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Abstract. In this article we deal with a Schwarz-type boundary value problem for both
the inhomogeneous Cauchy-Riemann equation and the generalized Beltrami equation
on an unbounded sector with angle ¥ = 7/n,n € N. By the method of plane parqueting-
reflection and the Cauchy-Pompeiu formula for the sector, the Schwarz-Poisson integral
formula is obtained. We also investigate the boundary behaviour and the C'*-property
of a Schwarz-type as well as of a Pompeiu-type operator. The solution to the Schwarz
problem of the Cauchy-Riemann equation is explicitly expressed. Sufficient conditions
on the coefficients of the generalized Beltrami equation are obtained under which the
corresponding system of integral equations is contractive. This proves the existence of
a unique solution to the Schwarz problem of the generalized Beltrami equation.

1 Introduction

A variety of boundary value problems (BVPs) for partial differential equations (PDEs)
has been studied, see for example [1, 2, 3, 4, 5, 6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23|. Explicit solutions on some special domains are obtained. Those
special domains include the unit disc [4, 16, 17], the half-plane [7, 20], a circular ring
[26], the quarter-plane [1, 2, 6], a quarter-ring and a half-hexagon [23|, a half-disc and
a half-ring [10], lens and lune [15], triangles [11, 29], and sectors |3, 28].

Generally speaking, the theory of boundary value problems for analytic and general-
ized analytic functions is as well closely connected with the theory of singular integral
equations, index theory and many other theories, as it has a variety of applications
in elasticity theory, fluid dynamic and shell theory [18, 19, 21, 22, 27|. The Schwarz
boundary value problem is in the center of interest as a basic problem in complex
analysis. It has some influence on the solvability of Dirichlet-type and Neumann-
type BVPs. Solving the Schwarz problem for analytic functions serves to determine
harmonic Green functions. Furthermore, the solutions of BVPs of higher order com-
plex model equations are generally obtained by iterating the corresponding solutions
of Cauchy-Riemann equation [5]. Besides, the Cauchy-Riemann equation d;w = 0 is
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the special form of an elliptic system of two real first order partial differential equa-
tions. The Beltrami equations present more general systems of the same type. These
systems take a key part in geometrical function theory and many other problems of
mathematical physics see, for example [27].

In this article, the Schwarz-Poisson formula for an unbounded sector is obtained by
the plane parqueting-reflection method and the Cauchy-Pompeiu integral formula for
the sector, in Section 2. In Section 3, a Schwarz-type operator and a Pompeiu-type
operator for the sector are introduced, and their boundary behaviors are investigated.
Especially their boundary values at the corner point of the sector are proved to exist.
Finally the solution to the Schwarz problem for the inhomogeneous Cauchy-Riemann
equation is explicitly expressed. Section 4 is devoted to the Schwarz problem for
the generalized Beltrami equation in the sector. Firstly, the C'*-properties of both
the Schwarz-type operator and the Pompeiu-type operator are investigated. Using the
contraction mapping principle, we prove the existence of a unique solution of a Schwarz
problem for the generalized Beltrami equation. This approach has been used, firstly
by Tutschke |25, 24|, to study a Schwarz problem in a certain Holder space. Yiiksel
[30] applied the method to a Schwarz problem for the generalized Beltrami equation
with Holder continuous coefficients on a regular domain.

Next we introduce some notations used in the sequel. Let €2 be an unbounded sector
domain in the complex plane C defined by

Q:{ZGC:0<argz<%}, (1.1)

with the boundary 92 = [0, 00) U L where L = {te"™/",0 < t < oo} is oriented towards
the origin. We regard n as a fixed positive integer, ¥ = 7/n and w = ¢, By rotation,
we define the domains

kaw%Q:{w%z:zeQ}, k=0,---,n—1. (1.2)

Here g = Q is the sector defined by (1.1). By reflection on the real axis, we define
the domains

Q. ={z: 2€e W}, k=0,--- ,n—1 (1.3)
Obviously, the domains €, 2, are disjoint and

n—1

c=J®@ua). (14)

k=0
One of the fundamental tools for solving boundary value problems of complex partial

differential equations is the Cauchy-Pompeiu formula, which is valid for the bounded
sector {1r defined by

QR:{ZEC:|Z\<R,O<argz<Z}, (1.5)
n

for some R > 0.
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Lemma 1.1. Let w € C* (Qp; C) N C (Qg; C). Then

R _1/ wc(c)dfdn:{w(z), 2 € Qg 16)

2m [0195+3 C_Z T Jag C_Z 07 Z¢Q_R7
and ~
1 i1 dedp  [w(z), z€Qp
s L O W/QRW(%_Z—{O, TSR

where Qg is the sector defined by (1.5) and ¢ =& +in, {,n € R.
Theorem 1.1. Ifw : Q — C satisfies jw(z)| < Clz|™ for |z]| > k and wz € L, 2 (©2;C),
then
1 d¢ 1/ dédn w(z), z€q
. i . = _ 1.8
27 8Qw(<)<_z ™ ch<c><_z 07 Z¢Q7 ( )

where Q) is the sector defined by (1.1), C, € > 0 and K is a sufficiently large positive
real number .

Proof. The representation formula (1.6) gives

we) =5 [ w02 =2 [ wd) P s e (19)

2 (—2z

Since for 2|z| < R

1 [ o iRe? 1 M(R,w)R _ M (R,w)
— W) ——df| < — ’ < -
27 /0 w(Re) Re® —z | = 2n R—|z] — n
with
M (R, w) = sup |w(z)]

|z|=R, 0<arg z<m/n
By the assumption, we get
lim M (R,w) = lim ¢ =0
R1—>OO W)= R1—>oo RE B

Hence, the integral on the arc boundary of the sector {1z tends to zero as R — oo.
Then letting R tend to infinity, on both sides of (1.9), implies

1 a¢ 1 (. d&dn
w) =5 [ w02~ [ w0 FL, (1.10)

™

for z € Q2.
The existence of the second integral in (1.10) follows from w; € L; (Q;C) [20].
While the first integral is improper and exists because of the estimate for 2|z| < r,

2%k
dt
/ w (wW"t) Pp—

— zw™Y

2k 2k
1 ¢ 1 2C
SC/T dt§2C’/T ot <~ ve {01},

te+1 t — |Z‘

Hence the first equality in (1.8) holds. O

Remark 1. The boundedness condition on the function w at infinity can be weakened
to w € Ly (092;C).
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2 Schwarz-Poisson formula in the sector

The Schwarz-Poisson formula is derived from the Cauchy-Pompeiu formula for the

sector.

Theorem 2.1. Any w : Q — C, such that w € Ly (092;C) N C (08;C) and w; €

L,>(;C),p> 2, can be represented, for z € §2, as

1 — 1
w(z) = 2m/ w( ZC w2k W/ﬂ“’f(();()mdﬁdn,

and
n—1 1
k=0

o0
n—1 1
C) Z C _ Zu)2k
k=0

1/ n—1
—_—— w—
T Ja
Proof. By Theorem 1.1 for z € €2, we have
_ 1 - d€dn
w) = g [ w(¢ ;/deog_z,
-1
B 1 d¢ 1 i dédn
0= {2 wl — 2wk W/g)wc(og—zw%}’

=1

= d¢ 1 dédn
- {zm/ >m‘;/ﬂw<“>m}-

k=0

w%] déd,

k:(]

??‘

and

M

(2.1)

(2.2)

(2.5)

Thus (2.1) follows directly by summing (2.3) and (2.4). We need only to prove (2.2).

Taking complex conjugation on both sides of (2.5), gives

(1 A& 1 [ —— dédn
0=z [ O [0

Then adding (2.6) to (2.1) gives the claimed formula

/

this completes the proof.

(2.6)



10 M. Akel, H. Begehr

3 Schwarz problem for the inhomogeneous Cauchy-Riemann
equation

In this Section we study the Schwarz problem
Wz = f (Z> 9 n Q7
Re w(¢) = ¢ (¢), on o9, (3.1)
Imw(il/") =c¢, ceR.

where f € L,5(£;C),p> 2 and ¢ € Ly (0;R) N C (08 R).
Firstly, the boundary behavior of some integrals is investigated. Let

K(z,C)Zni(C_lzw% _C—le%)' (3.2)

k=0
The following lemmas are valid
Lemma 3.1. If ¢ € Ly ([0,00); C) N C ([0, 00); C), then, fort, ty € (0,00),

im [ o(0) — (o) K (2, ¢ = o(t) — oto), (3.3)

z€Q, z—t 21 0

and for t € L\{0},
lim [ (K (20 =0, (3.4)

2€Q, z—t ) 0

where K (z,() is defined by (3.2).

Proof. By simple computation, one can get

lm 3 ! ! 0, t€(0,00)
im — — —
2€Q, z—t 271 — C — w2k C — -2k ; , OO
because,

1 1

= :C—tw*Q("*j)’ 1<3<n-1

Hence, one gets

oo

eim o i [p(¢) — @(to)] K (2, ¢)dC
1 [ 1 1
= 1 — — ot — dc.
zes%,nzl—nt 21 Jo [p(Q) = ¢lto)] (C -z (- z) ¢
Thus, from the boundary property of the Poisson kernel on the real axis, (3.3) follows.
If € ]0,00) and z € L\{0}, then K(z,() =0, and hence (3.4) is true. O

Similarly, the following lemma can be proved.
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Lemma 3.2. If ¢ € Ly (L;C) N C (L; C), then, fort,ty € L\{0},

im [ (o) — lto)] K (2 O)d¢ = o(t) — p(to).

2€Q, z—t 271 L
and fort € (0,00),
1
lim — K d¢ =
i, 5 | PLOK(E dC =0,

where K(z,() is defined by (3.2).
For the common corner point at z = (0 we obtain the following result.

Lemma 3.3. If ¢ € Ly (09;C) N C (092; C), then

1
A5 L [p(¢) — @(0)] K (2, C)d¢ =0,

where K (z,() is defined by (3.2).

Proof. Since,

1
g |00~ el0)] Kz,

- 1 - 1 1
- ze}zl,r,lzlo 2 Jon p(6) = (0] Z (C — 2wk (- 500%) .

k=0

we investigate this limit in the following two cases.
Case I. If n is an even number, the right-hand side of (3.8) will be as

1 0o 271 1 1
1. = o O J—
set2m0 277 J, p(c) = @ (0) kZ:O <C 2w (=
1 1
Tlrw® Ot Zw%) ‘
n_q
] 1 o 2 1 1
N 26}2121—@ 2_7TZ 0 [SO(CUJ) - SO(O)] kz—% (C - ZWQkil - C - 2w7(2k71)
1 1
+C a1 Ot 2w—(2k—1)) d¢
1 9] 27! 1 1
— lm — [ @ - d
zte,I?HO 21 ) _ o 1(@) o (C — zw?k ¢ — ZW_%) ¢
oy

o
—  lim

il d _
26Q, z—0 271 o 2(6) — (C _ Zw2k*1 C_ zw(le)) dC’

11

(3.5)

(3.6)
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where ®; and ®, are continuous functions on R, defined by

v(Q) = ¢(0), ¢ €(0,00),
- {<> A=), C € (~20,0).
p(Cw) — ¢(0), ¢ € (0,00),
e {<o> A~ ¢ € (~00,0).
For z € Q, all of the points zw* (0 < k < 2 — 1), 2w ' (1 <k < 2 —1) are in the

upper half plane, but zw ™! lies in the lower half plane. Therefore, computing the above
limits of these Poisson integrals on the real line shows

| 16O~ O] Kz, 00 = 501(0) = (5 = 1) @5(0) + @2(0) = 0.

Case II. If n is an odd number, the right-hand side of (3.8) equals

, 1 [ z 1 1
zeslul,rio 2_71'2/0 (¢(€) — »(0)) £ (C ok ¢ — 2w2k> dq
I & 1 1
ot | <w<<>—w<o>>;(<+zw%_l —sz_@k-n)dﬁ
1 o0 = 1 1
Tor ; (SO(QW)_SO(O))]CZI (§ 2wkl ¢ Zw(%l))dc
“omi |, (w(Cw)—w(U))kZO (CJFZW% C+2w—2k> <
1 [ = 1 1
where,
B4(C) = {so@) —2(0), ¢ €(0,00),
@(_Cw) - QO(O), C S ( 70)’
p(Cw) = (0), ¢ & (0,00),
o
0= { (=) = ¢(0), ¢ € (=00,0).

The continuity of the functions &5 and ®, at the origin ¢ = 0 implies that the above
limit, and hence the left-hand side of (3.8), equal to

n+1 n—1
o3(0) —
o y(0) -

®4(0) =0
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Lemma 3.4. If ¢ € Ly (09;C) N C (092; C), then fort € 09,

im o [ [p(0) = @(0) K (2 Q)¢ = lt) — p(0), (3.9)

ZEQ,Z*)t 27'[-/[, BQ

where K (z,() is defined by (3.2).

Proof. By Lemma 3.3 we need only to prove the result for all t € 9Q\{0}. According
to Lemmas 3.1 and 3.2 Eq.(3.9) is equivalent to

im [ [p(C) = 9(0)] K (2, C)dC = o(t) — (0), (3.10)

z€Q, z—t 21 L

for t € L\{0}, and for ¢ € (0, 00)

oo

lim = [ [p(¢) = (0)] K (2, O)dC = (t) — (0). (3.11)

2€Q, z—t 21 0
Since for z € L\ {0},

L = L k=0 2
C—zw 2 (= zepnhn BT HTTTS

then the left-hand side of (3.10) equals

lim [@(C)—w(o)]( : _g—lzuﬂ)dC

26Q, z—t 271 L C— z
oo

1 1 !

=¢(t) —¢(0), e L\{0}.

Thus (3.10) is true. Similarly (3.11) can be proved. O

The following result summarizes the fruits of the above lemmas.

Proposition 3.1. If ¢ € Ly (0Q; C) N C (052;C), then

im —— [ G(OK (2 O)dC = o(t), t € 09, (3.12)

2E€Q, z—t 271 a0
where K (z,() is defined by (3.2).

Proof. By Lemma 3.4 we get
lim o [ G(OK(z Qe
im —
2€Q, z—t 271 90 14 ’
©(0)

= p(t) — »(0) + i Zegggt , K(z,¢)d¢. (3.13)
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Applying integral representation (2.2) for the function w(z) = 1, gives

n—1
1 1
= — E ——d Q. .14
i /89 ¢ — 2w? ¢ z€ (3.14)
k=0

Taking the real part on both sides of (3.14), shows

1
1 = _
omi /a ( — 2w (- Ew%) dc

= 5 | K(zQd

27T’L o0

Therefore, the right-hand side of (3.13) equals ¢(t). Hence, (3.12) is satisfied for any
t € 0. O

Now, we introduce the Schwarz-type operator for the sector as

Salel(a) = = [ stc i e,z (3.15)

=0

where ¢ € Lo (0Q;R) N C (0 R). Obviously, Sq[p](z) is analytic in the sector .
Furthermore,

ReSalo](2) = —— /a POKEOK zen (3.16)

271

for ¢ € Ly (092;R) N C (0 R), where K(z,() is defined by (3.2).
According to Proposition 3.1 and (3.16), we obtain the following result.

Theorem 3.1. If ¢ € Ly (01 R) N C (OQ;R), then {ReSqle]} ' (t) = (), t € 09,
where Sq 1is the Schwarz-type operator defined by (3.15).

A Pompeiu-type operator for the sector is introduced by

f©Q
/Qk: 0 < — (- zw2k> dedn, = €8 (3.17)

where f € L,5(2;C), p > 2. Simple computation gives

1

Re Tolf](z) = 5 | [JQK (0~ FOK(0] dedn, €0, (3.18)

where K (z,() is defined by (3.2).

Theorem 3.2. If f € L,5(%;C), p > 2, then 0:Tqo[f](2) = f(2), z € Q, in the weak
sense, and {Re To[f]}" (t) =0, t € 0Q, where Ty, is the Pompeiu-type operator defined
by (3.17).
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Proof. By (3.17), we see 0:Tq[f](z) = 0:T[f](2) = f(2), z € Q in the weak sense,
where T is the classical Pompeiu integral operator, described in detail by Vekua[27].
On the other hand, K(t,() = K(t,{) = 0 for (¢,{) € 092 x Q, implies that
{Re To[f]}* (t) =0, t € 9. O
Theorem 3.3. The Schwarz problem

osw = f in , Re w = on 0,

(3.19)
Im w (il/”) =c, c€eR,

for f € L,s(:C), p>2, p€ Ly (02 R)NC (09 R), is uniquely solvable by

=l — Re [iV/nw?
w(z)zic+i. w(C)Z( L __ ¢-Rel ) )dC

T Jon k=0 ¢ —2w? (2 —2(Reli'/mw?k] 41
1 n—1 1 ¢ —Re [il/"w%}
_; /39 {f(C) kz:% (( — 2wk o §2 — 2(Re [Z'1/nw2k] 1
_ n-l 1 ¢ —Re [il/"w%}

Proof. If w is a solution to the problem (3.19), then the function ® = w — T'[f] satisfies
®; = 0in Q and Re & = ¢ — Re T[f] on 092. By Theorem 3.1 we find ®(z) =
Salp — Re T[f]](2) + ico, where Sgq is the Schwarz-type operator, defined by (3.15),
T is the Pompeiu operator, and ¢y € R has to be determined by the side condition
Im w (i'/")) = c. We calculate So[Re T[f]](z) as the following. From

1 1
SalTlfll(=) = — aQT[f](C)Zde
k=0
1 1 ¢ i
= — — = déd
w/a 25 /a O
9 R n—1 1 3
= 1 [ IOX o ean
and similarly,
- 2 _~n—1 )
5o [TT7) ) = == [ FOY = —déan
follows
1 B n—1 1 _~an 1
SolRe 71/)(2) =+ [ {f@ D i D Dy }dfdﬁ
Hence,
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that is,
w(z) =icy + Sale](2) + Talfl(2). (3.21)

From the given side condition, we get
c=TImw (i'") = ¢y + Im Spy] (/") + Im To[f] (i*"),

from which one finds

<1 (—Re [i1/mw?H]

¢%2 — 2CRe [i/mw?k] +1

1 <1 (—Re [i1/mw?H]
T /Q {f (©) (2 — 2(Re [iY/nw?] + 1

d¢

k=0
n—1 = .
S ¢ — Re [i'/mw?]
— dédn. 3.22
© D ZQ — 2(Re [it/nw2k] + 1 s (3:22)

Therefore (3.20) follows. To prove that (3.20) provides a solution to problem (3.19)
observe

wz(z) = 0:Taf](2) = f(2),
and for ¢ € 092, according to Theorems 3.1 and 3.2,

lim Re {w(z)} = lim Re {Sa[¢](2) + Talf](2)} = ¢(C),

and Im {w (il/")} =c. O
Remark 2. Theorem 17 [20], p.75 is a special case of Theorem 3.3.

4 Schwarz problem for the generalized Beltrami equation

In this section, we deal with the Schwarz problem
ws = F (2, w, w,), in (4.1)

Re w(¢) = ¢(¢) on 99,
(4.2)
Im w (V™) = co, o € R,

where
F(z, w, w,) = prw, + puw, + aw + bw + ¢, (4.3)
with 1, po, a, b, c € Ly (ﬁ; (C), p > 2 such that

[ (2)] + |p2(2)] < po < 1,
()] + la(2)] = O (12]) , a5 2 = o0,
and ¢ € Ly (092;R) N C* (0% R) for some 0 < aw < 1, 0 < €.
In this section we reduce the Schwarz problem (4.1), (4.2) to a fixed-point problem. The
existence of a unique solution will be proved by applying the fixed point theorem under

sufficient conditions on the coefficients of Eq.(4.1). Firstly, we pay more attention to
the properties of the operators Sq, Ty, defined by (3.15) and (3.17), respectively.
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Lemma 4.1. Let ¢ € Ly (0Q; C) N C* (092; C) satisfy
lo(21) — @(22)| < Hi|z1 — 22|, 21, 29 € OS2
Then Sqlp] € C* (Q) and
1Sale](21) — Salel(z)| < ki(a)Hilz — 2|%, 21,2 € 2NC,
Solyl(2) < M(@)Hi -+ sup ol

Proof. Let @, € C§° (0% R), m € N such that lim,,_ ||¢m — ¢|l2 = 0. For suppy,,
[30], we have

1Salem] (1) — Salem)(22)] < k() Hy|z — 20|, 21,20 € Q,
[Salem](2)| < M(a)H,y +S;Qp lom|-

Since
1Salem — ¢](2)] < M(a)|en — @ll2
which becomes small enough, for fixed ¢, when m is large, this proves the assertion. [

Similarly, the following result can be proved.
Lemma 4.2. If ¢ is a Holder continuously differentiable function on 02 such that
©'(21) — ¢ (22)] < Halz1 — 22|*, 21, 22 € 09,
then Solp] € C (Q) and
|Salel(z1) — Salel(z2)] < ka(a)Halzr — 2|, 21,2 € Q.

The operator Tq, defined by (3.17), has similar properties as the classical Pompeiu
operator.

Lemma 4.3. If f € L, (ﬁ; (C) ,p>2, a= 1%2, then

Talf1(2)] < M(p,n)l|fllp2. 2 €,
Talf1(2)] < M(p,n, B)|[fllp2lz]™% 1 < R <|z],
Talfl(21) = Talf1(22)] < M(p,n,)[| fllp2lzr — 22|, 21,20 € Q
where Tq is defined by (3.17).

Proof. Let
O ={ze€Q; |zl <1}

Then T [f](z) can be rewritten as

1

il = [ 3 <§ He Cf“j}k) dtdy

= A C)) 5]
_;/Z( J ¢

—4
) f¢ltdedn.
Q1 p—o ¢ ww? >

1_
¢
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Since
1 2wk

1
= 2w T—zCa® &

C* € {gﬂ 5}7
then, we get

Tol7)2) = n(2) + ) - 32 1),

gi(2) = _%/Q i (C i<§3)2k - f(ii%) d&dn),

1 k=0 6
R Y = ey (( I e < )
92(2) = _;/Ql kz:; (C — 2wk ¢ — 2wk dgdn.

Therefore, by theorem 23 [5] p.74, we obtain

P,

IRWQNSMWM{WMm+W”fG> }SMWMWMm

191(21) — g1(22)| < M(p,n)| fllp2lzr — 227,

1 1
gz(z—) — 92(2—2) < M(p,n)| fllp2lz1 — 22|,

1

91(2) < M(p, )| fllp2— 1 <2l;

w@—méﬂSM@mmmmMW.

Thus,
1 [0 —
\%m&HSM@7NNm(H e >§M@mWNMM-
because for 1l < R < |z, 0 < < 1
4 _ 1l _ R

< .
2| =1 7 |2| -1~ R—1
The last estimate follows from those for the functions ¢g; and gs. O

Next we state the boundedness property of the Ahlfors-Beurling-type operator,

defined by
Q) ok
/Q — { _ szk (C— szk)z } w=rdgdn. (4.4)

Lemma 4.4. If f € L, (2;,C), p> 2, then Ilg[f] € L, (;C) and

Mo [f]lly < Apll Fllp2-
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For the proof we refer to [27].

Remark 3. The smallest constant A,, for which the above inequality holds, it said to
be the L,-norm of the operator Ilq, i.e.

Mo, = Ap.

Return to the main problem (4.1), (4.2). The following theorem reduces the Schwarz
problem (4.1), (4.2) to an equivalent integral equation.

Theorem 4.1. A function w € O (ﬁ; C) is a solution to the Schwarz problem (4.1),
(4.2) if and only if w solves the integral equation

w(z) = O(z) + To|F (2, w,w,)|(2), (4.5)

where Tgq is defined by (3.17) and € C* (ﬁ; C) is an analytic function in the sector
Q, satisfying the Schwarz problem

Re ®(¢) = ¢, on 09,
(4.6)
Im @ (i/") = co — Im To[F] (/™).

Proof. Assume that w € C'* (€ : C) is a solution to the Schwarz problem (4.1), (4.2).
Define a function ® by

O(2) = w(z) — To[F (2, w,w,)](2).
Differentiating with respect to z, gives
O (2) = ws(z) — F(z,w,w,) (2) =0,
in the Sobolev sense [5, 27]. Then ® is analytic in Q and the conditions (4.2) lead to

Re ©(¢) = ¢ — Re To[F|(¢) = ¢, on 01,
Im @ (/") = ¢o — Im To[F] ("),

because, by Theorem 3.2,
Re To[F](¢) =0, ¢ € 5.

It is given that ¢ € C*(99Q;R), then & € C¢ (ﬁ; (C). Hence, a solution w to the
Schwarz problem (4.1), (4.2) solves the integral equation (4.5), with ® analytic in
satisfying (4.6). Conversely, if w is a solution to the integral equation (4.5) where ® is
analytic in € satisfying the conditions (4.6). Differentiating equation (4.5) with respect

to z, one gets
ws = F (z,w,w,) (z), in Q.

Furthermore, Re w = ¢ on 02 and Im w (il/ ”) = ¢o. This proves that the function
w € C'** (Q;C), defined by (4.5), solves the Schwarz problem (4.1), (4.2). O



20 M. Akel, H. Begehr

Remark 4. By Theorem 3.3 the Schwarz problem (4.6) is uniquely solvable by
®(z) = ic. + Sale](2), z €,

where Sq is defined by (3.15) and ¢, is a real constant given by (3.22) for f({) =
F(z,w,w,) (C) i.e.

n—1
C Re [ 1/n Qk}
“=atg / Z < (2 = 2(Re /"] + %

1 n—1 C Re [ 1/n Qk}
+E o {f(g,w,wdkz_o CQ —_ QCRG[ 1/”w2k] +1

n—1 C Re [ 1/n Qk}

—F (¢, w, w) Z T e e 1 1 } dédn.

On basis of Theorem 4.1 we can reduce the Schwarz problem (4.1), (4.2) to a fixed-
point problem. Differentiating Equation (4.5) with respect to z, we get

w, = O + Ig[F (2, w,w,)].

Denote w, by h. Thus we have the system of two integral equations

w=®+ To|F (z,w, h)], 4.7)
h =& +Tgo[F (z,w, h)], (4.8)
where Il is defined by (4.4).
The system of integral equations (4.7), (4.8) defines an operator P, by
P (w,h) — (W, H)
W = q)(w,h) + TQ[]:(., w, h)],
(4.9)

H= (I)/(w,h) + HQ[JT(,’LU,h)L

where ®(,, 5y is an analytic function in {2 satisfying the conditions
Re ®yn) = @, on 01,

Im @, 5 (V") = co — Im To[F (., w, k)] (")

The pair (w, h) turns out to be a fixed point to the operator P. The system of integral
equations (4.7), (4.8) can be used for solving the Schwarz problem (4.1), (4.2). Let
(w, h) be a fixed point to the operator P, i.e.

w = CI)(U, h) -+ TQ[F (., w, h)], (4.10)
h = ® gy + TalF (- w, b)), (4.11)

Differentiating the first equation (4.10) with respect to z, we get

@(w h) + Hﬂ[f (., w, h)]
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Comparing this result with (4.11), implies that w, = h holds for a fixed point (w, h)
to the operator P. Hence, Equation (4.10) can be rewritten as

W= P,y + TolF (., w,w,)]

Differentiating this equation with respect to z, obtains Equation (4.1). Further, Re w =
Re ®(ww,) = ¢ on 00, Im w (il/”) = ¢o. This completes the proof of the following
Lemma.

Lemma 4.5. Let (w,h) be a fized point of the operator P. Then its first component
function w is a solution to the Schwarz problem (4.1), (4.2), and the second component
h equals to the derivative w, of the solution w = w(z).

Now we are going to solve this fixed point problem. Consider the space
B = {(w,h); w, h e C% (Q;C)},
equipped with the norm
[(w, h)ll« = max{[[w]a, [|Plla}, (w,h) € B,

where || - ||, is the usual Hélder norm in C* (2). Since C* (2) is a Banach space, then
B is a Banach space.

Next we obtain sufficient conditions on the coefficients of F under which the operator P
is contractive. For (wy, hy) and (ws, ho) in B, let P(wy, hy) = (Wi, Hy) and P(ws, hy) =
(WQ, HQ) Then

Wl - WQ - (I)(wl,h1) - ¢(’LUQ,h2) + Tﬂ[g]a Hl - H2 — HQ[g]7

where @, 5) — P(ws,hy) IS an imaginary constant given by

Dy h1) = Plus ey = —iIm To[G] (V™)

where G := F(.,wy, hy) — F(., ws, ha).
Let
Ay = ||Talla (L1l = holla + Laljwr — walla)

and
A2 = ”HQ”O{ (Lthl — hZHOz + LQle - wQ”“) )

where Ly = |||, + [[p2ll, and Ly := |lal], + [[b]],.-
Since Ty and Il from L, (Q) ,p>2 toC? (Q) , @ = (p—2)/p, are bounded operators,
then

ITa[Gllla < [ TallallGlla < Ar, [TalGlla < [Hallal|Glla < As. (4.12)

Introducing the distance

d (w1, h1), (w2, he)) = max {|jw; — wsl|a, |1 — h2lla}
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in the space B, then

d (P (wy, hy), P (wy, he)) = max {|[W1 — Wal|a, [[H1 — Halla}
<max { | uw, n) — Prugno)| + 170G s [Te[G]]la }
Smax{k:lAl,Ag}
<max {k1||Talla, [Halla} (L1 + L) d (w1, hy) , (w2, ha)) .

Therefore, the operator P is contractive if

1
max {k1]|7a||a, IHalla}’

leallp + Nl + llallp + (161l < (4.13)

where k; is the Holder constant of Sq[p](z), given in Lemma 4.1. This proves the
following result.

Proposition 4.1. The operator P, defined by (4.9) is contractive if (4.13) holds.
Hence the following statement can be proved.
Theorem 4.2. The Schwarz problem
Wz = W, + W, + aw + bw + ¢, in €,
Re w(¢) = p(C) on 9,
Im w (il/”) = ¢y, Co € R,

where py, p2, a, b, ¢ € Lyo (ﬁ; C) , p > 2, such that
[ (2)] + [p2(2)] < po < 1,

1 (2)] + |pa(2)] = O (|2 7) , asz — oo,

and @ € Ly (0, R) N C (0 R) for some 0 < a < 1,0 <,
is uniquely solvable if the coefficients uy, po, a, b, ¢ satisfy (4.13).

Proof. 1f (4.13) is satisfied, the operator P is contractive. Hence, by the contraction
mapping principle, P has a unique fixed point (w, h) satisfying (4.7), (4.8). By Lemma
4.5 the first component w is the unique solution of the boundary value problem under
consideration. O
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