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Abstract. The non-homogeneous or homogeneous integral equation of the second
kind with a substochastic kernel W (x, t) = K(x− t)+T (x, t) is considered on the semi
axis, where K is the density of distribution of some variate, and T ≥ 0 satisfies the
condition λ (t) =

∫∞
−t
K (y) dy +

∫∞
0
T (x, t) dx < 1, supλ (t) = 1.

The existence of a minimal positive solution of the non-homogeneous equation is
proved. The existence of a positive solution of the homogeneous equation is also proved
under some simple additional conditions. The results may be applied to the study of
Random Walk on the semi axis with the reflection at the boundary.

1 Introduction

Consider the following integral equation with a substochastic kernel on the semi axis:

f (x) = g (x) +

∫ ∞

0

K (x− t) f (t) dt+

∫ ∞

0

T (x, t) f (t) dt , x > 0 , (1.1)

or
f (x) = g (x) +

∫ ∞

0

W (x, t) f (t) dt , x > 0, (1.2)

where
K, T ≥ 0, W (x, t) = K (x− t) + T (x, t) . (1.3)

Assume that the kernel-function K is conservative, i.e. it is a probability density
for a variate:

0 ≤ K ∈ L1 (−∞,∞) ,

∫ ∞

−∞
K (t) dt = 1. (1.4)

The total kernel W (x, t) is assumed to be a substochastic one:

W (x, t) ≥ 0, λ (t) =

∫ ∞

0

W (x, t) dx ≤ 1. (1.5)

We shall call the function µ (x) = 1− λ (x) indicatrix of dissipation (or functional
of dissipation) for the kernel W .



26 A.G. Barseghyan

Let K̂ and T̂ be the following integral operators entering (1.1):

K̂f (x) =

∫ ∞

0

K (x− t) f (t) dt, T̂ f (x) =

∫ ∞

0

T (x, t) f (t) dt , x > 0.

It is well known, that the Wiener-Hopf type operator K̂ is a non-compact operator
in the function space L+ ≡ L1 (0,∞), as well as in some other spaces. In applications
the “reflection” operator T̂ , as a rule, is compact in L+.

The non-homogeneous and homogeneous integral equations of type (1.1), (1.4) arise
in Random Walks’ theory, as well as in some other problems of Markov and Semi-
Markov stochastic processes. Several well-known problems of Radiative Transfer (RT),
Kinetic theory of gases (KTG), etc. are reduced to such an equation.

Transport of particles is a special, complex form of a Random Walk. A large range
of problems of Radiative Transfer in the semi-space with reflected boundary is reduced
to an integral equation of form (1.1). In case of regular reflection, the kernel T depends
on the sum of arguments (see for example [4]). In case of other reflection laws function
T may have more complex structure. Detailed discussion of application of equation
(1.1) to RT problems is beyond the scope of this paper.

If T = 0, then the equation (1.1) becomes the well-known Wiener-Hopf conservative
equation, having various applications (see [8], [9], [2]):

h (x) = g (x) +

∫ ∞

0

K (x− t)h (t) dt x > 0.

In RT the summand
∞∫

0

T (x, t) f (t) dt in (1.1) takes into account the reflection of

walking particles at the boundary x = 0. The law T of the reflection depends on
concrete (specific) conditions.

Milne problem with a reflection is of essential interest in KTG (see [5], [1]). In some
particular cases, the problem is reduced to the construction of positive solutions to the
homogeneous equation of the form:

Q (x) =

∫ ∞

0

K (x− t)Q (t) dt+

∫ ∞

0

T (x, t)Q (t) dt , x > 0. (1.6)

The problems of Random Walk with a reflection at a barrier are of interest also in
the molecular biology (see [7] and the literature cited there).

The present paper is devoted to the problems of solvability of non-homogeneous
equation (1.1) and homogeneous equation (1.6).

2 The minimal solution of non-homogeneous equation (1.1)

Consider equation (1.1) under the following additional assumptions:
a) the substochastic kernel W (x, t) = K (x− t) + T (x, t) satisfies the conditions

λ (t) =

∫ ∞

0

W (x, t) dx < 1, sup
(0,∞)

λ (x) = 1; (2.1)
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b) the free term g satisfies the conditions:

0 ≤ g ∈ L+. (2.2)

Let us first consider the question of the fulfillment of the conditions (2.1). From (2.1)
we have

λ (t) =

∫ ∞

−t

K (y) dy +

∫ ∞

0

T (x, t) dx. (2.3)

It is clear from (1.4) and (2.3), for the fulfillment of the first condition in (2.1) it is
necessary that ∫ −t

−∞
K (x) dx > 0, ∀t > 0, (2.4)

i.e., the restriction of the function K to the negative semi-axis should not be a compact
one.

Suppose that condition (2.4) holds. Then for the fulfillment of conditions (2.1), it
is sufficient to satisfy the inequality:∫ ∞

0

T (x, t) dx ≤ q

∫ −t

−∞
K (y) dy , for some q < 1. (2.5)

Conditions (2.1) have a simple physical sense. The coefficient q is related to the value
of the albedo of the reflecting boundary x = 0.

We proceed to the consideration of equation (1.2).
Consider the simple iterations fn for equation (1.2) defined by:

fn+1 (x) = g (x) +

∫ ∞

0

W (x, t) fn (t) dt , f0 = 0, n = 0, 1, · · · (2.6)

We have
0 ≤ fn ∈ L+, fn ↑ in n.

We will consider the iterative sequence fn in the space Lloc = Lloc [0,∞). This space
consists of functions that are integrable on every finite interval. The space Lloc equipped
with the topology of the convergence in L1 on every finite interval.

If a monotone sequence fn converges in Lloc, then the limit f is a solution of equation
(1.2) (see [2]) and it is called the basic solution (BS) of (1.2).

Let f̃ ∈ Lloc be an arbitrary positive solution of equation (1.2). Then the inequality
fn ≤ f̃ is verified by the induction on n. Therefore, the sequence fn converges in Lloc

by virtue of the Lebesgue theorem:

fn → f ≤ f̃ .

It follows from the foregoing that the BS is a minimal positive solution of equation
(1.2).

Let us consider the Banach space L (µ) ⊂ Lloc of the functions integrable with the
weight µ, where µ (x) = 1− λ (x) > 0 is the indicatrix of dissipation of the kernel W .
In this space, the norm is defined by the equality ‖f‖ =

∫∞
0
|f (x)|µ (x) dx.
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Theorem 2.1. Equation (1.2) under conditions (2.1), (2.2) possesses the basic solution
f ∈ L (µ) , f ≥ 0. The following inequality takes place∫ ∞

0

f (x)µ (x) dx ≤
∫ ∞

0

g (x) dx. (2.7)

Proof. We will use the approach developed in the paper [6]. Consider the iterations fn

defined by (2.6). Integrating (2.6) from 0 to ∞, we have:∫ ∞

0

fn+1 (x) dx =

∫ ∞

0

[∫ ∞

0

[K (x− t) + T (x, t)] dx

]
fn (t) dt+

∫ ∞

0

g (x) dx =

=

∫ ∞

0

[∫ ∞

−t

K (y) dy +

∫ ∞

0

T (x, t) dx

]
fn (t) dt+

∫ ∞

0

g (x) dx =

=

∫ ∞

0

[1− µ (t)] fn (t) dt+

∫ ∞

0

g (x) dx ≤
∫ ∞

0

[1− µ (t)] fn+1 (t) dt+

∫ ∞

0

g (x) dx .

From here, we have: ∫ ∞

0

µ (t) fn+1 (t) dt ≤
∫ ∞

0

g (x) dx.

This inequality and the monotonicity of the iterative sequence fn imply the convergence
fn → f in L (µ), and inequality (2.7).

Remarks

1. Inequality (2.7) has a simple physical and probabilistic meaning. The question
concerning the terms, which make (2.7) an equality is of considerable interest.
By simple examples, one can see that equality does not always take place.

2. If the indicatrix of dissipation µ decreases rapidly at infinity, then inequality
(2.7) describes the asymptotic behaviour of the function f at infinity unsatisfac-
torily. In the case of slow decrease of µ, this equality may give fairly complete
information about the asymptotics of f .

3. Inequality (2.7) implies the property of the continuous dependence of BS on g.
Let f1 and f2 be solutions of equation (1.1) when g = g1 and g = g2 respectively,
and g1 ≥ g2. The following estimate is derived from (2.7) and f1 ≥ f2:

‖f1 − f2‖L(µ) =

∫ ∞

0

[f1 (x)− f2 (x)]µ (x) dx ≤ ‖g1 − g2‖L .

3 On the solvability of homogeneous equation (1.6)

3.1 On Wiener-Hopf homogeneous equation

The non-trivial solvability of equation (1.6) depends on the solvability of the following
Wiener-Hopf homogeneous equation with the conservative kernel K, entering (1.6):

S (x) =

∫ ∞

0

K (x− t)S (t) dt , x > 0. (3.1)
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This equation plays an important role in Mathematical Physics, in the Theory of
Stochastic processes, etc.

By analogy to the terminology previously used in the theory of Random Walks (see
[8], [9]), we will call a positive bounded continuous monotonic solution satisfying the
normalization condition S (∞) = 1 a P -solution of equation (1.6), and a monotonic
unbounded positive solution will be called a P ∗-solution.

The first mathematical results on the conservative equation with symmetric kernel
were obtained in the classical work of N. Wiener and E. Hopf [10] in connection with
solving the well-known Milne problem in Radiative Transfer theory. In that work they
studied the kernel

K(x) =
1

2
E1(x) =

1

2

∞∫
1

e−|x|s
ds

s
,

which decreases exponentially at infinity.
The first general results on the existence of a P -solution to non-symmetric conser-

vative equation (3.1) were obtained by D. V. Lindley in work [8].
A proof of the existence of a P ∗-solution to equation (3.1) with general symmetric

conservative kernel is given in F. Spitzer work [9]. In author’s work [3], some inaccu-
racies and errors contained in the [9] are indicated (and partially corrected).

However, the following question remained open: does this approach allow the proof
of the existence of a P ∗-solution to equation (3.1) with a general symmetric conservative
kernel, or not?

Complete solution to this problem was found by N. B. Yengibaryan, who applied
the method of nonlinear factorization of equations.

In the following theorem, we state some basic facts for equation (3.1) (see [2]).

Theorem M. Let the kernel function K in equation (3.1) satisfies the conditions of
the conservativeness (1.4) and the following inequalities hold:

−∞ ≤ ν ≤ 0, (3.2)

where ν =
∞∫

−∞
xK (x) dx or K is an even function. Then, there exists an absolutely

continuous solution S > 0 to equation (3.1), and
a) if ν < 0, then S is a P -solution,
b) if the kernel function K is an even function or ν = 0, then the solution S is a
P ∗-solution. The following asymptotics takes place:

S (x) = O (x) , x→∞. (3.3)

For suitable a, b > 0 the following inequality is satisfied:

S (t) ≤ a+ bt. (3.4)

The function S (x) can be normalized by the condition S (0) = 1.
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3.2 An existence theorem for homogeneous equation (1.6).

Consider equation (1.6) under conditions (2.1). Suppose that, in addition, we have the
following conditions.

a) One of the conditions of the theorem M on the kernel function K is satisfied,
which ensures the existence of a positive solution S (x) to homogeneous equation (3.1).

b) The kernel T is such that:

g (x) ≡
∫ ∞

0

T (x, t)S (t) dt ∈ L1 (0,∞) (3.5)

i.e. ∫ ∞

0

[∫ ∞

0

T (x, t) dx

]
S (t) dt < +∞. (3.6)

Under the conditions of Statement a) of Theorem M it is sufficient for condition (3.5)
that ∫ ∞

0

T (x, t) dt ∈ L1 (0,∞) . (3.7)

Under the conditions of Statement b) of Theorem M, according to inequality (3.4)
not only condition (3.7) but also the condition below is sufficient for the fulfillment of
condition (3.6) ∫ ∞

0

T (x, t) tdt ∈ L1 (0,∞) . (3.8)

Let us introduce the new function h in (1.6), which is connected with Q by the relation:

Q = S + h. (3.9)

Substituting (3.9) into (1.6), we obtain the following non-homogeneous integral
equation with respect to h:

h (x) = g (x) +

∫ ∞

0

K (x− t)h (t) dt+

∫ ∞

0

T (x, t)h (t) dt , x > 0 , (3.10)

where g is defined by (3.5). As an h, we will take the minimal positive solution of
equation (3.10). Its existence follows by Theorem 1, in virtue of (3.5) and the presence
of the positive functional of dissipation µ (t) = 1 − λ (t) > 0 of the Ŵ operator. The
following inequality takes place:∫ ∞

0

h (t) dt

∫ −t

−∞
K (y) dy < +∞. (3.11)

We have proved

Theorem 3.1. Let the following conditions hold.
a) The kernel function K satisfies the conditions of the conservativeness (1.4).
b) One of the conditions of Theorem M on the existence of a positive solution S (x)

of the Wiener-Hopf homogeneous equation (3.1) is satisfied.
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c) The indicatrix of dissipation µ of the kernel W satisfies conditions (2.1). In
particular, if

K (−x) > 0 (x > 0) ,

∫ ∞

0

T (x, t) dx ≤ q

∫ −t

−∞
K (y) dy , for some q < 1.

d) The kernel T satisfies condition (3.6). In particular, this happens if the condi-
tions (3.7), (3.8) take place.

Then equation (1.6) possesses a positive solution of the form Q = S + h, where the
function S > 0 is the basic solution of equation (3.1) and h ≥ 0 is defined by (3.10).

Theorems 2.1 and 3.1 imply the following statements.

Corollary 3.1. Let conditions (1.4), (2.1), (2.2), (3.2) and the condition

∞∫
0

T (x, t)t dt < +∞

be satisfied.
Then both homogeneous equation (1.6) and non-homogeneous equation (1.1) possess

positive solutions.
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