Eurasian Mathematical Journal

2014, Volume 5, Number 3

Founded in 2010 by
the L.N. Gumilyov Eurasian National University
in cooperation with
the M.V. Lomonosov Moscow State University
the Peoples' Friendship University of Russia
the University of Padua

Supported by the ISAAC (International Society for Analysis, its Applications and Computation) and by the Kazakhstan Mathematical Society

Published by

the L.N. Gumilyov Eurasian National University Astana, Kazakhstan

EURASIAN MATHEMATICAL JOURNAL

Editorial Board

Editors-in-Chief

V.I. Burenkov, M. Otelbaev, V.A. Sadovnichy

Editors

Sh.A. Alimov (Uzbekistan), H. Begehr (Germany), O.V. Besov (Russia), B. Bojarski (Poland), N.A. Bokayev (Kazakhstan), A.A. Borubaev (Kyrgyzstan), G. Bourdaud (France), R.C. Brown (USA), A. Caetano (Portugal), M. Carro (Spain), A.D.R. Choudary (Pakistan), V.N. Chubarikov (Russia), A.S. Dzumadildaev (Kazakhstan), V.M. Filippov (Russia), H. Ghazaryan (Armenia), M.L. Goldman (Russia) sia), V. Goldshtein (Israel), V. Guliyev (Azerbaijan), D.D. Haroske (Germany), A. Hasanoglu (Turkey), M. Huxley (Great Britain), M. Imanaliev (Kyrgyzstan), P. Jain (India), T.Sh. Kalmenov (Kazakhstan), K.K. Kenzhibaev (Kazakhstan), S.N. Kharin (Kazakhstan), E. Kissin (Great Britain), V. Kokilashvili (Georgia), V.I. Korzyuk (Belarus), A. Kufner (Czech Republic), L.K. Kussainova (Kazakhstan), P.D. Lamberti (Italy), M. Lanza de Cristoforis (Italy), V.G. Maz'ya (Sweden), A.V. Mikhalev (Russia), E.D. Nursultanov (Kazakhstan), R. Oinarov (Kazakhstan), K.N. Ospanov (Kazakhstan), I.N. Parasidis (Greece), J. Pečarić (Croatia), S.A. Plaksa (Ukraine), L.-E. Persson (Sweden), E.L. Presman (Russia), M.D. Ramazanov (Russia), M. Reissig (Germany), M. Ruzhansky (Great Britain), S. Sagitov (Sweden), T.O. Shaposhnikova (Sweden), A.A. Shkalikov (Russia), V.A. Skvortsov (Poland), G. Sinnamon (Canada), E.S. Smailov (Kazakhstan), V.D. Stepanov (Russia), Ya.T. Sultanaev (Russia) sia), I.A. Taimanov (Russia), T.V. Tararykova (Great Britain), J.A. Tussupov (Kazakhstan), U.U. Umirbaev (Kazakhstan), Z.D. Usmanov (Tajikistan), N. Vasilevski (Mexico), B. Viscolani (Italy), Masahiro Yamamoto (Japan), Dachun Yang (China), B.T. Zhumagulov (Kazakhstan)

Managing Editor

A.M. Temirkhanova

Executive Editor

D.T. Matin

Short communications

EURASIAN MATHEMATICAL JOURNAL

ISSN 2077-9879 Volume 5, Number 3 (2014), 125 – 128

THE PREDUAL SPACE OF A JBW*-TRIPLE

A.A. Rakhimov

Communicated by Z.D. Usmanov

Key words: von Neumann algebra, JBW*-triple, normal functionals.

AMS Mathematics Subject Classification: 17C65, 46H70, 46L10, 46L70.

Abstract. In the paper JB*-triples which are dual Banach spaces are considered as analogues of JBW*-algebras. For JBW*-triples an analogue of the classical theorem of Vitali-Hahn-Saks on convergent sequences of measures and a theorem on weak compactness of a set of normal functionals are proved.

It is known that normed Jordan triple systems have been studied because of their connection to bounded symmetric domains in Banach spaces and to C*-algebras. JB*-triples generalize C*-algebras: any norm-closed subspace of the space of all bounded linear operators on a complex Hilbert space which is also closed under the Jondan triple product $\{xy^*z\} = \frac{1}{2}(xy^*z + zy^*x)$ is a JB*-triple. Let us remind that a map $x \to x^*$ is called an *involution* if it satisfies the following conditions: $(x^*)^* = x$, $(\lambda x)^* = \overline{\lambda}x^*$, $(x+y)^* = x^* + y^*$, $(xy)^* = y^*x^*$, where $\lambda \in \mathbb{C}$. In this paper, we consider JBW*-triples, i.e., JB*-triples which are dual Banach spaces. On the basis of works [3, 1, 6, 2], for JBW*-triples there are proved an analogue of the classical theorem of Vitali-Hahn-Saks on convergent sequences of measures and a theorem of weak compactness of a set of normal functionals. They are generalizations of the results of works [1, 6], where JBW-algebras have been considered.

A Jordan *-triple is a complex vector space U with a sesquilinear map $(x, y) \to x \square y^*$ from $U \times U$ to the space L(U) of all linear operators on U such that

- 1) the triple product $\{xy^*z\} = x \Box y^*(z)$ is symmetric in x and z;
- $2) \ \{uv^*\{xy^*z\}\} = \{\{uv^*x\}y^*z\} \{x\{vu^*y\}^*z\} + \{xy^*\{uv^*z\}\}, \ \forall u,v,x,y,z \in U.$

A Jordan *-triple U is called abelian if $\{xy^*\{uv^*z\}\}=\{\{xy^*u\}v^*z\}$ for all $u,v,x,y,z\in U$. An element $e(\neq 0)\in U$ is called tripotent, if $\{ee^*e\}=e$. A non-zero tripotent e induces a decomposition of a Jordan *-triple U into the eigenspaces of $e\Box e^*$, the Peirce decomposition $U=U_1(e)\oplus U_{1/2}(e)\oplus U_0(e)$, where $U_k=U_k(e)=\{z\in U:\{ee^*z\}=kz\}$, for k=0,1/2,1. For U_k the following multiplication rules hold

126 A.A. Rakhimov

 $\{U_1U_0^*U\} = \{U_0U_1^*U\} = 0$ and $\{U_iU_j^*U_k\} \subset U_{i-j+k}$, where $i, j, k \in \{0, 1/2, 1\}$ and $U_l = 0$ for $l \neq 0, 1/2, 1$. Put

$$P_k^e(z) = \begin{cases} z, & \text{if } z \in U_k, \\ 0, & \text{if } z \in U_j, j \neq k. \end{cases}$$

Tripotents e and f are called *compatible*, if $P_j^e P_k^f = P_k^f P_j^e$ (i.e. P_j^e and P_k^f commute), for all $j,k \in \{0,1/2,1\}$; orthogonal (denote by $e \perp f$), if $e \in U_0(f)$.

A JB*-triple is a Jordan *-triple U endowed with a complete norm such that the triple product is jointly continuous, $z \square z^*$ is a hermitian operator with pozitive spectrum and $\|\{zz^*z\}\| = \|z\|^3$, for all $z \in U$. A JB*-triple U is called a JBW*-triple if U (as a Banach space) has a predual U_* such that the triple product is separately $\sigma(U, U_*)$ -continuous. Any JB*-algebra (respectively, JBW*-algebra) is a JB*-triple (respectively, JBW*-triple) with respect to the product $\{xy^*z\} = (x \circ y^*) \circ z - (x \circ z) \circ y^* + (y^* \circ z) \circ x$. Conversely, if e is a tripotent in a JB*-triple (respectively, JBW*-triple) U, then $U_1(e)$ is a JB*-algebra (respectively, JBW*-algebra) with product $xy = \{xe^*y\}$ and involution $x \to \{ex^*e\}$.

Theorem 1. (Proposition 3.19 [4]). Let U be a JBW^* -triple with predual U_* and let $f \in U^*$. Then the following conditions are equivalent

- (i) $f \in U_*$;
- (ii) $f(\sum_{i \in I} e_i) = \sum_{i \in I} f(e_i)$, for every orthogonal family $(e_i)_{i \in I}$ of tripotents.

Corollary. Let A be a JBW*-algebra with predual A_* and let $f \in A^*$. Then the following conditions are equivalent

- (i) $f \in A_*$;
- (ii) $f(\sum_{i \in I} e_i) = \sum_{i \in I} f(e_i)$, for every orthogonal family $(e_i)_{i \in I}$ of projections.

A functional $f \in A^*$ is called a *normal* if one of equivalent conditions of Theorem 1 is satisfied.

Theorem 2. Let U be a JBW*-triple. Let $\{\varphi_n\}$ be a sequence of functionals in U_* and let $\varphi_n(x) \to \varphi(x)$, for all $x \in U$. Then $\varphi \in U_*$.

Proof. Let $(e_j)_{j\in J}$ be an arbitrary orthogonal family of tripotents in U and let $e=\sum_{i\in J}e_j$. By Corollary 3.13 [4] a tripotent e_j is a e-projection for all $j\in J$, i.e. e_j

is projection on JBW*-algebra $A = U_1(e)$ for all $j \in J$. Since $\{\varphi_n\} \in U_*$ by Lemma 3.18 [3] $\varphi_n \mid_{A} \in A_*$ for all n. Then by Proposition 3.18 [4] and $\varphi_n(x) \to \varphi(x)$ (for all $x \in U$) we have $\varphi \mid_{A} \in A_*$.

By Corollary we obtain $\varphi(\sum_{j\in J}e_j)=\sum_{j\in J}\varphi(e_i)$. Then Theorem 1 implies that $\varphi\in U_*$.

Theorem 3. Let M be a norm bounded subset of U_* . Then the following conditions are equivalent

- (1) M is weakly relatively compact;
- (2) a restriction of M on each maximal abelian subtriple of U is weakly relatively compact;
- (3) for any sequence of orthogonal tripotents (e_n) the convergence $\lim_{n\to\infty} f(e_n) = 0$ is uniform for all $f \in M$.

Proof. The implication $(1) \Rightarrow (2)$ is obvious. Further, since any orthogonal family of tripotents is compatible ([3, 1.18]), then the subtriple generated by this family is abelian. By the Zorn Lemma it is contained in a maximal abelian subtriple V. Then from $\sigma(U, U_*)$ -continuity of each component of the triple product it follows that a subtriple V is $\sigma(U, U_*)$ -closed. Therefore by Lemma 3.13 [3] a subtriple V is isometrically isomorphic to an abelian W*-algebra. Then the implications (2) \Leftrightarrow (3) follow by Grothendieck's results ([2, Theorem 4, Corollary 1]). Hence it suffices to prove that $(2) \Rightarrow (1)$. We consider the space U_* as the subspace of U^* . Since M is norm-bounded in U^* by Banach-Anaouglu's Theorem its $\sigma(U^*, U)$ -closure \overline{M} in U^* is $\sigma(U^*, U)$ -compact.

The assertion will be proved, if we show that, every element $f \in \overline{M} \subset U^*$ belongs $U_* \subset U^*$, since the weak topology in U_* is the restriction of the weak topology in U^* . Let $f \in \overline{M}$. If V is any maximal abelian subtriple, then by assumption (2) the restriction $M \mid_V$ is weakly relatively compact in U_* , and therefore $f \mid_V \in \overline{M} \mid_V \subset U_*$. Hence the restriction of f on any maximal abelian subtriple is normal. Since any orthogonal family of tripotents is compatible the map f is a completely additive functional on the tripotents. Then Theorem 1 implies that $f \in U_*$.

128 A.A. Rakhimov

References

- [1] Sh.A. Ayupov, Ergodic theorems for Markov operators in Jordan algebras, Proceedings of the Academy of Sciences of Uzbekistan. 3 (1982), 12-15.
- [2] A. Grothendieck, Sur les applications linearies faiblement compactes d'espaces du type C(K), Canad. J. Math. 5 (1953), 129-173.
- [3] G.Horn, Klassifikation der JBW*-Tripel vom Typ I, Dissertation der Eberhard Karls Universitat in Tubingen. 1984.
- [4] G.Horn, Characterization of the predual and ideal structure of a JBW*-triple, Math. Scand. 61 (1987), 117-133.
- [5] W.Kaup, A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z. 183 (1983), 503-529.
- [6] T.A. Sarymsakov, Sh.A. Ayupov, Dj.Kh. Khadjiev, V.I. Chilin, *Ordered algebras*, "FAN" Publisher, Uzbekistan, (1983), 192 pp.

Abdugafur Abdumadjidovich Rakhimov The Tashkent Automobile and Road Construction Institute 20 Amir Temur St., Tashkent, Uzbekistan E-mail address: rakhimov@ktu.edu.tr, rakhimov2002@yahoo.com

Received: 17.01.2013