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Abstract. In the paper JB*-triples which are dual Banach spaces are considered as
analogues of JBW*-algebras. For JBW*-triples an analogue of the classical theorem
of Vitali-Hahn-Saks on convergent sequences of measures and a theorem on weak com-
pactness of a set of normal functionals are proved.

It is known that normed Jordan triple systems have been studied because of their
connection to bounded symmetric domains in Banach spaces and to C*-algebras. JB*-
triples generalize C*-algebras: any norm-closed subspace of the space of all bounded
linear operators on a complex Hilbert space which is also closed under the Jondan triple
product {xy∗z} = 1

2
(xy∗z + zy∗x) is a JB∗-triple. Let us remind that a map x → x∗

is called an involution if it satisfies the following conditions: (x∗)∗ = x, (λx)∗ = λx∗,
(x+y)∗ = x∗+y∗, (xy)∗ = y∗x∗, where λ ∈ C. In this paper, we consider JBW∗-triples,
i.e., JB∗-triples which are dual Banach spaces. On the basis of works [3, 1, 6, 2], for
JBW*-triples there are proved an analogue of the classical theorem of Vitali-Hahn-
Saks on convergent sequences of measures and a theorem of weak compactness of a set
of normal functionals. They are generalizations of the results of works [1, 6], where
JBW-algebras have been considered.

A Jordan *-triple is a complex vector space U with a sesquilinear map (x, y) → x�y∗

from U × U to the space L(U) of all linear operators on U such that

1) the triple product {xy∗z} = x�y∗(z) is symmetric in x and z;

2) {uv∗{xy∗z}} = {{uv∗x}y∗z} − {x{vu∗y}∗z}+ {xy∗{uv∗z}}, ∀u, v, x, y, z ∈ U .

A Jordan *-triple U is called abelian if {xy∗{uv∗z}} = {{xy∗u}v∗z} for all u, v,
x, y, z ∈ U . An element e(6= 0) ∈ U is called tripotent, if {ee∗e} = e. A non-zero
tripotent e induces a decomposition of a Jordan *-triple U into the eigenspaces of
e�e∗, the Peirce decomposition U = U1(e) ⊕ U1/2(e) ⊕ U0(e), where Uk = Uk(e) =
{z ∈ U : {ee∗z} = kz}, for k = 0, 1/2, 1. For Uk the following multiplication rules hold
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{U1U
∗
0U} = {U0U

∗
1U} = 0 and {UiU∗

j Uk} ⊂ Ui−j+k, where i, j, k ∈ {0, 1/2, 1} and
Ul = 0 for l 6= 0, 1/2, 1. Put

P e
k (z) =

{
z, if z ∈ Uk,
0, if z ∈ Uj, j 6= k.

Tripotents e and f are called compatible, if P e
j P

f
k = P f

k P
e
j (i.e. P e

j and P f
k commute),

for all j, k ∈ {0, 1/2, 1}; orthogonal (denote by e ⊥ f), if e ∈ U0(f).

A JB∗-triple is a Jordan *-triple U endowed with a complete norm such that
the triple product is jointly continuous, z�z∗ is a hermitian operator with poz-
itive spectrum and ‖{zz∗z}‖ = ‖z‖3, for all z ∈ U . A JB∗-triple U is called
a JBW∗-triple if U (as a Banach space) has a predual U∗ such that the triple
product is separately σ(U,U∗)-continuous. Any JB∗-algebra (respectively, JBW∗-
algebra) is a JB∗-triple (respectively, JBW∗-triple) with respect to the product
{xy∗z} = (x ◦ y∗) ◦ z − (x ◦ z) ◦ y∗ + (y∗ ◦ z) ◦ x. Conversely, if e is a tripotent in
a JB∗-triple (respectively, JBW∗-triple) U , then U1(e) is a JB∗-algebra (respectively,
JBW∗-algebra) with product xy = {xe∗y} and involution x→ {ex∗e}.

Theorem 1. (Proposition 3.19 [4]). Let U be a JBW∗-triple with predual U∗ and let
f ∈ U∗. Then the following conditions are equivalent

(i) f ∈ U∗ ;

(ii) f(
∑
i∈I

ei) =
∑
i∈I

f(ei), for every orthogonal family (ei)i∈I of tripotents.

Corollary. Let A be a JBW∗-algebra with predual A∗ and let f ∈ A∗. Then the
following conditions are equivalent

(i) f ∈ A∗;

(ii) f(
∑
i∈I

ei) =
∑
i∈I

f(ei), for every orthogonal family (ei)i∈I of projections.

A functional f ∈ A∗ is called a normal if one of equivalent conditions of Theorem 1
is satisfied.

Theorem 2. Let U be a JBW∗-triple. Let {ϕn} be a sequence of functionals in U∗
and let ϕn(x) → ϕ(x), for all x ∈ U . Then ϕ ∈ U∗.

Proof. Let (ej)j∈J be an arbitrary orthogonal family of tripotents in U and let
e =

∑
i∈J

ej. By Corollary 3.13 [4] a tripotent ej is a e-projection for all j ∈ J , i.e. ej

is projection on JBW∗-algebra A = U1(e) for all j ∈ J . Since {ϕn} ∈ U∗ by Lemma
3.18 [3] ϕn |A∈ A∗ for all n. Then by Proposition 3.18 [4] and ϕn(x) → ϕ(x) (for all
x ∈ U) we have ϕ |A∈ A∗.
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By Corollary we obtain ϕ(
∑
j∈J

ej) =
∑
j∈J

ϕ(ei). Then Theorem 1 implies that

ϕ ∈ U∗. �

Theorem 3. Let M be a norm bounded subset of U∗. Then the following conditions
are equivalent

(1) M is weakly relatively compact;

(2) a restriction of M on each maximal abelian subtriple of U is weakly relatively
compact;

(3) for any sequence of orthogonal tripotents (en) the convergence lim
n→∞

f(en) = 0 is
uniform for all f ∈M .

Proof. The implication (1) ⇒ (2) is obvious. Further, since any orthogonal fam-
ily of tripotents is compatible ([3, 1.18]), then the subtriple generated by this family
is abelian. By the Zorn Lemma it is contained in a maximal abelian subtriple V .
Then from σ(U,U∗)-continuity of each component of the triple product it follows that
a subtriple V is σ(U,U∗)-closed. Therefore by Lemma 3.13 [3] a subtriple V is iso-
metrically isomorphic to an abelian W*-algebra. Then the implications (2) ⇔ (3)
follow by Grothendieck’s results ([2, Theorem 4, Corollary 1]). Hence it suffices to
prove that (2) ⇒ (1). We consider the space U∗ as the subspace of U∗. Since M is
norm-bounded in U∗ by Banach-Anaouglu’s Theorem its σ(U∗, U)-closure M in U∗ is
σ(U∗, U)-compact.

The assertion will be proved, if we show that, every element f ∈ M ⊂ U∗ belongs
U∗ ⊂ U∗, since the weak topology in U∗ is the restriction of the weak topology in U∗. Let
f ∈ M . If V is any maximal abelian subtriple, then by assumption (2) the restriction
M |V is weakly relatively compact in U∗, and therefore f |V∈ M |V ⊂ U∗. Hence
the restriction of f on any maximal abelian subtriple is normal. Since any orthogonal
family of tripotents is compatible the map f is a completely additive functional on the
tripotents. Then Theorem 1 implies that f ∈ U∗. �
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