that A2nû1(ξ) ∈
L2 (R;H) and ξ2nû1(ξ) ∈ L2 (R;H). Obviously,∥∥A2nû1(ξ)

∥∥
L2(R;H)

=
∥∥∥A2n

(
ξ2E + A2

)−n
f̂1(ξ)

∥∥∥
L2(R;H)

≤ sup
ξ∈R

∥∥∥A2n
(
ξ2E + A2

)−n
∥∥∥∥∥∥f̂1(ξ)

∥∥∥
L2(R;H)

= sup
ξ∈R

∥∥∥A2n
(
ξ2E + A2

)−n
∥∥∥ ‖f1‖L2(R;H) .
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By the spectral expansion of the operator A it follows that for ξ ∈ R∥∥∥A2n
(
ξ2E + A2

)−n
∥∥∥ = sup

µ∈σ(A)

∥∥∥µ2n
(
ξ2 + µ2

)−n
∥∥∥ ≤ 1.

Therefore the previous inequality implies that A2 nû1(ξ) ∈ L2 (R;H). The inclusion
ξ 2 nû1(ξ) ∈ L2 (R;H) is proved similarly. Consequently, u1(t) ∈ W 2n

2 (R;H). By ω 1(t)
we denote the restriction of the vector-function u 1(t) ∈ W 2n

2 (R;H) on [0,∞) , i.e.
ω 1(t) = u 1(t)/[0,∞). Obviously, ω1(t) ∈ W 2n

2 (R+;H) , and it follows by theorem on
traces that ω(sν)

1 (0) ∈ H2 n−sν− 1
2

(
ν = 0, n− 1

)
. Now, we shall look the solution of the

equation P0u = f in the form

u(t) = ω1(t) +
n−1∑
ν=0

tν

ν!
Aνe−tAcν ≡ ω1(t) + u0(t),

where the unknown vectors cν are to be defined. It follows by condition (2.4) that

∆
(
(sν)

n−1
ν=0

)
c̃ = ϕ̃, c̃ = (cν)

n−1
ν=0 , ϕ̃ =

(
Asν

(
u(sν)(0)

)
− ω

(sν)
1 (0)

)n−1

ν=0
.

Each component of the vector ϕ̃ belongs to the spaceH2n− 1
2
, cν ∈ H2n− 1

2

(
ν = 0, n− 1

)
.

Hence, tν

ν!
Aνe−tAcν ∈ W 2n

2 (R+;H) (see [4], [5]), therefore u(t) is the desired solution.

Since the operator P0 :
0

W 2n
2 (R+;H) → L2 (R+;H) is bounded, it realizes an iso-

morphism between these spaces. Then, in the space W 2n
2

(
R+;H; {sν}n−1

ν=0

)
, the norms

‖u‖W 2n
2 (R+;H) and ‖P0u‖L2(R+;H) are equivalent. Therefore, by the theorem on inter-

mediate derivatives [13], the following numbers, i.e. the norms of the operators of
intermediate derivatives are finite

Nj

(
R+;H; {sν}n−1

ν=0

)
= sup

0 6=W 2n
2 (R+;H;{sν}n−1

ν=0)

∥∥A2n−ju(j)
∥∥

L2(R+;H)
‖P0u‖−1

L2(R+;H)
< +∞, j = 0, 2n− 1. (2.10)

For determining the norms of intermediate derivatives operators, we consider the
following 4n-th order operator bundle depending on a real parameter β :

Pj (λ; β;A) =
(
−λ2E + A2

)2n − β (iλ)2j A2n−2j, j = 0, 2n− 1, (2.11)

where β ∈
(
0, d−2n

2n,j

)
and

d2n,j =

{ (
j
2n

) j
2n
(

2n−j
2n

) 2n−j
2n , j = 0, 2n− 1

1, j = 0
. (2.12)

The following lemma is true.
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Lemma 2.2. Let β ∈
(
0, d−2n

2n,j

)
. Then the operator bundle Pj (λ; β;A) has no spectrum

on the imaginary axis and is represented in the form

Pj (λ; β;A) = Fj (λ; β;A) · Fj (−λ; β;A) . (2.13)

Moreover,

Fj (λ; β;A) =
2n∏

k=1

(λE − ωj,k (β)A) ≡
2n∑

m=0

αm,j (β)λmAn−m, (2.14)

where Re ωj,k (β) < 0 are the coefficients αm,j (β) > 0, and they satisfy

∞∑
ν=−∞

(−1)ν αm+ν,j (β)αm−ν,j (β) =

=


∞∑

ν=−∞
(−1)ν cm+νcm−ν − β, if m = j

∞∑
ν=−∞

(−1)ν cm+νcm−ν , if m 6= j,m = 0, 2n− 1.
(2.15)

Here, the numbers αn,j (β) are determined by (2.11) and

cm =

{
(−1)

m
2 Cm

n , if m = 2k, k = 1, n− 1
0, if m = 2k − 1, k = 1, n− 1

,

and we assume that αm,j (β) = 0, cm = 0 for m > 2n and m < 0.

Proof. Let µ ∈ σ (A), where σ (A) is the spectrum of the operatorA. Then, for β ∈(
0, d−2n

2n,j

)
and for λ = iξ, ξ ∈ R j = 1, 2n− 1, the polynomial

Pj (λ; β;µ) =
(
−λ2 + µ2

)2n − β (iλ)2j µ2n−2j, j = 0, 2n− 1, (2.16)

is positive. Indeed,

Pj (λ; β;µ) =
(
ξ2 + µ2

)2n − βξ2jµ2n−2j

=
(
ξ2 + µ2

)2n
(

1− β
ξ2jµ2n−2j

(ξ2 + µ2)2n

)

=
(
ξ2 + µ2

)2n

1− β

(
ξ
µ

)2j

((
ξ
µ

)2

+ 1

)2n


≥

(
ξ2 + µ2

)2n
(

1− β sup
τ≥0

τ 2j

(τ 2 + 1)2n

)
=

(
ξ2 + µ2

)2n (
1− β · d2n

2n,j

)
> 0.

Thus, the polynomial Pj (λ; β;µ) has no roots on the imaginary axis and therefore it
has exactly n roots in the left half-plane and exactly n roots in the right half-plane.



On solvability of some boundary value problems 41

Since the roots of the polynomial Pj (λ; β;µ) are symmetric with respect to the origin
and real axis, and it is homogeneous with respect to λ and µ, we have

Pj (λ; β;µ) =
2n∏

k=1

(λ− ωj,k (β)µ) ·
2n∏

k=1

(λ+ ωj,k (β)µ) , (2.17)

where for Reωj,k (β) < 0, β ∈
(
0, d−2n

2n,j

)
. Denoting

Fj (λ; β;µ) =
2n∏

k=1

(λ− ωj,k (β)µ) ≡
2n∑
l=0

αl,j (β)λlµn−l, (2.18)

we obtain
Pj (λ; β;A) = Fj (λ; β;A) · Fj (−λ; β;A) . (2.19)

It follows by Viet’s theorem that αn,j (β) > 0, since ωj,k (β) are either real or
mutually adjoint complex numbers in the left half-plane.

It is obvious that αn,j (β) = 1. On the other hand, α0,j (β) = (−1)n∏n
k=1 ωj,k (β).

Since Re ωj,k (β) < 0, then α0,j (β) > 0, because if ωj,k (β) is a complex root, then
ωj,k (β) is also a root of the polynomial Pj (λ; β;µ) (the coefficients are real). On
the other hand, by (2.16) and (2.17) we get that α2

0,j (β) = 1. Then α0,j (β) = 1 or
α0,j (β) = −1, but α0,j (β) > 0, and therefore α0,j (β) = 1.

Further, comparing the coefficients of the polynomial Pj (λ; β;µ), by (2.16) and
(2.19) we get the validity of equality (2.15). Using spectral decomposition of the
operator A, by (2.17) and (2.19) we get the statement of the lemma.

In the case j = 0, Lemma 2 is proved similarly .
Using expansion (2.17) and representation (2.18), first let us calculate the norms

Nj (R+;H) = sup
0 6=u∈W 2n

2 (R+;H)

∥∥A2n−ju(j)
∥∥

L2(R;H)
‖P0u‖−1

L2(R;H) , j = 0, 2n− 1,

Nj

(
R+;H; {ν}2n−1

ν=0

)
= sup

0 6=u∈W 2n
2 (R+;H)

∥∥A2n−ju(j)
∥∥

L2(R+;H)
‖P0u‖−1

L2(R+;H) , j = 0, 2n− 1.

and
Nj

(
R+;H; {sν}n−1

ν=0

)
=

= sup
0 6=u∈W 2n

2 (R+;H;{sν}n−1
ν=0)

∥∥A2n−ju(j)
∥∥

L2(R+;H)
· ‖P0u‖−1

L2(R+;H) , j = 0, 2n− 1.

Theorem 2.1. For the norms Nj (R;H) and Nj

(
R;H; {sν}n−1

ν=0

)
the following equali-

ties hold:
Nj (R+;H ) = d−n

2n,j , j = 0 , 2n − 1 ,

and
Nj

(
R;H ; {ν}2n−1

ν=0

)
= d−n

2n,j , j = 0 , 2n − 1 .



42 R.Z. Humbataliev

Proof. For u ∈ D (R;H), after simple calculations we get

‖P0 (d/dt)u‖2
L2(R;H) =

∥∥∥∥(− d2

dt2
+ A2

)n∥∥∥∥2

L2(R;H)∥∥∥∥∥
n∑

m=0

(−1)mCm
n A

2n−2mu(2m)

∥∥∥∥∥
2

L2(R;H)∥∥∥∥∥
2n∑

k=0

ckA
2n−ku(k)

∥∥∥∥∥
2

L2(R;H)

=
n∑

k=0

(
∞∑

s=−∞

(−1)s ck+sck−s

)∥∥A2n−ku(k)
∥∥2

L2(R;H)
, (2.20)

where ck = (−1)k C
k
2
n for k = 2m, m = 0, n and ck = 0, for k = 2m− 1, m = 1, n. For

k > 2n and k < 0, we assume that ck = 0. Similarly we have

‖Fj (d/dt; β;A)u‖2
L2(R;H) =

∥∥∥∥∥
2n∑

k=0

αk,j (β)A2n−ku(k)

∥∥∥∥∥
2

L2(R;H)

=
2n∑

k=0

(
∞∑

s=−∞

(−1)s αk+s,j (β)αk−s,j (β)

)∥∥A2n−ku(k)
∥∥2

L2(R;H)
. (2.21)

Then, taking into account equalities (2.15) and (2.20), we get

‖Fj (d/dt; β;A)u‖2
L2(R;H) = ‖P0 (d/dt)u‖2

L2(R;H) − β
∥∥A2n−ju(j)

∥∥2

L2(R;H)
. (2.22)

Hence, we have β ∈
(
0, d−2n

2n,j

)
and u ∈ D (R;H), and they satisfy the inequality

∥∥A2n−ju(j)
∥∥

L2(R;H)
≤ 1

β
1
2

‖P0 (d/dt)u‖2
L2(R;H) .

Passing to limit as β → d−2n
2n,j , we get that for all u ∈ W 2n

2 (R;H) following the inequality
is satisfied: ∥∥A2n−ju(j)

∥∥
L2(R;H)

≤ dn
2n,j ‖P0u‖L2(R;H) , j = 0, 2n− 1. (2.23)

Let us show that inequality (2.23) is exact. Show this in the case j = 1, 2n− 1. For
j = 0, it is proved in a similar way, but with some little alterations.

Let ε > 0. Denote

E (uε) ≡ ‖P0u‖2
L2(R;H) −

(
d−2n

2n,j + ε
) ∥∥A2n−ju(j)

∥∥2

L2(R;H)
.

Show that there exists a vector-function uε(t) = gε(t)ϕε, where ϕε ∈ H4n, ‖ϕε‖ = 1,
and gε(t) is a scalar function such that gε(t) ∈ W 2n

2 (R) and E (gε(t)ϕε) < 0. Using the
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Fourier transformation and the Plancherel theorem, we can write it in the form

E (uε) =

∫ ∞

−∞

((
ξ2E + A2

)n
gε(ξ)ϕε,

(
ξ2E + A2

)n
gε(ξ)ϕε

)
−
(
d−2n

2n,j + ε
)
×

×
(
A2n−jξ2jgε(ξ)ϕε, A

2n−jξ2jgε(ξ)ϕε

)
dξ

=

∫ ∞

−∞

(((
ξ2E + A2

)2n −
(
d−2n

2n,j + ε
))
ξ2jA2n−jϕε, ϕε

)
|gε(ξ)|2 dξ

≡
∫ ∞

−∞

(
Pj

(
iξ, d−2n

2n,j + ε, A
)
ϕε, ϕε

)
|gε(ξ)|2 dξ < 0, (2.24)

where ĝε(ξ) is the Fourier transformation of the function gε(t). Obviously, if the oper-
ator A has even one eigenvalue µ > 0 and eigenvector ϕ, ‖ϕ‖0 = 1, then(

Pj

(
iξ, d−2n

2n,j + ε, A
)
ϕ, ϕ

)
=

(
ξ2 + µ2

)2n −
(
d−2n

2n,j + ε
)
ξ2jµ2n−2j

=
(
ξ2 + µ2

)(
1−

(
d−2n

2n,j + ε
) ξ2jµ2n−2j

(ξ2 + µ2)2n

)
.

Thus, in some neighbourhood of τ = µ j
2n−j

, the integrand function in (2.24) is
negative. Then, by continuity of

(
Pj

(
iξ, d−2n

2n,j + ε, A
)
ϕ, ϕ

)
with respect to ξ, we

get that there exists a neighbourhood (η1, η2) of the point ξ = µ j
2n−j

, where(
Pj

(
iξ, d−2 n

2 n, j + ε, A
)
ϕ , ϕ

)
< 0. Now, assume

gε(t) =
1√
2π

∫ η2

η1

ĝ(ξ)dξ,

where ĝ(ξ) is an infinitely differentiable function with the support in the inter-
val (η1, η2) (ĝ(ξ) = 0, ξ ∈ R\ (η1, η2)). It is obvious that ĝε(ξ) ∈ W 2n

2 (R;H) and
E (uε) = E (gε(t)ϕ) < 0. If the operator has no eigenvalues, then for µ ∈ σ (A) we can
find a vector ϕδ, ‖ϕδ‖ = 1, such that A(m) ϕ δ = µ(m)ϕδ + 0(1), for δ → 0,m = 1, 2, ....

In this case,(
Pj

(
iξ, d−2n

2n,j + ε, A
)
ϕδ, ϕδ

)
= Pj

(
iξ, d−2n

2n,j + ε, µ
)

+ 0(1),

as δ → 0. Then, choosing sufficiently small δ, and using the previous reasonings, we
get that E (uε) = E (gε(t)ϕδ) < 0. Thus, Nj (R;H) = d−n

2n,j

(
j = 0, 2n− 1

)
.

Now, show that Nj

(
R+;H; {sν}n−1

ν=0

)
= d−n

2n,j

(
j = 0, 2n− 1

)
. It is obvious that for

u ∈ W 2n
2

(
R+;H; {ν}2n−1

ν=0

)
equality (2.22) holds (since u(ν) = 0, ν = 0, 2n− 1). Then

for all u ∈ W 2n
2

(
R+;H; {ν}2n−1

ν=0

)
the inequality∥∥A2n−ju(j)

∥∥
L2(R+;H)

≤ d−n
2n,j ‖P0 u‖L2(R+;H) , j = 0, 2n− 1, (2.25)

holds, i.e. Nj

(
R+;H; {sν}n−1

ν=0

)
≤ d−n

2n,j. We showed that there exists a vector-function
uε(t) ∈ W 2n

2 (R;H), such that

E (uε) = ‖P0 uε‖2
L2(R;H) −

(
d−2n

2n,j + ε
) ∥∥A2n−ju(j)

∥∥2

L2(R;H)
< 0.
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Since E (·) is a continuous functional in W 2n
2 (R;H), then there exists vε(t) ∈ D (R;H),

t ∈ R+ such that vε(t) = 0, for |t| ≥ N (N > 0) and E (vε) < 0. Then assuming
ũε(t) = vε (t−N), we get that ũε(t) ∈ W 2n

2

(
R+;H; {ν}2n−1

ν=0

)
and

‖P0 ũε‖L2(R+;H) −
(
d−2n

2n,j + ε
) ∥∥A2n−jũ(j)

ε

∥∥
L2(R+;H)

= E (ũε) < 0.

Consequently, inequality (2.16) is exact.

Now, find Nj

(
R+;H; {sν}n−1

ν=0

)
. With the help of coefficients of the polyno-

mial Fj (λ; β;A) and P0(d/dt)A, we determine the following matrices Rj (β) =
(rp,q,j (β))2n

p,q=1 : Cn → Cn T = (cp,q)
2n
p,q=1 : C2n → C2n, where p ≥ q

rp,q,j (β) =
∞∑

s=0

(−1)s αp+s,j (β)αq−s−1,j (β) , (αs (β) = 0, s < 0, s > 2n) ,

and for p < q we assume rp q,j (β) = rq p,j (β) . For p ≥ q

cpq =
∞∑

s=0

(−1)s cp+scq−s−1. (cs = 0, s < 0, s > 2n) ,

and for p < q cp q = cq p, p, q = 1, n, where

cs =

{
(−1)

s
2 C

s
2
n , if s = 2k, k = 1, 2n− 1

0, if s = 2k − 1, k = 1, 2n− 1.

Let

Sj (β) = Rj (β)− T, R̃j (β) = Rj (β)⊗ E2n, T̃ = T ⊗ E2n, S̃ (β) = S (β)⊗ E2n,

where E2n is the unit operator-matrix in C2n, and ⊗ means that each element of
S̃ (β) is an element of the matrix Sj (β) multiplied by the unit operator E. Similarly
to equality (2.22) for the vector-function u ∈ W 2n

2

(
R+;H; {sν}n−1

ν=0

)
, we prove the

following statement.

Lemma 2.3. For any u ∈ W 2n
2

(
R+;H; {sν}n−1

ν=0

)
and β ∈

(
0, d−2n

2n,j

)
, the equality

‖Fj (d/dt; β;A)u‖2
L2(R+;H) + S̃j (β, {sν}n

ν=0) =

= ‖P0u‖2
L2(R+;H) − β

∥∥A2n−ju(j)
∥∥2

L2(R+;H)
, (2.26)

holds, where the operator matrix S̃j (β, {sν}n
ν=0) is obtained from the matrix S̃j (β) of

dimension n × n by deleting the (s0 + 1)-th, (s1 + 1)-th,. . . , (sn−1 + 1)-th rows and
columns.

It is obvious that S̃j (β, {sν}n
ν=0) = Sj (β, {sν}n

ν=0) ⊗ En is a symmetric operator
matrix.

Thus, we have the following.
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Lemma 2.4. σ
(
S̃j (β, {sν}n

ν=0)
)

= σ (Sj (β, {sν}n
ν=0)) as sets.

Now, it is obvious that Nj

(
R+;H; {sν}n−1

ν=0

)
≥ Nj

(
R+;H; {ν}n−1

ν=0

)
= d−n

2n,j, since
W 2n

2

(
R+;H; {sν}n−1

ν=0

)
⊃ W 2n

2

(
R+;H; {ν}n−1

ν=0

)
. The following theorems holds for the

case when Nj

(
R+;H; {sν}n−1

ν=0

)
= d−n

2n,j.

Theorem 2.2. Nj

(
R+;H; {sν}n−1

ν=0

)
= d−n

2n,j

(
j = 0, 2n− 1

)
if and only if for all β ∈(

0, d−2n
2n,j

)
Sj (β, {sν}n

ν=0) > 0.

Proof. LetNj

(
R+;H; {sν}n−1

ν=0

)
= d−n

2n,j. Then, for u ∈ W 2n
2

(
R+;H; {sν}n−1

ν=0

)
, it follows

by equality (26) that

‖Fj (d/dt; β;A)u‖2
L2(R+;H) +

(
S̃j (β, {sν}n

ν=0) ϕ̃, ϕ̃
)

= ‖P0 u‖2
L2(R+;H)

1− β

∥∥A2n−ju(j)
∥∥2

L2(R+;H)

‖P0 u‖2
L2(R+;H)


≥ ‖P0 u‖2

L2(R+;H)

1− β sup
0 6=u∈W 2n

2 (R+;H;{sν}n−1
ν=0)

∥∥A2n−ju(j)
∥∥2

L2(R+;H)

‖P0 u‖2
L2(R+;H)


= ‖P0 u‖2

L2(R+;H)

(
1− βd−2n

2n,j

)
. (2.27)

Since all the roots of the polynomial Fj (λ; β;A) are in the left half-plane, this means
that the Cauchy problem

Fj (d/dt; β;A)u = 0, u(sν)(0) = 0, u(k)(0) = A2n−k− 1
2ϕk, k 6= sν , (2.28)

has a unique solution in the space W 2n
2 (R+;H) for any collection of ϕk ∈ H2n−k− 1

2
, k 6=

sν

(
ν = 0, n− 1

)
. Then, if in (2.27), instead of u(t) we write this solution, we get that

for any collection of n vectors ϕk ∈ H2n−k− 1
2

we have
(
S̃j (β, {sν}n

ν=0) ϕ̃, ϕ̃
)
> 0. Hence,

it follows that Sj (β, {sν}n
ν=0) > 0.

Conversely, if Sj (β, {sν}n
ν=0) > 0, for all β ∈

(
0, d−2n

2n,j

)
, then it follows from (2.26)

that
‖P0 u‖2

L2(R+;H) − β
∥∥A2n−ju(j)

∥∥2

L2(R+;H)
> 0

for β ∈
(
0, d−2n

2n,j

)
and u ∈ W 2n

2

(
R+;H; {sν}n−1

ν=0

)
. Passing to limit as β → d−n

2n,j, we
get Nj

(
R+; {sν}n−1

ν=0

)
≤ d−n

2n,j. But, we showed that Nj

(
R+; {sν}n−1

ν=0

)
≥ d−n

2n,j, i.e.
Nj

(
R+; {sν}n−1

ν=0

)
= d−n

2n,j.

Thus, if for all β ∈
(
0, d−2n

2,n,j

)
, Sj (β, {sν} n

ν=0) is not positive, then
Nj

(
R+; {sν} n−1

ν=0

)
> d−n

2,n,j. Then, N−2
j

(
R+; {sν}n−1

ν=0

)
∈
(
0, d−2n

2n,j

)
.

In this case the following statement holds.
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Theorem 2.3. If Sj (β, {sν}n
ν=0) is not positive for all β ∈

(
0, d−2n

2n,j

)
, then

Nj

(
R+; {sν}n−1

ν=0

)
= (µ (β, {sν}n

ν=0))
1
2 , where µ (β, {sν}n

ν=0) is the smallest root of the
equation detSj (β, {sν}n

ν=0) = 0 in the interval
(
0, d−2n

2n,j

)
.

Proof. As we noted, in this case N−2
j

(
R+; {sν}n−1

ν=0

)
∈
(
0, d−2 n

2 n , j

)
. Then, for β ∈(

0, N −2
j

(
R+; {sν}n−1

ν=0

))
and for any u ∈ W 2n

2

(
R+; {sν}n−1

ν=0

)
, it follows from (2.27) that

‖Fj (d/dt; β;A)u‖2
L2(R+;H) +

(
S̃j (β, {sν}n

ν=0) ϕ̃, ϕ̃
)

≥ ‖P0 u‖2

1− β sup
0 6=u∈W 2n

2 (R+;H;{sν}n−1
ν=0)

∥∥A2n−ju(j)
∥∥2

L2

‖P0 u‖2
L2


≥ ‖P0 u‖2 (1− βN −2

j (β, {sν}n
ν=0)

)
> 0.

By considering the Cauchy problem (2.28), for β ∈
(
0, N −2

j

(
R+; {sν}n−1

ν=0

))
we get

Sj (β, {sν}n
ν=0) > 0. Then, the first eigenvalue of the matrix Sj (β, {sν}n

ν=0) is positive
for all β ∈

(
0, N −2

j

(
R+; {sν}n−1

ν=0

))
. On the other hand, it follows from definition of

Nj

(
R+; {sν}n−1

ν=0

)
that for all β ∈

(
0, N −2

j

(
R+; {sν}n−1

ν=0

))
there exists a vector-function

uβ ∈ W 2n
2

(
R+; {sν}n−1

ν=0

)
such that

‖P0 uβ‖2
L2(R+;H) − β

∥∥∥A2n−ju
(j)
β

∥∥∥2

L2(R+;H)
< 0.

Then, it follows by equality (2.26) that for β ∈
(
N −2

j

(
R+; {sν}n−1

ν=0

)
, d−2n

2n,j

)
(
S̃j (β, {sν}n

ν=0) ϕ̃β, ϕ̃β

)
< 0,

where ϕ̃β =
(
ϕβ,k = A2n−k− 1

2u
(k)
β (0)

)
, k 6= sν , ν = 0, n− 1. Hence, it fol-

lows that the first eigenvalue of the matrix Sj (β, {sν}n
ν=0) is negative for β ∈(

N −2
j

(
R+; {sν}n−1

ν=0

)
, d−2n

2n,j

)
. As for λ 1 (β), this is a continuous function such that

λ 1

(
N −2

j

(
R+; {sν}n−1

ν=0

))
= 0, i.e. N −2

j

(
R+; {sν}n−1

ν=0

)
is the smallest root of the equa-

tion detSj (β, {sν}n
ν=0) = 0.

Theorems 2.2 and 2.3 yield the following statement.

Theorem 2.4. The norms of the operators of intermediate derivatives satisfy the equal-
ity

Nj

(
R+; {sν}n−1

ν=0

)
=

{
dn

2n,j, if det Sj (β) 6= 0, β ∈
(
0, d−2n

2n,j

)
,

µ
− 1

2
j

(
(sν)

n−1
ν=0

)
, if det Sj (β0) = 0, β0 ∈

(
0, d−2n

2n,n

)
.

Thus, for finding the exact values of the norm Nj

(
R+; {s ν}n− 1

ν = 0

)
, we have to

solve the equations detSj (β, {sν}n
ν=0) = 0. If this equation has a solution in the

interval
(
0, d−2n

2n,j

)
, then the smallest of them µ 0 will satisfy the condition µ

− 1
2

j =

Nj

(
R+; {sν}n−1

ν=0

)
. Here, we must take into account that αj (µ 0) > 0. If under the

condition αj (µ 0) > 0 this equation has no solution in the interval
(
0, d−2n

2n , j

)
, then

Nj

(
R+; {sν}n−1

ν=0

)
= d−n

2n,j.
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3 On solvability of boundary value problem (2.1), (2.2)

Now, we shall find conditions that provide regular solvability of problems (2.1), (2.2).
The following theorem is true.

Theorem 3.1. Let conditions 1), 2) be satisfied, and the operators Aj

(
j = 1, 2n

)
satisfy the conditions

α =
2n−1∑
j=0

Nj

(
R+; {sν}n−1

ν=0

)
‖B2n−j‖ < 1,

where Bj = AjA
−j
(
j = 1, 2n

)
. Then problem (2.1), (2.2) is regularly solvable.

Proof. Write problem (2.1), (2.2) in the form of the equation

Pu = P0 u+ P1 u = f,

where f ∈ L2 (R+;H) , u ∈ W 2n
2

(
R+; {sν}n−1

ν=0

)
. By Lemma 1, the operator

P0 : W 2n
2 (R+; {L}) → L2 (R+;H)

is continuous and boundedly invertible. It follows by condition 2) that the operator
P1 : W 2n

2

(
R+; {sν}n−1

ν=0

)
→ L2 (R+;H) is also bounded. Indeed,

‖P1u‖ = ‖P1(d/dt)u‖ =
2n−1∑
j=0

∥∥A2n−ju
(j)
∥∥

L2(R+;H)

≤
2n−1∑
j=0

‖B2n−j‖
∥∥A2n−ju(j)

∥∥
L2(R+;H)

≤ const ‖u‖W 2n
2 (R+;H) .

Thus, the operator P : W 2n
2

(
R+; {sν}n−1

ν=0

)
→ L2 (R+;H) is bounded. Show that P is an

invertible operator. If we denote v = P0 u, then we get the equation
(
E + P1P

−1
0

)
v = f

with respect to v in the space L2 (R+;H). Then, for any v (the operator P0 is an
isomorphism),

∥∥P1P
−1
0 v

∥∥ = ‖P1 u‖ ≤
2n−1∑
j=0

‖B2n−j‖
∥∥A2n−ju(j)

∥∥
≤

2n−1∑
j=0

‖B2n−j‖Nj

(
R+; {sν}n−1

ν=0

)
‖P0 u‖L2n(R+;H)

= α ‖P0 u‖L2n(R+;H) = α ‖v‖L2n(R+;H) .

Since 0 < α < 1, the operator
(
E + P1P

−1
0

)
is invertible in L2 (R+;H), hence

v(t) = (E + P1P
−1
0 )−1f(t),
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and
u(t) = P−1

0 (E + P1P
−1
0 )−1f(t).

It is obvious that
‖u‖W 2n

2 (R+;H) ≤ const ‖f‖L2(R+;H) .

The theorem is proved.

Corollary 3.1. Let the conditions of Theorem 3.1 be satisfied. Then, the problem

P (d/dt)u(t) = 0, t ∈ R+ = (0,∞) , (3.1)

u(sν)(0) = ϕν , ν = 0, n− 1, (3.2)

has a unique regular solution, and moreover, for any ϕν ∈ H2n−ν− 1
2

(
ν = 0, n− 1

)
‖u‖W 2n

2 (R+;H) ≤ const
n−1∑
ν=0

‖ϕν‖2n−sν− 1
2
. (3.3)

Proof. We write u(t) = ω(t)−u0(t), where u0(t) =
n−1∑
k=0

tk

k!
Ake−tAck. Here ck are the un-

known vectors that are to be determined by the system u(sν)(0) = −ϕν

(
ν = 0, n− 1

)
.

Then, with respect to ω, we get the following problem

P (d/dt)ω(t) = g(t), t ∈ R+ = (0,∞) , (3.4)

ω(sν)(0) = 0, ν = 0, n− 1, (3.5)

where g(t) = P1(d/dt)u0(t). Hence,

‖g(t)‖L2(R+;H) = ‖P1(d/dt)u0(t)‖L2(R+;H) ≤ const
n−1∑
k=0

‖ϕν‖2n−sν− 1
2
,

i.e. g(t) ∈ L2 (R+;H). Applying Theorem 3.1, we get that problem (32) , (33) is
regularly solvable. Then,

‖ω‖W n
2 (R+;H) ≤ const

n−1∑
ν=0

|ϕν |2n−sν− 1
2
.

On the other hand,

‖u0(t)‖ ≤ const

n−1∑
k=0

‖cν‖2n− 1
2
≤ const

n−1∑
k=0

‖ϕν‖2n−sν− 1
2
,

and then the desired solution will be u = ω − u0.

Note that it follows by Theorem 3.1 that problem (2.7), (2.8) has a unique regular
solution for any f (x, t) ∈ L2 (R+ × [0, π]) , if the condition

2n−1∑
j=0

Nj

(
R+; (sν)

n−1
ν=0

)
sup

x∈[0,π]

|P2n−j (x)| < 1

is satisfied.
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4 n-fold completeness

Now, we investigate the n-fold completeness of a system of derivatives of the chains of
eigen and adjoint vectors corresponding to eigenvalues in the left half-plane.

First, we estimate the resolvent P−1(λ) in some sectors.

Theorem 4.1. Let conditions 1), 2) be satisfied, and

α =
2n−1∑
j=0

dn
2n,j ‖B2n−j‖ < 1,

where d2n,j are defined by (2.12). Then on the sectors

S± θ =
{
λ :
∣∣∣arg λ± π

2

∣∣∣ < θ
}

for small θ > 0, the operator bundle P (λ) is invertible and in these sectors the estimate

2n−1∑
j=0

∥∥λjA2n−jP−1(λ)
∥∥ ≤ const (4.1)

holds.

Proof. Let λ ∈ Sθ. It suffices to prove the desired inequality for the sectors S− θ ={
λ : λ = reiϕ, r > 0, π

2
+ θ < ϕ < π

2

}
. For other parts of the sector S± θ, this inequality

is proved similarly. Let P (λ) = P0 (λ) + P1(λ), where

P0 (λ) =
(
−λ2 + A2

)n
;P1(λ) =

2n−1∑
j=0

λjA2n−j.

For λ = rei π
2 , we have

P (λ) = P0 (λ) + P1(λ) =
(
E + P1(λ)P−1

0 (λ)
)
P−1

0 (λ).

It is obvious that for λ = rei π
2

∥∥P1(λ)P−1
0 (λ)

∥∥ =

∥∥∥∥∥
2n−1∑
j=0

rjei(2n−j)π
2A2n−j

(
r2E + A2

)−n

∥∥∥∥∥
≤

2n−1∑
j=0

‖B2n−j‖
∥∥∥rjA2n−j

(
r2E + A2

)−n
∥∥∥ .

Using the spectral expansion of the operator A, we have∥∥∥rjA2n−j
(
r2E + A2

)−n
∥∥∥ = sup

µ ∈σ(A)

∣∣∣rjµ2n−j
(
r2 + µ2

)−n
∣∣∣

≤ sup
τ≥0

∣∣∣τ j
(
τ 2 + 1

)−n
∣∣∣ = dn

2n,j.
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Then, we get that for λ = rei π
2 , r > 0∥∥P1(λ)P−1

0 (λ)
∥∥ < α < 1.

Consequently, for λ = rei π
2

P−1(λ) = P−1
0 (λ)

(
E + P1(λ)P−1

0 (λ)
)−1

,
∥∥P−1(λ)

∥∥ ≤ ∥∥P−1
0 (λ)

∥∥ · 1

1− α
. (4.2)

Then, we have∥∥λjA2n−jP−1(λ)
∥∥ =

∥∥∥λjA2n−jP−1(λ)
(
E + P1(λ)P−1

0 (λ)
)−1
∥∥∥

≤ 1

1− α

∥∥λjA2n−jP−1
0 (λ)

∥∥ ≤ dn
2n,j

1− α
. (4.3)

Thus, for λ = rei π
2 , inequality (4.1) is true. Now, let λ = reiϕ, π

2
≤ ϕ < π

2
+ θ. Then it

is obvious that for λ = rei(π
2
+ϕ) = ireiϕ

P (λ) = P (ir) + (ir)(2n−1)Q1

(
ei(2n−1)ϕ − 1

)
+ (ir)(2n−2)Q2

(
ei(2n−2)ϕ − 1

)
+ ...+ (ir)Qk

(
eiϕ − 1

)
,

where Q2k−1 = A2k−1, k = 1, n, Q2k = (−1)k Ck
nA

2k + A2k, k = 1, n− 1. Then

P (λ) = (E + (ir)2n−1Q1P
−1 (ir)

(
ei(2n−1)ϕ − 1

)
+ ...

+irQkP
−1 (ir)

(
eiϕ − 1

)
)P (ir)

= (E + T (ir, ϕ))P (ir) .

Since θ > 0 is sufficiently small and 0 ≤ ϕ < θ, then by using estimate (4.3) we get
‖T (ir, ϕ)‖ < 1

2
, for small θ and r > 0. Then we get that for λ = reiϕ, π

2
≤ ϕ < π

2
+ θ,

where θ is a sufficiently small number inequality (4.1) holds.

Lemma 4.1. Let conditions 1), 2) be satisfied and
3) A−1 be a completely continuous operator, i.e. A−1 ∈ σ∞ (H);
4) the operator (E +B2n) be invertible in H.

Then the operator bundle P (λ) has only a discrete spectrum with a unique limit
point at infinity. In addition, if A−1 ∈ σp (0 < p <∞), the operator bundle A2nP−1(λ)
is represented in the form of ratio of two entire functions of order ρ and of minimal
type ρ.

Proof. It is obvious that P (λ) may be represented in the form

P (λ) = (−1)n λ2nE + A2n +
2n−1∑
j=1

λjQ2n−j + A2n,
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where Q2k = (−1)k Ck
nA

2k + A2k, Q2k−1 = A2k−1. Then

P (λ) =

(
(−1)n λ2nA−2n +

2n−1∑
j=1

λjQ2n−jA
−2n + E + A2nA−2n

)
A2n

= (E +B2n) ((−1)n λ2n (E +B2n)−1A−2n +

+
2n−1∑
j=1

λj (E +B2n)−1Q2n−jA
−2n+jA−j + E)A2n

= (E +B2n)× (E +M(λ))A2n,

where

M(λ) =

(
(−1)n λ2n (E +B2n)−1A−2n +

2n−1∑
j=1

λj (E +B2n)−1Q2n−jA
−2n+jA−j + E

)
.

It is obvious that
T2n = (−1)n (E +B2n)A−2n ∈ σ∞ (H) ,

Tj = (E +B2n)−1 (A2n−jA
−2n+j

)
A−j ∈ σ∞ (H)

for all λ ∈ C, i.e. M(λ) is a compact-valued operator-function and M(0) = 0. It
follows by the Keldysh lemma [7] that the operator bundle E + M(λ) is invertible
for all λ ∈ C except for a countable number of points λk, that will be eigenvalues of
E +M(λ) and have a limit point only at infinity. Obviously, this refers to the bundle
P (λ) = (E +B2n) (E +M(λ))A2n as well. On the other hand, by the boundedness of
the operators A−1 ∈ σp, (E +B2n) and (E +B2n)−1Q2n−jA

−2n+j we get that T2n ∈
σ p

2n
, à Tj ∈ σ p

j

(
j = 1, 2n− 1

)
. Therefore, it follows by the Keldysh lemma [2], [8]

that (E +M(λ))−1 is represented in the form of ratio of two entire functions of orderρ
and of minimal type for order ρ.This property holds for the bundle P (λ) as well, since
A2nP−1(λ) = (E +M(λ))−1 (E +B2n)−1.

Now, we prove a theorem on completeness of the system K (Π−).

Theorem 4.2. Let the conditions of Theorem 3.1 be satisfied, A−1 ∈ σ∞ (H) and let
the following conditions be satisfied:

a) A−1 ∈ σp (0 < p ≤ 1) , Bj ∈ L (H) , j = 1, 2n;
b) A−1 ∈ σp (0 < p <∞) , Bj ∈ σ∞ (H).
Then the system K (Π−) is n-fold complete in the space of traces, and the system of

elementary decreasing solutions of the equation P (d/dt)u = 0 is complete in the space
of regular solutions of problem (2.1), (2.2)

Proof. By Lemma 5, under the conditions of the theorem, P (λ) has a discrete spectrum
with a unique limit point at infinity, and A2P−1(λ) is a meromorphic function of order
ρ and of minimal type ρ. Let there exist a vector f̃ = {fν}k−1

ν=0 ∈ H̃ for which

(
f̃ , ϕ̃i,j,h

)
H̃

=
n−1∑
ν=0

(
fν , ϕ

(sν)
i,j,h

)
H

2n−sν− 1
2

= 0, i = 1, 2, ....
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Then, by the ortogonality condition and the expansion in a neighbourhood of the point
λi, we easily get that (see (2.9) and [2], [4], [8])

R(λ) =
n−1∑
ν=0

(
A2n−sν− 1

2P−1
(
λ̄
))∗

λsνA2n−sν− 1
2fν

is an analytic vector-function in the left half-plane Π−. When the conditions of the
theorem are satisfied, problem (2.1),(2.2) has a regular solution u(t) ∈ W 2n

2n (R+; H).
We can represent it in the form

u(t) =
1

2πi

∫ i∞

−i∞
P−1(λ)

2n−1∑
s=0

Qs(λ)u(s)(0)eλtdλ,

where Qs(λ) = λ2n−s−1E + ... + Qn−s−1

(
s = 0, 2n− 1

)
. It follows by the condition

‖P−1(λ)‖ ≤ const|λ|−2n that for λ ∈ S±θ that at t > 0 the integration contour may
be changed by the contour Γ that for large |λ| (λ ∈ S±θ) coincides with the rays Γ± ={
λ : λ = re±i(π

2
+θ)
}

for small θ > 0, i.e.

u(t) =
1

2πi

∫
Γ

P−1(λ)
2n−1∑
s=0

Qs(λ)u(s)(0)eλtdλ.

For t > 0, we can differentiate this integral arbitrarily many times, therefore for t > 0

k−1∑
ν=0

(
u(sν)(t), fν

)
2n−sν− 1

2

=
1

2πi

k−1∑
ν=0

(∫
Γ

P−1(λ)λsν

2n−1∑
s=0

Qs(λ)u(s)(0), fν

)
2n−sν− 1

2

eλtdλ

=
1

2πi

∫
Γ

(
A2n−sν− 1

2P−1(λ)λsν

2n−1∑
s=0

Qs(λ)u(s)(0), fν

)
eλtdλ

=
1

2πi

∫
Γ

(
2n−1∑
s=0

Qs(λ)u(s)(0), R
(
λ̄
))

eλtdλ =
1

2πi

∫
Γ

v(λ) dλ,

where v(λ) =

(
2n−1∑
s=0

Qs(λ)u(s)(0), R
(
λ̄
))

, and R(λ) is defined from equality (2.9).

It follows by the conditions a) and b) of the theorem and by the properties of R(λ)
that v(λ) is an entire function of order ρ and of minimal type ρ, and in the right half-
plane it grows not quicker than |λ|2n−1, on the imaginary axis does not grow quicker
than |λ|2n. Then by the Fragmen-Lindelof theorem v(λ) is a polynomial. Therefore,
v(λ) = v0 + λv1 + ...+ λmvm. On the other hand, for t > 0∫

Γ

λjeλtdλ = 0, j = 0,m.

Consequently, for t > 0
n−1∑
ν=0

(
u(sν)(t), fν

)
2n−sν− 1

2

= 0.
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Passing to limit as t → 0, we get
n−1∑
ν=0

(χν , fν)2n−sν− 1
2

= 0. Since χν ∈ H2n−sν− 1
2

are

arbitrary elements, we have fν = 0, ν = 0, n− 1. Thus, the system K (Π−) is n- fold
complete in the space of traces. Then, for any ε > 0, we can find a number N and
numbers CN

i,j,h(ε) such that∥∥∥∥∥∥χν −
N∑

i=1

∑
(j,h)

CN
i,j,h(ε)ϕ

(sν)
i,j,h

∥∥∥∥∥∥
2n−sν− 1

2

<
ε · const

N
, (4.4)

where const is as in inequality (3.3). Since

ϕ
(sν)
i,j,h(0) = u

(sν)
i,j,h(t)/t=0, χν = u(sν)(t)/t=0,

by using inequalities (4.4) and (3.3), we get∥∥∥∥∥∥u(t)−
N∑

i=1

∑
(j,h)

CN
i,j,h(ε)

∥∥∥∥∥∥ < ε1,

(
ε1 =

εN

c1

)
.
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